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Compensated isocurvature perturbations (CIPs) are modulations of the relative baryon and dark matter
density that leave the total matter density constant. The best current constraints from the primary cosmic
microwave background (CMB) are consistent with CIPs some 2 orders of magnitude larger in amplitude
than adiabatic perturbations, suggesting that there may be a huge gap in our knowledge of the early
Universe. However, it was recently suggested by Barreira et al. that CIPs that are correlated with the
primordial curvature perturbation, as arises in some versions of the curvaton model, lead to a new
observable: scale-dependent galaxy bias. Combining a galaxy survey with an unbiased tracer of the density
field facilitates a measurement of the amplitude of correlated CIPs that is free from cosmic variance, the
main limitation on constraints from the primary CMB. Among the most promising tracers to use for this
purpose is the remote dipole field, reconstructed using the technique of kinetic Sunyaev Zel’dovich (kSZ)
tomography. In this paper, we evaluate the detection significance on the amplitude of correlated CIPs
possible with next-generation CMB and galaxy surveys using kSZ tomography. Our analysis includes all
relativistic contributions to the observed galaxy number counts and allows for both CIPs and primordial
non-Gaussianity, which also gives rise to a scale-dependent galaxy bias. We find that kSZ tomography can
probe CIPs of comparable amplitude to the adiabatic fluctuations, representing an improvement of over 2
orders of magnitude upon current constraints, and an order of magnitude over what will be possible using
future CMB or galaxy surveys alone.
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I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) provide the bedrock for the standard cosmological
model, ΛCDM. A central feature of ΛCDM is that
perturbations are adiabatic, with inhomogeneities in dark
matter, baryons, neutrinos, and photons all uniquely deter-
mined by the primordial curvature perturbations. Theories
of the early Universe that have 1 degree of freedom (d.o.f.),
such as single-field inflation, naturally predict purely
adiabatic fluctuations. More generally, theories with
multiple d.o.f. can source isocurvature (entropy) pertur-
bations, where the relative mixture of dark matter,
baryons, neutrinos, and photons becomes independent
d.o.f. While most forms of isocurvature perturbations
are tightly constrained by existing measurements of the
CMB [1], there is a notable exception: compensated
isocurvature perturbations (CIPs). CIPs are fluctuations
of baryons and cold dark matter that leave the total matter
perturbations unchanged and adiabatic. CIPs leave an

imprint on the CMB only through terms that appear at
second order in the matter density contrast, making them
challenging to constrain [2–10]. Current measurements
from Planck [1] allow for an amplitude of CIPs roughly
580 times larger than the amplitude of the adiabatic
modes.1 This is a surprisingly large gap in our knowledge
of the early Universe. A detection of CIPs can provide
insight into both the number of primordial fields that
contribute to the observed density fluctuations, as well as
their decay channels [12–14], strongly motivating new
ways of searching for CIPs.
Variations of the ratio between baryons and cold dark

matter change how structure is distributed in the Universe,
altering how galaxies trace the total matter density [15–17].

1More recently, constraints on CIPs from their effect on baryon
acoustic oscillations (BAO) [11] were analyzed. It was shown that
constraints comparable to those from the CMB are possible with
future galaxy surveys.
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This leads to a spatially varying galaxy bias that relates the
observed galaxy overdensity to the total matter over-
density. In particular, CIPs that are correlated with the
primordial curvature perturbation (as arises in e.g., cur-
vaton scenarios [12]) introduce a scale-dependent galaxy
bias [17], similar to the effect of local-type primordial
non-Gaussianity [18]. Because correlated CIPs induce a
scale-dependent galaxy bias, given an unbiased tracer
of the total matter density, it is possible to use sample
variance cancellation [19,20] to measure the amplitude of
CIPs without cosmic variance, as suggested in Ref. [17].
While it is possible to use different populations within a
galaxy survey itself to measure scale-dependent bias,
sample variance cancellation is, in principle, more power-
ful when using the technique of kSZ tomography [21,22].
The primary goal of this paper is to explore the potential
for kSZ tomography to probe CIPs using future CMB and
galaxy surveys.
The technique of kSZ tomography [23–28] uses the

correlation between redshift-binned galaxy number counts
and the small-angular scale kSZ contribution to the CMB
to reconstruct the three-dimensional remote dipole field,
the CMB dipole as observed at different locations in our
Universe. The remote dipole field, which at any location is
dominated by the Doppler effect associated with radial
peculiar velocities, can be reconstructed with high fidelity
on large angular scales using future surveys such as Simons
Observatory [29] or CMB-S4 [30] and LSST [31] or DESI
[32]. The reconstruction is, in principle, of such high
quality that it is superior to direct measurements of the
density field from the galaxy survey itself, making kSZ
tomography a powerful probe of inhomogeneities on the
largest scales. These measurements can facilitate strong
constraints on primordial non-Gaussianity [21,22], the
physics of cosmic acceleration [33], and inflationary
cosmology [24,34].
Previous work [21,22] has found that future experiments

will be able to detect local-type non-Gaussianity of order
σfNL ∼Oð1Þ by utilizing sample variance cancellation
between the reconstructed remote dipole field and galaxy
number counts. Depending on assumptions, priors on
various bias parameters, and whether internal sample
variance cancellation is employed, this can represent up
to an order of magnitude improvement on what is possible
using the galaxy survey alone. Below, we find a similar
level of improvement on the amplitude of CIPs when
utilizing kSZ tomography. In particular, it will be possible
to probe CIPs comparable in amplitude to the adiabatic
perturbations, which can be thought of as a well-motivated
target for future measurements.
The plan of the paper is as follows. In Sec. II we describe

potential sources of and observable consequences of CIPs.
In Sec. III we review kSZ tomography, and then examine
how well future surveys can measure correlated CIPs in
Sec IV. We conclude in Sec. V.

II. CIPs AND THEIR OBSERVABLE
CONSEQUENCES

In the early Universe, standard single-field inflation
produces purely adiabatic curvature perturbations. If the
fluctuations seeded in the early Universe were sourced by
multiple fields, however, some fraction of these may be
entropic (or isocurvature) perturbations where the frac-
tional densities of baryons or dark matter vary with
respect to radiation. Isocurvature perturbations can be
parametrized by a quantity Siγ, with γ for photons and
i ¼ fb; c; νg for baryons, cold dark matter (CDM), and
neutrinos, respectively, and

Siγ ¼
δni
ni

−
δnγ
nγ

; ð1Þ

where n and δn are the mean number density of a species
and its fluctuations, respectively.
The compensated isocurvature perturbations between

baryons and CDM studied in this paper are a particular
combination of these perturbations that leaves the total
matter density fluctuations unchanged, where the baryon
number density fluctuations are exactly compensated by
those of CDM. We define the compensated isocurvature
mode with Δ as in the literature. The baryon and CDM
isocurvature perturbations are then defined as

Sbγ ¼ Δ; Scγ ¼ −
ρb
ρc

Δ; ð2Þ

where ρi is the energy density of species i.
Compensated isocurvature perturbations may be

sourced, for example, by a spectator scalar field that is
subdominant in the early Universe with respect to the
inflaton field driving the inflationary dynamics [35]. In this
scenario, after inflation ends, the inflaton decays into
relativistic particles and its energy density scales like
radiation, while the spectator field (curvaton) oscillates
around its potential minimum, its energy density scaling
like matter, e.g., [12–14,36–38]. Depending on the duration
of this era, the curvaton may contribute significantly to
curvature fluctuations of the Universe upon its decay into
relativistic particles.
If the curvaton decays into baryon number and CDM and

also dominates the energy density of the Universe at its
decay, the CIPs will be fully correlated with the adiabatic
curvature fluctuations ζ, satisfying

Δ ¼ Aζ; ð3Þ

while any residual isocurvature perturbations other than
CIPs that are uncorrelated with the adiabatic curvature
fluctuations are well constrained by the CMB observations
[1]. Similar to earlier works in the literature, e.g.,
[11,35,39], we focus on these “correlated CIPs” and
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evaluate the detection significance of the amplitude A
below. The two distinct curvaton decay scenarios that
produce observationally relevant CIP amplitudes are either
A ≃ 16, if baryon (CDM) number is produced by (before)
curvaton decay, or A ¼ −3, if CDM (baryon) number is
produced by (before) curvaton decay. Furthermore, in the
former curvaton decay model where A ≃ 16, the local non-
Gaussianity is found to be relatively large, fNL ≃ 6 [35,40],
suggesting that future experiments may disfavor the sce-
narios where CDM preceded the decay of the curvaton.
Note that an unambiguous statement along these lines
requires constraining both the CIP amplitude and fNL
simultaneously, as we discuss in Sec. IV.
In the absence of primordial isocurvature perturbations

after recombination, baryons and CDM can be approxi-
mated to move together as a single fluid on large scales
where nongravitational forces can be neglected. However,
both before recombination and in the presence of primor-
dial isocurvature perturbations, there can be important
differences in the distribution of baryons and CDM. For
example, before recombination baryons are tightly coupled
to photons while CDM is not. This leads to a modulation in
the relative fraction of baryons and CDM on large scales
while keeping the total matter density fixed, and therefore
is a source of CIPs [15–17]. In addition, we may have the
primordially sourced CIPs discussed above. As we see
shortly, primordial correlated CIPs can be distinguished
from these more mundane sources of CIPs by their
characteristic scale-dependent imprint on the distribution
of galaxies.
There are a few potential imprints of CIPs on the

observed galaxy distribution. First, the sound horizon
becomes spacetime dependent, altering the BAO feature
in different regions of the Universe [11]. Second, modu-
lating the density of baryons can modulate the strength of
various feedback effects in the formation and evolution of
galaxies. Finally, because only dark matter can cluster
efficiently prior to recombination, modulating the density
of dark matter leads to a modulation in the growth of
structure. It is this last effect that provides the dominant
contribution on large scales, and that we focus on.
As shown in Ref. [17], the leading effect of CIPs on

galaxy density perturbations can be folded into a linear
bias bbcðzÞ,

δgðk; τÞ ≃ bðzÞδmðk; τÞ þ bbcðzÞ½δbcðk; τÞ þ fΔðkÞ�; ð4Þ

where we have allowed for both prerecombination CIPs
δbc, as well as primordially sourced correlated CIPs,
f ≡ 1þΩb=Ωc, and we can relateΔðkÞ to the total density
perturbation by

Δ ¼ 5H2Ωm

2ak2
Aδm: ð5Þ

Therefore, we see that primordially sourced correlated CIPs
lead to a scale-dependent galaxy bias, becoming increas-
ingly important on the largest scales. This scale dependence
can be contrasted with the imprint of δbc, which is expected
to be very small on scales larger than the BAO feature [17].
Indeed, on the scales of interest (∼Gpc), δbc is many orders
of magnitude smaller than δm and can be safely neglected.
The bias bbcðzÞ can be estimated in the separate

Universe approximation by simply computing the effect
of changing the baryon-CDM fraction on the number
density of galaxies. We define

bbcðzÞ ¼
Z

dmnðm; zÞbbcðm; zÞ hNðmÞi
n̄g

; ð6Þ

where nðm; zÞ is the halo mass function, hNðmÞi is the
average number of galaxies per halo of mass m, n̄g is the
comoving number density of galaxies at fixed redshift, and

bbcðm; zÞ ¼ 1

δbc

�
ñðm; zÞ
nðm; zÞ − 1

�
; ð7Þ

with

δbc ¼
�
1þΩb

Ωc

�
Δb; ð8Þ

and the mass function ñ is evaluated with parameters,

Ω̃b ¼ ð1þ ΔbÞΩb; Ω̃c ¼
�
1 −

Ωb

Ωc
Δb

�
Ωc: ð9Þ

To evaluate bbcðzÞ, we use the mass function and halo
occupation distribution model for hNðmÞi and n̄g described
in Ref. [27]. For parameters consistent with the LSST [31]
gold sample used in the forecast below, we find that a
quadratic polynomial provides a good fit over the relevant
range of redshifts,

bbcðzÞ ≃ −ð0.16þ 0.2zþ 0.083z2Þ: ð10Þ

The total observed galaxy number counts receive con-
tributions not only from CIPs and intrinsic density pertur-
bations (D), but from all linear-order general relativistic
and light-cone projection effects, including redshift space
distortions (RSDs), lensing (L), and additional relativistic
contributions (GR) that are important on large scales
[41,42]. The spectrum of the total observed galaxy number
counts

CN;N
l ¼ 4π

Z
dk
k
PðkÞjΔN

l ðkÞj2 ð11Þ

is defined by the transfer function
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ΔN
l ðkÞ ¼ ΔD

l ðkÞ þ ΔRSD
l ðkÞ þ ΔL

lðkÞ þ ΔGR
l ðkÞ: ð12Þ

The power spectrum is defined by PðkÞ ¼ Asðk=k0Þns−1,
and the transfer function for the intrinsic galaxy perturba-
tions in a redshift bin is explicitly given by

ΔD
l ðkÞ ¼

Z
dχW̃ðχÞ

�
5f
3
AbcbðzÞSψ ðk; χÞ þ ðbGðzÞ

− bAðzÞ=3þ bNGðzÞÞSδM;synðk; χÞ
�
jlðkχÞ; ð13Þ

with W̃ðχÞ being a window function selecting the relevant
redshift bin, SδM;syn the time evolution function for cold
dark matter in comoving-synchronous gauge, and Sψ the
time evolution function for the Newtonian potential.
Galaxy bias (bG) and alignment bias [43] (bA) are mar-
ginalized over, and non-Gaussianities are also modeled as
an effective scale-dependent bias, bNG ∝ fNL. These bias
functions, as well as the remaining contributions to the
number counts transfer function, are modeled identically to
[22]. We show the relative contributions from each of these
effects to the total power in Fig. 1.

III. kSZ TOMOGRAPHY

The kinetic Sunyaev Zel’dovich (kSZ) effect, Thomson
scattering of CMB photons from free electrons in the late
Universe, provides the dominant source of temperature
anisotropies on small angular scales (corresponding to
l≳ 4000). The temperature anisotropy induced by the
kSZ effect in the n̂ direction is

Tðn̂Þ
TCMB

����
kSZ

¼ −σT
Z

dχaðχÞneðχn̂Þveffðχn̂Þ; ð14Þ

where TCMB is the mean CMB temperature, χ is the
comoving distance, σT is the Thomson cross section, a
is the scale factor, ne is the free electron number density,
and veff ¼ 3

R
d2n̂eΘ1ðn̂; n̂eÞn̂ · n̂e=ð4πÞ is the remote

CMB dipole field projected along the line of sight. On
small scales, the remote dipole field can be approximated
by the Doppler term induced by Newtonian peculiar
velocities, veff ≃ v⃗pec · n̂. However, to probe the large scales
we consider here it is important to include the contributions
from the Sachs Wolfe, Integrated Sachs Wolfe, and pri-
mordial Doppler effects. A complete description of the
contributions to the remote dipole field can be found in
Refs. [25,26]. Most of the cosmological information is
contained in veff , while ne depends primarily on astro-
physics and nonlinear large-scale structure; see Ref. [27]
for a detailed discussion of this point.
Kinetic Sunyaev Zel’dovich tomography aims to

extract the cosmological information from the kSZ effect
by using measurements of the CMB and a tracer of the
electron density, such as a galaxy survey, to reconstruct
the remote dipole field. The reconstructed dipole field,
in cross-correlation with the galaxy survey or primary
CMB, can then be used to estimate cosmological param-
eters. In the present context, it is important to note that
the remote dipole field is an unbiased tracer of the total
density. Cross-correlation with a galaxy survey can
therefore take full advantage of sample variance cancel-
lation in order to extract (scale-dependent) galaxy bias to
high precision.
More specifically, we can write a quadratic estimator for

the remote dipole field averaged in a set of top-hat redshift
bins labeled by index α as

v̂αeff;lm ¼ bαvNvv
αl

×
X

l1m1l2m2

ð−1ÞmΓα
l1l2l

�
l1 l2 l

m1 m2 −m

�

×
aTl1m1

δαg;l2m2

CTT
l1
Cgg
αl2

; ð15Þ

where

Γα
l1l2l

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4π

r

×
�
l1 l2 l

0 0 0

�
Cτg
α;l2

; ð16Þ

and the reconstruction noise (e.g., variance of the estimator)
is defined by

1

Nvv
αl

¼ 1

ð2lþ 1Þ
X
l1l2

Γα
l1l2l

Γα
l1l2l

CTT
l1
Cgg
αl2

: ð17Þ

FIG. 1. Relative contributions to the angular galaxy number
counts power spectrum, as labeled in the figure, in a top-hat
redshift bin from redshift z ¼ 1.6 to z ¼ 1.7. Shot noise from a
galaxy survey is shown in dashed gray.
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In these expressions, CTT
l1

is the measured CMB temper-
ature power spectrum, Cgg

αl2
is the measured spectrum of the

galaxy number counts in each bin, and Cτg
α;l2

is the cross-
power of the optical depth and galaxy number counts in
each bin. In the absence of an external tracer of the electron
distribution [44], there is, in principle, a significant model
uncertainty in Cτg

α;l2
. This uncertainty manifests itself as a

multiplicative “optical depth bias” bαv on the reconstructed
dipole field that must be marginalized over in any cosmo-
logical analysis (see, e.g., Refs. [27,44–46] for further
discussion). The reconstruction noise can, in principle,
become arbitrarily small in the limit where the CMB and
number counts can be probed on arbitrarily small angular
scales. In reality, the reconstruction noise is limited by the
instrumental noise of the CMB experiment and shot noise
of the galaxy survey, since this places an effective upper
limit in l on the sum in Eq. (17). The expected bin-
averaged dipole field signal is computed as in Ref. [26].

IV. FORECASTS

We now examine how well future experiments will be
able to measure A, assuming an LSST-“gold sample”-like
galaxy survey, and kSZ reconstruction from a CMB-S4-like
survey. We follow the prescription used in [22] in order to
compute galaxy number densities, the kSZ remote dipole
field, and the corresponding noise for each tracer. The
galaxy number densities follow from earlier work, e.g.,
[41,42,47,48], and the kSZ signal from, e.g., [26]. We make
use of information from each of these tracers individually,
as well as the cross-correlations. The Fisher matrix we
compute thus has the form

Fαβ ¼
Xlmax

l¼lmin

2lþ 1

2
Tr½ð∂αClÞC−1

l ð∂βClÞC−1
l � þ FCMB

αβ ;

ð18Þ

where the covariance matrix Cl is given by

Cl ¼
 

CN;N
l CN;kSZ

l

CkSZ;N
l CkSZ;kSZ

l

!
þ Nl: ð19Þ

The individual contributions to the covariance matrix are
the spectra CX;Y

l , where X; Y ∈ fN; kSZg, and are the
angular power spectra and cross-spectra of the galaxy

number counts and kSZ remote dipole field. The noise
computed for each tracer is denoted by Nl. For the galaxy
number counts, we assume the dominant source of noise is
shot noise from an LSST-like survey. Calibration errors
may also exist on large scales that we do not explicitly
model [49], although we do explore the dependence of
detection prospects on a maximum available l in Fig. 3.
For the kSZ reconstruction, the noise is the reconstruction
noise given by Eq. (17), which we assume is uncorrelated
with the galaxy shot noise. The CMB contribution to the
Fisher matrix, FCMB

αβ , is computed using information from
the lensed CMB temperature and polarization power
spectra, and is not cross-correlated with the galaxy survey
or remote dipole field. This term acts as an effective prior
on standard cosmological parameters only. Lastly, we
compute derivatives of the covariance matrices analytically
for all cosmological parameters and bias functions, except
for the cosmological parameters Ωb, Ωc, and h, which we
compute numerically. We test for numerical convergence
by varying all relevant numerical parameters.
For our fiducial results, we sum over 1 ≤ l ≤ 60; the

vast majority of constraining power on A and fNL comes
from l≲ 30. We assume information from a galaxy survey
is available in 30 (top-hat) redshift bins from z ¼ 0 to z ¼ 3
(so σz ≲ 0.05), and a magnitude limit corresponding to the
LSST gold sample, rmax ¼ 25.3. For reconstruction of the
remote dipole field, we assume modes up to l of 9000 are
available for reconstruction, subject to a 1.0 μK-arcmin
noise and 1 arcmin beam for the CMB experiment. We
explore the implications of varying this noise, and do not
find that our constraints change substantially: most of our
signal comes from the largest angular scales, where the
remote dipole field reconstruction noise is sufficiently low
even for a much larger instrument noise.
The main quantity we report is σα ¼

ffiffiffiffiffiffiffiffi
F−1
αα

p
. We mar-

ginalize over standard cosmological parameters, as well
as different bias functions. The full list of cosmological
parameters we marginalize over, as well as the bias
functions, are described in Table I unless stated otherwise.
We examine σA as a function of different ingredients in the
forecast, in order to assess how much additional con-
straining power is available once new probes are added and
theoretical considerations modified. The constraints we
find on A for our fiducial model described above, as well as
for different combinations probes, are shown in Table II.
Notably, the remote dipole field improves constraining
power over galaxy number densities alone by over an order

TABLE I. Various parameters and bias functions, and their fiducial values. The biases bv, bG, bA, fevo; s, that we refer to throughout
are, respectively, the optical depth bias, the galaxy bias, the alignment bias, the evolution bias, and the magnification bias. The fiducial
values of bias functions indicated with a † vary with redshift, the modeling of which is described in [22].

Parameter A 109As ns Ωb Ωc h τ bvðzÞ bGðzÞ bAðzÞ fevoðzÞ sðzÞ bbcðzÞ
Fiducial value 0 2.2 0.96 0.0528 0.2647 0.675 0.06 1 † 0 † † Eq. (10)
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of magnitude. Fixing standard cosmological parameters
and bias functions in addition does not considerably
improve constraining power; however we do find a mod-
erate degeneracy of A with the effects of non-Gaussianity,
such that additionally marginalizing over fNL worsens
constraining power by a factor of order 2. There is also
a minor degeneracy with general relativistic and light-cone
projection effects: although less important, we find a
parameter bias of order 1.5σ in A when these effects

(excluding lensing) are not modeled, suggesting that such
effects should be properly accounted for when studying
isocurvature perturbations using large-scale survey data.
In order to check how robust the uncertainties we report

are to the fiducial values we choose, as well as to draw a
connection to a specific model, we reevaluate our results for
a value of A ¼ 16 and fNL ¼ 6, corresponding to particular
curvaton decay models. Because the fiducial value of A is
no longer 0, the bias function bbcðzÞ should be marginalized
over. Changes in this bias function are highly degenerate
with changes in A, so we must place a prior on the function
in order to obtain meaningful results. Enforcing a condition
on the sign of bbc, or adding a “100%” prior σðbbcÞ ¼ bbc
on the function in each redshift bin, results in an uncertainty
in A of σA ¼ 5.8. The constraint scales down to σA ¼ 0.89
for a 10% prior, and σA ¼ 0.53 for a 1% prior, nearly
recovering the results reported in Table II. As primordial
non-Gaussianity may be sourced through other additional
mechanisms, we have marginalized over fNL and A
separately. The degeneracy between these two parameters
can be explicitly seen in Fig. 2 as a function of the prior on
bbc. Even with the weakest prior, we see that a definitive
detection of this scenario can be made with future data sets.
We lastly show how the uncertainty σA varies due to

experimental parameters that have not been marginalized
over. In particular, we vary the l summed over in Eq. (18),
the number and width of the redshift bins we consider
(which stand in as an effective redshift uncertainty), the
galaxy survey magnitude limit, and CMB experiment
noise. These results are summarized in Fig. 3. The results
generally do not change significantly as these are varied,
with two exceptions. First, improving the magnitude
limit from the LSST gold sample (r ¼ 25.3) to a less
conservative cut (r ¼ 27.3) can improve things by another
possible factor of order 2. Second, without a reliable survey
or remote dipole field reconstruction on large angular
scales, low-l multipoles may not be accessible, degrading
our constraint by a similar factor.

V. DISCUSSION

In this paper, we have shown that by measuring the scale-
dependent galaxy bias with the sample variance cancella-
tion technique using kSZ tomography from upcoming
CMB experiments and galaxy surveys, constraining the

TABLE II. The fiducial uncertainty in A from the model
described in the text is bold. Lines above this exclude the cross-
and autocorrelation with the kSZ remote dipole field, and
additionally exclude the high-l CMB prior on standard cosmo-
logical parameters. Lines below fix all cosmological parameters
and bias functions, or additionally marginalize over fNL with a
fiducial value of 0.

Forecast ingredients σA

N only 3.8
Nþ CMB 3.2
Nþ CMBþ kSZ 0.25
Nþ CMBþ kSZþ fixed cosmology 0.23
Nþ CMBþ kSZþ variable fNL 0.49

FIG. 2. Parameter covariance between A and fNL, given several
choices for a prior on bbc.

FIG. 3. The impact of changing various parameters relevant for, or related to, experiments for the fiducial forecast we perform.
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correlated CIP amplitude at order 1 at high significance
will be possible in the near future. We also considered a
curvaton model of inflation and demonstrated that our
method will be able to constrain the CIP amplitude and the
local non-Gaussianity predicted by this model at high
significance.
As our understanding of the fundamental characteristics

of the Universe advances, we might find it generally useful
to know whether baryon and CDM fluctuations trace the
total matter, or whether CIPs produced at early times
correspond to a significant source of fluctuations in the
Universe. From a phenomenological perspective, better
constraints on the CIPs may rule out generic models of
many field inflation, for example, or allow for less
ambiguous measurements of early Universe signatures,
such as primordial non-Gaussianity, which may be degen-
erate with the CIPs. Constraints from the CMB measure-
ments currently allow for CIPs to be up to a few orders of
magnitude larger than the adiabatic fluctuations [8], while
forecasts that use the upcoming CMB and galaxy surveys
alone suggest it will still be hard to rule out scenarios where
CIPs dominate over adiabatic fluctuations, or to distinguish
between the different CIP scenarios discussed above, for
example, with high significance. With an order of magni-
tude improvement on CIP constraints, here, we have been
able to show that these issues may be resolved by
measuring the galaxy bias through sample-variance can-
cellation using the reconstructed remote dipole field from
kSZ tomography.
In addition to the kSZ effect considered in this paper, one

can also consider cross-correlating with other tracers of
large-scale structure such as the remote quadrupole field
from measurements of the polarized Sunyaev Zel’dovich
effect, e.g., [26,50–53], and the transverse velocity fields
from the moving lens effect, e.g., [54–56]. Including
these effects in our forecasts, we do not see a significant
improvement upon the constraints presented in this work,
although we note that using these effects without kSZ can
still considerably improve upon past constraints. We leave
considering additional probes of large-scale structure, such
as galaxy-galaxy lensing, to future work.
Our study focused on isocurvature perturbations modes

that are correlated with the adiabatic fluctuations, as
predicted by the curvaton models we consider. In principle,
CIPs can be partially correlated (or uncorrelated) with the
adiabatic perturbations. In relation to the galaxy-bias
studied here, uncorrelated CIPs result in a halo overdensity
that is not fully correlated with matter overdensity, inducing
a so-called stochastic halo-bias on large scales [57]. The
stochastic halo bias can arise in many field models of
inflation, for example, where the small-scale matter power
may get redistributed in the presence of an additional field
that does not contribute to the curvature fluctuations, and is
not correlated with the gravitational potential. In these
cases, the bias inferred from the cross-correlations of the

halo overdensity and matter overdensity differs from the
bias inferred from halo autocorrelations, where the latter
see a boost compared to the former, which is unaffected by
uncorrelated fluctuations. The sample-variance cancella-
tion method we use with the kSZ tomography fails to detect
the contribution from a stochastic contribution, as it utilizes
the cross-correlations of the remote dipole field (an
unbiased tracer of the matter overdensity) and the galaxy
overdensity, in order to constrain the scale-dependent
galaxy bias. Moreover, any uncorrelated bias contributes
as noise to this measurement, further worsening the
significance of our constraints. It is thus hard to imagine
taking advantage of the sample-variance cancellation in
the case of uncorrelated CIPs. Nevertheless, depending on
the scale dependence of the uncorrelated modes, it may still
be possible to get competitive constraints on the CIP
amplitude from measurement of the scale-dependent
galaxy bias using galaxy number counts only, for example,
compared to using CMB and BAO reconstruction alone, as
can be seen from Table II. We leave a more detailed study
of the stochastic bias to future work.
Lastly, we note that the current competitive studies of the

scale-dependent galaxy bias such as the one afforded by
photometric quasar searches report stringent constraints
on local non-Gaussianity, e.g., −49 < fNL < 31 [58],
which can be translated into similar constraints on the
CIP amplitude, A, by comparing the contribution to the
transfer function of the intrinsic galaxy perturbations from
local non-Gaussianity and the CIPs. We find that these
contributions are similar at ∼Oð1Þ, suggesting that photo-
metric quasar studies can already improve on current CMB
constraints significantly. We leave a more careful analysis
to an upcoming work.
Advances in the precision of small-scale cosmology

measurements from the near-future CMB and galaxy
surveys will provide new opportunities to study the
fundamental nature of the Universe on largest scales. We
have used kSZ reconstruction and sample-variance can-
cellation in order to constrain correlated compensated
isocurvature fluctuations on large scales and showed that
our method improves the detection significance by over an
order of magnitude.

ACKNOWLEDGMENTS

We thank Colin Hill, Simone Ferraro, Mathew
Madhavacheril, and Emmanuel Schaan for helpful discus-
sions. S. C. H. acknowledges the support of a visitor grant
from the New-College Oxford/Johns-Hopkins Centre for
Cosmological Studies, the Imperial College President’s
Scholarship, and the hospitality of the Perimeter Institute
where part of this work was completed. This research was
supported in part by Perimeter Institute for Theoretical
Physics. Research at Perimeter Institute is supported by
the Government of Canada through the Department of
Innovation, Science and Economic Development Canada

PROBING CORRELATED COMPENSATED ISOCURVATURE … PHYS. REV. D 100, 103528 (2019)

103528-7



and by the Province of Ontario through the Ministry of
Research, Innovation and Science. M. C. J. is supported by
the National Science and Engineering Research Council
through a Discovery grant. J. B. M. acknowledges support

as a CITA national fellow. M. K. was supported in part by
NASA Grant No. NNX17AK38G, NSF Grant
No. 1818899, and the Simons Foundation. We acknowl-
edge use of the cosmicfish package [59].

[1] Y. Akramiet al. (Planck Collaboration), arXiv:1807.06211.
[2] G. P. Holder, K. M. Nollett, and A. van Engelen, Astrophys.

J. 716, 907 (2010).
[3] C. Gordon and J. R. Pritchard, Phys. Rev. D 80, 063535

(2009).
[4] D. Grin, O. Dore, and M. Kamionkowski, Phys. Rev. D 84,

123003 (2011).
[5] D. Grin, O. Dore, and M. Kamionkowski, Phys. Rev. Lett.

107, 261301 (2011).
[6] T. L. Smith, J. B. Muñoz, R. Smith, K. Yee, and D. Grin,

Phys. Rev. D 96, 083508 (2017).
[7] J. B. Muñoz, D. Grin, L. Dai, M. Kamionkowski, and E. D.

Kovetz, Phys. Rev. D 93, 043008 (2016).
[8] D. Grin, D. Hanson, G. P. Holder, O. Doré, and M.
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