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We develop a field-theoretic description of large-scale structure formation by taking the nonrelativistic
limit of a canonically transformed, real scalar field which is minimally coupled to scalar gravitational
perturbations in longitudinal gauge. We integrate out the gravitational constraint fields and arrive at a
nonlocal action which is only specified in terms of the dynamical degrees of freedom. In order to make this
framework closer to the classical particle description, we construct the corresponding 2PI effective action
truncated at two loop order for a nonsqueezed state without field expectation values. We contrast the
dynamical description of the coincident time phase-space density to the standard Vlasov description of cold
dark matter particles and identify momentum and timescales at which linear perturbation theory will
deviate from the standard evolution.
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I. INTRODUCTION

It lies in the nature of physics that surprising effects
happen on the transition between one physical scale to
another. In order to study whether such transitioning
effects are important one ought to start from the most
fundamental description that is available and descend in a
controlled way to the scale that is relevant for the problem.
Cosmological theories are in particular sensible to such
transitions since they attempt to describe various scales
and its associated effects range from quantum field
physics during inflation up to the evolution of large-scale
structures and cold dark matter at later times which is what
we are interested in. Even if one assumes only a real scalar
particle with gravitational interactions in a nonrelativistic
limit, there is still room to choose the state which should
describe this cold dark matter, be it a classical stochastic
state with or without squeezing, or a condensate. In [1,2],
we showed that a nonsqueezed, classical stochastic state
leads to pointlike cold dark matter characteristics on large
scales and is thus the field-theoretic generalization of the
standard Vlasov description [3,4]. The condensate
description corresponding to a coherent state, on the other
hand, is referred to as fuzzy dark matter [5–10]. It also
resembles pointlike cold dark matter dynamics on large
scales but there are, however, significant small scale
effects [11–14]. Are such small scale effects an exclusive
features of a condensate state, do they occur for other
states, how do they differ?

In order to account for these questions we are after a field-
theoretic description of cold dark matter that originates from
the QFT tree-level action of a real scalar field with minimal
coupling to gravity where we focus on scalar gravitational
perturbations in longitudinal gauge in an Friedmann-
Lemaître-Robertson-Walker (FLRW) universe. We would
like to emphasize that using an action of genuine quantum
nature does not imply that quantum effects are considered
important, field-theoretic effects, however, may be and we
will give examples of such effects in this paper. One of the
key ingredients in this work is the generalization of the
canonical field transformation developed in [15] where
the nonrelativistic limit of a self-interacting real scalar field
in Minkowski space-time is addressed. We perturb the gen-
eral relativistic theory (1) and rewrite it in terms of the
diagonal field representation (8). We then take the non-
relativistic limit assuming that the massm of the scalar is the
largest scale apart from the Planck scale MP. The resulting
action (50) contains the classical, nonrelativistic particle
description as a special case on large scales. We show this by
constructing the corresponding 2PI effective action truncated
at two loop order for a virialized state, namely a state that is
neither squeezed nor that it has a nonvanishing condensate.
Viriliazed states can contain a large number of particles, if
they descend from a mixed density matrix.
The work we present in this paper is in line with

our previous works [1,2]. However, the main differences
are first, that we perturbatively integrate out the gravita-
tional constraint fields which leads to an additional
exchange interaction and second, that we set up a general
framework where we a priori do not assume that spatial
gradients∇X⃗ are small compared to the particle momenta p⃗
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which is important if one would like to study small scale
effects.
Let us also mention that the development of the frame-

work in this paper is also motivated by the problem of
solving cold dark matter dynamics beyond the linearized,
single-stream perfect fluid approximation. Similar to the
statistical field theory based on classical pointlike particles
[16,17] and as an extended approach to the condensate based
Schroedinger model [18–21], we reformulate the problem of
cold dark matter dynamics by resorting to a more funda-
mental description which may be more suitable to get a
different analytical and numerical access.
We work in units where c ¼ 1 with a mostly plus

signature ð−;þ;þ;þÞ.

II. GRAVITY THROUGH EXTERNAL FIELDS

Let us start by writing down the action for a massive, real
scalar field in its canonical form with couplings to gravity
in Arnowitt-Deser-Misner (ADM)-variables [22],

Sϕ ¼
Z

t2

t1

dt
Z
Σt

d3x

×

�
Πϕ

_ϕ −
N
2
γ1=2

�
γ−1Π2

ϕ þ γij∂iϕ∂jϕþm2

ℏ2
ϕ2

�

− NiΠϕ∂iϕ

�
; ð1Þ

where N and Ni are lapse and shift functions, γij is the
spatial metric, γ its determinant and πϕ is the canonical
momentum associated with ϕ. We now neglect vector and
tensor perturbations in the metric and consider scalar
perturbations in the longitudinal gauge with the gravita-
tional potentials ΦG and ΨG, in which we also linearize
with a small perturbation parameter εg,

N ¼ N̄ð1þΦGÞ; Ni ¼ 0;

γij ¼ a2δijð1 − 2ΨGÞ; γ1=2 ¼ a3½1 − 3ΨG�; ð2Þ

OðΦG;ΨGÞ ¼ ε2g ≪ 1: ð3Þ
This leads us to

Sϕ≈
Z

t2

t1

dt
Z
Σt

d3x

�
Πϕ

_ϕ−
1

2
N̄ð1þΦGÞ

�
a−3½1þ3ΨG�Π2

ϕ

þa½1−ΨG�δij∂iϕ∂jϕþa3½1−3ΨG�
m2

ℏ2
ϕ2

��
: ð4Þ

We switch to conformal time adη ¼ N̄dt whose derivative
is denoted by a prime (aH ¼ a0) and perform a first
canonical transformation (leaving the path-integral measure
unchanged) by defining

ϕc ≡ aϕ; Πc
ϕ ≡ a−1Πϕ þHaϕ: ð5Þ

We integrate by parts and find upon dropping temporal
boundary terms

Sϕ ≈ Sϕc
≡

Z
η2

η1

dη
Z
Ση

d3x

×

�
Πc

ϕϕ
0
c −

1

2

�
½1þΦG þ 3ΨG�ðΠc

ϕÞ2

− 2½ΦG þ 3ΨG�HϕcΠc
ϕ þ ½1þΦG −ΨG�δij∂iϕc∂jϕc

þ ½1þΦG − 3ΨG�
m2

eff

ℏ2
ϕ2
c

þ ½ðH0 þ 2H2ÞΦG − 3H0ΨG�ϕ2
c

��
; ð6Þ

where we identify the effective mass

m2
eff ≡m2a2 − ℏ2H0 − ℏ2H2: ð7Þ

We now propose a straightforward generalization of the
nonlocal field redefinition worked out for Minkowski
space-time by [15],

ψ ≡ 1ffiffiffiffiffiffi
2ℏ

p E�Ω̂1=2ðϕc þ iℏΩ̂−1Πc
ϕÞ;

Ω̂≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

eff − ℏ2Δ
q

; ð8Þ

where the spatial Laplacians are given by

Δ≡ δij∂i∂j; ð9Þ

and the time-dependent phase E is defined as

EðηÞ≡ exp

�
−i

Z
ηmeffðη̃Þ

ℏ
dη̃

�
: ð10Þ

The transformation (8) is akin to going to creation and
annihilation operator variables in which one may diago-
nalize the Hamiltonian in the free theory. Moreover, it
removes Zitterbewegung generated by the mass term. The
operator Ω̂ has the interpretation of a particle energy. The
reverse transformation of (8) reads

ϕc ¼
ffiffiffiffiffiffi
ℏ

2Ω̂

r
ðEψ þ E�ψ�Þ;

Πc
ϕ ¼ −i

ffiffiffiffiffiffi
Ω̂
2ℏ

s
ðEψ − E�ψ�Þ: ð11Þ

We note, that the corresponding measure in the path-
integral is in the Hamilton formulation related to the real
and imaginary parts of ψ ,

DϕcDΠc
ϕ ∝ DReψDImψ : ð12Þ
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Thus, we have a canonical transformation between the
fields Φc, Πc

ϕ and Reψ , Imψ . Moreover, one obtains the
expected, equal-time commutation relation for the corre-
sponding quantum operators in the nonrelativistic theory,

½ψ̂ðη; xiÞ; ψ̂†ðη; yiÞ� ¼ ℏδ3ðxi; yiÞ: ð13Þ

Plugging in the transformation (8) into the action (6),
we find

Sϕc
¼ Sψ ½ΦG;ΨG�≡

Z
η2

η1

dη
Z
Ση

d3x

(
iψ�ψ 0 −

meff

ℏ
ψ

�
Ω̂
meff

− 1

�
ψ� −

1

2

m0
eff

meff
Im

�
E2ψ

m2
eff

Ω̂2
ψ

�

−
meff

ℏ

"
½ΦG þ 3ΨG�

" ffiffiffiffiffiffiffiffi
Ω̂
meff

s
ImðEψÞ

#
2

þ ½ΦG − 3ΨG�
� ffiffiffiffiffiffiffiffi

meff

Ω̂

r
ReðEψÞ

�
2
#

−
ℏ

meff
½ðH0 þ 2H2ÞΦG − 3H0ΨG�

� ffiffiffiffiffiffiffiffi
meff

Ω̂

r
ReðEψÞ

�
2

−
ℏ

meff
ðΦG −ΨGÞδij

ffiffiffiffiffiffiffiffi
meff

Ω̂

r
∂iReðEψÞ

ffiffiffiffiffiffiffiffi
meff

Ω̂

r
∂jReðEψÞ

þ 2½ΦG þ 3ΨG�H
� ffiffiffiffiffiffiffiffi

meff

Ω̂

r
ReðEψÞ

�" ffiffiffiffiffiffiffiffi
Ω̂
meff

s
ImðEψÞ

#)
: ð14Þ

The transformation (8) was designed to obtain a non-
relativistic description in ℏ2kΔk ≪ m2

eff such that one can
perturbatively correct it in a controlled way. Spatial
derivatives ∇ ¼ ∇x⃗ acting on matter fields ψðx⃗Þ will be
mapped on particle momenta p⃗ and long-distance gradients
∇X⃗ ∼ ℏk⃗ once two-point functions of fields such as
hψ†ðη; x⃗Þψðη; y⃗ÞÞi are mapped to a particle phase-space
density fðη; p⃗; X⃗Þ. Thus, assuming ℏ2kΔk ≪ m2

eff corre-
sponds to assuming physical momenta p and inverse
distance scales L−1 ∼ k of the underlying physical problem
to be much smaller than the scale set by the mass meff .
Let us subsume these scale relations in the following

expansion parameter

O
�
ℏk∇k
m

�
¼ εnr ≪ 1: ð15Þ

We will only keep leading order contributions in εnr and
also drop multiplicative higher-order terms of the type ε2g ·
ε2nr that involve the gravitational perturbation parameter.
Moreover, we want to consider the case where the mass m
is much bigger than the Hubble rate or its logarithmic
derivative

O
�
ℏH
ma

;
ℏH0

Hma

�
¼ εH=m ≪ 1; ð16Þ

In what follows, we shall keep only leading order con-
tributions of order εH=m and drop multiplicative higher-
order terms of order ε2g · ε2H=m involving the gravitational

potential. However, we keep terms of order ε2g · εH=m since
they come with phase-factors whose time derivative can
reduce the order by one power. We then have

Sψ ½ΦG;ΨG�≈
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0þψ�

�
ℏΔ
2ma

−
ma
ℏ

ΦG

�
ψ

þ3
ma
ℏ

ΨGReðE2ψ2Þ

−H
�
1

2
−ΦG−3ΨG

�
ImðE2ψ2Þ

�
: ð17Þ

What we have achieved so far is a different viewpoint on
the nonrelativistic limits we discussed in [1] and [2] by
assuming small gradients and a small expansion rate of
scale factor with respect to the mass. If we promote the field
ψ to an operator, we find that we treated the equal-time
correlators

hΠ̂ϕðxÞΠ̂ϕðyÞi; hΠ̂ϕðxÞϕ̂ðyÞi;
hϕ̂ðxÞΠ̂ϕðyÞi; hϕ̂ðxÞϕ̂ðyÞi; ð18Þ

for the equal-time correlators

hψ̂ðxÞψ̂†ðyÞi; hψ̂†ðxÞψ̂ðyÞi;
hψ̂ðxÞψ̂ðyÞi; hψ̂†ðxÞψ̂†ðyÞi: ð19Þ

In [1,2] we concluded that only a particular combination of
suitably transformed correlators constitutes a phase-space
density of classical particles, the other ones being highly
oscillatory and suppressed if they are initially small. The
situation is similar in the new variables and amounts to
neglecting hψ̂ðxÞψ̂ðyÞi and hψ̂†ðxÞψ̂†ðyÞi in comparison to
hψ̂ðxÞψ̂†ðyÞi and hψ̂†ðxÞψ̂ðyÞi. It is usually the case that if
one drops these squeezing contribution, one can show that
if they are not present initially, the evolutions will generate
them only under special circumstances. Apart from the
limits we have taken so far, we can consider this require-
ment on the quantum state as another requirement to obtain
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a description of classical particles from a real scalar
quantum field. We refer to such a state as a virialized state
since the kinetic energy in field space expressed through the
ΠϕΠϕ-correlator is of the same order as the potential energy
expressed through particle energy squared times the ϕϕ-
correlator. A virialized state corresponds to a spherical
blob in the phase-space diagram of the real scalar field.
This state is more general than a thermal state since no
relationship is assumed between phase-space occupancy of
different field momenta. Thus, assuming the oscillatory
correlators to be small initially, we can omit them from the
dynamical description,

Sψ ½ΦG;ΨG�

≈
virialized state

Z
η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þψ�

�
ℏΔ
2ma

−
ma
ℏ

ΦG

�
ψ

�
;

ð20Þ
and the operator equation corresponding to this action reads
(for classical gravitational fields),

i∂ηψ̂ðη; xiÞ ¼ −
�
ℏΔx

2ma
−
ma
ℏ

ΦGðη; xiÞ
�
ψ̂ðη; xiÞ: ð21Þ

Choosing a coherent quantum state such that the connected
piece of the two-point functions are negligible and classical
fields are a good enough approximation leaves us with the
darkmatter description coined fuzzy darkmatter. However, as
we advocated in [1,2],wedonot have to restrict ourself toone-
point functions since choosing a more-general state allows
a priori for vorticity and anisotropywithout additional course
graining. For such a more general state with nonvanishing
connected two-point functions, we can define a Wigner
transformation (which corresponds to the spatially covariant
one in [2] to zeroth order in gravitational perturbations),

fðη;Xi;piÞ

≡ 1

ð2πℏÞ3ℏ
Z
d3re−

i
ℏr

kpkh∶ψ̂ðη;Xiþri=2Þψ̂†ðη;Xi−ri=2Þ∶i;

ð22Þ
where we made use of a local normal ordering prescription
“∶∶” that essentially subtracts the state-independent quan-
tum contribution of the two-point function such that a
gradient expansion in ℏpi∂Xi is possible (in other words,
we have a hierarchy of scales ma ≫ p ≫ ℏ∂X together
with ma ≫ H, for more details see [2]). The dynamical
equation for the phase-space density f approaches the
Vlasov equation for cold dark matter to leading order in the
spatial gradient expansion� ∂
∂ηþ

pk

ma
∂

∂Xk −ma½1þOðℏ2Þ� ∂
∂Xk ΦGðη; XiÞ ∂

∂pk

�
× fðη; Xi; piÞ ¼ 0: ð23Þ

III. INTEGRATING OUT
GRAVITATIONAL FIELDS

Instead of treating the gravitational perturbations as part
of a classical (possibly stochastic) background metric, we
treat them now as quantum fluctuations and integrate them
out. This approach enables one to be more accurate in
comparison to the one-loop semiclassical expansion and
leaves only the true degrees of freedom in the description of
the theory. The starting point for the gravitational part is the
Einstein-Hilbert action in the ADM formulation

Sg ¼
Z

t2

t1

dt
Z
Σt

d3x½Πij _γij − NHðgÞ
0 − NiHðgÞ

i �

þ
Z

t2

t1

dt
Z
∂Σt

d2xHB; ð24Þ

where the spatial boundary term HB specified in [23] is of
no relevance for us and the Hamilton and momentum
constraints of the gravitational sector are given by

HðgÞ
0 ¼ −

M2
P

2ℏ
γ1=2Rðn−1Þ þ 2ℏ

M2
Pγ

1=2

�
ΠijΠij −

Π2

2

�
; ð25Þ

HðgÞ
i ¼ −2γ1=2ð3Þ∇j Πij

γ1=2
; ð26Þ

which should not be confused with the conformal Hubble
rate H. In the gravitational Hamiltonian densities (26), we
made use of the reduced Planck massMP and the canonical
momentum Πij conjugate to the spatial metric γij. We also
denoted the trace of the canonical momentum asΠ ¼ γijΠij

and introduced the covariant derivative ð3Þ∇ on spatial
sections. As a first step to a nonrelativistic limit of
gravitating matter in an expanding universe, we will
approximate the gravitational action (24) as in the semi-
classical case with scalar perturbations in the longitudinal
gauge. In addition to the decomposition of lapse, shift and
spatial metric in (2), we also need to compose the canonical
momentum of the spatial metric which we do as follows,

Πij ¼ δija−2Πa

�
1þ 1

2
ΨG þ 1

2
ΠΨ

�
: ð27Þ

A few comments on this split into a homogeneous back-
ground N̄, a, Πa and the path-integral perturbations ΦG,
ΨG, ΠΨ are in order. The obvious difference to the
semiclassical analysis lies in the fact that we are treating
inhomogeneous perturbations not any more as part of the
classical (external) background which allows one to go
beyond semiclassical one-loop approximation and include
in principle quantum effects. This, however, does not mean
that these perturbations necessarily correspond to quantum-
sized effects. Whether such effects are important depends
on the initial conditions: so are vacuum fluctuations the
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essential ingredient for inflationary models, whereas they
are in most scenarios not at all for nonrelativistic setups
with a highly populated state (“many particles”). Let us also
mention some boundary conditions of the perturbations
ΦG, ΨG, ΠΨ. We will assume that a well chosen back-
ground will keep any zero-mode fluctuations negligible
such that the perturbations ΦG, ΨG, ΠΨ decay at spatial
infinity at least as 1=r. For the same reason we will ignore
the boundary term in (24). Having said this, we will
already make a choice for the background field Πa such

that it evolves according to the background equations of
motion

Πa ¼ −
M2

P

ℏ
a2H: ð28Þ

After these remarks we expand the gravitational action (24)
in conformal time for longitudinal scalar perturbations up
to quadratic order (cf. [24,25]), drop the zero order
contribution S̄g from the gravitational part and add the
matter action (17),

S½ΦG;ΨG;ΠΨ;ψ �≡Sψ ½ΦG;ΨG;ψ � þSg½ΦG;ΨG;ΠΨ�− S̄g

≈
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þψ�

�
ℏΔ
2ma

−
ma
ℏ

ΦG

�
ψ þ 3

ma
ℏ

ΨGReðE2ψ2Þ−H
�
1

2
−ΦG− 3ΨG

�
ImðE2ψ2Þ

�

þM2
P

2ℏ

Z
η2

η1

dη
Z
Ση

d3x

�
−6a2ðH2þ 2H0ÞΨGþ 6a2HðΠΨþΨGÞðHΨGþΨ0

GÞþ
3

2
a2H2ðΠΨþΨGÞ2

þ 6a2H2ΦGð1þΠΨÞ− 2a2ΨGΔΨG− 3a2H2Ψ2
Gþ 4a2ΦGΔΨG

�
: ð29Þ

We make the important remark that we did not expand the
matter field ψ around a background value. The main reason
why we do this lies in the observation that the perturbative
expansion in (29) is valid if we supply the matter fields with
appropriate boundary which are more general than a
spatially homogeneous expectation value. We will shortly
come back to this issue.
If we now vary with respect to ΦG, we get the following

constraint

a2ΔΨG þ 3

2
a2H2ð1þ ΠΨÞ −

ℏ
2M2

P

ma
ℏ

ψ�ψ

þ ℏ
2M2

P
HImðE2ψ2Þ ¼ 0; ð30Þ

which means at the level of path integrals, that we generate
a delta function by integrating over ΦG. We have

ΠΨ ¼ E0ðψÞ
3aH2

−
2

3

ΔΨG

H2
; ð31Þ

where we defined

E0ðψÞ≡ ℏ
M2

P

m
ℏ
ψ�ψ − 3aH2 −

H
a

ℏ
M2

P
ImðE2ψ2Þ: ð32Þ

Let us also define

E1ðψÞ≡aH2þ2aH0−
m
ℏ

ℏ
M2

P
ReðE2ψ2Þ−H

a
ℏ
M2

P
ImðE2ψ2Þ:

ð33Þ

We are now in the position to integrate out the gravitational
fields ΦG and ΨG by plugging the constraint equation (31)
back into the action (29),

S½ΦG;ΨG;ΠΨ;ψ � → S½ΨG;ψ � ¼
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þ ψ� ℏΔ

2ma
ψ −

1

2
HImðE2ψ2Þ

�

þM2
P

2ℏ

Z
η2

η1

dη
Z
Ση

d3x

�
−6aE1ðψÞΨG

þ 6a2Hðð3aH2Þ−1E0ðψÞ − 2ð3H2Þ−1ΔΨG þ ΨGÞðHΨG þΨ0
GÞ

þ 3

2
a2H2ðð3aH2Þ−1E0ðψÞ − 2ð3H2Þ−1ΔΨG þ ΨGÞ2 − 2a2ΨGΔΨG − 3a2H2Ψ2

G

�
: ð34Þ

Since both, E0 and E1 multiply terms linear in the gravitational perturbations, their homogeneous limit will be related to the
Einstein equations as we will see shortly. We simplify certain expressions and integrate by parts to make manifest that the
gravitational potential is an auxiliary field,
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S½ΨG;ψ � ¼
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þ ψ� ℏΔ

2ma
ψ −

1

2
HImðE2ψ2Þ

�

þM2
P

2ℏ

Z
η2

η1

dη
Z
Ση

d3x

�
E2
0ðψÞ
6H2

− aH−2
�
2

3
ΔE0ðψÞ þ 6H2E1ðψÞ − 2H0E0ðψÞ þ 2HE0

0ðψÞ
�
ΨG

þ 2

3H2
a2ΨGΔ2ΨG − 2a2

H0

H2
ΨGΔΨG − 2a2ΨGΔΨG − 3a2H2Ψ2

G

�
: ð35Þ

Varying the Hubble action (35) with respect to the gravita-
tional potential ΨG yields the following constraint equation,

2

3
a2Δ2ΨG−2a2H0ΔΨG−2a2H2ΔΨG−3a2H4ΨG

−a

�
1

3
ΔE0ðψÞþ3H2E1ðψÞ−H0E0ðψÞþHE0

0ðψÞ
�
¼ 0:

ð36Þ
If we want to integrate out the gravitational potential via the
constraint equation (36), we have to invert the Laplace
operator and assume that the quantitiesE0ðψÞ,E1ðψÞ vanish
at least as 1=r at spatial infinity since we made the same
assumptions for the gravitational perturbations. In other
words, we have to impose

E∞
0 ðψÞ≡ lim

kx⃗k→∞
E0½ψðx⃗Þ� ¼! 0; ð37Þ

and

E∞
1 ðψÞ≡ lim

kx⃗k→∞
E1½ψðx⃗Þ� ¼! 0: ð38Þ

Wewere implicitly always dealing with path integrals in this
derivation and remark that the conditions (37) and (38) are in
fact operator equations which involve more than the zero
modeof the fieldψ . Subtracting thegravitational background
fields, we have1

ρ̂∞ ≡ E∞
0 ðψ̂Þ þ 3aH2

¼ ℏ
M2

P

Z
d3p

�
m
ℏ
∶ψ̂†ðp⃗Þψ̂ð−p⃗Þ∶

−
H
a
ImðE2∶ψ̂ðp⃗Þψ̂ð−p⃗Þ∶Þ

�
; ð39Þ

P̂∞ ≡ E∞
1 ðψ̂Þ − aH2 − 2aH0

¼ −
ℏ
M2

P

Z
d3p

�
m
ℏ
ReðE2∶ψ̂ðp⃗Þψ̂ð−p⃗Þ∶Þ

þH
a
ImðE2∶ψ̂ðp⃗Þψ̂ð−p⃗Þ∶Þ

�
: ð40Þ

Taking expectation value and inserting the conditions (37)
and (38), we recover the semiclassical Einstein equations at
spatial infinity,

3aH2 ¼ hρ̂∞i; ð41Þ

−aH2 − 2aH0 ¼hP̂∞i: ð42Þ

We realize that the operators ρ̂∞ and P̂∞ should not
fluctuate around their expectation values. Rigorously
speaking, only if even by small amounts, they of course
do. However, in a more rigorous treatment, we would
also have to include zero-mode fluctuations in the
gravitational sector which we assumed to negligible from
the very beginning. This then resolves the apparent
inconsistency.
We can conclude that the boundary conditions (37) and

(38) can be met if we adjust the background metric
(which is a priori free to choose) to satisfy Eqs. (41) and
(42) which are determined by the two-point functions
of the matter field ψ at spatial infinity. With these
adjustments, we are in the position to integrate out the
gravitational potential ΨG in the action (35) by complet-
ing the squares,

S½ΨG;ψ � → S½ψ � ¼
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þ ψ� ℏΔ

2ma
ψ −

1

2
HImðE2ψ2Þ

�

þM2
P

4ℏ

Z
η2

η1

dη
Z
Ση

d3x

�
E2
0ðψÞ
3H2

−
3

4H2

�
2

3
ΔE0ðψÞ þ 2H0E0ðψÞ þ 6H2E1ðψÞ þ 2H2E0ðψÞ

�

× Δ−2
H

�
2

3
ΔE0ðψÞ þ 2H0E0ðψÞ þ 6H2E1ðψÞ þ 2H2E0ðψÞ

��
; ð43Þ

1Note, that we decided to give here a simpler treatment than for example in [2], where we gave some remarks on the renormalization
of coincident limit operator products in a similar setup.
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where we introduced the operator

Δ2
H ≡ Δ2 − 3ðH2 þH0ÞΔ − 18H4: ð44Þ

While Eq. (43) represents the sought-for action, for the
purpose of this paper, and to make progress, we focus on
the sub-Hubble limit of action (43) and introduce another
perturbation parameter

O
�
H2

kΔk ;
H0

kΔk
�

¼ εH=k ≪ 1: ð45Þ

We have

Δ−2
H ¼ Δ−2½1þ 3ðH2 þH0ÞΔ−1 þOðε2H=kÞ�: ð46Þ

We assume that the back reaction between super- and sub-
Hubble modes is negligible and work to leading order in
εH=k. Upon integration by parts we find

S½ψ � ≈ Sψ ≡
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þ ψ� ℏΔ

2ma
ψ

−
1

2
HImðE2ψ2Þ

−
M2

P

4ℏ
ðE0ðψÞ þ 6E1ðψÞÞΔ−1E0ðψÞ

�
: ð47Þ

Before we plug in the concrete expressions for E0 and E1,
let us for convenience rescale the fields as

ψ → ℏ1=2ψ ; ð48Þ

such that the two-point function has the dimensions of a
number density. We then define

ρ0 ≡ 3aH2
M2

P

ℏm
; ð49Þ

and find

Sψ ¼ ℏ
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þ ψ� ℏΔ

2ma
ψ −

1

2
HImðE2ψ2Þ

−
m2

4M2
P

�
ψ�ψ − ρ0 −

ℏH
ma

ImðE2ψ2Þ
�
Δ−1

�
ψ�ψ − ρ0 −

ℏH
ma

ImðE2ψ2Þ
�

−
m2

2M2
P

�
1

H
dρ0
dη

− 3ReðE2ψ2Þ − 3
ℏH
ma

ImðE2ψ2Þ
�
Δ−1

�
ψ�ψ − ρ0 −

ℏH
ma

ImðE2ψ2Þ
��

: ð50Þ

The action (50) is one of the principal results of this work
and it serves as the starting point for a more general
discussion of scalar field cold dark matter since it makes
less assumptions about the underlying state, we only
assumed that its momenta are mainly distributed in a
nonrelativistic but also sub-Hubble window after the back-
ground contributions at spatial infinity have been sub-
tracted. Let us identify some future lines of research. By
starting from (50) one can approach the theory in the 2PI
formulation which captures the dynamics and interplay of
the various contributions to the state, namely: the con-
densate hψi (“fuzzy cold dark matter”), the two-point
function hψ̂ ψ̂†i corresponding to a virialized state (“particle
cold dark matter” plus field-theoretic corrections) and
squeezed two-point functions hψ̂ ψ̂i, hψ̂†ψ̂†i. Assuming
mostly fuzzy cold dark matter, one can study its back-
reaction on particle dark matter and vice versa. Moreover,
a field-theoretic description of cold dark matter can also
lead to new insights on how dark matter behaves on
different scales and, due to this reformulation, hopefully
even to new techniques on how to tackle nonlinear
evolution on large scales.

IV. 2PI FORMULATION FOR
A VIRIALIZED STATE

In order to make the relation between the field-theoretic
and the particle picture more concrete, we will study for
simplicity an nonsqueezed state having no condensatewhich
we call a virialized state. We postpone the more general case
for the future. Since interaction terms couple thevarious state
contributions, they cannot be consistently set to zero but they
remain, however, small if we assume a large mass in
comparison to the Hubble rate as one can see in (50),

khψ̂ ψ̂†ik≫ khψ̂ ψ̂ik; khψ̂ ψ̂†ik≫ khψ̂†ψ̂†ik; hψi≈0:

ð51Þ
From the point of view of Lagrangians, nonvanishing con-
densates are natural when the scalar field couples linearly to
external sources (an example being the axionic coupling to
gauge theory), the two-point function framework without
condensate is more natural when the scalar field couples
quadratically to external sources (such as in the theory of
scalar electrodynamics). First of all,wenote that the equations
of motion for the scale factors (41) and (42) reduce to
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ρ0 ≡ 3aH2
M2

P

ℏm
≈
Z

d3ph∶ψ̂†ðp⃗Þψ̂ð−p⃗Þ∶i ≈ const: ð52Þ

Thus, the scale factor has to evolve as in a matter dominated
universe

aðηÞ ¼ aI
η2

η2I
; ð53Þ

and we choose aI ¼ 1. Moreover, it will be convenient to
define

β≡ ℏη2I
2m

¼ 6M2
P

m2ρ0
: ð54Þ

Using these relations, the approximation (51) and writing out
the inverse Laplace operator, we find that the action (50)
reads,

Sψ ≈ℏ
Z

η2

η1

dη
Z
Ση

d3x

�
iψ�ψ 0 þ β

η2
ψ�Δψ

þ 3ρ0
8πβ

Z
d3y

½ρ−10 ψ�ðx⃗Þψðx⃗Þ−1�½ρ−10 ψ�ðy⃗Þψðy⃗Þ−1�
kx⃗− y⃗k

�
;

ð55Þ
where we for simplicity suppressed the η-dependence. In the
Schwinger-Keldysh formulation, we then have the following
effective action truncated at two loops withM−2

P ∝ β−1 being
the loop counting parameter of gravity,

Γ½iGcd
ij � ¼ ℏ

Z
η2

η1

dη
Z
Ση

d3x
Z

η2

η1

dη0
Z
Ση0

d3y
X
c;d¼�

cDij
cdðη; x⃗; η0; y⃗ÞiGdc

ji ðη; x⃗; η0; y⃗Þ − i
ℏ
2
Tr½logðiGcd

ij Þ�

− iℏ
X
c¼�

1

8

Z
d4x1…d4x4½iGcc

12ðx1; x2ÞiGcc
12ðx3; x4Þ þ iGcc

21ðx1; x2ÞiGcc
21ðx3; x4Þ

þ 2iGcc
12ðx1; x2ÞiGcc

21ðx3; x4Þ þ 2iGcc
11ðx1; x3ÞiGcc

22ðx2; x4Þ�½Vc
Hðx1;…; x4Þ þ Vc

Eðx1;…; x4Þ�; ð56Þ

where we defined the (formally divergent) derivative
operator

Dij
cd ≡ δcd

2

"
0 −i∂η þ βΔx

η2

i∂η þ βΔx
η2

0

#
δðη − η0Þδ3ðx⃗ − y⃗Þ

−
3

2β
δcd½Δ−1

x ð1Þ�
�
0 1

1 0

�
δðη − η0Þδ3ðx⃗ − y⃗Þ; ð57Þ

which acts on the four propagators

iGþþ
ij ðx;yÞ≡

� hT½ψ̂ðxÞψ̂ðyÞ�i hT½ψ̂ðxÞψ̂†ðyÞ�i
hT½ψ̂†ðxÞψ̂ðyÞ�i hT½ψ̂†ðxÞψ̂†ðyÞ�i

�
; ð58Þ

iG−−
ij ðx;yÞ≡

� hT̄½ψ̂ðxÞψ̂ðyÞ�i hT̄½ψ̂ðxÞψ̂†ðyÞ�i
hT̄½ψ̂†ðxÞψ̂ðyÞ�i hT̄½ψ̂†ðxÞψ̂†ðyÞ�i

�
; ð59Þ

iG−þ
ij ðx; yÞ≡

� hψ̂ðxÞψ̂ðyÞi hψ̂ðxÞψ̂†ðyÞi
hψ̂†ðxÞψ̂ðyÞi hψ̂†ðxÞψ̂†ðyÞi

�
; ð60Þ

iGþ−
ij ðx; yÞ≡

� hψ̂ðyÞψ̂ðxÞi hψ̂†ðyÞψ̂ðxÞi
hψ̂ðyÞψ̂†ðxÞi hψ̂†ðyÞψ̂†ðxÞi

�
; ð61Þ

where T and T̄ denote time ordering and antitime
ordering, respectively. We will soon drop the squeezed
state propagators to be consistent with (52). The diver-
gent part of the derivative operator (57) should be
thought of part of the interaction term since it removes
homogeneous contributions of the spatially nonlocal
coupling. The two vertices VH and VE we use in (56)
are both symmetric under exchange of the first and last
pair of coordinates and correspond to Hartree and
exchange interaction (cf. Figs. 1 and 2), respectively,

FIG. 1. The Hartree vertex is local in time but nonlocal in space.
The separation between x⃗1 and x⃗3 (as well as between x⃗2 and x⃗4)
is denoted by a dashed line.
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Vc
Hðη1;…; η4; x⃗1;…; x⃗4Þ

≡ i
3c

4πβρ0

δðη1 − η2Þδðη1 − η3Þδðη1 − η4Þ
kx⃗1 − x⃗3k

× δ3ðx⃗1 − x⃗2Þδ3ðx⃗3 − x⃗4Þ; ð62Þ

Vc
Eðη1;…; η4; x⃗1;…; x⃗4Þ

≡ i
3c

4πβρ0

δðη1 − η2Þδðη1 − η3Þδðη1 − η4Þ
kx⃗1 − x⃗3k

× δ3ðx⃗1 − x⃗4Þδ3ðx⃗2 − x⃗3Þ: ð63Þ

Setting the variation of the 2PI effective action (56) with
respect to Gcd

ij to zero and multiplying the resulting
equation again by Gcd

ij , we obtain

�
0 −i∂η þ βΔxη

−2 − 3β−1½Δ−1
x ð1Þ�

i∂η þ βΔxη
−2 − 3β−1½Δ−1

x ð1Þ� 0

�ij
iGcd

jk ðη; x⃗; η0; y⃗Þ

− i
c
2ℏ

Z
d4z1d4z2d4z3Vc

HþEðx1; z3; z1; z2Þ½iGcc
12ðz1; z2Þ þ iGcc

21ðz1; z2Þ�
�
0 1

1 0

�ij
iGcd

jk ðz3; η0; y⃗Þ

− i
c
2ℏ

Z
d4z1d4z2d4z3

�
Vc
HþEðx1; z1; z3; z2ÞiGcc

22ðz1; z2Þ 0

0 Vc
HþEðz1; x1; z2; z3ÞiGcc

11ðz1; z2Þ
�ij

iGcd
jk ðz3; η0; y⃗Þ

¼ icδcdδikδðη − η0Þδ3ðx⃗ − y⃗Þ: ð64Þ

In the equations for iGcd
12 and iG

cd
21 it is consistent within our approximation scheme (51) to drop the squeezing contributions

iGcd
ii . We then have the following equations for iG−þ

21 ðη; x⃗; η0; y⃗Þ and iGþ−
21 ðη0; y⃗; η; x⃗Þ, which we will combine into a particle

density (cf. Fig. 3),

½i∂η − ðηÞ−2βΔx�iG∓�
21 ðη; x⃗; η0; y⃗Þ

þ 3

8πβρ0

Z
d3z

1

kx⃗ − z⃗k ½iG
∓∓
21 ðη; z⃗; η; z⃗Þ þ iG∓∓

12 ðη; z⃗; η; z⃗Þ − 2ρ0�iG∓�
21 ðη; x⃗; η0; y⃗Þ

þ 3

8πβρ0

Z
d3z

1

kx⃗ − z⃗k ½iG
∓∓
21 ðη; z⃗; η; x⃗Þ þ iG∓∓

12 ðη; z⃗; η; x⃗Þ�iG∓�
21 ðη; z⃗; η0; y⃗Þ ≈ 0: ð65Þ

½i∂η0 þ ðη0Þ−2βΔy�iG∓�
21 ðη; x⃗; η0; y⃗Þ

−
3

8πβρ0

Z
d3z

1

ky⃗ − z⃗k ½iG
��
21 ðη0; z⃗; η0; z⃗Þ þ iG��

12 ðη0; z⃗; η0; z⃗Þ − 2ρ0�iG∓�
21 ðη; x⃗; η0; y⃗Þ

−
3

8πβρ0

Z
d3z

1

ky⃗ − z⃗k ½iG
��
21 ðη; y⃗; η; z⃗Þ þ iG��

12 ðη; y⃗; η; z⃗Þ�iG∓�
21 ðη; x⃗; η0; z⃗Þ ≈ 0: ð66Þ

We will make use of the following statistical (Hadamard) two-point function

Fðη; x⃗; η0; y⃗Þ≡ F21ðη; x⃗; η0; y⃗Þ ¼
1

2
½iG−þ

21 ðη; x⃗; η0; y⃗Þ þ iGþ−
21 ðη; x⃗; η0; y⃗Þ�

¼ 1

2
hfψ̂†ðη; x⃗Þ; ψ̂ðη0; y⃗Þgi: ð67Þ

The spectral density

iρs21ðη; x⃗; η0; y⃗Þ ¼ ½iG−þ
21 ðη; x⃗; η0; y⃗Þ − iGþ−

21 ðη0; x⃗; η; y⃗Þ� ¼ ih½ψ̂†ðη; x⃗Þ; ψ̂ðη0; y⃗Þ�i; ð68Þ

FIG. 2. The exchange vertex is obtained from the Hartree vertex
by exchanging the spatially separated coordinates x⃗2 and x⃗4.
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will drop out once we evaluate the coincident time limit. We use collective (average) and difference coordinates
to define

Fðη; X⃗; r⃗Þ≡ Fðη; η0 ¼ η; x⃗ ¼ X⃗ þ r⃗=2; y⃗ ¼ X⃗ − r⃗=2Þ: ð69Þ

Adding up the equations for G�∓
21 in (65) and (66) we find in the coincident time limit,

�
i∂η þ 2βη−2

∂
∂X⃗ ·

∂
∂r⃗

�
Fðη; X⃗; r⃗Þ þ 3

4πβρ0

Z
d3z
z

½Fðη; z⃗þ X⃗ þ r⃗=2; 0Þ − Fðη; z⃗þ X⃗ − r⃗=2; 0Þ�Fðη; X⃗; r⃗Þ

þ 3

8πβρ0

Z
d3z
z

½Fðη; X⃗ þ ðr⃗þ z⃗Þ=2; z⃗Þ þ Fðη; X⃗ þ ðr⃗þ z⃗Þ=2;−z⃗Þ�Fðη; X⃗ þ z⃗=2; r⃗þ z⃗Þ

−
3

8πβρ0

Z
d3z
z

½Fðη; X⃗ − ðr⃗ − z⃗Þ=2; z⃗Þ þ Fðη; X⃗ − ðr⃗ − z⃗Þ=2;−z⃗Þ�Fðη; X⃗ þ z⃗=2; r⃗ − z⃗Þ ¼ 0: ð70Þ

The two-loop effective action (56) contains only quartic interactions such that the resulting scalar self-mass in Eq. (70)
contains no dissipative contributions (the imaginary part of the self-mass vanishes) which is why the equations close for
equal-time two-point functions. We see that the homogeneous and isotropic equation is solved by a function FhomðrÞ which
is constant in time and constant in the collective coordinate X⃗,

Fhomðη; X⃗; r⃗Þ ¼ FhomðrÞ with Fhomð0Þ ¼ ρ0; ð71Þ

which matches the initial conditions at spatial infinity (52). Let us switch to momentum space and introduce the
inhomogeneous Wigner transformation,

Fðη; k⃗; p⃗Þ ¼ 1

ð2πℏÞ6
Z

d3Xe−
i
ℏk⃗·X⃗

Z
d3re−

i
ℏp⃗·r⃗Fðη; X⃗; r⃗Þ: ð72Þ

We emphasize that were are counting both momenta, small scale momentum p⃗ and large scale momentum k⃗, in units of
energy. We then have

½i∂η − 2ðℏηÞ−2βk⃗ · p⃗�Fðη; k⃗; p⃗Þ þ 3ℏ2

2βρ0

Z
d3w

Z
d3uFðη; w⃗; u⃗Þ

× ½kp⃗þ u⃗þ ðk⃗ − w⃗Þ=2Þk−2Fðη; k⃗ − w⃗; p⃗ − w⃗=2Þ − kp⃗þ u⃗ − ðk⃗ − w⃗Þ=2Þk−2Fðη; k⃗ − w⃗; p⃗þ w⃗=2Þ
þ kp⃗ − u⃗þ ðk⃗ − w⃗Þ=2Þk−2Fðη; k⃗ − w⃗; p⃗ − w⃗=2Þ − kp⃗ − u⃗ − ðk⃗ − w⃗Þ=2Þk−2Fðη; k⃗ − w⃗; p⃗þ w⃗=2Þ
þ 2w−2ðFðη; k⃗ − w⃗; p⃗ − w⃗=2Þ − Fðη; k⃗ − w⃗; p⃗þ w⃗=2ÞÞ� ¼ 0: ð73Þ

FIG. 3. The 2PI equation for the full two-point function G12 from the two-loop effective action (56). Dashed lines in the (spatial) loop
denote spatial nonlocality. Lines with two arrows denote the two-point functions G11 and G22 which are initially absent for nonsqueezed
states. For brevity we omitted three diagrams with identical topology but reversed flow in the loop.
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Our next goal is to expand around a homogeneous
Maxwellian distribution and see which differences we
get (at least in the linear theory) in comparison to classical
particle cold dark matter. It will turn out to be convenient if
we rescale all momenta and times

p⃗→ p⃗α1=2; k⃗→ k⃗α1=2; α≡mkBT; η→ηIτ¼
τ

2HI
; ð74Þ

such that the quantities on the right-hand side of (74) are
dimensionless. The dimensionless time τ is nothing but the
square-root of the scale factor a. The parameter α is the
geometric mean between the particles mass m and temper-
ature parameter kBT with kB being the Boltzmann constant.
Thus, the parameter α corresponds to the averaged particle
moment hp2i where the expectation value denotes here
the integral against a particle distribution in momentum
space which we choose to be a Maxwellian distribution.
Moreover, it will be handy to define the parameter

ξ≡ αβ

ℏ2ηI
¼ mkBT

ℏ2ηI

ℏη2I
2m

¼ kBT
ℏHI

: ð75Þ

We will see that the parameter ξ will decide on which
timescales the exchange interaction term can become
important if we are working on scales k ≪ p. Moreover,
we rescale the coincident Hadamard function as

F → α−3ρ0F; ð76Þ

so that the p-integral over its inhomogeneous part
yields the density contrast. We also assume further, that
is only a function of the moduli k and p as well as its
scalar product

Fðτ; k⃗; p⃗Þ ¼ Fðτ; k; p; μÞ; μ ¼ p⃗ · k⃗
pk

; ð77Þ

and expand it as2

Fðτ; k; p; μÞ ¼ ð2πÞ−3=2δ3ðk⃗Þe−p2=2 þ δFðτ; k; p; μÞ:
ð78Þ

We have

½i∂τ − 2τ−2ξkpμ�δFðτ; k; p; μÞ

þ 6

ξk2
ð2πÞ−3=2 exp

�
−
p2

2
−
k2

8

�
sinh

�
pkμ
2

� Z
d3u

�
1þ k2

2kp⃗þ u⃗k2 þ
k2

2kp⃗ − u⃗k2
�
δFðτ; k; u; μk;uÞ

þ 6

ξ
21=2δFðτ; k; p; μÞ

�
DawsonF½2−1=2kp⃗ − k⃗=2k�

kp⃗ − k⃗=2k
−
DawsonF½2−1=2kp⃗þ k⃗=2k�

kp⃗þ k⃗=2k

�

þ 3

2ξ

Z
d3w

Z
d3uδFðτ; w; u; μw;uÞ

× ½kp⃗þ u⃗þ ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗ − w⃗=2Þ − kp⃗þ u⃗ − ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗þ w⃗=2Þ
þ kp⃗ − u⃗þ ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗ − w⃗=2Þ − kp⃗ − u⃗ − ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗þ w⃗=2Þ
þ 2w−2ðδFðτ; k⃗ − w⃗; p⃗ − w⃗=2Þ − δFðτ; k⃗ − w⃗; p⃗þ w⃗=2ÞÞ� ¼ 0; ð79Þ

where we made use of the Dawson integral

DawsonFðzÞ¼ e−z
2

Z
z

0

ey
2

dy¼ ze−z
2

1F1

�
1

2
;
3

2
;z2

�
; ð80Þ

where 1F1 is the confluent hypergeometric function of the first kind. Let us define

Fðτ; kÞ≡
Z

d3uFðτ; k; u; μk;uÞ; ð81Þ

and contrast Eq. (79) with the perturbed Vlasov description in the truncated Eq. (23). We realize that the terms

2We note that the perturbations δF should in principle be multiplied by stochastic variables âk⃗ such that the perturbations of the two-
point functions Fðη; k⃗; p⃗Þ are stochastic variables in a cosmological context.
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V½δF�≡ ½i∂τ − 2τ−2ξkpμ�δFðτ; k; p;μÞ þ 6

ξk2
ð2πÞ−3=2 exp

�
−
p2

2
−
k2

8

�
sinh

�
pkμ
2

�
δFðτ; kÞ

þ 3

ξ

Z
d3wδFðτ; wÞw−2ðδFðτ; k⃗− w⃗; p⃗− w⃗=2Þ − δFðτ; k⃗− w⃗; p⃗þ w⃗=2ÞÞ; ð82Þ

should correspond to the full nonlinear Vlasov equation if
we work in the limit where particle momenta are much
bigger than large-scale momenta (p ∼ 1 ≫ k) which is
amply satisfied for a cold dark matter scenario with
galactic scales around ∼Mpc ≫ α−1=2. There are, however,
differences and we first note the appearance of a “sinh”
in place of the partial derivative ∂p⃗ acting on the back-
ground phase-space density. As we will see, the sinh

term yields the same results for the linear theory on
galactic scales if other terms can be neglected. The second
difference is the nonlinear term in (82) which, however,
may be converted into a partial derivative for k=p ≪ 1
as it appears in the Vlasov equation. In addition to
the Vlasov-like terms in (79), we note the appearance of
exchange interaction corrections which are of order
∼k2=p2,

E½δF�≡ 3

ξk2
ð2πÞ−3=2 exp

�
−
p2

2
−
k2

8

�
sinh

�
pkμ
2

� Z
d3u

�
k2

kp⃗þ u⃗k2 þ
k2

kp⃗ − u⃗k2
�
δFðτ; k; u; μk;uÞ

þ 3

2ξ

Z
d3w

Z
d3uδFðτ; w; u; μw;uÞ

× ½kp⃗þ u⃗þ ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗ − w⃗=2Þ − kp⃗þ u⃗ − ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗þ w⃗=2Þ
þ kp⃗ − u⃗þ ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗ − w⃗=2Þ − kp⃗ − u⃗ − ðk⃗ − w⃗Þ=2Þk−2δFðτ; k⃗ − w⃗; p⃗þ w⃗=2Þ�: ð83Þ

Since, we are for the moment interested in scales larger or at
most comparable to galactic scales,wewill assume fromnow
on the limit k ≪ 1 and postpone the study of this type of
corrections for future research (however, we expect small
scale effects similar to ones for fuzzy darkmatter as described
for example in [11]). There is another term originating from
linearly expanding the exchange interaction term (63),

F ½δF�≡ 6

ξ
21=2δFðτ; k; p; μÞ

�
DawsonF½2−1=2kp⃗ − k⃗=2k�

kp⃗ − k⃗=2k

−
DawsonF½2−1=2kp⃗þ k⃗=2k�

kp⃗þ k⃗=2k

�
: ð84Þ

As we will discuss shortly, it gives rise to late-time correc-
tions and isnot k2=p2 suppressed in contrast to all other terms
originating from the exchange interaction.
We would now like to proceed studying (79), however,

without taking moments in p to avoid arguing about the
smallness of higher moments. Therefore, it is convenient to
convert (79) into an integral equation for the density
contrast by defining

χðτ; k; p; μÞ≡ 2τ−1ξkpμ

þ τ
6

ξ
21=2

�
DawsonF½2−1=2kp⃗ − k⃗=2k�

kp⃗ − k⃗=2k

−
DawsonF½2−1=2kp⃗þ k⃗=2k�

kp⃗þ k⃗=2k

�
; ð85Þ

with the series expansion in k ≪ 1 ∼ p,

χðτ; k; p; μÞ ¼ 2τ−1ξkpμ

þ 6μkτ
ξp2

½21=2ð1þ p2ÞDawsonF½2−1=2p� − p�

þOðk3Þ: ð86Þ

We note that the p-dependent factor in the expansion of the
late-time term (86),

χltðpÞ≡ 3

p2
½21=2ð1þ p2ÞDawsonF½2−1=2p� − p�; ð87Þ

is of order 1 for p ∼ 1 (cf. Fig. 4) and thus, phase
corrections due to the exchange interaction term become
only important at late times if we work in the limit k ≪ 1.
The transition time from which on the late time phase factor
dominates is given by

ηtrans ≡ ξηI ¼
kBT
ℏHI

ηI; ð88Þ

which is a very large time even on cosmological scales
unless the particle temperature is extremely small. We now
make use of the phase definition (85) and integrate Eq. (79)
in time. As just discussed below (79), we neglect the p2=k2

corrections due to the exchange interaction terms and are
left with
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δFðτ; kÞ ≈
Z

d3p exp½iχðτ; k; p; μÞ − iχðτI; k; p; μÞ�δFIðk; p; μÞ

þ i
Z

d3p exp½iχðτ; k; p; μÞ�
Z

τ

1

dτ̄ exp½−iχðτ̄; k; p; μÞ�
�

6

ξk2
ð2πÞ−3=2 exp

�
−
p2

2
−
k2

8

�
sinh

�
pkμ
2

�
δFðτ̄; kÞ

−
3

ξ

Z
d3w

Z
d3u

δFðτ̄; w; u; μw;uÞ
w2

ðδFðτ̄; k⃗ − w⃗; p⃗ − w⃗=2Þ − δFðτ̄; k⃗ − w⃗; p⃗þ w⃗=2ÞÞ
�
: ð89Þ

Case ξ2 ≫ aðηÞ, Hartree interaction phase dominates. First, we study the integral equation (89) for dimensionless times τ
which are much smaller then the parameter ξ (despite this, they can still correspond to galactic time scales ηfinal ∼ 105–10ηI),

ξ ¼ kBT
ℏHI

≫ τ ¼
ffiffiffiffiffiffiffiffiffi
aðηÞ

p
: ð90Þ

We can then write Eq. (89) as

δFðτ; kÞ ≈
Z

d3p exp½2iðτ−1 − 1Þξkpμ�δFIðk; p; μÞ

þ 6

k2ξ

Z
τ

1

dτ̄ exp

�
−
2k2ξ2ðτ − τ̄Þ2

τ2τ̄2

�
sin

�
k2ξðτ − τ̄Þ

ττ̄

�
δFðτ̄; kÞ

−
6

ξ

Z
d3p

Z
τ

1

dτ̄ exp½2iðτ−1 − τ̄−1Þξkpμ�
Z

d3w
δFðτ̄; wÞ

w2
sin

�
kwμkwξðτ − τ̄Þ

ττ̄

�
δFðτ̄; k⃗ − w⃗; p⃗Þ: ð91Þ

We discover two scales in expression (91). The first scale
appears in the oscillatory terms,

koscðηÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maðηÞ × ℏaðηÞHðηÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maðηÞkHðηÞ

p
¼ aðηÞ1=4 α

1=2

ξ1=2
¼ α1=2

�
τ

ξ

�
1=2

; ð92Þ

where we introduced the Hubble scale

kHðηÞ≡ ℏaðηÞHðηÞ ¼ ℏHðηÞ: ð93Þ

The scale kosc in (92) is the geometric mean between the
scale of relativistic effects and the sub-Hubble scale

krel ≳ kosc ≳ kH; ð94Þ

and we suspect that structure formation is inhibited at these
scales due to oscillatory solutions. The second important
scale in expression (91) appears in the exponential for the
linear term. The question, whether this exponential is
important may be answered by referring to the scale

kξðηÞ≡ α1=2τ

ξ
¼ kHðηÞa

�
m
kBT

�
1=2

¼ koscðηÞ
�
kHðηÞa
kBT

�
1=2

¼ koscðηÞ
aðηÞ1=4
ξ1=2

¼ koscðηÞ
�
τ

ξ

�
1=2

: ð95Þ

Relative to sub-Hubble scales, the scale kξ is in reach for
light and warm particles. Since we are working in the limit
ξ ≫ τ in this paragraph, we have

kosc ≫ kξ; ð96Þ

such that the exponential suppression in the linear term in
(91) begins before oscillatory contributions become im-
portant. It is of course tempting to study the full k-
dependence in the linearized version of equation (91).
However, we are not aware of a solution in terms of the
exponential and sinusoidal kernel

K½k; τ; τ̄�≡ exp

�
−
2k2ξ2ðτ − τ̄Þ2

τ2τ̄2

�
sin

�
k2ξðτ − τ̄Þ

ττ̄

�
; ð97Þ

2 4 6 8 10
p
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lt(p)

FIG. 4. The function χlt defined in (87) dominating the late-
time behavior of the phase factor (85) in the k ≪ 1 expansion.
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and leave it for future research. For cold dark matter it is
now a reasonable scenario to assume3

k ≪ kξðηIÞ ≪ kξðηÞ; ð98Þ

in which caseZ
d3p exp½2iðτ−1 − 1Þξkpμ�δFIðk; p; μÞ → δFIðkÞ

for τ ≫ 1; k ≪ kξ: ð99Þ

Moreover, the exponential suppression in (91) is negligible
in this scenario

exp

�
−
2k2ξ2ðτ − τ̄Þ2

τ2τ̄2

�
→ 1 for k ≪ kξ: ð100Þ

Since we are working out the case ξ ≫ τ in this paragraph,
the sine can also be expanded around zero. We then have

δFlinðτ; kÞ ≈ δFIðkÞ þ 6

Z
τ

1

dτ̄
ðτ − τ̄Þ
ττ̄

δFlinðτ̄; kÞ; ð101Þ

which is solved at late times by the standard linear cold
dark matter evolution

δFlinðη; kÞ →
3

5
aðηÞδFIðkÞ; for k ≪ koscðηÞ: ð102Þ

Although the form (91) differs slightly from the Vlasov
description (23), the study of nonlinear evolution is still
highly nontrivial and we leave the discussion of approx-
imations and perturbative expansions for the future. Let us
now discuss the other limit that brings the exchange
interaction term into play.
Case ξ2 ≪ aðηÞ, exchange interaction phase dominates.

For this case, we approximate the phase-factor by (86) and
drop the free-streaming contributions ∼τ−1. We will be able
to say something about the linear evolution. Unfortunately,
we are not in the position to perform the full momentum
integral for the linear term as we could in the case
ξ2 ≫ aðηÞ, which is why we have to restrict ourselves to

k ≪ kξ: ð103Þ

The linearized integral equation (89) then reads

δFlinðτ; kÞ ≈ δFIðτ; kÞ −
3

ξ2

Z
τ

1

dτ̄ðτ − τ̄ÞδFlinðτ̄; kÞ; ð104Þ

and is quickly solved in terms of the scale factor by

δFlinðη; kÞ ¼ δFIðkÞ cos
� ffiffiffi

3
p

ξ
ð

ffiffiffiffiffiffiffiffiffi
aðηÞ

p
− 1Þ

�

→
a≫aI

δFIðkÞ cos
� ffiffiffi

3
p

aðηÞ
ξ

�
: ð105Þ

We conclude that there is no linear growth for a small
enough parameter ξ such that at late times ξ ≪ τ (on scales
k ≪ kosc). Thus, the effect of the exchange interaction term
is to hinder the growth of linear perturbations for large
distances at late time where late times are defined to be
greater than the transition ηtrans given in (102) which
depends on the temperature of cold dark matter. If we
demand as a rough estimate that the observed power
spectrum for linear modes does not oscillate around a
constant value, field-theoretic corrections yield a lower
bound on the temperature of cold dark matter,

kBT ≳ atoday
aI

H0

ℏ
≈ 10−38 GeV; ð106Þ

where aI is the scale factor at the beginning of the matter
dominated epoch and H0 the Hubble rate today.

V. CONCLUSION AND OUTLOOK

We present a new formalism for deriving the non-
relativistic limits starting with a covariant QFT tree-level
action in which a real scalar field couples minimally to
gravity. The key ingredients are to introduce an approxi-
mate diagonal field representation (8) for cosmological
space-times and integrate out the gravitational constraint
fields in a perturbative expansion. We focus on scalar
perturbations in the longitudinal gauge but the formalism
can be straightforwardly adapted to include also tensor and
vector gravitational perturbations and even modified gravi-
tational theories to study their nonrelativistic limits in a
controlled way. We derive a general nonrelativistic, non-
local action (50) for gravitational interacting matter on sub-
Hubble scales that makes no reference to a particular state
in the sense that it can contain a condensate, as well as
squeezed contributions [all correlators in (19)].
Let us summarize the assumptions and approximations

which are needed to arrive at the final action (50). First of
all, we neglect vector and tensor perturbations in the metric
and linearize around a homogeneous, spatially flat FLRW-
metric with scalar perturbations in the longitudinal gauge
with gravitational potentials ΦG and ΨG,

OðΦG;ΨGÞ ¼ ε2g ≪ 1: ð107Þ

Second, by expanding around these potentials, we assume
that gravitational boundary terms and zero-mode fluctua-
tions around the classical and a priori free-to-choose
FRLW-metric to be negligible. However, for a consistent
perturbative expansion of the action we ultimately pick the

3For the cold dark matter paradigm we have the limit
m=ðkBTÞ≳ 1012 where WIMPs are far away from this limit
with m=ðkBTÞ≳ 1024 [26].
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classical FRLW-metric in such a way that the boundary
conditions (41) and (42), which are nothing but the
homogeneous semiclassical Einstein equations, are satis-
fied. Third, we are working in a nonrelativistic limit with

O
�
ℏk∇k
m

�
¼ εnr ≪ 1: ð108Þ

Spatial derivatives ∇ ¼ ∇x⃗ acting on matter fields ψðx⃗Þ
will be mapped on particle momenta p⃗ and long-distance
gradients ∇X⃗ ∼ ℏk⃗ once two-point functions of fields such
as hψ†ðη; x⃗Þψðη; y⃗ÞÞi are mapped to a particle phase-space
density fðη; p⃗; X⃗Þ. Thus, assuming ℏk∇k ≪ m corre-
sponds to assuming physical momenta p and inverse
distance scales L−1 ∼ k of the underlying physical problem
to be much smaller than the scale set by the mass m.
Moreover, we consider the case where the mass m is much
bigger than the Hubble rate or its logarithmic derivative

O
�
ℏH
ma

;
ℏH0

Hma

�
¼ εH=m ≪ 1: ð109Þ

Finally, we focus on the sub-Hubble limit relevant for
structure formation and introduce the perturbation parameter

O
�
H2

kΔk ;
H0

kΔk
�

¼ εH=k ≪ 1: ð110Þ

For the scope of this paper we study the derived action
(50) for a nonsqueezed state without condensate contribu-
tions and derive the corresponding 2PI two-loop effective
action. Because this two-loop action contains only quartic
interactions it is nondissipative, which allows us to get
closure for the dynamics of the coincident two-point
functions. The resulting equations have a form of classical
kinetic equations. By performing an inhomogeneous
Wigner transformation, we derive the dynamics of the

dark matter phase space density (79) and compare it to the
standard Vlasov equation describing particle cold dark
matter. For large galactic scales and masses, we recover a
description close to particle cold dark matter which is
confirmed by the linear evolution (102). This is, however,
the case only if the particles temperature is much bigger than
the Hubble scale, since otherwise the exchange interaction
(absent in the Vlasov description) becomes important at late
times. Another important result of this work is that we
identify two scales at which we suspect density perturbations
to deviate significantly from the standard CDM evolution.
These are the scale kosc (92) between the relativistic and the
sub-Hubble scale and the scale kξ (95) related to the ratio
between dark matter temperature and its mass. These results
were derived in the limit where particle momenta p are much
bigger than the large scale momentum k (or in other words
where the distances of the system under study are much
bigger than de Broglie wavelength). However, the general
formula (79) can be used to study also the case k ∼ p where
we expect new effects due to the exchange interaction term
(63) to kick in.
Another route of investigation is to start from the more

general nonrelativistic action (50) we derive in Sec. III and
to study the interplay between different state contribution,
i.e., the influence of particle dark matter on fuzzy dark
matter and vice versa.
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