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Fluctuations can be incorporated into an equilibrium statistical mechanics setting through a super-
position of different statistics, i.e., superstatistics. Herein, we have combined equipartition theorems arising
out of superstatistics together with the holographic principle, to address the main consequences of
fluctuations on gravitation and cosmology. We explored the effect of the three universality classes of
superstatistics, namely, χ2, inverse χ2, and log-normal superstatistics, on the Jeans criterion and the
Friedmann equations. We used some of the most recent cosmological data to constrain the universality
parameter q arising from these superstatistics. The dataset employed in our analysis provides q > 1 at 1σ
for the three superstatistics classes, indicating a deviation of the standard Maxwell-Boltzmann equilibrium
statistics, q ¼ 1.
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I. INTRODUCTION

Connections between thermodynamics and gravitation
can be traced back to the earlier works of Bekenstein and
Hawking on black hole physics [1,2]. Since then, it has
become clear that a connection between gravitation and
thermodynamics can bring new insight into our under-
standing of the evolution of the Universe, and much effort
has been given in building such a bridge. For instance,
Jacobson [3] interpreted Einstein field equations as a
thermodynamic identity, and Padmanabhan [4,5] gave an
interpretation of gravity as an equipartition theorem.
However, the most robust connection between gravitation
and thermodynamics is probably due to Verlinde [6], who
brought a heuristic derivation of gravity from thermody-
namic considerations. In this formalism, gravitation is
understood as an entropic force originated from perturba-
tions in the information “manifold” caused by the motion of
a massive body when it moves away from the holographic
screen—a storage device of information.
Most of the effort in this direction has been done, so

far, in the context of equilibrium thermodynamics and
equilibrium statistical mechanics [7–12]. However, the

Universe is full of complex systems that are either far
away from equilibrium or exhibit only local equilibrium.
Such systems, usually, exhibit fluctuations, and one may
inquire about the consequences of fluctuations on entropic
gravity and cosmology.
In this respect, a great deal of interest has been devoted

recently to understanding both gravitation and cosmology
from the perspective of non-Gaussian statistics [13–22].
Especially, much effort has been devoted to revisiting
cosmology from the point of view of the Tsallis nonex-
tensive statistical mechanics [23]. The Tsallis formalism is
based upon a generalization of both the entropy and the
distributions arising from it, and it brought new insight into
cosmology. Such an approach, however, has a couple of
drawbacks, one of which is the parameter “q,” which
underpins Tsallis entropy and the non-Gaussian distribu-
tions arising from it, the physical meaning of which
remains quite obscure [24]. Another shortcoming of phe-
nomenologically introducing these distributions is that
there is a critical value of the Tsallis parameter, namely,
q ¼ 5=3, that leads to singularities [17,18].
In this paper, we have taken a different path, andwe based

our approach on the so-called superstatistics [25]. The latter
is by now a standard method in nonequilibrium statistical
mechanics, providing a simple approach to systems in a
nonequilibrium steady state exhibiting fluctuations.
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The central idea of superstatistics consists of decom-
posing the system’s dynamics in different scales, so that
its statistical properties are given by a superposition of
statistics. So far, the formalism of superstatistics has been
successfully applied to many systems exhibiting fluctua-
tions in different areas, such as space and plasma physics
[26–28], high-energy physics [29,30], and quantum
information [31,32], to mention only a few. The motivation
behind our approach is twofold. First, distributions arising
within the nonextensive statistical mechanics emerge, as a
particular case, from superstatistics, together with a trans-
parent definition of the parameter q [33,34]. It is related to
the strength of fluctuations, opening therefore a perspective
for an empirical validation. Second, superstatistics gener-
ates other distributions, beyond those emerging within
nonextensive statistical mechanics and for which experi-
mental evidence can be found in the literature [27,28,35],
that do not suffer from singularities.
The paper is organized as follows. In Sec. II, we obtain

the equipartition theorems for the three universality classes
of superstatistics. In Sec. III, we discuss their implication
on the entropic gravity. In Sec. IV, we examine the effect of
fluctuation on the Jeans criterion. In Sec. V, we obtain the
modified Friedmann equations that emerge from super-
statistics and the q modified ΛCDM models associated
with it. In Sec. VI, we obeservationally constrain the
parameters of q modified ΛCDM models. We present
our conclusions in the last section.

II. SUPERSTATISTICS AND
EQUIPARTITION THEOREMS

Tsallis thermostatistics [23] relies strongly upon a
free parameter that has different values for each system.
A validity test is to recover Boltzmann-Gibbs (BG’s)
statistics always when q → 1. Another very interesting
entropy formulation is the one that depends only on the
probability [36]. It differs from BG’s entropy when applied
to large probabilities, namely, when the number of micro-
states of the systems is not big enough [37–39]. Tsallis
entropy [23] and Obregón entropy [40,41] are, respectively,

Sq ¼
1

q − 1

�
1 −

XΩ
i¼1

pq
i

�
ð1Þ

and

S ¼
XΩ
i¼1

ð1 − ppi
i Þ; ð2Þ

where, from Tsallis’ expression in Eq. (1), the BG entropy
is straightforwardly recovered when q → 1. For the
Obregón entropy, in Eq. (2), the BG entropy appears as
the first term in the expansion of Eq. (2) [36]. In that sense,
the Obregón entropy provides corrections for the BG’s

entropy, the implications on gravitation and cosmology of
which have been examined in Refs. [36–39,41].
Herein, we consider an alternative approach, which

does not rely on a generalization of the entropy but on a
superposition of statistics, in short, superstatistics. For that
purpose, let us consider a system of noninteracting particles
at equilibrium temperature T. It is characterized by a
Maxwell-Boltzmann (MB) velocity distribution,

fMBðvÞ ¼
ffiffiffiffiffiffiffi
βm
2π

r
exp

�
−
βmv2

2

�
; ð3Þ

where β≡ 1=kBT is the inverse temperature in energy units
(henceforth, for simplicity, we set kB ≡ 1). It is implicitly
assumed in Eq. (3) that the temperature is well defined,
well known, and constant. In many systems, however, the
temperature can present spatiotemporal fluctuations. Such
systems cannot be characterized by a canonical distribution
in Eq. (3) with a well-defined temperature and, in principle,
should be treated through nonequilibrium statistical
mechanics. The obtention of the steady state of a non-
equilibrium system is a highly nontrivial task. But the task
becomes relatively easy to handle in the case of slow
fluctuations operating on a long timescale. In this case,
fluctuations can be incorporated in an equilibrium statis-
tical mechanics, which is defined by considering a super-
position of distributions [25,33,34]. The nonequilibrium
system in a steady state can be divided up into cells—small
regions characterized by a sharp value of the inverse
temperature β—such that in each cell the MB distribution
in Eq. (3) holds. As the temperature (or equivalently its
inverse β) is varying from cell to cell, this variation among
the different cells can be modeled by a distribution, say,
fðβÞ. In the long run, the system, made up of many smaller
cells that are temporarily in local equilibrium, follows a
velocity distribution that arises out from the MB distribu-
tion, which holds in each cell, averaged over fðβÞ, which
characterizes the variation of the temperature among the
different cells, i.e.,

BðvÞ ¼
Z

∞

0

dβfðβÞ
ffiffiffiffiffiffiffi
βm
2π

r
exp

�
−
βmv2

2

�
: ð4Þ

Velocity distributions in the form of Eq. (4) are typically
non-Gaussian distributions exhibiting fat tails, which
make them suitable to describe many space systems.
The approach leading to distributions in Eq. (4) is known
as superstatistics. It generalizes distributions arising within
the so-called nonextensive statistical mechanics, and it
provides the foundations for the occurrence of non-
Gaussian statistics in many systems based on temperature
fluctuations [33,34].
The distribution fðβÞ is, of course, a central choice since

it defines the velocity distribution in Eq. (4). In principle,
fðβÞ could be any normalized probability density, but it is
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known that all relevant superstatistics fall into three
fundamental universality classes [42]:
(1) χ2 superstatistics.—This case holds if there are

many (nearly) independent microscopic random
variables acting on β in an additive way. For a large
number of variables, due to the central limit theo-
rem, their rescaled sum approaches a Gaussian one.
The inverse temperature β, which is positive, is
obtained by squaring these Gaussian random vari-
ables, which results in a χ2 distribution, that is,

fðβÞ ¼ 1

Γðn
2
Þ
�

n
2β0

�
n=2

βn=2−1e−
nβ
2β0 ; ð5Þ

where β0 is the average of β, i.e., β0 ≡
R
∞
0 βfðβÞdβ,

and n is a real parameter. In this case, the emergent
velocity distribution in Eq. (4) deviates from the
MB distribution and corresponds to the so-called
q-Gaussian [23] distribution, which, apart from a
normalization factor, reads as

fðqÞðvÞ ∝
�
1þ ðq − 1Þ β0mv2

2

�
1=ð1−qÞ

; ð6Þ

with q≡ 1þ 2=n. Distributions in the form of
Eq. (6) have been observed in many situations
[43–47], and their consequences on gravitation
and cosmology have been addressed in a list of
papers [13–22].

(2) Inverse χ2 superstatistics.—In this case, instead of β,
the temperature (β−1) itself arises from a large
number of independent or nearly independent var-
iables, which results in an inverse χ2 distribution,

fðβÞ ¼ β0
Γðn

2
Þ
�
nβ0
2

�
n=2

β−n=2−2e−
nβ0
2β : ð7Þ

(3) Log-normal superstatistics.—Instead of being a sum
of random variables, one may have many (nearly)
independent microscopic random variables acting on
β in a multiplicative way. In view of the central limit
theorem, for a large number of microscopic varia-
bles, the rescaled sum of their logarithms follows a
Gaussian distribution, which results therefore in a
log-normal distribution of β,

fðβÞ ¼ 1ffiffiffiffiffiffi
2π

p
sβ

exp

�−ðln β
μÞ2

2s2

�
; ð8Þ

where μ and s are real parameters.
In opposition to χ2 superstatistics, from which the

velocity distribution, Eq. (6), is explicitly known, the
velocity distribution emerging from the last two super-
statistics, Eqs. (7) and (8), is not accessible in closed form.

However, the main ingredient in our approach, together
with the holographic principle, is the theorem of equipar-
tition of energy that can be obtained in closed form, as long
as the moments of fðβÞ are known. To this end, we have to
evaluate hv2i, which, apart from a constant factor, corre-
sponds to the mean kinetic energy.
In the case of χ2 superstatistics, the velocity distribution

is explicitly known, and it corresponds to the q-Gaussian
distribution in Eq. (6) from which it follows that

hv2iχ2 ¼
2

5 − 3q
hv2iMB; ðq < 5=3Þ; ð9Þ

where hv2iMB ¼ T=m, where T ≡ 1=β0 is the average
temperature. The same result is obtained in the formalism
of nonextensive statistical mechanics (see, for instance,
Refs. [48,49]). For the two other superstatistics, although
the velocity distribution BðvÞ does not have a closed form,
hv2i can be obtained by combining the moments of the
inverse χ2 distribution in Eq. (7) and the log-normal
distribution in Eq. (8),

hβliinv:χ2 ¼
Γðn

2
þ 1 − lÞ
Γðn

2
Þ

�
n
2

�
l−1

βl0;

hβliLN ¼ μle
1
2
l2s2 ; ð10Þ

where the moments of the MB distribution are given by

hvliMB ¼ ðl − 1Þ!!
ðβmÞl=2 ðl evenÞ: ð11Þ

By proceeding in this way, we obtain that

hv2iinv:χ2 ¼
nþ 2

n
hv2iMB;

hv2iLN ¼ es
2hv2iMB: ð12Þ

To compare the effects of different superstatistics, it is
convenient to define one universal parameter extending the
parameter that underpins the q-Gaussian distribution [50].
One may link this parameter to the strength of fluctuations
as q≡ hβ2i=hβi2, preserving therefore the distribution in
Eq. (6), and it is still valid for the other superstatistics. For
the three distributions, Eqs. (5), (7), and (8), it reads,
respectively, as

q≡ hβ2iχ2
hβi2

χ2
¼ nþ 2

n
; ð13Þ

q≡ hβ2iinv:χ2
hβi2inv:χ2

¼ n
n − 2

; and ð14Þ

q≡ hβ2iLN
hβi2LN

¼ es
2

; ð15Þ
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from which hv2i can be written in a unified manner as

hv2ii ¼ ϕiðqÞhv2iMB ði ¼ 1; 2; 3Þ; ð16Þ

where

ϕ1ðqÞ≡ 2

5 − 3q
ð0 < q < 5=3Þ ð17Þ

ϕ2ðqÞ≡ 2q − 1

q
ðq > 1=2Þ ð18Þ

ϕ3ðqÞ≡ q ðq > 0Þ; ð19Þ

and the indices 1, 2, and 3 correspond, respectively, to χ2

superstatistics, inverse χ2 superstatistics, and log-normal
superstatistics, the positiveness of hv2ii defining the
domain of ϕiðqÞ (i ¼ 1, 2, 3). Note that, in this approach,
one has by construction q ≥ 1. However, to observationally
constrain the parameters of our model, we examine both
cases q ≥ 1 and q < 1, inasmuch as other mechanisms, not
addressed here, may generate non-Gaussian distributions
with q < 1 (see, for instance, Refs. [51–54]). Figure 1
shows the relative deviation,

δhv2ii ≡ hv2ii − hv2iMB

hv2iMB
; ð20Þ

in the neighborhood of q ¼ 1. Note that the inverse χ2 and
the log-normal superstatistics are almost indistinguishable
from each other inside the range 0.96 < q < 1.04.
Moreover, considering the three superstatistics, the χ2 is
the one that presents the higher deviation of the standard
MB result as q moves away from 1.

Notice that for all superstatistics hv2ii reduces to the MB
case in the limit q → 1. This is because this limit corre-
sponds to a vanishing variance of the distribution fðβÞ,
which approaches a Dirac delta centered at β0, in which
case the velocity distribution in Eq. (4) reduces to the MB
velocity distribution in Eq. (3), with inverse temperature β0.
From Eq. (16), the equipartition theorem for the three
different superstatistics is given by

Ei ¼ ϕiðqÞ
N
2
T ði ¼ 1; 2; 3Þ; ð21Þ

where ϕi is given in Eqs. (17)–(19) andN will be defined as
the number of bits, which will be shown in Eq. (22).

III. VERLINDE’S FORMALISM

The main ingredients of Verlinde’s formalism [4,6] are
the holographic principle on the one hand and the theorem
of equipartition of energy on the other. The model con-
siders a spherical surface as being the holographic screen,
with a particle of mass M positioned in its center. The
holographic screen can be thought of as a storage device for
information. The number of bits—the smallest units of
information—in the holographic screen is assumed to be
proportional to the holographic screen area A, i.e.,

N ¼ A
l2
P
; ð22Þ

where A ¼ 4πr2 and lP ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
is the Planck length.

The theorem of equipartition of energy counts the bits’ total
energy on the screen. The energy of the particle inside the
holographic screen is assumed to be equally divided among
the bits in such a way that we have

Mc2 ¼ 1

2
NT: ð23Þ

From the number of bits in Eq. (22) and the Unruh
temperature [55],

T ¼ 1

2π

ℏa
c
; ð24Þ

one arrives at the gravitational acceleration as

a ¼ l2Pc
3

ℏ
M
r2

¼ G
M
r2

; ð25Þ

in which the gravitational constant G appears in terms of
the fundamental constants as G≡ l2Pc

3=ℏ. So far, much
efforts has been devoted to understanding the implications
of a modification of the equipartition theorem on Verlinde’s

i 1
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i 3

0.90 0.95 1.00 1.05 1.10
0.2

0.1

0.0

0.1

0.2

q

v
2

i

FIG. 1. Plot of δhv2ii ≡ ðhv2ii − hv2iMBÞ=hv2iMB for different
superstatistics: i ¼ 1, χ2 (black line); i ¼ 2, inverse χ2 (blue line);
and i ¼ 3, log-normal (red line) superstatistics, against q≡
hβ2i=hβi2 in the neighborhood of q ¼ 1.
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formalism. One important direction is to investigate the
effects of q-equipartition theorem that emerges from the
nonextensive statistical mechanics [16–20]. In this respect,
the modified acceleration is given by

a ¼ Gq
M
r2

; ð26Þ
where the (effective) gravitational constant in a nonexten-
sive scenario reads as

Gq ¼
5 − 3q

2
G: ð27Þ

Combining the equipartition theorems in Eq. (21) arising
from the superstatistics, together with Eqs. (22), (23), and
(24), one may deduce the effective gravitational constants
due to the three different superstatistics as

Gi ¼
G

ϕiðqÞ
ði ¼ 1; 2; 3Þ: ð28Þ

Figure 2 shows the relative deviation of the gravitational
constant,

δGi ≡ Gi −G
G

; ð29Þ

in the neighborhood of q ¼ 1. Note that the strength of the
gravitational field decreases as q increases for all super-
statistics. Armed with Eq. (28), we have all the ingredients
to analyze the implications of superstatistics on gravitation
and cosmology.
Note that fluctuations of the gravitational constant G,

given by Eq. (28), and the numerical results plotted in
Fig. 2 can be corroborated by the results obtained in
Refs. [56,57], which point out that fluctuations of the
gravitational constant may be slightly correlated with the
variations in Earth’s rotation velocity within a period of
5.9 years together with other geophysical factors [56,57].

Hence, the documented variations of the gravitational
constant shall be considered an intrinsic feature that cannot
be neglected but is taken into account in the modification of
G from 1.35 to 2.2, via the q parameter. In other words, it
seems that the parameter q can be adjusted to fit an Earth
phenomenon already known, which does not offer a new
interpretation of the fundamental problems in cosmology.
On the other hand, it would be desirable to modify the
dynamical and kinematical structure of Friedmann equa-
tions in order to contrast with the usual models. That will be
addressed in Sec. V.

IV. GRAVITATIONAL COLLAPSE

One direct application of Eq. (28) is the Jeans criterion of
gravitational instability that causes the collapse of inter-
stellar gas clouds and subsequent star formation. The so-
called Jeans length is given by [58]

λJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πT
μmHGρ0

s
; ð30Þ

where μ, mH, and ρ0 stand, respectively, for the mean
molecular weight, the atomic mass of hydrogen, and the
equilibriummassdensity.G is thegravitational constant.The
Jeans criterion states that if the wavelength λ of density
fluctuations isgreater thanλJ thedensitygrowsexponentially
with time, and the system becomes gravitationally unstable.
Using the effective gravitational constants in Eq. (28), the
Jeans length becomes, for the three superstatistics,

λi ¼
ffiffiffiffiffiffiffiffiffiffiffi
ϕiðqÞ

p
λJ ði ¼ 1; 2; 3Þ: ð31Þ

The Jeans length emerging from χ2 superstatistics corre-
sponds to the Jeans length established by Jiulin in the
nonextensive scenario [59]. The three expressions in
Eq. (31) reduce to λJ in Eq. (30) in the limit q → 1. In
Fig. 3, δλi ≡ ðλi − λJÞ=λJ plotted against q for different
superstatistics.Aswecansee, for the three superstatistics, the
deviationofλi is lower than10%whenqdeviates10%from1.
Forq > 1, it shows that all superstatistics tend to increase the
critical length, above which the system becomes unstable.
This can be easily understood in light of the equipartition
theorem in superstatistics in Eq. (21): as q becomes greater
than 1, the mean kinetic energy increases, which allows the
system to remain stable for larger oscillation wavelengths.
Another way to convince ourselves of that is to compute the
pressure corresponding to the three superstatistics. Namely,

P ¼ nm
3

Z Z Z
BðvÞv2d3v ¼ nmhv2i; ð32Þ

where hv2i isgiven inEq. (16).Clearly, thepressure increases
as q becomes greater than 1, preventing therefore the
gravitational collapse from occurring for larger oscillations.
If q < 1, the opposite of the situation described above

i 1

i 2
i 3
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q

G
i

FIG. 2. Plot of δGi ≡ ðGi − GÞ=G for different superstatistics:
i ¼ 1, χ2 (black line); i ¼ 2, inverse χ2 (blue line); and i ¼ 3, log-
normal (red line) superstatistics, against q≡ hβ2i=hβi2.
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occurs, and smaller wavelengths are required to make the
system gravitationally unstable.
The Jeans wavelength, i.e., Eq. (30), defines the threshold

wavelength, characterizing density fluctuations, beyond
which gravitational collapse and subsequent star formation
may occur. Similarly, onemay consider the case inwhich the
density is nearly homogeneous and seek for themass of a gas
cloud beyond which it undergoes gravitational collapse and
subsequent fragmentation; this is the so-called Jeans mass.
It is worth it to address here the effect of the three

universality classes of superstatistics on this quantity. One
motivation behind this task is that the Jeans mass can be
easily worked out in interstellar clouds of dust and gas. In
some cases, as happens for the Bok globules discussed in
Refs. [60,61], the predicted Jeans mass is not capable of
explaining the structure formation at different scales; while
some Bok globules experience the star formation process,
their mass is lower than their corresponding Jeans mass,
which requires the introduction of new physics [61,62]. For
instance, the CB 188 Bok globule contains a protostar [60],
while its mass is smaller than its corresponding Jeans mass;
this demands new mechanisms that may account for a
reduction of the Jeans mass.
The starting point in computing the Jeans mass is to

consider the gravitational potential energy of a cloud of
massM and radius R, formed due to gravitational potential
VðrÞ. Namely,

U ¼
Z

M

0

VðrÞdM: ð33Þ

Considering Newtonian gravity, one has that VðrÞ ¼ − GM
r ,

and the gravitational potential energy reads as

U ¼ −
Z

R

0

GM
r

4πρðrÞr2dr ¼ −
3GM2

5R
: ð34Þ

The occurrence of a gravitational collapse is entirely
determined by the interplay between the gravitational
potential energy U and the kinetic energy hKi of the
cloud, approximated by an ideal gas composed of N
identical noninteracting particles of mass μ. The critical
mass, beyond which the cloud undergoes gravitational
collapse, can be determined following a simple argument
that relies upon the virial theorem; the cloud is in virial
equilibrium if hKi ¼ − 1

2
U, whereas gravitational collapse

may occur if hKi < − 1
2
U, i.e., for

NT <
GM2

5R
: ð35Þ

The Jeans mass is obtained by saturating the above
inequality, which, upon observing that the radius R is
related to the density ρ through R ¼ ð 3M

4πρ0
Þ13, gives

MJ ≡
�
5T
Gμ

�3
2

�
3

4πρ0

�1
2

: ð36Þ

The cloud is stable (unstable) provided that M ≤ MJ
(M > MJ). The effect of superstatistics on the Jeans mass
can be straightforwardly deduced by relying on the
equipartition theorems established in Sec. II. In this case,
the kinetic energy (considering 3 degrees of freedom per
particle) reads as

hKiq ¼ ϕiðqÞ
3N
2

T; ð37Þ

where ϕiðqÞ (i ¼ 1, 2, 3) are given in Eq. (17) for the three
superstatistics. The modified Jeans mass can be obtained,
by repeating the same argument, to give

MðqÞ
J ¼ ϕiðqÞ3=2MJ: ð38Þ

Asanexample, consider theBokglobuleCB188 that has a
mass MCB188 ≈ 7.19 M⊙ and a Jeans mass MJ ≈ 7.7 M⊙
[60] (M⊙ being the solar mass) and is known to contain a

protostar [60–62]. In this case, assumingMCB188 ¼ MðqÞ
J , as

the upper bound of the Jeans mass that is capable of
accounting for the presence of a protostar, it yields

ϕiðqÞ ¼ 0.955342; ð39Þ

from which the values of q, for the three superstatistics,
follow as

q1 ¼ 0.680182

q2 ¼ 0.755173

q3 ¼ 0.955342; ð40Þ
where i¼1, 2, 3 correspond, respectively, to χ2 superstatistics,
inverse χ2 superstatistics, and log-normal superstatistics.

i 1
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FIG. 3. Plot of δλi ≡ ðλi − λJÞ=λJ for different superstatistics:
i ¼ 1, χ2 (black line); i ¼ 2, inverse χ2 (blue line); and i ¼ 3, log-
normal (red line) superstatistics, against q≡ hβ2i=hβi2.
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For any q smaller than the values given in Eq. (40), one

always hasMCB188 > MðqÞ
J , consistent with the presence of

protostars in this Bok globule. The same discussion can be
extended to other Bok globules, which are known to
experience the star formation process [60]. The results
are presented in Table I.
A word of caution is needed before closing this section.

Notice that the values of q allowing for a sufficient variation
of the Jeans mass, to account for the structure formation,
deviate significantly from the standardMB case, i.e., q ¼ 1.
Thus, although the superstatistical picture allows an effec-
tive description of the gravitational collapse, capable
of accounting for the star formation process, it is more
likely that other mechanisms come into play. For instance,
modified gravity models, such as fðRÞ gravity [61], may
introduce a notable deviation of the Jeans mass. Similarly,
quantum gravitational effects, accounted for through the
generalized uncertainty principle or the extended uncer-
tainty principle, can modify the limit of collapse [62].

V. FRIEDMANN EQUATIONS FROM
SUPERSTATISTICS EQUIPARTITION

THEOREMS

The dynamical evolution of the Friedmann-Robertson-
Walker (FRW) Universe is governed by the Friedmann
equation, which can be obtained through the holographic

principle together with the equipartition law of energy
[6,63]. Here, we will analyze the implications of the super-
statistical equipartition theorems in Eq. (21) on Friedman
equations. Our starting point is the Robertson-Walker metric,

ds2¼−dt2þa2ðtÞ
�

dr2

1−kr2
þr2ðdθ2þsin2θdϕ2Þ

�
; ð41Þ

where aðtÞ is the scale factor of the Universe and k ¼ −1, 0,
1 is the curvature constant. Following Ref. [6], let us
consider a compact spatial region S with a compact
boundary ∂S—a sphere with physical radius r̃ ¼ ar—that
plays the role of the holographic screen. Let M be the mass
that would emerge in the compact spatial region S, and
assume that the Universe is filled by a perfect fluid that is
characterized by the stress-energy tensor

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð42Þ

where ρ and p are, respectively, the total density and the
total pressure of the fluid. Changes in the mass are due
to the work given by the pressure, i.e., dM ¼ pdV.
Consequently, the continuity equation reads as

_ρþ 3Hðρþ pÞ ¼ 0; ð43Þ

where H ≡ _a=a is the Hubble parameter. The total mass
inside the spatial region Λ is given by

M ¼
Z
Λ
dVTμνuμuν; ð44Þ

where Tμνuμuν is the energy density measured by a
comoving observer. A comoving observer at position r of
the screen measures an acceleration, caused by the matter in
the spatial region enclosed by the boundary ∂S, as

ar ¼ −
d2r̄
dt2

¼ −är; ð45Þ

from which the Unruh temperature in Eq. (24) can be
rewritten as

T ¼ 1

2πc
ℏär: ð46Þ

Let us define the active gravitational mass M, different
from the total mass in the spatial region S. It is the well-
known Tolman-Komar mass [63]

M ¼ 2

Z
Λ
dV

�
Tμν −

1

2
Tgμν

�
uμuν

¼ 4π

3
a3r3

�
ρþ 3p

c2

�
: ð47Þ

TABLE I. Values of the universal parameter q for the three
superstatistics (i ¼ 1: χ2; i ¼ 2: inverse χ2; and i ¼ 3: log
normal), in some of the Bok globules provided in Refs. [60,61].

Bok globule M=M⊙ MJ=M⊙ ϕiðqÞ qi

CB 87 2.73� 0.24 9.6 0.432442 q1∶0.125034
q2∶0.637935
q3∶0.432442

CB110 7.21� 1.64 8.5 0.896075 q1∶0.922681
q2∶0.905859
q3∶0.896075

CB131 7.83� 2.35 8.1 0.977652 q1∶0.984761
q2∶0.978141
q3∶0.977652

CB161 2.79� 0.72 5.4 0.643882 q1∶0.631280
q2∶0.737399
q3∶0.643882

CB184 4.70� 1.76 11.4 0.554725 q1∶0.464870
q2∶0.691910
q3∶0.554725

FeSt 1‐457 1.12� 0.23 1.4 0.861774 q1∶0.893069
q2∶0.878560
q3∶0.861774

Lynds 495 2.95� 0.77 6.6 0.584591 q1∶0.526268
q2∶0.706510
q3∶0.584591
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Using the number of bits in Eq. (22) and the equipartition
theorems in Eq. (21), where the mass is considered to be
the active gravitational mass in Eq. (47), one has, for the
three universality classes of superstatistics, the accelera-
tion equation for the dynamical evolution of the FRW
Universe as

ä
a
¼ −

4π

3
Giðρþ 3pÞ ði ¼ 1; 2; 3Þ: ð48Þ

By integrating Eq. (48) and using the continuity equation
in Eq. (43), we can write

H2 þ k
a2

¼ 8πGi

3
ρ ði ¼ 1; 2; 3Þ; ð49Þ

which are the Friedmann equations for the three univer-
sality classes of superstatistics. In the above equations,
the integration constant k is the curvature constant,
which appears in the Robertson-Walker metric (41). The
Friedmann equation corresponding to χ2 superstatistics
is the one obtained in nonextensive statistical mechanics
and discussed in a series of papers [17,18]. The usual
Friedmann equation is recovered in the absence of fluctua-
tions, i.e., q ¼ 1.

A. q modified ΛCDM model

Consider a FRW universe containing nonrelativistic
matter (baryonic and dark matter), radiation, and a cos-
mological term. By taking into account the superstatistics
modifications of the Friedmann equation in Eq. (49), the
Universe expansion rate becomes

H ¼ H0ffiffiffiffiffiffiffiffiffiffiffi
ϕiðqÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωγ;0

a4
þ Ωm;0

a3
þΩk;0

a2
þΩΛ;0

r
; ð50Þ

where i ¼ 1, 2, 3 and

Ωj;0 ¼
8πGρi;0
ð3H2

0Þ
;

is the density parameter of the jth component; j≡ γ, m,
and Λ for radiation, matter (baryonic plus dark), and
quantum vacuum, respectively. The normalization condi-
tions for each case read as

Ωγ;0 þ Ωm;0 þΩk;0 þ Ωx;0 ¼ ϕiðqÞ ði ¼ 1; 2; 3Þ: ð51Þ

In what follows, we will examine the observational
constraints on the parameters ðh;Ωb;0h2;Ωm;0; qÞ of this
model.

VI. OBSERVATIONAL CONSTRAINTS

To constrain the model parameters, we use distance
measurements of type Ia supernovae from the binned
Joint Light-Curve Analysis (JLA) dataset [64]; the cosmic
microwave background radiation (CMB) distance priors R
and lA along with the baryon density Ωbh2 derived from
Planck 2018 TT, TE, EEþ lowE [65] in Ref. [66]; the 31
measurements of HðzÞ compiled from Refs. [67–73]; the
local measurement of the Hubble constant H0 obtained in
Ref. [74]; and measurements of the distilled parameters dz
and A from baryonic acoustic oscillations (BAOs) listed in
Table II. Here, we assume that Ωk;0 ¼ 0. Our results are
summarized in Table III and Fig. 4.
Table III contains the best fit parameters for the

qΛCDM models derived in this paper. The errors corre-
spond to a 1σ (Δχ2 ¼ 1) confidence interval for each
parameter. For the sake of comparison, Table III also
displays the best fit for the ΛCDM model. The last
two columns of Table III list the corrected Akaike
Information Criterion (AICC) [79] and the Bayesian
Information Criterion (BIC) [80] values for the ΛCDM
and qΛCDM models. These information criteria, which
provide a fair way to compare models with different
numbers of parameters, are defined, respectively, by

TABLE II. Measurements of d and A used in this paper.

z d A Ref.

0.106 0.336� 0.015 … [75]
0.57 0.0732� 0.0012 … [76]
0.2 0.1905� 0.0061 … [77]
0.35 0.1097� 0.0036 … [77]
0.44 … 0.474� 0.034 [78]
0.6 … 0.441� 0.020 [78]
0.73 … 0.424� 0.021 [78]

TABLE III. Observational constraints on the models free parameters for the ΛCDM and the q − ΛCDM models. The errors
correspond to a 1σ (Δχ2 ¼ 1) statistical uncertainty for each parameter.

Model Ωm;0 q h Ωb;0h2 × 102 χ2min AICC BIC

χ2 superstatistics 0.295þ0.0091
−0.0098 1.009þ0.0065

−0.0052 0.687þ0.006
−0.005 2.2427þ0.0143

0.0143
66.291 74.85 83.67

Inverse χ2 superstatistics 0.295þ0.0090
−0.0096 1.015þ0.0102

−0.0102 0.687þ0.006
−0.005 2.2416þ0.0153

−0.0136 66.290 74.85 83.67
Log-normal superstatistics 0.294þ0.0096

−0.0090 1.015þ0.0096
−0.0102 0.687þ0.006

−0.006 2.2408þ0.0162
−0.0128 66.291 74.85 83.67

ΛCDM 0.305þ0.0064
−0.0064 1.000 0.683þ0.0048

−0.0048 2.2509þ0.0136
−0.0136 68.444 74.77 81.47
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AICC ≡ χ2min þ
2kN

N − k − 1
ð52Þ

and

BIC≡ χ2min þ k lnN; ð53Þ

where k is the number of parameters of a given model
and N is the number of data points. In the AICC language,
the qΛCDM models have substantial evidence support
(ΔAICC < 2), while in the BIC terminology, the evidence
against these models is positive (2 < ΔBIC < 6).
Figure 4 shows the probability distribution functions

and the marginalized confidence regions at 1σ and 2σ.
The black continuous line, red dashed line, and blue dotted
line denotes, respectively, the χ2, inverse χ2, and log-normal
superstatistics. The continuous green line represents the
ΛCDM model. At 1σ, the dataset employed in our analysis
constrains q > 1, favoring the interpretation of non-
Gaussian distributions emerging from fluctuations. The χ2

superstatistics provides tighter constraints on q ¼ hβ2i=hβi2
than the inverse χ2 and the log-normal superstatistics, which

are almost indistinguishable from one another. This result is
expected since in the χ2 superstatistics frame small devia-
tions of q ¼ 1 lead to deviations of the standard MB greater
than in the inverse χ2 and the log-normal superstatistics
frames. The value of the Hubble constant H0 is slightly
higher in the qΛCDM models than in the standard ΛCDM
model, as we should expect theoretically since for q > 1 the
gravitational field is weaker. However, this small difference
is not enough to alleviate the tension between the local and
the global estimates of H0.

VII. CONCLUSION

We have studied the effect of non-Gaussian statistics on
gravitation and cosmology by adopting the viewpoint of
superstatistics, in which non-Gaussian statistics are seen
as due to fluctuations. Combining the equipartition theo-
rems for the three universality classes of superstatistics
(χ2, inverse χ2, and log normal) with the holographic
principle, we have addressed the main consequences on
gravitation and cosmology, generalizing therefore the
results previously addressed within nonextensive statistical

2.22

2.24

2.26

2.28

10
0Ω

b,
0

0.67

0.68

0.69

0.7

h

Ω
m,0

1

1.02

1.04

q

100Ω
b,0 h

0.28 0.3 0.32 2.22 2.24 2.26 2.28 0.67 0.68 0.69 0.7 1 1.02 1.04
q

FIG. 4. Probability distribution functions and marginalized confidence regions at 1σ and 2σ for the free parameters of the model. The
black continuous line, red dashed line, and blue dotted line denote, respectively, the χ2, inverse χ2, and log-normal superstatistics.
The continuous green line represents the ΛCDM model.

SUPERSTATISTICS: CONSEQUENCES ON GRAVITATION AND … PHYS. REV. D 100, 103516 (2019)

103516-9



mechanics [16–18,20–22]. In our formulation, the latter
emerge as a special case, produced by χ2 fluctuations. We
have explored the effect of fluctuations on the Jeans
criterion, Friedmann equations, and the ΛCDM model.
In the case of Jeans instability, fluctuations appear to
enhance the critical Jeans length (q > 1), a feature that
can be attributed to the “fat tails” exhibited by non-Gaussian
distributions, leading therefore to an increase in the mean
energy. For q < 1, smaller wavelengths λ of density fluc-
tuation cause the gravitational collapse. We have investigated
the effects of superstatistics on the cosmic expansion. To
observationally constrain the model parameters, we have
used the distance measurements of type Ia Supernovae,
BAO, CMB, cosmic chronometers, and the local H0

measurement. Although our results are compatible with
the ΛCDM model, we have obtained, at 1σ confidence
level, that the universality parameter q is greater than 1 for all
classes of superstatistics, favoring therefore the interpretation
of non-Gaussian distributions as emerging from fluctuations.

Our approach can be understood as a first step toward
dealing with entropic gravitation and cosmology in non-
equilibrium statistical mechanics. It opens some perspec-
tives for further investigations. Possible application areas of
research include cosmos expansion and black hole physics.
Note also that, although we have analyzed herein the three
universality classes of fluctuations that have a transparent
statistical origin, it is not excluded that other distributions,
not identified yet, can be used to model a variety of
cosmological problems and fit observational data.
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