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The super-sample tidal effect carries information on long-wavelength fluctuations that we cannot
measure directly. It arises from the mode-coupling between short-wavelength and long-wavelength
perturbations beyond a finite region of a galaxy survey and violates statistical isotropy of observed galaxy
power spectra. In this paper, we propose the use of bipolar spherical harmonic (BipoSH) decomposition
formalism to characterize statistically anisotropic power spectra. Using the BipoSH formalism, we perform
a comprehensive study of the effect of the super-sample tides on measurements of other cosmological
distortions such as the redshift-space distortion (RSD) and Alcock-Paczynski (AP) effects by means of the
Fisher information matrix formalism. We find that the BipoSH formalism can break parameter
degeneracies among the super-sample tidal, RSD and AP effects, indicating that the super-sample tides
have little impact on the measurements of the RSD and AP effects. We also show that the super-sample
tides are detectable with an accuracy better than the ACDM prediction without impairing the accuracy of
measurements of other anisotropies assuming a SPHEREXx-like galaxy survey.
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I. INTRODUCTION

The large-scale structure (LSS) of the universe offers a
powerful tool for measuring the cosmic expansion history
of the universe. As the LSS keeps information on the initial
state of the universe, its measurements can also be used
to test the fundamental statistical properties of cosmic
fluctuations predicted by inflation [1-3]. Given the great
success of the SDSS III BOSS project [4], various next-
generation galaxy redshift surveys such as Prime Focus
Spectrograph (PFS) [5], Large Synoptic Survey Telescope
(LSST) [6], Dark Energy Spectroscopic Instrument (DESI)
[7] and Spectro-Photometer for the History of the universe,
Epoch of Reionization, and Ices Explorer (SPHEREX) [8]
are ongoing and planned. For interpreting upcoming
unprecedentedly high-quality data correctly, it is of crucial
importance to accurately model various nonlinear correc-
tions imprinted in the observed galaxy clustering: nonlinear
gravitational instabilities [9], nonlinear galaxy biases [10],
and nonlinear redshift-space distortions [11].

The nonlinear growth of the LSS produces the mode-
coupling of different scales. The mode-coupling naturally
predicts that long-wavelength fluctuations beyond a given
survey region may affect the observed galaxy clustering
within a finite survey region, which is known as the super-
sample or super-survey effect [12]. We cannot directly
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measure these long-wavelength fluctuations (called the
super-sample or super-survey modes) in a finite volume
survey. However, through the nonlinear mode coupling
between different Fourier modes, the super-sample modes
change both the amplitude and the comoving scale of the
short-wavelength fluctuations, which is known as the
growth and dilation effect, respectively [13-15].

The effects of the super-sample modes on the real-
space power spectrum have been extensively studied in
Refs. [12,13,15-20]. The uncertainty of the amplitude of
the super-sample modes forces us to add the new term to
the power spectrum covariance, dubbed the super-sample
covariance [12,15,19]. Physical effects of the super-sample
modes originate from the second derivatives of large-scale
gravitational potential, which can be decomposed into the
trace (mean overdensity) part and the traceless (large-scale
tidal field) one [18]. Thus, there are super-sample tidal
components that are expected to be of the same order of
magnitude as those of isotropic ones, whereas many
previous studies have focused mainly on the isotropic
super-sample mode because the impact of super-sample
tidal components on the real-space power spectrum van-
ishes after spherical averages.

An observed clustering pattern of galaxies is anisotropi-
cally distorted by the peculiar velocity of galaxies along the
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line of sight (LOS), known as the redshift-space distortions
(RSD) [21]. An additional anisotropic signal arises due to
the (mis)transformation from observed quantities into
comoving distances. Converting an observed redshift and
polar position on the sphere, (z,0), into a radial and
tangential comoving distance, (x|,x ), requires the use
of the fiducial cosmological parameters; x| = z/H(z) and
x; = (1 4+ z)Ds(z)0. Then, if the assumed cosmological
parameters differ from the underlying true cosmological
parameters, an apparent anisotropic distortion along the
LOS is induced, which is known as the Alcock-Paczyniski
(AP) effect [22]. Besides these well-known effects, the
super-sample tidal modes also generate a new anisotropic
signature in the redshift-space galaxy power spectrum
[18,23-25]. These similar effects tend to give rise to
degeneracies in cosmological parameter estimation [23,25].

To break the parameter degeneracy, in the past few years
people have started to use extra degrees of freedom (d.o.f.)
of the observed galaxy power spectrum, i.e., violation of
statistical isotropy. The super-sample tidal perturbation
generates a preferred direction in a given local survey
region and breaks statistical isotropy [18,26-28]. The
anisotropic distortion induced by the RSD and AP effects,
where the statistical isotropy still holds, is characterized by
an angle between the wave vector k and the LOS unit
vector 71 and thus can entirely be decomposed using the

Legendre polynomials £, (k - 7). In order to extract infor-
mation on the breaking of statistical isotropy due to the
super-sample tidal modes, Chiang and Slosar [25] proposed
an expansion scheme of the three-dimensional power
spectrum with spherical harmonics functions. The authors
decomposed the k-dependence according to P(k,7) =
Sy Pom(K)Y 4, (k) after the LOS direction 7 is defined
as a z-axis. Note that the m = 0 mode corresponds to the
coefficient in the normal Legendre expansion scheme since
Yy x L,. They found that the signals due to the RSD
effect are confined to m = 0, while the tidal perturbation
creates nonvanishing m # 0 modes. The authors further
performed a Fisher matrix computation and showed that
their decomposition formalism can break the degeneracy
between the RSD effect and the super-sample tidal one
except for its LOS component.

In this paper, we examine the distinguishability between
the super-sample tidal effect and the other two ones (the
RSD and AP effects) by employing a more general
decomposition based on bipolar spherical harmonics
(BipoSH) {Y,(k) ® Y. (7)},y [29]. This was recently
applied to probing primordial statistical anisotropy induced
by some sort of vector inflation models [30—32].l

'"The BipoSH decomposition was initially introduced for
dealing with the wide-angle effect in the power spectrum
[33-37]. For an application to the galaxy bispectrum analysis,
see Ref. [38].

Through this decomposition, statistically anisotropic
signals are confined to the L # 0 BipoSH coefficients.
We here follow the methodology developed in Ref. [30],
and, differently from Ref. [25], we do not fix 7 to any
specific direction. This treatment is reasonable for actual
data analysis because it is impossible to determine a
global LOS direction 71 in observed galaxy samples. In
Ref. [31], the BipoSH formalism was already applied to
observed galaxy samples in order to constrain statistically
anisotropic signals. There, the effects of observational
systematics, e.g., artificial asymmetries due to specific
survey geometry, were also decomposed and hence
properly subtracted. The same data analysis pipeline will
also be applicable to the measurements of the super-
sample tidal modes.

Via the BipoSH decomposition of the redshift-space
galaxy power spectrum, it is confirmed that only the
super-sample tidal effect induces nonvanishing L =2
coefficients. Moreover, using these BipoSH coefficients,
we perform a Fisher matrix computation and forecast the
detectability of relevant cosmological parameters. In the
Fisher matrix, we include the contributions of not only
the super-sample tidal and RSD effects but also the AP one,
which was unconsidered in Ref. [25], and find that the
super-sample tidal effect has little impact on estimates of
both the RSD and AP effects.

This paper is laid out as follows. In Sec. II, we review
the effect of the super-sample modes on the galaxy
power spectrum in redshift space and the formulation of
the bipolar spherical harmonics expansion. In Sec. III,
we show the results of Fisher forecasts for the param-
eters which characterize the super-sample tides and
other distortion parameters. We discuss some applica-
tions and conclude in Sec. IV. In Appendix A, we give
the relations between the BipoSH expansion used in this
paper and Legendre expansion, which are usually used
in the RSD analysis, and between the BipoSH expansion
and the single spherical harmonic expansion used in
Ref. [25]. In Appendix B, we provide the details of
calculations of the BipoSH multipoles. Mathematical
identities used for computations are summarized in
Appendix C.

II. PRELIMINARIES

The primary goal of this paper is to investigate how
the super-sample effect contaminates the RSD and AP
effect on the observed galaxy power spectrum by using
the full three-dimensional information. In Sec. II A we
review the galaxy power spectrum including the super-
sample effect at leading order [23]. In Sec. IIB, we
explain the (BipoSH) decomposition formalism of the
three-dimensional power spectrum. Then, we explicitly
show the BipoSH coefficients for the redshift-space
galaxy power spectrum with the full super-sample modes.
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A. Effects of the super-sample modes on the observed
power spectrum of galaxies in redshift space

Since we observe galaxies within a finite survey region,
the observed density fluctuation, d,, is represented as the
convolution of the survey window function, W, and the true
density fluctuation, §:

3
5obs(k) E/(ZTq)?,

where W(q) is the Fourier counterpart of the survey
window function W(x). Note here that the observed density
fluctuation has nonzero value even at k = 0 because of the
survey window function. Throughout this paper, we refer to
the k = 0 mode of §,,,(k) as the “large-scale overdensity,”

given by [12]
_ [ 44q
o= | G

Furthermore, it is convenient to define the large-scale tidal
components as [18]

W(k —q)s(q), (1)

q)5(q). 2)

Tij E/(f&w(—@ (@@;—;55)5((1), (3)

where §; = q;/qwithq = |q|,and 55 is the Kronecker delta.
The expectation values of &, and 7;; are zero: (5,) =
(r;j) = 0. On the other hand, their variances can be

computed as follows:

=) = [ G Pw@l V@l @

1 dq (.. 1 . a 1
<Tij7fm> = ‘/2/(27[)3 <%'61j —355) <61qun - 3511,5m>
X Plin(CI)|W(Q)|2

2 3 3
_ <_ SNk, oo, + %5;5,15;) o (5)

where V is a survey volume, and Py, (g) is the linear matter
power spectrum. In the second equality in Eq. (5), we
assumed an isotropic window function, W(q) = W(gq), for
simplicity.

As shown above, the window function picks up the
longer-wavelength fluctuations than a typical scale of
survey volume. Throughout this paper, we assume that a
given survey volume is so large that the super-sample
modes grow linearly, and therefore, [5p].|7;| < 1.
Although &, and z;; are related through 7;; = 8,-8j8‘25b
in real space, the values of 7;; cannot be inferred from &,
due to the nonlocal nature of a tidal field (suggested by the
appearance of inverse Laplacian 972, see Ref. [39,40] for

details). Then we have six independent d.o.f. for the
super-sample modes: one isotropic component §, and five
anisotropic components 7;;. Because the super-sample
modes depend on the position and shape of specific
surveys and we cannot predict these values for each survey,
we need to vary these six components as free parameters
in cosmological analyses, as will be studied in detail in
Sec. III.

1. Power spectrum responses to the
super-sample modes

These long-wavelength perturbations affect the small-
scale clustering due to the nonlinear mode-coupling by
gravity. In the presence of the super-sample modes, the
galaxy power spectrum is modulated as [12,18]

Pg(k,ﬁ;éb,Tij) =P (kv fl,(Sb = OvTij = 0)

g

OP (k) 0P, (k,7)
a(Sb 5b + 8Tij Tij
+ O(&, lej) (6)

where OP ,(k,p)/ 06y, and OP ,(k, 1)/ Ot;; are the responses
of the galaxy power spectrum to &, and 7;; respectively,
which represent the scale-dependent modulation to the
observed power spectrum caused by the super-sample
modes and p is the cosine between the wave vector k
and the line of sight 7. Notice that the response to the
isotropic super-sample mode d;, can depend on only k and p
because it preserves the rotational symmetry around the
observer. This mode-coupling between long- and short-
wavelength modes is then characterized by the squeezed
limit of the bispectrum [23,24,28]. In particular, the res-
ponses are related to the squeezed bispectrum [23]

y_)mongm(k’ -k - q, q)

CoP,k) (.. 1)\ 0P, (k)

with  (6,(k1)5,(k2)5,,()) = By (k1. k2. q)(27)°55 x
(k1 +kz +q), 6,(k) being the overdensity field of gal-
axies and §,,(k) being the overdensity field of matters.

As can be seen in Eq. (7), one can obtain the explicit
form of the response functions from the squeezed bispec-
trum. Using the standard perturbation theory [9], the tree-
level squeezed bispectrum in redshift space is expressed
as [23,28]

ngm(k’ -k - q, q) = 2’Zl (k + q)ZZ(k +4q, _q)
x P([k +q)P(q) + 27, (k)
x Z,(k.q)P" (k)P (q). (8)
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where the kernel functions [9]

Z,(k) = by + fut. ©)

by

Zz(kl, kz) - ble(kl, kz) +_ +_

2

_ SfukK B
2 |k

((iﬁ ) —%> + fux G (ky. ky)

Hi

(b1 + 018+ 52 00+ 1) (10)

are the mode-coupling kernels in redshift space with b, b,, and b being bias parameters up to the second order, f being

the growth rate, K = k; + k,, sy = k- and

5 1/1
Paii) =343 (5

ki

3 1/1
Gz(kl,k2)=+<

K

_I_
2

>(k1'k2)+%(1%1‘i€2)25 (11)
> (ki -ky) +g(i<1 k). (12)

By comparing terms in Egs. (7) and (8), the response of the redshift-space galaxy power spectrum to the large-scale

overdensity 6, is read off as [23,25]

OP,(k,u) [47 1 dlnPy,(k)

— 0\ 4 2by — by ——— 2 PL(k
a8, TR L eyl (L)
1

3

26 2
+ [—b% +;42(7b1 + 2b? +2b2> —%bl(Z—l—bl)

dln Py, (k)
dink ] FPHR)

1 1 dln Py, (k) 1 1 ,dlIn Py, (k)
— (31 4+70b;) —= (1 +2b)) ——=2| F2u*PL (k (4t — 1) = =2 i 63 4 pL gy
[ 01700 - 3014 260 PO sy e = 1) = Sy L)
(13)
and to the large-scale tides 7;; as [23,25]
opP,(k,n) [8 dn Py (k)] » »
— = |zb +2b.—-b - kik:b, PL(k
Oty 77020 TP Tk ikjb1 P~ (k)
[ 24 PN P dln Py, (k
16 - -z d1n Py, (k)
+ _7Mkikj + 4blh1} - (ﬂklk] + 2blh1]) 76111'1[;( :|ﬂ3f2PL(k)
i - dln Py, (k
+ | (dph;; — i) — phy; dlirllk()]ﬂ‘lﬂpl“(k), (14)

where h;; = kgnj) =% (knj 4+ nk;). In the limit f — 0,
the above equations reduce to the real-space results [18,26].

The expressions above formulate the physical effects
of the super-sample modes on small-scale fluctuations.
There are two types of the super-sample effects. First, the
super-sample modes enhance or suppress the growth of
the short-modes depending on the sign of the super-
sample modes and directions of small-scale fluctuations:
speeding up the growth in the denser region and slowing

down in the less dense region. This growth effect
corresponds to the terms with no derivatives. Second,
the super-sample modes cause a dilation of the comoving
scale since the local expansion history is altered by the
super-sample modes. The mean density mode &, generates
an isotropic shift for all scales. On the other hand, the tidal
modes 7;; cause an ellipsoidal expansion in a local region
and this leads to an anisotropic shift which depends on the
directions of both the LOS and the wave vector of the
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short modes. This dilation effect is described by the
derivative terms.

In particular, this dilation leaves a characteristic imprint
on the baryon acoustic oscillation (BAO) feature in the
power spectrum. Specifically, the isotropic super-sample
mode shifts the observed BAO scale in an isotropic way,
whereas the anisotropic super-sample modes shift in an
anisotropic way. Neglecting the growth terms, we can
rewrite the redshift-space galaxy power spectrum with
responses as

Py(K, 16y, 7;;) = (by + f1i)? Piin(k)
8Plin(k)
Olnk

+ (D(u)dy + Dij(i%? )z;;)
=~ (b +fﬂ2)2P1in(k/0‘(A7’Al))v

where D(u) and D; j(lAc, i) are the coefficients of the dilation
term (k-derivative term) for &, and z;; respectively and

(15)

, D(u)
koa)=1+—LL 5
B S S TR
D;i(k, 7) -1
— i+ O(8, 7,
(b1+fﬂ2)2 ] (b J

1 P

~1- g(l + f1?)8 = (kik; + fuhij)z;  (16)
parametrizes the direction-dependent shift in the BAO
peak. When there is no BAO peak shift, « =1 holds.
From this expression, one can easily see that the large-scale
tides generate three-dimensionally anisotropic distortions
in the BAO peak position, while the large-scale mean
density causes only two-dimensional distortion.

2. Modulation of the mean galaxy overdensity

In the previous subsection, we implicitly assume that
the overdensity field of galaxies is defined to the global
(background) mean number density of galaxies. In a spec-
troscopic survey of galaxies, however, we measure the
overdensity field defined to the “local” mean number

|

P}qocal(k’ﬁ> — (bl +fﬂ2)2P1in(k) + |:—2 <b1 +%f> (bl +f/’l2)Plin(k) +

+ | =21 (by + f1?)* Pyn (k)i R

We use this power spectrum in the Fisher analysis.

B. The bipolar spherical harmonic expansion

The power spectrum which depends upon two directions,

k and 7, can be expressed by using the following coor-
dinates:

density in the survey region. Because the super-sample
modes behave like the background in the local survey area,
these also make a difference between the “local” mean
number density 75°™ and the “global” mean number
density 7™ such that 7™ = Al (1 + A,) with A,
being the mean galaxy overdensity in the specific survey
due to the super-sample modes. In a galaxy redshift survey,
therefore, the observed number density fluctuation of
galaxies 6 (k) which is defined through n,(k) =
el 1 + sle<l(k )] is related to that defined to the “global”
mean density through n,(k) = 25" [1 + &5 (k)] as
follows [16],

lobal
_ 5 (k)

oca lobal
g

(17)

In redshift space A, is related to the super-survey modes,
A 1 i

Ay = [by+ f(g- 7))o, = <b1 + §f> 8y + frA'hl (18)

at lowest order [24,25]. This means that the observed power
spectrum of galaxies is modulated as

Pl (k, 1) = (1 —2A,) P (k, )

1 -
= [1 - 2<b1 +§f>5b - 2fr,~jﬁlﬁ/]

« Pglobal(k’ ﬁ), (19)
where
P%IObal(k,fl) _ (bl +f/42)2PIin(k)
oP, (k. op(k, 7

95, T or

ij

After all, at leading order of the super-sample modes, the
observed power spectrum of galaxies with the effects of the
super-sample modes is expressed as

OP,(k, p)

5
a8, |°

oP,(k, )
AL P 21
" It ] Y @
k = k(sin ) cos ¢y, sin 6, sin ¢, cos 6;), (22)
it = (sin@, cos ¢, sin b, sin ¢, cosb,,). (23)

In general, to get the multiple moments that have no
angular dependence requires a four-multiple integration,
which is the case for the BipoSH expansion as we will see
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in the next section. Note that the reason why we usually
need only one-dimensional integral for the power spec-
trum multipoles in redshift space is that the usual RSD
anisotropy still preserves the three-dimensionally rotational
symmetry around the observer. In that case, the four-
multiple integration reduces to one-dimensional integral
thanks to the rotational symmetry. We here emphasize that,
differently from Ref. [25], throughout this paper, the LOS
direction is not set to the global one although the local
plane-parallel approximation is adopted.

1. Formalism of the bipolar spherical
harmonic expansion
To capture the violation of the three-dimensional rota-
tional symmetry, the three-dimensional power spectrum
P°(k, 13 6y, 7;;) in redshift space should be expanded using

the bipolar spherical harmonic (BipoSH) basis XZ¥ o0 1301,

= Y wbM (ks Sy, 7)) XEY (k. 7). (24)

LM¢?

Ps(k, ﬁ;&b,

where the BipoSH basis is defined as [29]

{Y (k) @ Yo(it)y s
- Zcfmﬂm'yfm (k)Y pre(R)  (25)

X4 (k. 7) =

, ¢ ¢ L
= Z(—UM ML +1 < ) )
o m m —-M

X Yfm (]%) Yf’m’ (ﬁ>7 (26)

with the CLM v D€INg the Clebsch-Gordan coefficients and
(“1 2% being the Wigner 3j symbol. The inverting

my my ms
translation is given by

bt (k / &k / d*aP(k, i) [XEM (k. 7)), (27)

owing to the orthogonal property of the XL basis:

/d2 /dan; o (k

= 5£L251{<4]M25’( 5§ x (28)

A [XEM (R, 7))

To relate the coefficients of the bipolar spherical harmonic
expansion with those of usual Legendre expansion, let us
introduce the reduced coefficients defined in Refs. [30,31]

LV RL+1)(26+1)(2¢' +1)
4r
X Hepp s (29)

Py (k) = al)t (k) (1)

where Hf laty = (fol %2 %) and Hff’L = (0 when f—|— f/ +L

is odd. In our case, 7L i M vanishes for # + ¢ + L = odd and

hence PLY is sufficient to capture all information of the

three-dimensional power spectrum. The explicit relation-
ships between the reduced coefficients PLY (k) and the
usual Legendre coefficients P,(k) and between PLY (k) and
the coefficients obtained via the expansion scheme of
Ref. [25] is presented in Appendix A.

The advantages of employing the BipoSH expansion lies
in the following two aspects: (1) The BipoSH can extract the
full three-dimensional anisotropic power spectrum and
(2) we need not set the LOS to the z-axis. The reason
why point (1) is important is that the RSD and AP distortions
generate only two-dimensional asymmetry; i.e., anisotropic
signature appears only about the LOS direction, character-
ized by the radial components of the wave vector, ]%H =1,
whereas the super-sample tidal effect sources the full three-
dimensional asymmetry; i.e., anisotropic imprint appears not
only about the LOS direction but also in the transverse plane,
characterized by both IA<H and k|, = k/—\kH.

To put point (2) another way, the use of the BipoSH
expansion requires the multiple LOS directions as implied
by the integration of the LOS direction [see Eq. (27)]. In
other words, the BipoSH expansion can be applied in an
all-sky or wide-area survey. In fact, different LOS direc-
tions are essential to break the degeneracies between the
super-sample tidal effect and other anisotropic effects.
The point is that the RSD and AP distortion respect the
rotational symmetry around the observer, whereas the
super-sample tidal modes violate the rotational invariance.

To elucidate this point further, let us consider a sim-
plified situation where we have two different LOS: 71; =
(1,1,1)/v/3 and A1, = (=1,—1,1)/+/3 (see Fig. 1). Under
the local plane-parallel approximation, we observe the
galaxy pairs on the tangential plane for each LOS (the
red planes in Fig. 1). For both 71, and 7, directions, we
should measure the same power spectrum in the absence of

FIG. 1. Schematic for an all-sky galaxy survey. The observer is
at the origin. n; = (1,1,1)/v/3 and n, = (=1, —1,1)/+/3 depict
different LOS directions. In the local plane parallel approxima-
tion, the pairs of galaxies are measured in each red plane, which is
the tangential plane to each LOS direction.
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7;; because in that case anisotropy appeared in the power

spectrum depends only u = (k - /1), which is rotationally
invariant around the observer. On the other hand, the terms
with super-sample tidal modes violate this rotational
symmetry. For example, let us consider the term of
7;;7;71;. This anisotropy appears with the form of 2(z, +
713 + 7523)/3 for fll and 2(’[12 —T13— T23)/3 for fl2, Wthh
means that we would observe the power spectrum with the
different radial distortion for each different LOS. The
separation of P% and PZ) originates from this fact as
we will see in the next subsection.

In summary, if one performs angler average in each
tangential plane by which the two-dimensional power
spectrum is obtained and set i1 = Z, only the information

on the radial distortion is left, and the fact that 7; jﬁiﬁ{ #*

T; ]ﬁ’zﬁé obliges us to introduce different parameters which
describe the super-sample tides for various LOS. On the
other hand, since the BipoSH expansion captures the full
three-dimensional power spectrum including the informa-
tion of the distortion on the tangential planes and taking
into account the nonparallel LOS, it is expected to alleviate
the degeneracies between the super-sample tidal effect
and other anisotropic effects. Notice that here 733 is no
longer the LOS component of z;;; i.e., 733 # 7; jﬁiﬁj , but zz
component in the coordinate the observer chooses;
T33 = T,-jiiif.

2. BipoSH coefficients of the response functions

By making use of the BipoSH formalism, we can decom-
pose Eq. (21) into the following reduced coefficients:
|

PR (k) = 85, [Py (k) + Dy (k)P (K)Sp].  (30)
P2 (k) = Trpr (k)P (k)733, (31)
Pl (k) = T”/(k)Pm(k)\/g(:F T3 +ity3),  (32)

1

2

2

3

P2:t2

e’ (33)

(k) = Typ (k)P (k) (t11 — 70 F 2ity),

where P,(k) is the well-known Legendre coefficients for
the Kaiser formula [21],

Pso(k) = <b% +§b1f+%f2> Py (k),  (34)

Peatt) = (S0 437 )P 39)

Proafk) = 52 P Pinl). (36)

We stress here that the isotropic signal is confined in the
L = 0 modes [P% (k)] which do not suffer from the tidal
mode and the L = 2 modes [PZY (k)] successfully extracts
the full five d.o.f. of the super-sample tides. The explicit
expressions of the BipoSH coefficients for the response to
the super-sample density mode D,(k) and tidal mode

Tsp (k) are given by

Dy (k) = {—2b§+gb%+2blb2—;b%W] + B?bl —b%+§b2—;bl(2+bl)W]f
+ {%—% 1—%(1+2b1)dl%:k<k>}f2+ [—%—%dl%:k(k) 13, (37)

D (k) = [%bl —gb%+gb2—§bl(2+bl)””%:k(k)] I {%_% 1—;—1(1+2b1)d12§:]£k)}f2
[%‘gﬂ%%qﬂ’ (38)
Dalk) = [%*% " +2b1)dl%:k(k)}f2+ [%—%‘”%:,f'ﬂfﬂ (39)
Dg(k) = % [4 —dl%:k(k)}f{ (40)

Ty (k) = Eb? +2b1bg — b%dl%:]fk)} + Ebl J%bﬂ —%(Zbl +b%>d12§,§k)]f

+ s ipi -2 D] ey [0 AT W] "
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16 4 1 dn PL (k) 64 8 1 dn Pt (k)
T 1+ 4 — b —— (4 + 14b;) ——— | f2
o2(k) = {3517 —hitsbe —shi S =0 ]f {245 501 T3 )= ]f
13 1dInPL(k)] @)
35 7 dmk |’
32 8 1 dln PL (k) 128 20 2 dln P (k)
T — e e = +11by) ————| 2
2(k) = [49]7le be =y i@+ Tb) = ]f [343+147 R i iny? }
76 25 dinPL(k)]
— = 43
[147 147 dInk ] ’ (43)
T () = 288, 24, 24, dInP(k) pofus2 144 72 (l_l_b)dlnPL(k) ,
2T 2457 T35 T35 ik 1715 245" 245 Y dnk
144 8 dinPL(K)] ,
[245 49 dink ] ’ (44)
256 192 8 dIn PL(k) 88 8 dInPL(k)
Toa(k 2 2 V2 22277 M g3 4
(k) = [1715 24501 7245 2O T ]f {245 49 dink ] ’ (45)
51216 8 dIn PL (k) 2048 600 dIn PL(k)
Tu(k) = | ==+ — 44 11b) ——L| f2 - 3 4
u(h) [3773+49 TRy } [5929 5929 dink (46)
) = 128 8 dinPL(k)] ,  [160 40 dInPL(k)] @)
o4 539 77 dlnk 847 847 dlnk ’
(72 40 dIn PL(k
Tyglk) = | = 20 AP (48)

847 847 dlnk

32 8 dlnPL(k)]

Too(k) = | — ————| 3. 49
o6 (k) 1363 363 dlnk _f (49)

10!

100

Ty (k)

10!

1072 — :

1072 10 10°
k [h/Mpc]

FIG.2. Response functions for the super-sample tides, 7, (k), in terms of the BipoSH multipoles. Negative values are plotted with the

0. 20
dashed lines. Note that T, (k) is normalized by the matter power spectrum, i.e., Tzz (k) = ;T:f’ /P,,. We use the following values:
f(z=0.8)=0.84, b = 1.5, b, = 0.3, and b = —0.29.
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Note that all other BipoSH coefficients are zero. Details of
derivations of the above expressions are summarized in
Appendix B.

In Fig. 2 we show the BipoSH multipole representation
of the response functions for the super-sample tides,
Typ(k), which are normalized by the matter power spec-

oP?
trum, i.e., ”’ £ /P,,. We find that T5y(k) has the highest

magnitude, and Toy(k), Toy(k), and T4y (k) have smaller
and similar magnitudes. In general, there is a hierarchy
of magnitudes; B~ | P ~ PP > | P3|~
|P3| ~ | P2 > |P2M | as reflected by the power of the
velocity. Therefore P3)! has a dominant contribution in
the signal-to-noise ratio, similar to the usual Legendre
multipole case in which P, is more dominant than P,. The
wiggly feature in the response function results from the
BAO phase shift described by the dilation terms as
explained in Sec. IT A.

III. FISHER FORECASTS

In this section, we study the degeneracies between the
super-sample tidal modes and other cosmological anisot-
ropies and the possibility to detect the super-sample tidal
modes based on the Fisher information matrix formalism.

A. Alcock-Paczynski effect

In a spectroscopic survey, we infer the three-dimensional
distances of galaxies in the comoving coordinate from the
angular and redshift separation (A@, Az). This transforma-
tion from (A@,Az) to (Ax,,Ax)) requires the angular
diameter distance D,(z) and the Hubble expansion rate
H(z), which depend on the cosmological model we assume.

If the fiducial cosmological model we use differs from
the underlying true cosmological model, the relation
between the comoving true wave vector and observed
wave vector is given by

H 7obs
—a k| (50)

Ttrue obs Ttrue
e =3t i ke =

where the quantities with subscript “true” refer to the
underlying true values and the quantities with “obs” are
obtained from the assumed fiducial cosmological model.
Then the magnitude and line-of-sight component of the
comoving wave vector become

ktrue — /|ktrue|2 + |ktrue|2
_ Dgid |kob§|2 n i 2|I—(>0bs|2
DA Htld I
Dﬁd 2 H \?2
- k\/ (B =)+ (575a) 42

= kObSy(ngaHﬁd»ﬂobs>9 (51)

true obs
e M _H L K
ktrue Hfid ( Dﬁd Hﬁd, Hob ) kobs
H
Hfid ﬂObS (52)

This leads to the observed power spectrum in redshift
space,

b. bs\
obs(ko * 0 S) - Hﬁd

fid\ 2
fia () Plwe ). (53
Dy

which means that there appear the higher-order multipoles
than £ = 4 if the fiducial cosmology does not match the
underlying true cosmology. This geometrical distortion is
called the Alcock-Paczyniski effect. In general, the AP effect
makes the galaxy clustering anisotropic even in the absence
of the RSD. Notice that, however, the generated anisotropic
signals are confined into the LOS direction and there is no
anisotropic distortion in the plane perpendicular to the LOS
due to the AP effect. In other words, the AP effect leaves the
redshift-space power spectrum s two-dimensional one,
which still respects the three-dimensionally rotational sym-
metry around the observer. In terms of the BipoSH, the
information content carried by the AP distortion can be
completely captured by the L = 0 multipoles.

B. Fisher information matrix

We employ the Fisher matrix formalism in order to
assess the correlations between the anisotropic signals that
appear in the observed power spectrum of galaxies. In
terms of the reduced BipoSH coefficient P;" (k), the

Fisher matrix is written as
P - OlogL
@\ 06,00,

23

olpz, (k)

kK 610 658, LLUMM! 004
P (k)
x Cov [[PEZ, (K], Plgt (K)] —p—.  (54)
s

where L is the likelihood and @, is the ath parameter of
interest. The Cramér-Rao bound states that the minimum
possible errors on parameter @, marginalized over all other
parameters, are given by the square root of the diagonal
components of the inverse of the Fisher matrix as

Ay 2 \/ (F)ga- (55)

while the unmarginalized ones are given by A0, = 1//F ..
The cross-correlation coefficients ¢4 are defined through
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-1
Cop = S . (56)

(F_l )aa(F_] )ﬂﬂ

To give an expression of the covariance matrix for the
reduced BipoSH coefficients P}" (k), we start from the
covariance for the 3D redshift-space power spectrum of
galaxies P*(k;) in the Gaussian limit,

Cov[P*(k; i), P*(K';n')]
. 2
e [5 o ion)
x [6@(k + &) + 6@ (k = k)| 4n6@ (- '),  (57)
where N, = 4nk?>AkV /(2x)? is the number of modes with

survey volume V and the interval between each Fourier
|

mode Ak and L;(x) is the Legendre polynomial. The
Legendre coefficients with subscript (O) denote P(()()) (k) =
Po(k) +1/a, P (k) = Po(k), P (k) = Py(k) and
P\ (k) = PL (k) = P'2) (k) = 0 with 71, being the local
number density of galaxies. By making use of the formulas
in Appendix C, the covariance above leads to the following

expression of the covariance for the reduced BipoSH
coefficients [30]:

K
5[( 5]( 5k K

Cov[[P LLOMM N

L1 (k). P (K)] = )

(58)

where

d o o
G)?l,fz,f;,ﬂz(k) = (24, +1)(2¢, +1)(2¢) + 1) (25 + DL + 1) (=) [1 + <_1)f']Hflf2LHf’lf’2LZP3 >(k)P§/ (k)
JJ
> QL+ 1)Ly + V)Hy g, Heyyr,He o H {L b L2}{L b Lz} (59)
x 0 7 N
LiL, ] ’ e A A A W £y

with {é 22 f*} being the Wigner 6; symbol. The covariance
matrix is therefore block- diagonalized for L, M, and k.
Further, the reality of the covariance means the matrix is also

block-diagonalized for the real part and the imaginary part.

C. Results

In this paper, we use the following cosmological
parameters that are consistent with the Planck 2018
results [41]: h=0.6766, Q.h> = 0.1193, Q,h> = 0.0224,
Ay =2.105x 107, and n, = 0.9665. We compute the
Fisher matrix Eq. (54) for the following parameter set:

be,f, DA(Z)v H(Z), 5b77337711,712,713’723}-
(60)

6«1 = {bl’b%

As a working example, we assume a SPHEREx-like
survey where we set the fiducial values of the central
redshift z = 0.8, the comoving survey volume Ve, =
4 0 (Gpc/h)®, the mean number density of galaxies
= 4.0 x 1073 (h/Mpc)?, the linear bias bl = 1.5, the
quadratlc bias b, = 0.3, the tidal bias b = —3 (b — 1) =
—0.29, and the linear growth rate f(z = 0.8) =0.84 [8].
Here we consider a single redshift slice for simplicity, but
our results can be trivially extended to include a multiple
redshift slice. Notice however that because the super-
sample modes &,(z;) and 7;;(z;) depend on the specific
survey region, one should treat the &(z;) and 7;;(z;) as
independent variables for each redshift slice, unless one

|
considers the super-sample modes that straddle multiple
survey regions.

The two comments are in order. First, since the higher-
order biases, b, and b, are only in the response functions
at tree-level calculation, then information is not sufficient to
determine these higher-order biases. Therefore we employ
30 Gaussian priors for b, and b with 6, = op, =1 in
order to make the Fisher matrix invertible. Second, because
the isotropic component of the super-sample modes Jy, is to
degenerate with the linear bias b; in spectroscopic surveys
[17,25], we also add a 30 Gaussian prior to &, with o
computed from Eq. (4) and focus on investigating the
degeneracies and detectability of 7;; in this paper. Note
however that it is possible to constrain J,, in lensing surveys
where the global mean density is relevant [17].

Figure 3 shows the marginalized 68% error contours for
the anisotropic signals {f, D4, H,733} in each of two-
dimensional subspaces when adopting the minimum wave
number k,,;, = 5.0 x 1073 h/Mpc, which is larger than the
fundamental modes k ~ 27/ V'/3, and the maximum wave
number k., = 0.2 h/Mpc. We only present the results of
733 because the results are identical for 7y, 75, 713, and 7,3
in the BipoSH expansion. For comparison of the BipoSH
expansion with the Legendre expansion, both expansion
scheme cases are plotted. We use Egs. (A2)—(AS5) as the
Legendre multipoles.

From Fig. 3 one can see that if we use the Legendre
decomposition and do not employ the prior knowledge on
the super-sample tidal modes, 735 significantly degrades the
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103 —— Legendre without prior for 733
T ' —— Legendre with 3¢ prior for 733
< —— BiPoSH
<
Q
0.97
1.03
=
T 1.00
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0.97
0.005
& 0.000
-0.005
0.97 1.00 1.03 0.97 1.00 1.03 0.97 1.00 1.03
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FIG. 3.

1o (68%) error contour for joint 733 and cosmological distortion parameter, f, D, and H, estimation with the maximum wave

number k., = 0.2 h/Mpc. The inner blue curves in each panel show the results when employing the BipoSH expansion, which carries
the full information of the three-dimensional power spectrum. The outer black curves in each panel correspond to the results when using
the Legendre expansion, which contains only two-dimensional information of the power spectrum. For these two curves we do not use
the prior knowledge on the super-sample tidal mode, z33. The red curves in each panel are the results when using the Legendre

decomposition but adding the 3¢ prior for 733 with o

733

constraints on other parameters. One way to restore this
degradation is to add the prior on the super-sample tidal
modes as discussed in Ref. [23]; that is, one can add the
Gaussian prior on 733 with the variance 0%33, which can be
computed from Eq. (5) assuming the ACDM cosmology.
Figure 3 shows that when adding the ACDM prior on 733
the super-sample effect is likely to be negligible. Another
way to evade the super-sample effect on the measurements
of other parameters is to use the BipoSH decomposition
formalism. As clearly demonstrated in Fig. 3, the super-
sample tidal modes have little impact on the estimation
of other parameters in the BipoSH expansion. More
quantitatively, the absolute values of the cross-correlation
coefficients between the 733 and other parameters f =
{by.f.Ds,H}, cpp, are less than (O(0.1). Notice that
employing the BipoSH decomposition restores the degra-
dation without assuming the ACDM model.
Mathematically this is a consequence of the following
facts. First, in the BipoSH expansion f, D,, and H are
confined into the isotropic L = 0 BipoSH multipoles, P%,
whereas the tidal signals 7;; are confined into the L =2
BipoSH multipoles, P% . Second, the covariance for the
BipoSH coefficients [Eq. (58)] is block diagonal for L.
Then f, D4, and H are constrained mainly from P%(k), to
which Tjj do not contribute. On the other hand, in the

=6.4x1073.

Legendre expansion f, D,, H, and 733 all appear in the
same multipoles, P,(k). Accordingly, changing the AP
parameters, D, and H, leads to both the growthlike and
dilationlike effect on the Legendre multipoles [42], and
changing the RSD parameter f mimics the growth effect
due to the super-sample mode. Hence, these parameters
degenerate with each other in the Legendre expansion.

The little correlation between 7;; and other distortion
parameters suggests that the large-scale tides 7;; can be
measured from the galaxy redshift-space power spectrum
if using the BipoSH expansion, and therefore it is
worthwhile to explore the possibility of whether a
spectroscopic survey can detect 7;; when including higher
knax- Figure 4 shows the lo constraint on 733 as a
function of k.. Again, the constraints on other super-
sample tidal modes are equivalent, so we only present the
733 estimation. We find that the BipoSH expansion
enables us to determine 733 with an accuracy better than
the rms of 733 expected for the ACDM model, simulta-
neously measuring the RSD and AP distortion, if PZ), (k)
is included up to k. = 0.372/Mpc.

Although the inclusion of high k,,,, in general, requires
to accurately model the nonlinear effect, the nonlinear
evolution cannot generate the azimuthal asymmetry about

the LOS, and therefore P2Y (k). Hence, the fact that the
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FIG. 4. 10 (68%) error for 733 as a function of the maximum

wave number k... The orange curve corresponds to the lo
constraint on 733 when marginalized over other parameters,
V/(F7"),.. The horizontal dashed line represents the rms value,
6., = 64X 1073, expected for ACDM cosmology and the
survey volume.

appearance of P%(k) is a distinctive feature of z;; allows
us to use high k., value. In practice, the highest k,,
value we can use is limited by our knowledge of the
response of the redshift-space power spectrum to the
large-scale tides, OP(k,)/0z;;, in the nonlinear regime
where the perturbation theory breaks down. To know the
form of OP(k,7)/0z;; in the nonlinear regime, we need
to run the N-body simulation with the large-scale tidal
field [20], which is the similar method used for estimat-
ing the response for the mean density modulation,
OP(k,p)/ 08, called the “separate universe simulation”
[15,17,43-46]. This is beyond the scope of this paper, so
here we simply assume that the response function derived
from the tree-level calculation of perturbation theory
holds in the nonlinear regime and this approximation
could be suitable up to k = 0.3 2/Mpc [20].

IV. CONCLUSIONS

In this paper, we, for the first time, have used the
BipoSH decomposition formalism of the galaxy power
spectrum to assess how the super-sample modes, &, and
7;;, have the influence on the measurements of other
cosmological distortions including the RSD and AP
effects in an all-sky galaxy spectroscopic survey like
the SPHEREXx survey.

The super-sample tidal components, 7;;, degenerate
with cosmological parameters of our interest such as
the growth rate function f, the Hubble parameter H, and
the angular diameter distance D, [23]. To break the
parameter degeneracy, it is essential to notice the fact that
7;; breaks the statistical isotropy of the observed galaxy
power spectrum. The BipoSH formalism characterizes
statistical anisotropic signals via a multipole index L in

the BipoSH basis {Y,(k) ® Y, ()}, and nonzero L
modes mean the presence of statistical anisotropy; in
other words, we can single out only the statistical
anisotropic signal by measuring the L # 0 mode. The
super-sample tidal components result in the L = 2 mode,
and we have shown the explicit expressions of all
nonvanishing BipoSH components in Egs. (31)—(33)
and Egs. (41)-(49).

To see how the BipoSH formalism works well in order to
break the parameter degeneracy, we have performed the
Fisher matrix computation. Assuming the SPHEREx-like
survey, we have found that 7;; can be constrained with
A7;; S O(107%) through the L =2 mode measurement,
and therefore, it has little impact on the estimation of the
RSD and AP effect, whose signals are confined to the
L = 0 mode. In other words, we could obtain information
on super-survey modes beyond a finite survey region
through the well-constrained 7;;. This enables unbiased
estimations on f, H, and D,.

Finally, we summarize some possible applications of the
method presented in this paper. The first one is to confirm
the matter-radiation equality bump in the power spectrum
that is predicted in the linear cosmological perturbation
theory. Assuming that there is no decrease in the power
spectrum at low k unlike the ACDM model, the super-
sample tides predicted from Eq. (5) should become larger
than the ACDM prediction. To put it the other way, a
nondetection of such large tides can rule out the model that
has no matter-radiation equality bump in the power
spectrum. Related to this direction, the second one lies
in exploring the large-scale anomaly such as the super-
curvature fluctuation [47] and quintessential isocurvature
[46]. To do so, we need to calibrate the response of small-
scale perturbation to the large-scale fluctuation depending
on each model. The final one is related to constraining
anisotropic inflation models. Signals due to such models
are also present in the L = 2 mode [30-32] and hence may
be biased by the super-sample tides. As has been done in
this paper, the distinguishability should be examined for
interpreting observational constraints precisely. We leave
these for future works.
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APPENDIX A: RELATIONSHIP BETWEEN
THE BIPOSH AND THE OTHER
EXPANSION SCHEMES

In this appendix, we give the connection between our
formalism and other schemes to decompose anisotropic
signals.

1. Relationship between the BipoSH
and the Legendre expansion

The relationship between the BoPoSH and the usual
Legendre expansion with the line-of-sight 71 setting Z is

d’n
Pf / /P k I’l 5bv )

x Ly(k- ) (4n)s <>< )

— Z””/ (k; 8y, 7 l] )f—f’+M
LMe
o (224 1)(2¢"+1)(2L + 1)<f ¢ L )
(4r)? 0 0 —-M
L

where we used Y,,(2) = \/(2¢ + 1)/ (47x)5,,9. Notice that

the summation of L and ¢ is limited by the Wigner 3;

symbol (% &). For instance,
Pr—o(k) = Poo(k) + Pz (k) (A2)
Py (k) = P (k) + P3(k) + P33 (k) + P33(k),  (A3)
Py_y(k) = PY(k) + P (k) + PE(k) + Pig(k).  (A4)
P_g(k) = Pgi(k) + Pgg(k). (A5)

This reproduces the result presented in the appendix
of Ref. [23].

2. Relationship between the BipoSH and the single
spherical harmonic expansion

In Ref. [25], the authors defined the spherical multipole
expansion,

gg(k Zpgg fm Yfm ) (A6)
‘m
!J'fﬂm /JlkP Yfm<]%) (A7)

The transformation from the BipoSH expansion to the
spherical multipole expansion is

/ / S ﬁ;6b77ij)

x Y3, (k) (4m)85) < )

qg fm

_ Zﬂfﬂ k 5bv lJ )f ' +m
LY
27 + 2L+1)<f ¢ L)
m 0 -m)

(A8)

APPENDIX B: BIPOSH COEFFICIENTS FOR
THE SUPER-SAMPLE MODES

In this appendix, we provide steps to derive the explicit
expressions of the BipoSH coefficients for the responses to
the super-sample modes.

1. Calculation of the BipoSH coefficients

In this subsection, we provide a derivation of each
BipoSH coefficient for each type of the anisotropic term.

a. BipoSH coefficients from (k - 71)* terms

For later convenience, we decompose (k- 4)* into the
spherical harmonic basis as

y
. 47rA,, A A
(k : n)i = ZAIM'CH( = 2]1 _'_]i k)er(n)’
n=0
(B1)
where
2n+1
An=—5 / dpp* L., ()
B 2n+1

Sy ) [t )

2n4+1(=1)"**+1 T+ 1)IES)

2 2" T(A—n 4 2)(E3) 7
(B2)
with
0 i 1: A>n (B3)
>n — 0: 4<n

being the step function. Then, the BipoSH coefficients from
(k- 7)* terms are calculated as
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gyl (k / &k / i lchmf’m’Yfm Yo ()

4rA,, £ L
— 5K , 2L f f —m
204177 +1 Z -m M

4rA
= = (—1)7 555K 05K, (B4)

V20 +1

A

b. BipoSH coefficients from (k - ﬁ)’lrijlgilej terms

A
s e 47A, my e m; X
(k : nyfijki j = Zzn +/i Zynv(k)Yny( )( ljzai 'YIm,»(k)aj Ylm,-(k)>

n=0 m;m;
)
47Z'A i m: ~ 1 53
= = (k)Y (7)z; am’a N Chye Y (k) (
ny nv ij z
n:02n+1 r;n:/ bﬂ%:: 3 zms m; m; ms
A 1
4nA; f3 n t3 ¢ .
= Y Y, (1) h h,, Yo (k). B5
RSSO DAD VLD (o ) St (0o o e (59

\000

kM (k / d*k / ik - n)e, kkJZCW, Y3 (k)Y ()

where h; ) = \/(211+1)(212+])(212+1)/ll b lz) Then, we have

47TAf/ m; f/ fg, f
= ! l’l C 7 /h !
2f’—|—1 Uza a f%; 11{3( 3)%; cme'm' " CC <m/ my m
_ 4rAg, m m,<1 1L )(—1)f—f’+M
i a;'a;’ = hurhsr. (B6)
2f’+1 ]r;m] J m; mj _M \/2L+1
c. BipoSH coefficients from (k - fi Yoty terms
(k- ayre, ;= Z“”A"ﬂ S YR () (7S Vi (R)a Y, ()
ijrti 02n+1 nv m/ t/mm m; mj
A
4”An/1 m; 1 1 I/ﬂ3 )
= Ym, Ty ’a hue Yy, (i)
St S ) Y e (10 et (8
= Tl“ nw ai 'a.j ; n 1" ol n).
n=0 2n+1 ! v m;m; / f3m3 llf‘ ' f ‘ v m3 m” g
Then, we have
7t (k /aﬂk/dz A, A,A,ZC%, Y (k)Y (7)
47[Afﬁ < > f f3 f’
;) al'a; hiig, LM hepw
2{4—1 ]Z ;m t m; m] ms Z eme ms m'
47TAHL m s ( 1 L ) ( 1)t’ 4+M
= a,’ hyy hpep. (B8)
z] 1L L
20+ 1 Z m; m; -M V2L + 1

m;ym;
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d. BipoSH coefficients from (k-

A

n )A'l'ljklﬂ] terms

~ A ~ . 4”Al’l ” ,\ m; A
(k n k I’l Zzn _’_21 Zan Ym/ n ( t/r;n:a 'Y1m (k (X Ylm_,(")) (B9)
: 4ﬂA”/1 v+m;+m; oM 2
= Z Tijz Z( 1 /a (l Z z Yf3m3 st/ml (l’l) (BlO)
n=0 2n+1 vomm; f;m3fm
n f3 n 1 fg
X hyipshng, < ) < ) > (B11)
h - —m; mj 14 —m] m3
Then, we have
kM (k) = / d*k / (k- n)'ekin; cfgfﬂ Y, (k)Y (/)
A !
47A,, Com, n 1 4 n 1 4
_ ni _ —1)vtmitmi gy on cLm L, B12
2 o+ ITUZ,/:,;'( ) A A Nyl ; me'm (—1/ _m; m vo-m, ! ( )
A
4rA,, 11 L 1 1 L
= & )AL + 1 Thy1ehyip . B13
:02n+1( ) V2L + f,,mzm:a 0! ni¢ nlf( m om;, -M)\# ¢ n (B13)
|
APPENDIX C: USEFUL IDENTITIES _m(51< LK)
In this appendix, we summarize the useful properties of am = 4 /% (6K +65_) |, (C6)
the spherical harmonics and the Wigner symbols. 3
\/_5m 0
1. Spherical harmonics and the coefficient vector a™ satisfies the following
The addition theorem of the spherical harmonics tells relations:
us that
\ (@) = (=1)"a", ()
~ T ~ « N
Le(k-%) = mzyfm(k)ym(x), (C1) C 4n
m a"-a" = ?( )"ek . (C8)
where L,(u) is the ¢th Legendre polynominal. The
orthogonality for the spherical harmonics are Zam ()" = _5K (C9)

[ a0z b =5, ()

nym )i (k) =

The complex conjugate of the spherical harmonics
becomes

S (k-k). (C3)

S

Y, (k) =

A unit vector is written by the spherical harmonics [48]

],%i = Za:‘nylm(]%)’

(=1)"Y (k). (C4)

(C5)

A product of two spherical harmonics which have the same
variable is reduced to a spherical harmonics

Y o ()Y gy () = > \/(Zfl +1)(2¢, + (2L + 1)

4z
¢, ¢, L ¢, ¢, L
X<0 0 0><m1 Ny M)
XYZMO‘)
=i (o) o i@,
ok m, M

(C10)
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2. Wigner symbols

The orthogonalities for the Wigner 3 — j symbol are

Oy € ¢y ¢ €
Secen(f 2 () e 1)
m mp nmp m my m, m ™ T2
y O € 6 by O ok o6k
Z( 1 2 >< 1 2 /): (44 mm’ (CIZ)
e \my omy om ) \my my m 20 +1
The angular momentum coupling implies
¢ ¢ L
Z(_l)f_m(m —m M) = V2L + 161 0bum - (C13)
The Wigner 6 — j symbol is defined as
{bﬂ 2 fs}(ﬂ ) f3)E Z (_1) f4(f[—m,)(’/ﬂs 7 Ce )
Cy Cs Cg my; m, ms e ms —m; —mg
¢ 4 3 3 4 4
« ( 6 2 4 >< 4 3 5 ) (Cl14)
meg —my —Nly my —niy —Ms
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