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We present three nonparametric Bayesian primordial reconstructions using Planck 2018 polarization
data: linear spline primordial power spectrum reconstructions, cubic spline inflationary potential
reconstructions, and sharp-featured primordial power spectrum reconstructions. All three methods
conditionally show hints of an oscillatory feature in the primordial power spectrum in the multipole
range l ∼ 20 to l ∼ 50, which is to some extent preserved upon marginalization. We find no evidence for
deviations from a pure power law across a broad observable window (50≲ l ≲ 2000), but find that
parametrizations are preferred which are able to account for lack of resolution at large angular scales due to
cosmic variance, and at small angular scales due to Planck instrument noise. Furthermore, the late-time
cosmological parameters are unperturbed by these extensions to the primordial power spectrum. This work
is intended to provide a background and give more details of the Bayesian primordial reconstruction work
found in the Planck 2018 papers.
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I. INTRODUCTION

The final release of Planck satellite data [1–4] provides
an unprecedented window onto the cosmic microwave
background (CMB). These high-resolution CMB aniso-
tropy data give constraints on the state of the Universe in its
earliest observable stage. Assuming a theory of inflation,
the primordial power spectrum of curvature perturbations
provides an indirect probe of ultrahigh energy physics.
This paper focuses on nonparametric reconstructions of

primordial physics. The aim of such analyses is to provide
information on quantities and functions of interest that are
arguably model-independent. While unambiguous scien-
tific detections will only ever result from a consideration of
specific, physically motivated models, results from recon-
structions such as these can be used to inform and guide
observational and theoretical cosmology, providing insight
and evidence for interesting features not clearly visible in
the data when using standard modeling assumptions.
Throughout we adopt a fully Bayesian framework,

treating our non-parametric reconstruction functions using

priors, posteriors and evidences to marginalize out factors
that are irrelevant to physical quantities of interest. We
reconstruct both the inflationary potential and the primor-
dial power spectrum directly using spline and feature-based
reconstructions, in a manner related but not identical to the
existing literature [5–20].
In Sec. II we review the relevant background theory in

primordial cosmology, Bayesian inference, nonparametric
reconstruction and CMB data. Section III reconstructs the
primordial power spectrum directly using a linear inter-
polating spline. Section IV takes the analysis one step back
and reconstructs the inflationary potential using a cubic
spline, treating the primordial power spectrum as a derived
quantity. Section V works with a parametrization that is
more suited for reconstructing sharp features in the pri-
mordial power spectrum as a complementary approach to
that of Sec. III. Section VII draws conclusions from all
three analyses.

II. BACKGROUND

A. Primordial cosmology

We begin by summarizing the background theory and
establish notation. For a more detailed discussion of
inflationary cosmology and perturbation theory, we rec-
ommend Mukhanov et al. [21] or Baumann [22,23].
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The evolution equations for a spatially homogeneous,
isotropic and flat universe filled with a scalar field ϕ with
arbitrary potential VðϕÞ are

ϕ̈þ 3H _ϕþ dV
dϕ

¼ 0; ð1Þ

H2 ¼ 1

3M2
p

�
1

2
_ϕ2 þ VðϕÞ

�
; ð2Þ

where H ¼ _a
a is the Hubble parameter, a is the scale factor

of the Universe, dots denote derivatives with respect to
cosmic time _f ≡ df

dt andMp is the reduced Planck mass. For
most potentials VðϕÞ, solutions to Eqs. (1) and (2) rapidly
converge on the attractor slow roll state, satisfying
_ϕ2 ≪ VðϕÞ.
The evolution equations for the Fourier k-components of

the gauge-invariant comoving curvature R and tensor T
perturbations are

R00
k þ 2

z0

z
R0

k þ k2Rk ¼ 0; ð3Þ

T 00
k þ 2

a0

a
T 0

k þ k2T k ¼ 0; ð4Þ

z ¼ a _ϕ
H

; η ¼
Z

dt
a
; ð5Þ

where primes denote derivatives with respect to conformal
time f0 ≡ df

dη. These equations have the property that in-
horizon solutions (k ≫ aH) oscillate with time-varying
amplitude and frequency, whilst out-of-horizon solutions
(k ≪ aH) freeze out. The dimensionless primordial power
spectra of these perturbations are defined as

PX ðkÞ ¼ lim
aH≫k

k3

2π2
jXkj2; X ∈ fR; T g: ð6Þ

Initial conditions for the background Eqs. (1) and (2)
may be set using the slow roll approximation:

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðϕinitÞ
3M2

p

s
; _ϕ ¼ −

V 0ðϕinitÞ
3H

; ð7Þ

where V 0 denotes the derivative of V with respect to ϕ.
Whilst solutions set with these initial conditions do not lie
precisely on the attractor state, they rapidly converge on it.
Providing that ϕinit is chosen self-consistently [24–26] with
enough additional evolution so that any transient effects are
lost, these initial conditions are equivalent to choosing the
background solution to be the attractor.

For the perturbation Eqs. (3) and (4), Bunch-Davies
initial conditions are chosen such that the Mukhanov
variables match onto the de-Sitter vacuum solutions

Rk ¼
1

z
ffiffiffiffiffi
2k

p e−ikη; T k ¼
1

a
ffiffiffiffiffi
2k

p e−ikη: ð8Þ

Providing that the k-mode lies well within the horizon
(k ≫ aH), this is the canonical choice for initializing
the perturbation spectrum, although other vacua are avail-
able [27–30].
Whilst Eqs. (1) to (4) take their simplest form using

cosmic and conformal time as variables, for numerical
stability it is more prudent to choose a timelike parameter
which does not saturate during inflation, such as cosmic
time t, or the number of e-folds N ¼ logðaÞ. We choose the
logarithmic comoving horizon logðaHÞ as the independent
variable for our analyses. In this form Eqs. (1)–(4) become
complicated, so to avoid typographical errors we generate
Fortran source code using the Maple [31] computer algebra
package. The numerical integration of all differential
equations was performed using the NAG library [32].
It should also be noted that Eqs. (3) and (4) are usually

phrased in terms of the Mukhanov variables v ¼ zR and
h ¼ aT , but R and T prove to be more numerically stable
as they have the attractive property that they explicitly
freeze out.

B. Bayesian statistics

Once the primordial power spectra PR;T ðkÞ have been
determined, these form the initial conditions for Boltzmann
codes [33,34]. For a universe described by a cosmological
model M with corresponding late-time parameters Θc and
primordial power spectra P, a Boltzmann code computes
CMB power spectra Cl in both temperature and polariza-
tion. These CMB power spectra may then be fed into
cosmological likelihood codes [2], which typically depend
on additional nuisance parameters Θn associated with the
experiment. The end result is a likelihood PðDjΘ;MÞ of the
parameters Θ ¼ ðPðkÞ;Θc;ΘnÞ given CMB data D, and a
cosmological model M.
We may formally invert the conditioning on θ in the

likelihood using Bayes theorem

PðΘjD;MÞ ¼ PðDjΘ;MÞPðΘ;MÞ
PðDjMÞ ; ð9Þ

PðDjMÞ ¼
Z

PðDjΘ;MÞPðΘjMÞdΘ; ð10Þ

where the first expression above should be read as
“posterior is likelihood times prior over evidence”, and
the second expression indicates that the evidence is the
normalizing constant of Eq. (9), and is a multidimensional
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marginalization of the likelihood over the prior. The
evidence may also be used in a Bayesian model compari-
son, to assess the relative merits of a set of competing
models fMig

PðMijDÞ ¼ PðDjMiÞPðMiÞ
PðDÞ ; ð11Þ

PðDÞ ¼
X
i

PðDjMiÞPðMiÞ: ð12Þ

In the event of uniform priors over models, the evidence
establishes the relative probability weighting to give to
models describing the same data D.
Throughout this work, we use a modified version of

CAMB [33] to compute Cl power spectra and CosmoChord

[35] (a modified version of CosmoMC [36,37]) to interface
the likelihoods. To sample the posterior and compute
evidences we make use of the nested sampling [38]
algorithm PolyChord [39,40]. The default Metropolis–
Hastings sampler in CosmoMC is insufficient both due to
the complexity of the posteriors that must be navigated, and
the requirement of evidence computation. Furthermore,
PolyChord is required in place of the previous nested
sampling algorithm MultiNest [41–43] due to the high
dimensionality of the full Planck likelihood with nuisance
parameters. As an added bonus, PolyChord has the ability to
exploit the fast-slow cosmological hierarchy [37], which
greatly speeds up the sampling. Most importantly all
parameters associated with the primordial power spectrum
are “semislow,” given that one does not need to recompute
transfer functions upon changing the primordial power
spectrum.

C. Functional inference

For our reconstructions, the quantities of interest are
functions fðk;ΘfÞ of wavenumber k, parametrized by a set
of parameters Θf, which presents a challenge in both
plotting and quantifying our results.
We utilize two related techniques to plot the posterior of

a function fðk;ΘfÞ. First, we can generate equally
weighted samples of Θf, and therefore of the function f,
and plot each sample as a curve on the (k; f) plane. In
general, we simultaneously plot prior samples in red, and
posterior samples in black. An example of such a plot can
be found in the upper-left panel of Fig. 4. For the second
type of plot, we first compute the marginalized posterior
distribution PðfjkÞ of the dependent variable f conditioned
on the independent variable k using Gaussian kernel
density estimation. The isoprobability credibility intervals
are then plotted in the (k; f) plane, with their mass
converted to σ-values via an inverse error function trans-
formation. An example of this kind of plot can be seen in
the upper-right panel of Fig. 4. The code for producing such
plots is published in Ref. [44].

To quantify the constraining power of a given
reconstruction, we use the conditional Kullback-Leibler
(KL) divergence [45] as exemplified by Hee et al. [10].
For two distributions PðxÞ and QðxÞ, the KL divergence is
defined as

DKLðPjQÞ ¼
Z

ln

�
PðxÞ
QðxÞ

�
PðxÞdx; ð13Þ

and may be interpreted as the information gain in moving
from a prior Q to a posterior P [46–49]. For our recon-
structions, we compute the KL divergence from prior to
posterior for each distribution PðfjkÞ conditioned on k. An
example of such a plot can be found in the lower-right panel
of Fig. 4.
Throughout this work, plots use an approximate corre-

spondence between wavenumber k and multipole moment
l via the Limber approximation l ≈ k=DA, where DA ¼
r�=θ� is the Planck 2018 best-fit comoving angular dis-
tance to recombination at r�.

D. Nonparametric reconstructions

Throughout this work, we explore various nonparametric
functional forms for either the primordial power spectrum
or the inflationary potential. “Nonparametric” is a slightly
misleading terminology, as in general such reconstructions
choose a function with a very large number of additional
parameters. We prefer the terminology free-form [4,13],
flexible [12] or adaptive [10,50]. The principle behind this
is that the parametrization should have enough freedom to
reconstruct any reasonable underlying function, indepen-
dent of any underlying physical model.
For example, in this paper wework with variations on the

linear spline, defined by parameters Θf, producing a
mapping from the independent variable x to the dependent
variable y thus

Linðx;ΘfÞ¼
XN
i¼1

yiðxiþ1−xÞþyiþ1ðx−xiÞ
xi−xiþ1

½xi <x≤xiþ1�;

Θf¼ðx1;…;xN;y1;…;yNÞ: ð14Þ

Here we have used a compact notation for denoting
piecewise functions espoused by Graham et al. [51]
whereby [R] is a logical truth function, yielding 1 if the
relation R is true, and 0 if false. For consistency, we
interpret the caseN ¼ 1 as having a constant value of y1 for
all x.
In a Bayesian approach, one treats the additional degrees

of freedom Θf of the nonparametric function as parameters
in a posterior distribution, which one marginalizes out in
order to obtain model-independent reconstructions.
Typically there is a degree of choice as to how many
parameters N to use, and a penalty is applied for larger N to
avoid over-parametrization and noise fitting. In this work
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we treat N in a Bayesian sense as well. Each reconstruction
with a given number of parameters N is treated as an
independent model. We can then marginalize over the
number of models using the Bayesian evidence.

E. Planck data and cosmology

In this paper in almost all cases we focus our efforts on
using the pure Planck 2018 polarization data baseline,
referred to in [1–4] as TT;TE;EEþ lowEþ lensing.
Throughout we use a flat cold-dark-matter with dark energy
(ΛCDM) late-time cosmology; therefore there are four
associated cosmological parameters which in the default
CosmoMC basis take the form

Θc ¼ ðΩbh2;Ωch2; 100θMC; τÞ: ð15Þ

Additionally there are 21 nuisance parameters associated
with Galactic foregrounds and the Planck instrumentation:

Θn ¼ ðycal; ACIB
217 ; ξ

tSZ−CIB; AtSZ
143; A

PS
100; A

PS
143; A

PS
143×217;

APS
217; A

kSZ; AdustTT
100 ; AdustTT

143 ; AdustTT
143×217; A

dustTT
217 ;

AdustTE
100 ; AdustTE

100×143; A
dustTE
100×217; A

dustTE
143 ; AdustTE

143×217;

AdustTE
217 ; c100; c217Þ: ð16Þ

We use the Planck PolyChord CosmoMC defaults as prior
widths for all of these (indicated in Table I), but as they are
common to all models considered and sufficiently wide to
encompass the entire posterior bulk, any prior effects from
these parameters have been shown theoretically [52] and in
practice [53] to cancel out.

F. Sampling strategy

Throughout this paper, we sample over the full parameter
space Θ ¼ ðΘf ;Θc;ΘnÞ of reconstruction, cosmological
and nuisance parameters. The resulting posteriors are in
general multimodal with complicated degeneracies
between many parameters, particularly when there are a
large number of reconstruction parameters Θf . In all cases,
plots in this paper have the unmentioned parameters
implicitly marginalized out. Marginalizing the likelihood
over the prior in order to compute evidences is in general
even more challenging. Nested sampling is ideally suited to
performing such tasks, with PolyChord providing the cutting-
edge of such technology in a cosmological context [39,40],
proving to be essential for sampling over these complicated
parameter spaces with up to ∼Oð50Þ dimensions with fast-
slow parameter hierarchies.

III. PRIMORDIAL POWER SPECTRUM
RECONSTRUCTION

Traditionally in a ΛCDM cosmology, the primordial
power spectrum PRðkÞ is modeled by a two-parameter
function with an amplitude As and spectral index ns − 1

lnPRðkÞ ¼ lnAs þ ðns − 1Þ ln
�
k
k�

�
; ð17Þ

i.e., a straight line in the ðln k; lnPÞ plane. The tensor
spectrum PT ðkÞ may be parametrized by its own indepen-
dent amplitude At and index nt, or via the tensor to scalar
ratio r ¼ At=As and slow roll inflation consistency con-
dition nt ¼ −r=8 [22]. Extensions to parametrization (17)
can be made by adding quadratic (running) and cubic
(running of running) terms, but no evidence is found that
these are required to describe the primordial power spec-
trum in the k-window which Planck probes.
Extending Eq. (17) with runnings of the spectral index

creates a stiff parametrization, with no ability to account
for sharper features, or large deviations at low or high-k.

TABLE I. The prior distributions on late-time cosmological
parameters and Planck nuisance parameters for all analyses. The
parameters of each Gaussian distribution are defined as [μ; σ], and
the above distributions combine to make a truncated Gaussian
distribution on the nuisance parameters AkSZ and AtSZ

143. The
nuisance priors are the default ones in CosmoMC, whilst the
cosmological priors are narrowed to speed up sampling, but
remain sufficiently wide to effectively include the entire posterior
mass. Also indicated is each parameter’s speed with respect to the
CosmoMC fast-slow hierarchy.

Parameters Prior type Prior parameters Speed

Ωbh2 Uniform [0.019, 0.025] Slow
Ωch2 Uniform [0.095, 0.145] Slow
100θMC Uniform [1.03, 1.05] Slow
τ Uniform [0.01, 0.4] Slow

ycal Gaussian 1� 0.0025 Semi-slow
ACIB
217

Uniform [0, 200] Fast
ξtSZ−CIB Uniform [0, 1] Fast
AtSZ
143

Uniform [0, 10] Fast
APS
100

Uniform [0, 400] Fast
APS
143

Uniform [0, 400] fast
APS
143×217 Uniform [0, 400] Fast

APS
217

Uniform [0, 400] Fast
AkSZ Uniform [0, 10] Fast
AdustTT
100

Gaussian 8.6� 2 Fast
AdustTT
143

Gaussian 10.6� 2 Fast
AdustTT
143×217 Gaussian 23.5� 8.5 Fast

AdustTT
217

Gaussian 91.9� 20 Fast
AdustTE
100

Gaussian 0.13� 0.042 Fast
AdustTE
100×143 Gaussian 0.13� 0.036 Fast

AdustTE
100×217 Gaussian 0.46� 0.09 Fast

AdustTE
143

Gaussian 0.207� 0.072 Fast
AdustTE
143×217 Gaussian 0.69� 0.09 Fast

AdustTE
217

Gaussian 1.938� 0.54 Fast
c100 Gaussian 1.0002� 0.0007 Fast
c217 Gaussian 0.99805� 0.00065 Fast
AkSZ þ 1.6AtSZ

143
Gaussian 9.5� 3 Fast
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For our first primordial power spectrum reconstruction, we
therefore parametrize as a logarithmic spline

ln 1010PRðkÞ ¼ Linðlog10 k;ΘPÞ
ΘP ¼ ðlog10 k1;…; log10 kN;

ln 1010P1;…; ln 1010PNÞ: ð18Þ

This represents a spline [Eq. (14)] that is linear in the
ðln k; lnPÞ plane as shown in Fig. 1. For the tensor power
spectrum we have analyzed the cases where r is allowed to
vary as a parameter, and also when PT ðkÞ is given its own
independent linear spline. Unsurprisingly, given that
Planck measured an r consistent with 0, the addition of
a tensor power spectrum makes no difference to the scalar
reconstructions. For simplicity we assume r ¼ 0 for the
remainder of this section.
This technique has a history of being successfully

applied to the primordial power spectrum [5–9], but has
also been applied to dark energy equation of state by Hee
et al. [10] and Vázquez et al. [11], to the cosmic
reionization history by Millea and Bouchet [12] and to
galaxy cluster profiles by Olamaie et al. [13]. Our work
differs from previous primordial power spectrum recon-
structions in both the data we use, the styling of the priors,
and in the application of more modern inference tools such
as functional posterior plotting [44], conditional Kullback-
Leibler divergences [10] and PolyChord. The technique was
applied to primordial power spectrum reconstruction from
CORE simulated data in Sec. 6 of [7], where it was shown
that this approach accurately reconstructs complicated
injected features (or lack thereof).

A. Priors

For priors on the vertical spline location parameters,
we choose them to be independently uniform in
2 < log 1010P < 4. This spans an almost maximally wide
range, increasing their width further has little effect due to
CosmoMC discarding unphysically normalized spectra.
For priors on the horizontal spline location parameters,

we choose the outermost knots to be fixed at 10−4 and
10−0.3. This corresponds roughly to a Cl multipole range
1≲ l≲ 7000, which fully encompasses the CMB window
that Planck observes. For the remaining horizontal knots,
we choose a prior which distributes the parameters loga-
rithmically within this range, such that k2 < � � � < kN−1.
This sorting procedure breaks the ðN − 2Þ! implicit switch-
ing degeneracy, and is also termed a forced identifiability
prior [40,54,55].
To implement this sorted prior in the context of nested

sampling, we need to define the transformation from the
unit hypercube to the physical space. Coordinates in the
unit hypercube x1;…; xN , can be transformed to coordi-
nates in the physical space θ1;…; θN , such that they are
distributed uniformly in ½θmin; θmax� and sorted so that θ1 <
� � � < θN via the following reversed recurrence relation

θn ¼ θmin þ ðθnþ1 − θminÞx1=nn ; θNþ1 ¼ θmax; ð19Þ

which is equivalent to saying that θn is marginally
distributed as the largest of n uniformly distributed vari-
ables within ½θmin; θnþ1�. Another method for breaking the
switching degeneracy is to exclude the region of the
parameter space which does not satisfy the sorting criterion.
This becomes exponentially small as more knots are added,
which makes the initial sampling from the prior more
challenging. It is also more in keeping with the nested
sampling methodology to explicitly transform the full
hypercube onto the space of interest. In our case, given
that k1 and kN are fixed, for N ≥ 4, we sort the N − 2 inner
logarithmic coordinates log10 k2 < � � � < log10 kN−1.
We perform the reconstruction for N ¼ 1;…; 9 and

then marginalize using Bayesian evidences with an
implicit equal weighting for each N. This is equivalent
to sampling from a full joint posterior with a uniform
prior on N, and could alternatively be accomplished using
the method described in Hee et al. [50]. Our priors on the
reconstruction parameters are summarized in Table II.

FIG. 1. We parametrize the primordial power spectrum recon-
struction via a linear interpolating spline in the ðln k; lnPÞ plane
with N spline locations ðk1;P1Þ; � � � ðkN;PNÞ. The outermost
k-locations are fixed, with the inner locations constrained by
k1 < � � � < kN , and the entire spline constrained within the box
indicated by the dashed line.

TABLE II. The prior distributions on early-time cosmological
parameters for the primordial power spectrum reconstruction.

Parameters Prior type Prior range

N Discrete uniform [1, 9]
P1;…;PN Log-uniform 10−10½e2; e4�
k2 < � � � < kN−1 Sorted log-uniform ½10−4; 10−0.3�
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B. Results

We show results for our primordial power spectrum
reconstruction using Planck 2018 TT;TE;EEþ lowEþ
lensing data in Figs. 2–4.
Figures 2 and 3 show the prior and posterior conditioned

on each value of N. The case N ¼ 1 corresponds to a
scale-invariant spectrum, whilst N ¼ 2 is equivalent (up
to a small difference in prior) to the standard ΛCDM

parametrization. As further knots are added, the
reconstruction accounts for cosmic variance at low-k,
and instrument noise at high-k. Furthermore, for large
N, in a fraction of the samples there is a visibly clear
oscillation characterized by a rise in power at l ∼ 50, and a
dip in power at 20 < l < 30, as well as an overall
suppression of power at low-k. For lower values of l,
cosmic variance sets in, and few conclusions can be drawn

FIG. 2. Equally-weighted sample plots of primordial power spectrum reconstructions, conditioned on the number of knots N. The
outermost knots are fixed at the bounds of the figure, so N ¼ 1 is equivalent to a scale-invariant primordial power spectrum, N ¼ 2 is
equivalent toΛCDM, up to a small difference in prior andN > 2 hasN − 2 knots capable of moving in both the k and P directions. Prior
samples are drawn in red, whilst posterior samples are indicated in black.
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from sampling differences between runs of different N at
these values.
To determine the statistical significance of these features,

one should consider the Bayesian evidence, as indicated in
the lower-left panel of Fig. 4.
The first observation from Fig. 4 is that the N ¼ 1 scale-

invariant power spectrum is completely ruled out, with a
logarithmic difference of lnBN¼2

N¼1 ∼Oð33Þ. This represents
overwhelming evidence for a tilted power spectrum, one of
the key predictions of the theory inflation. A gambler could

get odds of a quintillion to one against scale-invariance
vs ΛCDM.
The second observation is that the evidence for N ¼ 3 is

greater than N ¼ 2, namely a model that is able to account
for cosmic variance at low-k and instrument noise at high-k
is, in a Bayesian sense, preferred to the simpler ΛCDM
parametrization. Up until Planck 2018, the data had not
been quite powerful enough for us to define the window
that we observe in the primordial power spectrum in this
Bayesian sense.

FIG. 3. Same as Fig. 2, but plotted using isoprobability credibility intervals as discussed in Sec. II C. Blue and red contours represent
prior and posterior respectively.
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The third observation is that whilst N ¼ 3 is maximal in
evidence, in fact N ¼ 4, 5, 6 are competitive, and N ¼ 7, 8,
9 are far from ruled out. With this lack of knowledge, the
correct Bayesian approach is to marginalize over all
models, using the Bayesian evidence as the relative
weighting. Doing so, we can compute the marginalized
spectrum and KL divergence as shown in Fig. 4. We find
that the observable window is now clearly defined, and
hints of the low-k features survive this marginalization.

C. Historical context

Figure 5 shows reconstructions using the same method-
ology1 but now on data from a historical sequence of
CMB experiments

FIG. 4. Bottom-left: Bayesian evidence as a function of number of knots N for the primordial power spectrum reconstruction. Top:
Marginalized primordial power spectrum plot. These are produced by taking Figs. 2 and 3 and weighting each panel by their respective
evidence. Bottom-right: Marginalized conditional Kullback-Leibler divergence.

1For the historical data prior to WMAP, we needed to
significantly widen the priors on cosmological late-time
parameters
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FIG. 5. Historical primordial power spectrum reconstructions. Top-left: Conditional Kullback-Leibler divergences. Top-right:
inflationary power spectrum summary parameters, and the influence of τ on Planck constraints. Bottom: Marginalized power
spectrum plots for each dataset.
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(1) COBE [56],
(2) “pre-WMAP” (COBE [56], BOOMERANG [57],

MAXIMA [58], DASI [59], VSA [60] and
CBI [61]),

(3) WMAP [62,63],
(4) Planck 2013 (TTþ lowlikeþ lensing) [64],
(5) Planck 2015 (TTþ lowTEBþ lensing) [65],
(6) Planck 2018 (TT;TE;EEþ lowEþ lensing) [1].

The hint of an 20 < l < 30 feature becomes visible after
WMAP, is strengthened in switching to Planck, and
remains stable as the Planck data are updated.
Examining the KL divergences in Fig. 5, the vertical axis

shows a greater overall constraint on the primordial power
spectrum as improved cosmological constraints are
obtained, and the horizontal axis shows that the k-window
increases as the angular resolution of the experiments
increases. The only alteration to this trend is the change
from Planck 2013 to Planck 2015. In this case, the
constraint on the primordial power spectrum is actually
lowered, whilst the k-window increases. This is due to the
fact that the τ constraint widened from 2013 to 2015, as can
be seen it the top right panels of the Fig. 5.
Planck 2018 provides the best constraints on the pri-

mordial power spectrum, both via its high-accuracy meas-
urement of τ, and in its small-scale angular resolution.

IV. INFLATIONARY POTENTIAL
RECONSTRUCTION

In contrast to the analysis from the previous section,
instead of parametrizing the primordial power spectrum
directly, here we take the pipeline one stage backward and
perform a nonparametric reconstruction of the inflaton
potential VðϕÞ. The scalar and tensor primordial power
spectra PR;T are then derived from VðϕÞ via the procedure
indicated in Sec. II A.
To reconstruct the inflationary potential VðϕÞ, it is more

appropriate to work first with lnV, as in general VðϕÞ can
a-priori span a many scales, and it is typically d

dϕ lnV that
drives much of the evolution of the inflaton during
inflation.
More importantly, one cannot parametrize VðϕÞ via a

linear interpolating spline as was the case in Sec. III. The
equations of motion [Eqs. (1)–(4)] in general depend on
first (and sometimes second) derivatives of VðϕÞ.
Parametrizing the potential using a linear spline will
typically yield primordial power spectra with (arguably)
unphysical ringing effects.
One should therefore use a spline with continuous first

derivatives, and it is natural to choose a cubic spline as the
conceptually simplest smooth interpolator. It is tempting to
try to do this directly by taking the locations of the knots of
the spline as free parameters. Cubic splines, however, are
stiff, yielding complicated posteriors that are very difficult
to navigate, interpret, and set priors on [5].

Cubic splines have the property that their derivative is a
smooth piecewise quadratic, and their second derivative is a
piecewise linear spline. This suggests that the cleanest way
to reconstruct the potential is to parametrize the second
derivative as a linear spline, and then integrate this function
twice to get the log-potential. Two additional parameters
are created by this double integration, a gradient term d lnV�

dϕ

and an overall offset lnV�. These two free parameters
function as an alternative constraint choice in comparison
with natural or clamped splines. Our reconstruction func-
tion is therefore

FIG. 6. For the inflationary potential reconstruction, we para-
metrize the second derivative of the logarithmic potential via a
linear interpolating spline, and then integrate twice to recover the
logarithmic potential (seen schematically from bottom to top of
the figure). This introduces two additional parameters: a gradient
and global offset.

TABLE III. The prior distributions on early-time cosmological
parameters for the inflationary potential reconstruction. ϕ̃min and
ϕ̃max are defined by the observable window of the unperturbed
potential. There is a further prior constraint in that we require that
the inflaton should evolve in an inflating phase throughout the
observable window and that the inflaton should be rolling
downhill from negative to positive ϕ throughout.

Parameters Prior type Prior range

N Discrete uniform [0, 8]
lnV� Uniform ½−25;−15�
d lnV�
dϕ

Log-uniform ½10−3; 10−0.3�
d2 lnV1

dϕ2 ;…; d
2 lnVN

dϕ2
Uniform ½−0.5; 0.5�

ϕ1;…;ϕN Sorted uniform ½ϕ̃min; ϕ̃max�
ln 1010PRðkÞ Indirect constraint [2, 4]
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lnV ¼ lnV� þ ðϕ − ϕ�Þ
d lnV�
dϕ

þ
Z

ϕ

ϕ�
dϕ0

Z
ϕ0

ϕ�
dϕ00Linðϕ00;ΘVÞ

ΘV ¼
�
ϕ1;…;ϕN;

d2 lnV1

dϕ2
;…;

d2 lnVN

dϕ2
;
d lnV�
dϕ

; lnV�

�
;

ð20Þ

which can be viewed as working through Fig. 6 in reverse.

A. Priors

Thepriors in this analysis proved to be critically important
for recovering sensible results. To harmonize with the
analysis of the primordial power spectrum, our first require-
ment is that any primordial power spectrumgenerated froma
potential VðϕÞ resides in the range 2 < ln 1010PRðkÞ < 4.

FIG. 7. Bottom-left: Bayesian evidence as a function of number of knots N for the inflationary potential reconstruction. Top:
Marginalized functional posteriors for the primordial power spectrum. These are produced by taking Fig. 8 and weighting each panel by
their respective evidence. Bottom-right: Marginalized conditional Kullback-Leibler divergence.

BAYESIAN INFLATIONARY RECONSTRUCTIONS FROM … PHYS. REV. D 100, 103511 (2019)

103511-11



FIG. 8. Equally-weighted sample plots of the functional posterior of the primordial power spectrum from the inflationary potential
reconstruction, conditioned on the number of knots N. N ¼ 0, 1 have a potential equivalent to a first and second-order Taylor expansion
respectively, whilst N ≥ 2 provide the ability to reconstruct broad features in the underlying potential. Prior samples are drawn in red,
whilst posterior samples are indicated in black.
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Consider the slow roll parameters [66], and their relation
to the second derivative of the log potential

εV ¼ 1

2

�
1

V
dV�
dϕ

�
2

; ηV ¼ 1

V
d2Vi

dϕ2
⇒

d2 lnV
dϕ2

¼ ηV − 2εV:

We therefore take the priors on the second derivatives of the

log potential d2 lnVi
dϕ2 to be uniformly distributed, and the

gradient d lnV�
dϕ is taken to be negatively log-uniform.

Negativity forces the inflaton to roll downhill from negative
to positive ϕ, breaking a symmetric degeneracy. We take
the potential offset to vary across a wide range lnV�.
Widening any of these priors detailed in Table III further
has no effect, as any primordial power spectrum generated
outside these bounds lies outside the range [2, 4].
Particular care must be taken with the horizontal loca-

tions of the knots. Any reconstruction of the potential will
be sensitive only to the observable window of inflation
½ϕmin;ϕmax�, defined as when the largest and smallest

FIG. 9. Bottom-left: Bayesian evidence as a function of number of knots N for the inflationary potential reconstruction. Top:
Marginalized functional posterior of the inflationary parameter ηV. These are produced by taking Fig. 10 and weighting each panel by
their respective evidence. Bottom-right: Marginalized conditional Kullback-Leibler divergence.

BAYESIAN INFLATIONARY RECONSTRUCTIONS FROM … PHYS. REV. D 100, 103511 (2019)

103511-13



FIG. 10. Same as Fig. 8, but now for the inflationary slow roll parameter ηVðkÞ, with independent variable defined by an effective wave
number k, which sits in one-to-one correspondence with ϕ via the size of the comoving Hubble radius at that moment in the field’s
evolution.
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observable scales kmin and kmax exit the horizon. As in
Sec. III, we take ðkmin; kmaxÞ ¼ ð10−4; 10−0.3Þ Mpc−1.
Unfortunately, the bounds of the window ½ϕmin;ϕmax� are

strongly dependent on the other primordial parameters. One
cannot therefore take an arbitrarily wide range in ϕ for the
horizontal locations, as the reconstruction is then domi-
nated by the prior effect of unconstrained knot parameters.
The locations ϕ1;…;ϕN of the reconstruction knots should
instead be distributed throughout the observable window.

Whilst the locations ϕ1;…ϕN and heights d2 lnV1

dϕ2 ;…; d
2 lnVN
dϕ2

themselves influence the size of the observable window, a
reasonable approach is to first estimate it using the
unperturbed potential (i.e., setting N ¼ 0), giving an
alternative window ½ϕ̃min; ϕ̃max�. In a similar manner as
the horizontal knots in Sec. III, we take the N horizontal
ϕ-knot locations to be sorted and uniform throughout this
window.
Finally, we require that the inflaton should evolve in an

inflating phase throughout the observable window, and that
it should be rolling (not necessarily in slow roll) downhill
from negative to positive ϕ throughout. These priors are
summarized in Table III.

Alternative methodologies for direct reconstruction of
the potential exist in the literature. One approach is to
expand the potential VðϕÞ as a Taylor series [24,67].
Another is to expand HðϕÞ as a Taylor series [26,68],
and then derive the potential analytically via VðϕÞ ¼
3M2

pH2 − 2M4
pH02. Both of these approaches have been

successfully applied in the Planck inflation papers [4,8,9].

B. Results

Due to the strong dependency of the ϕ-window on the
potential itself, it is not particularly illuminating to plot
VðϕÞ directly. Instead, in the spirit of the other two sections
we start by plotting the functional posterior of the primor-
dial power spectrum PRðkÞ, shown in Figs. 7 and 8.
Viewed in this manner, one can think of these primordial
power spectrum reconstructions as having an alternative
prior complementary to Sec. III, motivated by the
assumption that the primordial power spectrum is derived
from a smooth underlying potential.
In the same manner as Sec. III, Fig. 8 and is consequently

a form of exponential potential. Regardless, it recovers a
primordial power spectrum with an appropriate amplitude
and tilt and minimal running, almost identical to the
traditional As, ns parametrization. N ¼ 1 adds a constant
second derivative term to the Taylor expansion, and
produces a similar primordial power spectrum. As more
knots are added, the potential has greater freedom, and the
corresponding primordial power spectrum begins to gain
similar features to the results in Sec. III; a loss of constraint
at low and high-k. Intriguingly, there is also the same
preference for an oscillation with a peak at l ∼ 50 and
trough at 20 < l < 30. In the line plots of Fig. 8 the
oscillation is now smooth, on account of the physical
potential-based prior created by this reconstruction. It
should be noted that while such oscillations are character-
istic of this integrated inflationary potential parametriza-
tion, these were also partially recovered a priori in the free-
form approach from Sec. III.
Examining the evidences in Fig. 7, we can see that

despite the similarities in primordial power spectra N ¼ 1
is preferred over N ¼ 0. The reason for this is that the
restrictive form of potential forN ¼ 0 forces r ≈ 0.2, which
is now ruled out by Planck. Allowing a second derivative
for the N ¼ 1 relaxes the r constraint, resulting in a
Bayesian preference for the N ¼ 1 case, consistent with
the results of the Planck Collaboration [4]. Adding further
knots causes the evidence to drop, indicating that from a
Bayesian standpoint, no further complexity is required by
the data. The marginalized plots in Fig. 7 show similar
attributes to those of the primordial power spectrum in
Fig. 4, but in this case the stiffness of the primordial power
spectrum reconstruction results in a slightly poorer recov-
ery of the relative lack of power spectrum constraint at low
and high-k.

FIG. 11. For the sharp features reconstruction, we parametrize
the primordial power spectrum via traditional amplitude-tilt
ðAs; nsÞ parametrization, with N top-hat features. We constrain
the spectrum to be within the dashed box.

TABLE IV. The prior distributions on early-time cosmological
parameters for the sharp feature reconstructions.

Parameters Prior type Prior range

N Discrete uniform [0, 8]
As Uniform 10−10½e2; e4�
ns Uniform [0.8, 1.2]
h1;…; hN Uniform ½−1; 1�
k2 < � � � < kN−1 Sorted log-uniform ½10−4; 10−0.3�
Δ1;…;ΔN Uniform [0, 1]
ln 1010PRðkÞ Indirect constraint [2, 4]
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Our second set of plots detail results for the inflationary
slow roll parameter ηVðkÞ, shown in Figs. 9 and 10. Instead
of using ϕ as the independent variable (which suffers from
the dependency of the window widths on the underlying
potential), we use the effective wavenumber kðϕÞ, which is
monotonically related to ϕ in our reconstruction, defined to
be the size of the comoving Hubble radius at that moment in
the field’s evolution.
Figure 10 reveals that the oscillations in the primordial

power spectrum at low k are created by a partial breakdown in

the slow roll conditions. For N ≥ 5, ηV ∼ 0.5, which are the
same values of N at which oscillations become apparent in
Fig. 8. This will be of particular interest for just enough
inflation models [69–72], models with singularities and
discontinuities [73–75], multifield phase-transitions [76–80],
M-theory [81,82], or supergravity [83] models, to name a few
examples. There is a long history of confronting such models
with data [84–91]. Figure 9 details the marginalized results.
Planck provides only a weak upper bound on the

other slow roll parameter εV ≈ r
16
, meaning εV is nearly

FIG. 12. Bottom-left: Bayesian evidence as a function of number of knots N for the sharp features reconstruction. Top: Marginalized
primordial power spectrum plot. These are produced by taking Fig. 13 and weighting each panel by their respective evidence. Bottom-
right: Marginalized conditional Kullback-Leibler divergence.
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FIG. 13. Equally-weighted sample plots of sharp features reconstruction, conditioned on the number of knots N. N ¼ 0 is exactly
equivalent to a standard ΛCDM parametrization. Prior samples are drawn in red, whilst posterior samples are indicated in black.
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FIG. 14. Functional posterior distribution for the Cl spectra from the sharp features reconstruction. Left hand column of panels is for
N ¼ 0, i.e., a ΛCDM parametrization. Right hand column of panels is for N ¼ 8 features. Residual plots are with respect to the Planck
2018 best-fit ΛCDM cosmology.
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indistinguishable from its logarithmic prior. Given the slow
roll relations, we find that for our reconstructions ηV≈
d2 logV
dϕ2 , so plots of ηV are nearly identical to plots of the equi-

valent underlying linear second-derivative reconstruction
parameters.

V. SHARP FEATURE RECONSTRUCTION

In this section, we return to a direct analysis of the
primordial power spectrum. Inspired by the oscillatory
features present in both the linear spline primordial power
spectrum reconstruction (Sec. III) and in the functional

FIG. 15. Stability of the cosmological parameters for the primordial power spectrum reconstruction (PPS), the potential reconstruc-
tion (V) and the sharp features reconstruction (SF). Parameters are shown for the reconstructions conditioned on N, and for the
marginalized case. For all cases except the highly-disfavored N ¼ 1 PPS reconstruction (equivalent to an ns ¼ 1 scale-invariant power
spectrum), the parameters agree with the baseline ΛCDM parameters. Note that for PPS and V the parameters ns and As are derived
parameters.
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posterior of the primordial power spectrum from the
inflationary potential reconstruction (Sec. IV), we now
consider a parametrization of the primordial power spec-
trum which favors sharp features. Attempts at explaining
these features has a long history in the literature, initially
investigated in Refs. [84,92–94].
We introduce sharp features into the parametrization of

the spectrum by placing a variable number N of top-hat
functions with varying widths Δ, heights h, and locations
log10 k on top of the traditional As, ns parametrization

lnPRðkÞ ¼ lnAs þ ðns − 1Þ ln
�
k
k�

�

þ
XN
i¼1

hi

�
jlog10k − log10kij <

Δi

2

�
;

ΘP ¼ ðΔ1;…;ΔN; h1;…; hN; k1;…; kNÞ: ð21Þ

where the square brackets (as in Sec. II D) denote a logical
truth function [51]. This parametrization is indicated
schematically in Fig. 11, and Table IV provides a summary
of the priors that we use. Readers are referred to the priors
sections of Secs. III and IV for further details.

A. Results

The results for the sharp feature reconstructions can be
found in Figs. 12–14. Figure 13 shows that in the
marginalized plots the oscillations and lack of power
spectrum constraints at low- and high-k are once again
recovered. Visually, the features are even more striking in
these reconstructions, on account of the ability for this
parametrization to localize in k more precisely. There are
also hints of features at high-k in this reconstruction, which
were smoothed out by the parametrizations of the two
previous sections.
Marginalization in Fig. 12 shows that there is little

Bayesian evidence to support the introduction of more than
two features, but the low-k oscillation still comes through
clearly in the fully marginalized plot.
Finally, we examine the effects of these reconstructions

on the Cl spectra by considering the functional posterior in
Fig. 14. By comparing theΛCDM caseN ¼ 0with the case
N ¼ 8 we see that the features at low-k in the PPS
correspond to both a suppression of power at low-l in
the TT spectrum, as well as a more specific localized
reduction of power in the 20 < l < 30 region. There seems
to be no obvious correspondence with possible features
seen in the polarization TE or EE spectra.

VI. COSMOLOGICAL PARAMETER STABILITY

Finally in Fig. 15 we show that the underlying cosmo-
logical parameter constraints remain effectively unchanged
for all three of the analyses in Secs. III to V, in spite of the

additional degrees of freedom we have given to the
primordial power spectrum.
The only exception is the PPS N ¼ 1 reconstruction.

This model is highly-disfavored (Fig. 4), since Planck rules
out a Harrison-Zeldovich scale-invariant (ns ¼ 1) spectrum
[4,8,65]. Requiring ns ¼ 1 gives a poorly fit model which
forces the cosmological parameters into locations discord-
ant with ΛCDM.
This overall parameter stability for models consistent

with the data demonstrates that one can explain features in
CMB power spectra via modifications to the primordial
cosmology, without the need to alter late-time cosmological
parameters.

VII. CONCLUSIONS

In this work, we have reconstructed the primordial
Universe three ways. In Sec. III, we reconstructed the
primordial power spectrum using a linear spline. In Sec. IV,
we reconstructed the inflationary potential using a cubic
spline. In Sec. V, we probed sharp features in the primordial
power spectrum by superimposing top-hat functions on top
of the traditional ΛCDM power spectrum.
We showed that the Bayesian odds of a scale-invariant

power spectrum are around a quintillion to one against in
comparison to the ΛCDM cosmology. This agrees with the
Planck Collaboration’s conclusions [4] that there is decisive
evidence for ns ≠ 1—one of the key predictions of the
theory of inflation.
All methods reconstruct a featureless tilted power law

consistent with a simple ðAs; nsÞ parametrization across a
broad observable window ð50≲ l≲ 2000Þ. In addition, all
reconstructions demonstrate that in a Bayesian sense it is
preferable to have models which are able to recover the lack
of power spectrum constraints at low-k due to cosmic
variance, and at high-k due to Planck instrument noise,
reflected in the evidences and marginalized plots (Figs. 4, 7
and 12).
All large N conditional reconstructions partially recover

oscillatory features in the primordial power spectrum, with
a peak at l ∼ 50 and a trough at 20 < l < 30, which
manifest themselves in the functional posteriors of the Cl
spectra (Fig. 14). The inflationary potential reconstruction
(Sec. IV) shows that this oscillation could be due to a
breakdown in slow roll near the start of the inflationary
window (Fig. 9), which is relevant for a wide variety of
inflationary models [69–91]. However, the oscillations do
not survive marginalization over N, indicating that the
Bayesian evidence is not strong enough from Planck data to
indicate a significant detection of such a feature.
The renewed upper bound on r from Planck 2018 now

has enough discriminatory power to begin reconstructing
potentials, as shown by the preference for theN ¼ 1 case in
the inflationary potential reconstructions.
As shown in Fig. 15, in all cases, the distributions on the

late-time cosmological parameters remain unperturbed by
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the additional degrees of freedom on the primordial cosmol-
ogy provided by these reconstructions, indicating that any
conclusions using late-time parameters are unlikely to be
affected by modifying the primordial cosmology.
There is scope for inflationary models which a-priori

predict these low-k features to be preferred over the ΛCDM
cosmology, particularly if such models are capable of
producing sharper features in the Cl spectra at 20 <
l < 30. Additionally, in light of further CMB data [7],
or failing that, strong τ characterization, it is likely that
these hints of features will sharpen and provide further
discriminatory power in constructing better models of the
primordial Universe.
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