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The kinematic Sunyaev-Zel’dovich effect enables us to directly probe the density-weighted velocity field
up to very large cosmic scales. We investigate the effects of intrinsic alignments (IAs) of dark-matter halo
shapes on cosmic density and velocity fields on such large scales. In the literature IAs have been detected
up to ∼100 h−1 Mpc using the gravitational shear-intrinsic ellipticity correlation and the alignment
correlation function. In this paper we introduce the corresponding various velocity statistics: the (density-
weighted) velocity-intrinsic ellipticity correlation as well as the alignment pairwise infall momentum,
momentum correlation function, and density-weighted pairwise velocity dispersion. We derive theoretical
expressions for these velocity alignment statistics for the first time based on the assumption that the density
fluctuation is a Gaussian random field. Using large-volume, high-resolution N-body simulations, we
measure the alignment statistics of density and velocity fields. The behaviors of IAs in the velocity statistics
are similar to those in the density statistics, except that the halo orientations are aligned with the velocity
field up to scales larger than those with the density field, r ≫ 100 h−1 Mpc, because of a factor of the wave
number in the linear relation between the density and velocity fields in Fourier space, v ∝ δ=k. We show
that the detected IAs of the velocity field can be well predicted by the linear alignment model. We also
demonstrate that the baryon acoustic oscillation features can be detected in both the conventional and
alignment velocity statistics. Our results indicate that observations of IAs with the velocity field on large
scales can provide additional information on cosmological models, complementary to those with the
density field.

DOI: 10.1103/PhysRevD.100.103507

I. INTRODUCTION

Intrinsic alignments (IAs), correlations of galaxy ori-
entations/shapes with surrounding fields such as the mass
overdensity, arise due to physical processes during the
formation and evolution of galaxies. Thus, investigating
IAs in principle enables one to probe galaxy formation and
evolution. IAs have been extensively studied also in the
context of potential systematic effects in weak-lensing
surveys [1–3], and their contamination to the weak-lensing
shear correlations has been investigated both theoretically
[4–16] and observationally [17–27] (see, e.g., Refs. [28–32]
for reviews).
Recently, some studies have been made focusing on IAs

not as a contamination in the weak-lensing surveys but as
an additional cosmological probe to constrain primordial

non-Gaussianity and measure baryon acoustic oscillations
(BAOs) [33]. Moreover, the detectability of the cross
correlation between galaxy shapes and cosmic microwave
background B-mode polarization induced by primordial
gravitational waves has been discussed [34,35]. There
was a further discussion of the imprint of inflation on
galaxy IA [36–39].
It is well known that the effect of IAs depends strongly on

the mass of host dark-matter halos [40–42]. Clusters of
galaxies are thus ideal objects to address a fundamental
question of up to what scales luminous objects are aligned
with the matter distribution in the large-scale structure of the
Universe. While orientations of galaxies are known to be
misaligned with those of the host halos [21,43], such a
misalignment between shapes of clusters and their host halos
is much smaller [44–46]. Using cluster and brightest cluster
galaxy samples, strong alignment signals have been detected
up to scales ∼100 h−1 Mpc in observations [20,21,23,47].*tokumura@asiaa.sinica.edu.tw
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So far, most of the studies on IAs have focused on the
alignments of the major axes of galaxies relative to the
overdensity field, such as the gravitational shear-intrinsic
ellipticity (GI) correlation [6] and alignment density
correlation function [48,49]. However, it is of fundamental
importance to consider the IA relative to the cosmic
velocity field for various reasons. Now the velocity field
at cosmic scales can be measured through several ways,
such as peculiar velocity [50] and kinematic Sunyaev-
Zel’dovich (kSZ) [51,52] surveys. Since the velocity field
in Fourier space is expressed as vðkÞ ∝ ðik=k2ÞδðkÞ in
linear theory, one expects that the velocity correlation
signal is amplified compared to the density counterpart
on large scales due to the prefactor of k=k2. This trend has
been seen in the measured pairwise velocity power spec-
trum in kSZ surveys [53,54]. References [55,56] have
studied how the large-scale velocity field is affected by the
presence of primordial non-Gaussianity. A method to
improve the local non-Gaussianity constraints has been
proposed with the velocity information from the kSZ
tomography [57]. In addition, it has been demonstrated
that velocities of infalling objects around clusters can be
potentially used to constrain modified gravity models
[58–60].
In the short article [61], we have simultaneously ana-

lyzed the large-scale IA> 100 h−1 Mpc in real and redshift
space and boundaries of massive dark-matter halos at
∼1 h−1Mpc using the phase-space information. The article
is unpublished and only the section on the splashback
radius has been significantly extended and published in
Ref. [62]. In this paper, we extend the section on the large-
scale IA in Ref. [61] and present the detailed study of IA
effects with the density and velocity fields. We introduce
the velocity-intrinsic ellipticity (VI) correlation function as
a natural extension of the GI correlation to phase space. We
then define the alignment velocity correlation statistics,
namely the alignment density-momentum and momentum-
momentum correlation functions, as well as the pairwise
velocity statistics, the alignment pairwise mean infall
momentum and density-weighted pairwise velocity dis-
persion. We derive comprehensive expressions for these
statistics in the linear regime by averaging the joint
probability distribution of density, velocity and ellipticity
fields. We obtain their explicit forms by utilizing the linear
tidal alignment (LA) model where the intrinsic ellipticity of
a galaxy is a linear function of the tidal field. The derived
alignment velocity statistics are tested by comparing with
the measurements from N-body simulations over a broad
range of scales, from the quasinonlinear regime to scales
beyond 100 h−1 Mpc.
This paper is organized as follows. In Sec. II, we briefly

review the statistics for IA with the density field, and then
extend to those for IAwith the velocity field. We derive the
theoretical predictions for the density and velocity IA
statistics in Sec. III. Section IV describes the N-body

simulations as well as the measurements of the IA statistics.
In Sec. V we compare the derived theoretical predictions to
the N-body measurements. We demonstrate that features of
BAOs can indeed be seen in the velocity IA statistics in
Sec. VI. Our conclusions are given in Sec. VII. The
Appendix provides useful analytic formulas for deriving
the theoretical predictions of the IA statistics for the
Gaussian random fields.
Throughout the paper, the following cosmological

parameters are assumed [63]: Ωm ¼ 1 −ΩΛ ¼ 0.315,
Ωb ¼ 0.0492, h ¼ 0.673, ns ¼ 0.965, and σ8 ¼ 0.8309.

II. INTRINSIC ALIGNMENT STATISTICS

In this section we introduce the statistics used in this
paper to quantify the IAs. They were presented in
Refs. [61,62], but here we provide a more detailed
derivation and explanation of the derived expressions.
Throughout this paper, we consider the IA statistics in
real space, taking the distant-observer or plane-parallel
limit. An extension of including redshift-space distortions
is rather straightforward, and will be reported in future
work. Our notations for the quantities used to define the
statistics are illustrated in Fig. 1. We are particularly
interested in the statistical correlation of the quantities
associated with a pair of objects A and B, taking special
care with their relative orientation. In Fig. 1, the objects B
are supposed to be halo or galaxy/cluster, and we assume
that their shapes are measured on the celestial sphere.
Based on this figure, we define various alignment statistics,
which are all summarized in Table I.

FIG. 1. Illustration of quantities used in this paper. The z axis is
the observer’s line of sight and the x-y plane corresponds to the
celestial sphere.
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Let us define the intrinsic ellipticity, which is a key
observable in the present paper. As shown in Fig. 1, this
quantity is defined on the celestial sphere, and is given as a
two-component quantity, through the shape measurement
of object B:

γIðþ;×ÞðxÞ ¼
1 − ðb=aÞ2
1þ ðb=aÞ2 ðcosð2θÞ; sinð2θÞÞ

≡ γ0ðcosð2θÞ; sinð2θÞÞ: ð1Þ
Here, θ is defined on the plane normal to the line-of-sight
direction, and represents the angle between the projected
separation vector pointing to the object A from B and the
major axis of the shape of the object B projected onto the
celestial sphere. The ratio b=a is the minor-to-major-axis
ratio for the projected shape. The shape (shear) of a galaxy
observed in a weak-lensing survey is always the sum
of the lensing signal γG and the intrinsic shape γI, namely
γðþ;×Þ ¼ γGðþ;×Þ þ γIðþ;×Þ. Since we consider only the intrin-

sic shape and do not use the lensing components, we
hereafter omit the superscript I and simply write the
intrinsic components as γðþ;×Þ.

A. Density correlation

1. Gravitational shear-intrinsic ellipticity correlation

One of the commonly used statistics to describe IA is the
cross correlation between the gravitational shear and
intrinsic ellipticity [6], quantified by the density-ellipticity
correlation. Given the two fields associated with objects A
and B,1 the GI correlation, ξδAþ, is defined by

1þ ξδAþðrÞ ¼ h½1þ δAðx1Þ�½1þ δBðx2Þ�γþðx2Þi; ð2Þ

where r ¼ x2 − x1, and γþ is defined in the same way as
shown in Fig. 1 through Eq. (1). The quantity δA is the
perturbation of mass and number density fields, ρA, if the
field A is dark matter and biased objects (e.g., galaxies or
clusters), respectively, where ρAðxÞ ¼ ρ̄A½1þ δAðxÞ� and
ρ̄A ¼ hρAðxÞi is its mean value. Having a prefactor
ð1þ δXÞ such as γ̃þðxÞ≡ ½1þ δBðxÞ�γþðxÞ in Eq. (2)
stands for a density-weighted quantity. The cross compo-
nent, ξδA×, defined by replacing γþðx2Þ with γ×ðx2Þ in
Eq. (2), should be zero on all scales by symmetry.

2. Alignment density-density correlation

Here, we consider an alternative statistic to the GI corre-
lation function, namely the alignment correlation function
[48,49,61,62,64,65]. This is defined as an extension of the
conventional correlation function. The conventional two-
point correlation function of the fields A and B is given by

hρAðx1ÞρBðx2Þi ¼ ρ̄Aρ̄B½1þ ξδAδBðrÞ�: ð3Þ
Note that we are considering the real space where the
statistical isotropy holds. Thus the function ξδAδB depends
only on the separation r ¼ jrj.
To properly describe the alignment correlation function,

let us first define the conditional average based on Fig. 1.
Consider the quantities X and Y made of the observables
associated with objects A and B, respectively. That is, the
quantities X and Y are respectively defined at the positions
x1 and x2, and we assume that the projected shape of the
object B has already been measured. Then, the conditional
average of the quantities X and Y is defined to be the
ensemble average for a fixed orientation angle θ, as shown
in Fig. 1. For notational simplicity, dropping the arguments,
x1 and x2, we write it as

hX; Yjθi≡ hXðx1ÞYðx2Þjθiðr; θÞ: ð4Þ

Note that inside the angle bracket on the left-hand side of
Eq. (4), the quantity on the left (right) always implies the

TABLE I. Summary of the alignment statistics considered in this paper. The notation of each statistic is given by the column of Xðr; θÞ.
The column of Ξðx1;x2; θÞ shows the part of X, expressed as Xðr; θÞ ¼ h½1þ δAðx1; θÞ�½1þ δBðx2Þ�Ξðx1;x2Þjθi [see Eq. (4)]. Note that
as for the GI and VI correlations the θ dependence is averaged over by definition.

Definition
(Eq.)

Formula
(Eq.)

Result (Fig.)

Statistics Xðr; θÞ Ξðx1;x2Þ DM Biased

GI correlation 1þ ξδAþðrÞ γþðx2Þ (2) (29) 2 6
VI correlation ξpAþðrÞ vAðx1Þγþðx2Þ (9) (30) 2 6

Density correlation 1þ ξδAδBðr; θÞ 1 (6) (22) 3 7
Density-momentum correlation ξδApB

ðr; θÞ vBðx2Þ (13) (23)
Momentum-density correlation ξpAδBðr; θÞ vAðx1; θÞ (11) (23)
Momentum correlation ξpApB

ðr; θÞ, ψABðr; θÞ vAðx1; θÞvBðx2Þ (15) (24) 4 8

Pairwise infall momentum pABðr; θÞ vBðx2Þ − vAðx1; θÞ (14) (23) 4 8
Density-weighted pairwise velocity dispersion Σ2

ABðr; θÞ ðvBðx2Þ − vAðx1; θÞÞ2 (16) (25) 4 8

1Here we consider a general case where the two fields are
different, e.g., A and B are the fields traced by galaxies and galaxy
clusters, respectively, but the expression for the autocorrelation
can be obtained by setting A ¼ B.
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one associated with objects A (B), and hence it is measured
at x1 (x2). By construction, the conditional average given in
Eq. (4) has an explicit dependence on the angle θ. Further it
is in general given as a function of the separation vector r,
not jrj. This is because the measured orientation angle of
the halo or galaxy/cluster shape is defined on the plane
normal to the line of sight, and this partly breaks statistical
isotropy. We will see it explicitly in Sec. III.
Provided the orientation-dependent average, we now

define the alignment correlation function by replacing
the standard ensemble average given in Eq. (3) with the
one in Eq. (4). We have

hρA;ρBjθi¼ ρ̄Aρ̄Bh1þδA;1þδBjθi
¼ ρ̄Aρ̄B½h1;1jθiþhδA;1jθiþh1;δBjθiþhδA;δBjθi�
¼ ρ̄Aρ̄B½1þhδA;1jθiþhδA;δBjθi�: ð5Þ

Here we used the fact that h1; δBjθi ¼ hδBi ¼ 0 because
this is reduced to the standard ensemble average. In what
follows, the same procedure will be applied to the calcu-
lations of IA statistics.
Comparing Eq. (5) to Eq. (3), we obtain the alignment

density-density correlation, ξδAδBðr; θÞ:

ξδAδBðr; θÞ ¼ h½1þ δAðx1; θÞ�½1þ δBðx2Þ�i − 1

¼ hδA; δBjθi þ hδA; 1jθi: ð6Þ

Although this derivation was already presented in Ref. [12],
we repeat it because we extend the analysis to the IA
statistics for the velocity field in the next subsection. Note
that the conventional correlation function, ξδAδBðrÞ, is
obtained by taking the average over θ,

ξδAδBðrÞ ¼
2

π

Z
π=2

0

dθξδAδBðr; θÞ; ð7Þ

where the anisotropic term is integrated to zero. Also, the
GI correlation function, i.e., ξδAþ defined in Eq. (2), is
related to the alignment correlation function through

ξδAþðrÞ ¼
2

π

Z
π=2

0

dθ cosð2θÞξδAδBðr; θÞ; ð8Þ

where b=a ¼ 0 [9,49]. While the GI and alignment
correlation functions are complementary to each other,
we will primarily focus on the latter because it provides
direct insight into how the matter is distributed along and
perpendicular to the major axis of halos.

B. Velocity statistics

In analogy to the density statistic, we consider the
alignment statistics of halos/galaxies (i.e., object B) relative
to the cosmic velocity of object A, vA. Because in
observations we can measure velocities along the

observer’s line-of-sight direction, vAðxÞ ¼ vAðxÞ · x̂, we
consider only the line-of-sight component of the velocity
field throughout this paper. We thus use the same symbol,
vA, to describe the line-of-sight component of the three-
dimensional velocity vA (see Fig. 1).

1. velocity-intrinsic ellipticity correlation

We first introduce the velocity statistic corresponding
to the GI correlation, namely the density-weighted VI
correlation,

ξpAþðrÞ ¼ hpAðx1Þγ̃þðx2Þi
¼ h½1þ δAðx1Þ�½1þ δBðx2Þ�vAðx1Þγþðx2Þi; ð9Þ

wherepA denotes the line-of-sight component of the density-
weighted velocity, that is, the momentum field [66],

pAðxÞ≡ pAðxÞ · x̂ ¼ ½1þ δAðxÞ�vAðxÞ; ð10Þ

and the density-weighted intrinsic ellipticity is denoted
by γ̃þðxÞ ¼ ½1þ δAðxÞ�γþðxÞ.

2. Alignment density-momentum correlation

In order to define the alignment velocity statistics
corresponding to the alignment density correlation, we
consider the two velocity statistics. The first one is the
cross correlation function between momentum and
density [67], ξpAδBðrÞ¼h½1þδAðx1Þ�½1þδBðx2Þ�vAðx1Þi.
To define the alignment momentum-density cross correla-
tion function, in analogy to the case of the alignment
density-density correlation, we cross correlate the momen-
tum and mass (number) density fields, using the conditional
average given in Eq. (4):

hpA; ρBjθi ¼ ρ̄Bhð1þ δAÞvA; ð1þ δBÞjθi
≡ ρ̄BξpAδBðr; θÞ: ð11Þ

Hence, we obtain the expression for the alignment
momentum-density correlation function as

ξpAδBðr; θÞ ¼ hvA; 1jθi þ hvA; δBjθi þ hδAvA; 1jθi
þ hδAvA; δBjθi: ð12Þ

Similarly, the alignment density-momentum correlation
function is given by

ξδApB
ðr; θÞ ¼ hð1þ δAÞ; ð1þ δBÞvBjθi

¼ hδA; vBjθi þ hδA; δBvBjθi: ð13Þ

Using these correlation statistics, one can also define
a more observationally related pairwise velocity statistic
[68–70], namely the alignment pairwise infall momentum,
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pABðr; θÞ≡ ξδApB
ðr; θÞ − ξpAδBðr; θÞ

¼ h½1þ δAðx1Þ�½1þ δBðx2Þ�
× ½vBðx2Þ − vAðx1Þ�jθi: ð14Þ

Note that the subscripts pA and pB on the right-hand side
are the momentum fields defined in Eq. (10), and should
not be confused with pAB.

3. Alignment momentum-momentum correlation

Another interesting velocity statistic is the momen-
tum correlation function [71], given by ξpApB

ðrÞ ¼
h½1þ δAðx1Þ�½1þ δBðx2Þ�vAðx1ÞvBðx2Þi. The correspond-
ing IA statistic, which we call the alignment momentum
correlation function, is obtained from this quantity by
replacing the standard ensemble with the conditional
average in Eq. (4):

ξpApB
ðr; θÞ ¼ hpA; pBjθi

¼ hð1þ δAÞvA; ð1þ δBÞvBjθi
¼ hvA; vBjθi þ hδAvA; vBjθi
þ hvA; δBvBjθi þ hδAvA; δBvBjθi: ð15Þ

To make a clear distinction from similar quantities, we shall
denote it by ψABðr; θÞ≡ ξpApB

ðr; θÞ hereafter.
Finally, we introduce the pair-weighted velocity disper-

sion, Σ2
ABðrÞ, and apply the orientation-dependent average

to it. The alignment pairwise velocity dispersion then
becomes Σ2

ABðr; θÞ, and it is expressed as

Σ2
ABðr; θÞ ¼ h½1þ δAðx1Þ�½1þ δBðx2Þ�

× ½vBðx2Þ − vAðx1Þ�2jθi
¼ hv2A; 1jθi þ σ2vB − 2ψABðr; θÞ þ hδBv2Bi
þ hδA; v2Bjθi þ hv2A; δBjθi þ hδAv2A; 1jθi
þ hδAv2A; δBjθi þ hδA; δBv2Bjθi; ð16Þ

where σvB is the one-dimensional velocity dispersion
defined by σ2vB ¼ hv2Bi
Similarly to the density correlation function, the conven-

tional velocity statistics, pABðrÞ, ψABðrÞ, and Σ2
ABðrÞ, can

be obtained by averaging over θ,

XABðrÞ ¼
2

π

Z
π=2

0

dθXABðr; θÞ; ð17Þ

with X being p, ψ or Σ2.

III. THEORETICAL PREDICTIONS OF IA
DENSITY AND VELOCITY STATISTICS

A. Conditional average of Gaussian random fields

Since we are interested in the statistical properties at very
large scales, r ≫ 10 h−1Mpc, predictions based on linear

theory calculations basically give an accurate description,
and the assumption that all the relevant fields follow the
Gaussian statistics is valid. In such a case, all the statistical
quantities can be computed with a multivariate Gaussian
distribution, with the covariance matrix estimated from
linear theory [72].
Consider a set of Gaussian random fields, qt ¼

ðq1; q2;…; qNÞ, with zero expectation value, hqi ¼ 0. An
ensemble average of the quantity FðqÞ is then expressed as

hFi ¼
Z

dq1dq2 � � � dqN

×
FðqÞ

ð2πÞN=2j detCj1=2 e
−ð1=2ÞqtC−1q; ð18Þ

whereC is the covariance matrix defined byC ¼ hqqti. For
the IA statistics considered in the previous section, a relevant
set of the fields q is

qt ¼ ðδA; δB; vA; vB; γþ; γ×Þ: ð19Þ

Equation (18) with Eq. (19) provides a basis to derive
analytical expressions for the statistical quantities in
Sec. II. The calculation with Eq. (19) is an extension
of the work by Refs. [12,67].2 Note that the intrinsic
ellipticity characterized by γþ and γ× is always defined at
the location of the tracer B, namely at x2, and the two
velocities, vA and vB, are measured along the line of
sight. Here the ellipticities, γþ and γ×, are assumed to be
Gaussian random fields. The model we consider in order
to relate the ellipticities to the underlying matter field
is compatible with the assumption of Gaussianity (see
Sec. III C).
To derive analytical expressions for the alignment

statistics, we follow Ref. [12], and switch the integration
variables from ðq5; q6Þ ¼ ðγþ; γ×Þ to ðq05; q06Þ ¼ ðγ0; θÞ
through Eq. (1). Then, any alignment statistic, expressed
in terms of Eq. (4), can be computed by integrating
over five variables, while keeping θ fixed.3 To be explicit,
using dγþdγ× ¼ 2γ0dγ0dθ, the conditional average in
Eq. (4) is expressed as

2Reference [67] took the vector q as qt ¼ ðδA; δB; vA; vBÞ,
while in Ref. [12], q was considered to be qt ¼ ðδA; δB; γþ; γ×Þ.

3Unlike in the previous section, we need to define θ at any
location x2, irrespective of the presence or absence of the tracer B
at that location in practice to perform actual calculations. This
difference is because the analytical formulation here is based on
the Eulerian perturbation theory (or volume-weighted quantities
as the basic building blocks), while the final statistics are always
density-weighted quantities defined through discrete tracers.
Here, we employ a specific IA model to describe γ (or θ) at
an arbitrary spatial coordinate. After summing up the relevant
volume-weighted quantities to express density-weighted ones,
again, the ambiguity in the direction θ at locations without a
tracer does not enter the final results.
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hX;Yjθi¼
Z

dδAdδBdvAdvBdγ0
γ0

ð2πÞ2e
−ð1=2ÞqtC−1qXY:

ð20Þ
In the Appendix, we present several useful formulas for

the integral given above, which are used to derive analytical
expressions for the IA statistics. The last step to derive the
results requires an explicit form of the covariance matrix,
C. Our 6 × 6 covariance matrix for the vector q [Eq. (19)] is
explicitly given by

C ¼

0
BBBBBBBBBBBB@

σ2δA ξδAδB 0 ξδAvB ξδAþ 0

ξδAδB σ2δB ξvAδB 0 0 0

0 ξvAδB σ2vA ξvAvB ξvAþ 0

ξδAvB 0 ξvAvB σ2vB 0 0

ξδAþ 0 ξvAþ 0 σ2γ 0

0 0 0 0 0 σ2γ

1
CCCCCCCCCCCCA

; ð21Þ

where the diagonal components (variances) are,
σ2δA ¼ hδ2Ai, σ2δB ¼ hδ2Bi, σ2γ ¼ hγ2þi ¼ hγ2×i, σ2vA ¼ hv2Ai,
and σ2vB ¼ hv2Bi. In the absence of velocity bias, we
generally have σ2vA ¼ σ2vB in linear theory. The term
ξδAvBðrÞ is the cross-correlation function between the
density of field A and the line-of-sight velocity of field
B and ξvAvBðrÞ is the velocity correlation function of
velocity fields A and B. The term ξδAþðrÞ is the cross-
correlation function between the density field A and the
ellipticity of the field B, ξδAþðrÞ ¼ hδAðx1Þγþðx2Þi and
ξvAþðrÞ ¼ hvAðx1Þγþðx2Þi is the velocity-intrinsic elliptic-
ity correlation function. Note that all the fields in the
covariance matrix including ellipticities are defined as
volume-weighted quantities. All the elements will be
computed later in Secs. III C and III D.

B. Analytical expressions for IA density
and velocity statistics

Here, we summarize the analytical expressions for the IA
statistics introduced in Sec. II A.
Consider first the alignment density correlation, ξδAδB .

Letting F ¼ δA þ δAδB and using Eqs. (A2), (A8) and (A9)

with the given fields being Gaussian, the following
expression is derived from Eq. (6) straightforwardly:

ξδAδBðr; θÞ ¼ ξδAδBðrÞ þ
ffiffiffiffiffiffiffi
π

2σ2γ

r
ξδAþðrÞ cos ð2θÞ; ð22Þ

where the first and second terms are respectively derived
from the first and second terms in Eq. (6). The expression
of this statistic has already been derived by Ref. [12], and
we have rederived it using the formula presented in the
Appendix.
Next consider the pairwise infall momentum pAB, given

in Eq. (14). The term hδA; δBvBjθi vanishes, and other
terms in ξδApB

and ξpAδB can be computed with the help of
formulas given in Eqs. (A8)–(A10). The resultant expres-
sion becomes

pABðr; θÞ ¼ ξδAvBðrÞ − ξvAδBðrÞ −
ffiffiffiffiffiffiffi
π

2σ2γ

r
cos ð2θÞ

× f½1þ ξδAδBðrÞ�ξvAþðrÞ þ ξvAδBðrÞξδAþðrÞg

−
1

σ2γ
cos ð4θÞξvAþðrÞξδAþðrÞ: ð23Þ

The expression includes not only the terms proportional
to cos ð2θÞ, but also the higher-order contributions with
cos ð4θÞ.
Similarly, the alignment momentum correlation ψAB is

also obtained, using the formulas in the Appendix and the
fact that the term hδBvAvBjθi vanishes. The final form of
the expression becomes

ψABðr; θÞ ¼ ½1þ ξδAδBðrÞ�ξvAvBðrÞ þ ξδAvBðrÞξvAδBðrÞ

þ
ffiffiffiffiffiffiffi
π

2σ2γ

r
cosð2θÞ½ξδAvBðrÞξvAþðrÞ

þ ξvAvBðrÞξδAþðrÞ�: ð24Þ
Unlike the pairwise infall momentum, in the momentum
correlation the alignment-dependent terms proportional to
cosð2θÞ are given by the products of two correlation
functions, ξδAvBξvAþ and ξvAvBξδAþ. This implies that the
alignment dependence will disappear at large scales.
Finally, the density-weighted pairwise velocity disper-

sion can be expressed under the assumption of the Gaussian
random fields as

Σ2
ABðr; θÞ ¼ ½1þ ξδAδBðrÞ�½σ2vA þ σ2vB − 2ξvAvBðrÞ� − 2ξδAvBðrÞξvAδBðrÞ

þ
ffiffiffiffiffiffiffi
π

2σ2γ

r �
½σ2vA þ σ2vB − 2ξvAvBðrÞ�ξδAþðrÞ − 2½ξδAvBðrÞ − ξvAδBðrÞ�ξvAþðrÞ −

3

4σ2γ
ξδAþðrÞξ2vAþðrÞ

�
cos ð2θÞ

þ 1

σ2γ
f½1þ ξδAδBðrÞ�ξvAþðrÞ þ 2ξδAþðrÞξvAδBðrÞgξvAþðrÞ cos ð4θÞ þ

3

4σ2γ

ffiffiffiffiffiffiffi
π

2σ2γ

r
ξδAþðrÞξ2vAþðrÞ cos ð6θÞ: ð25Þ
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The resultant expression includes the alignment-
dependent terms proportional to cos ð2θÞ, cos ð4θÞ and
cos ð6θÞ, which are all expressed as products of multiple
correlation functions. Thus, the orientation dependence
becomes negligible at large scales, and it would be
important only at small scales.

C. Linear alignment model

For a quantitative calculation of the analytical expres-
sions in Sec. III B, the covariance given in Eq. (21) has to
be estimated. In doing so, we need a model of intrinsic
ellipticity, which relates γðþ;×Þ to the density or velocity
field. In this paper, we adopt the LA model which is one of
the simplest models to describe the ellipticity/orientation of
elliptical galaxies or halos. In the LA model, the intrinsic
ellipticity [Eq. (1)] is assumed to follow a linear relation
with the Newtonian potential, ΨP [4,6],

γðþ;×ÞðxÞ ¼ −
C1

4πG
ð∇2

x −∇2
y; 2∇x∇yÞS½ΨP�; ð26Þ

where G is the Newtonian gravitational constant, and C1

parametrizes the strength of the IA. The function S
represents a smoothing filter that introduces a cutoff to
the fluctuations on halo scales. The x and y axes are taken
to be on the plane of the sky, and thus the z axis indicates
the line-of-sight direction. The potentialΨP is related to the
density field via the Poisson equation. In Fourier space,
we have

ΨPðkÞ ¼ −4πG
ρ̄ðzÞ
D̄ðzÞ a

2k−2δðkÞ; ð27Þ

with ρ̄ being the mean density of the Universe. The function
is D̄ðzÞ ∝ ð1þ zÞDðzÞ, where DðzÞ is the linear growth
factor.
Using Eqs. (26) and (27), the Fourier transform of

the density-weighted intrinsic ellipticity, γ̃ðþ;×ÞðxÞ, is
described as,

γ̃ðþ;×ÞðkÞ ¼
−C1ρ̄ðzÞ
D̄ðzÞ a2

Z
d3k0d3k00δDðk − k0 − k00Þ

× ðk02x − k02y; 2k0xk0yÞk0−2δðk0Þ
× ½ð2πÞ3δDðk00Þ þ δðk00Þ�; ð28Þ

where δDðkÞ is the Dirac delta function. With this expres-
sion, the linear theory estimate of the cross-correlation
function between the density field and the ellipticity is
given by

ξδAþðrÞ ¼
C1ρ̄

D̄
a2bA

Z
∞

0

k⊥dk⊥
2π2

J2ðk⊥r⊥Þ

×
Z

∞

0

dkk
k2⊥
k2

PδδðkÞ cos ðkkrkÞ; ð29Þ

where k2⊥ ¼ k2x þ k2y and kk ¼ kz (hence, k2 ¼ k2⊥ þ k2k),
and the quantities r⊥ and rk are the separation perpen-
dicular and parallel to the line-of-sight direction
(r2 ¼ r2⊥ þ r2k). The function J2 is the second-order
Bessel function and bA is the linear bias parameter for
objects A. Likewise, the velocity-ellipticity correlation at
linear order is expressed as

ξvAþðrÞ ¼
C1ρ̄

D̄
a3fH

Z
∞

0

k⊥dk⊥
2π2

J2ðk⊥r⊥Þ

×
Z

∞

0

dkk
k2⊥kk
k4

PδΘðkÞ sin ðkkrkÞ; ð30Þ

where Θ is the velocity-divergence field, defined by
ΘðxÞ ¼ −∇ · v=ðaHfÞ. The function HðaÞ is the Hubble
parameter, and f is the linear growth rate, given by
f ≡ d lnD=d ln a. Here and in the next subsection, the
three power spectra are introduced, Pδδ, PΘΘ and PδΘ,
which respectively denote the auto power spectra of the
density, velocity divergence, and their cross spectrum.

D. Covariance in linear theory

Based on linear theory, the remaining quantities to
calculate the covariance are analytically expressed.
Assuming the linear bias relation between objects of our
interest and mass-density fluctuations, the density-density,
density-velocity, and velocity-velocity correlation func-
tions become

ξδAδBðrÞ ¼ bAbB

Z
k2dk
2π2

PδδðkÞj0ðkrÞ; ð31Þ

ξδAvBðrÞ ¼ −aHfbAμ
Z

kdk
2π2

PδΘðkÞj1ðkrÞ; ð32Þ

ξvAvBðrÞ ¼ ðaHfÞ2
�
1

3

Z
dk
2π2

PΘΘðkÞj0ðkrÞ

þ
�
1

3
− μ2

�Z
dk
2π2

PΘΘðkÞj2ðkrÞ
�
; ð33Þ

where jl is the spherical Bessel function. Equations (32)
and (33) have explicit directional dependence described by
μ, which is the direction cosine between the line-of-sight
direction and the separation vector r, i.e., μ ¼ x̂ · r̂ ¼ rk=r.
Note that the angle cos−1ðμÞ and the orientation of the halo
major axis θ are completely different quantities, and should
not be confused (see Fig. 1). As it is obvious from Eqs. (32)
and (33), if we expand the expressions in Legendre
polynomials PlðμÞ, the function ξδAvB has only a dipole
moment (l ¼ 1), while ξvAvB has both monopole (l ¼ 0)
and quadrupole (l ¼ 2) moments.
Finally, the velocity dispersion is described in linear

theory as
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σ2vA ¼ ξvAvAð0Þ ¼ ðaHfÞ2
Z

dk
6π2

PΘΘðkÞ

¼ σ2vB : ð34Þ

Provided the power spectra Pδδ, PδΘ, and PΘΘ, all the
expressions summarized in Secs. III C and III D, i.e.,
Eqs. (29)–(34), can be computed. Note that in the linear
theory limit, we have PΘΘ ¼ PδΘ ¼ Pδδ. Below, we will
use the linear power spectrum obtained from CAMB code
[73]. As a simple nonlinear extension of the LA model, we
may replace the linear power spectrum with its nonlinear
counterpart [74]. This is called the nonlinear alignment
(NLA) model [8,12,33]. Since we are interested in the IA
statistics at large scales, we shall mainly use the LA model.
The NLA model is considered only when we focus on the
BAO scales, and we use the REGPT code to compute the
three nonlinear power spectra, Pδδ, PδΘ, and PΘΘ [75,76].
This code gives the perturbation theory (PT) predictions
based on a resummed perturbative calculation, which is
basically applicable in the weakly nonlinear regime. By
comparing with simulations, we will show how well the
nonlinear damping of the BAO feature in different statistics
can be modeled with this code.

IV. ANALYSIS

A. N-body simulations and subhalos

In order to study the alignment statistics, we use a series
of large and high-resolution N-body simulations of the
ΛCDM cosmology seeded with Gaussian initial conditions.
These are performed as a part of the DARK QUEST project
[77]. We here use outputs of the low-resolution runs
performed to explore large-scale correlation signals for
massive halos. We employ np ¼ 20483 particles of mass
mp ¼ 8.15875 × 1010 h−1M⊙ in a cubic box of side
Lbox ¼ 2 h−1Gpc. In total, eight independent realizations
are simulated and the snapshots at z ¼ 0.306 are used.
Subhalos are identified using phase-space information of

matter particles, i.e., the ROCKSTAR algorithm [78]. The
velocity of the (sub)halo is determined by the average
particle velocity within the innermost 10% of the (sub)halo
radius. We use the standard definition for the halo radius
and mass of

Mh ≡MΔm ¼ Mð< RΔmÞ ¼ ð4π=3ÞΔρmðzÞR3
Δm; ð35Þ

where ρm is the mean mass density of the Universe at a
given redshift z, and we adopt Δ ¼ 200. The main
ROCKSTAR output does not distinguish between halos
and subhalos. We thus utilize a separate routine provided
as a part of the ROCKSTAR package to make the distinction
using the radius R200m as the boundary. If a halo center is
inside R200m of a neighboring more massive halo, we
classify it as a satellite subhalo. If two or more subhalos are

located within the virial radius of each other, the most
massive one is labeled as a central subhalo.
To study cluster-scale halos, we select subhalos with

Mh ≥ 1014 h−1 M⊙, which roughly corresponds to the
typical threshold of the richness parameters used by the
cluster-finding algorithms in the literature. We label these
massive halos as “clusters.” We will present the analysis
of the IAs of the cluster shapes relative to the density and
velocity fields traced by dark matter/galaxies/clusters. To
this end, we create mock galaxy catalogs using a halo
occupation distribution (HOD) model [79] applied for the
LOWZ galaxy sample of the SDSS-III Baryon Oscillation
Spectroscopic Survey obtained by Ref. [80]. We populate
halos with galaxies according to the best-fitting HOD
NðMhÞ. For central subhalos that contain satellite gal-
axies, besides the halo center chosen as a central galaxy,
we randomly draw NðMhÞ − 1 member subhalos to
mimic the positions and velocities of the satellites (see
Refs. [81,82] for alternative methods). We use a random
selection of subhalos rather than the largest subhalos
because a satellite subhalo undergoes tidal disruption in
the host halo and its mass decreases as it goes toward the
center of the gravitational potential. We assume halos to
have triaxial shapes [83] and estimate the orientations of
their major axes using the second moments of the
distribution of member particles projected onto the
celestial plane. Table II summarizes the properties of
our mock samples.
Note that, due to the limited hard disk space, the

information of dark matter particles could have been
stored partially and thus was lost for four realizations out
of eight after the measurement of the mass moments
necessary to determine the direction of the major axis.
Hence, we could not measure some of the statistics for
which the information of dark matter particles is needed,
while the information of the halos including the direction
of the major axis traced by the dark matter particles was
available for all eight realizations. Thus, if the presented
statistics include the density or velocity field of dark
matter in the following analysis, the result is obtained
from four realizations; otherwise it is out of the entire
eight realizations.

TABLE II. Properties of mock subhalo samples at z ¼ 0.306.
fsat is the number fraction of satellites, Mmin and M̄ are the
minimum and average halo mass in units of 1012 h−1 M⊙,
respectively, n̄ is the number density in units of h3 Mpc−3, and
bA (A ¼ fc; gg) is the cluster/galaxy bias computed in the large-
scale limit.

Types Label fsat Mmin n̄ bA M̄

Clusters c 0 100 2.05 × 10−5 3.11 188
Galaxies g 0.137 1.63 5.27 × 10−4 1.70 25.2
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The linear bias parameter of sample A is determined by
measuring bAðrÞ ¼ ½ξδAδAðrÞ=ξδmδmðrÞ�1=2 and searching for
the best-fitting constant over 20 h−1Mpc<r< 80 h−1Mpc,
where ξδmδm is the matter correlation function measured
from the same simulation as the numerator. The determined
bias is consistent with that obtained from the cross-
correlation function, bAðrÞ ¼ ξδAδmðrÞ=ξδmδmðrÞ. The values
of the bias are shown in Table II. These bias parameters are
used for our theoretical modeling in Sec. V.

B. Estimators

Here we describe the estimators we use to measure the
alignment statistics from N-body simulations. As men-
tioned in the previous section, each statistic X can be
expanded in the Legendre polynomials PlðμÞ and it has
multipole components. For the GI and VI correlations
(X ¼ fξδAþ; ξpAþg) we have

XlðrÞ ¼ ð2lþ 1Þ
Z

1

0

Xðr; μÞPlðμÞdμ; ð36Þ

while for the other alignment statistics, the θ dependence
needs to be additionally included. In this paper, we consider
only the lowest moment for each statistic, either the
monopole or dipole, and the subscript l is omitted in
the following.
The estimator of the GI correlation function between the

density of sample A and ellipticity of sample B is given by
Ref. [19]

ξδAþðrÞ ¼
P

i;jjrγþðjjiÞ
RARBðrÞ

; ð37Þ

where we consider only the monopole moment. The sum in
the numerator is taken over all pairs weighted by the plus
component of ellipticity in the separation r, where i and j
run over samples A and B, respectively, and γþðjjiÞ is theþ
component of the ellipticity of the jth shape for sample B
measured relative to the direction to the ith tracer for
sample A (see Fig. 1). The denominator RARBðrÞ is the pair
count of the random distributions as a function of separa-
tion r. It can be analytically and accurately computed
because we place the periodic boundary condition on the
simulation box, and we will set the number density of the
random sample A (B) to be equivalent to that of the data
sample A (B) so that the pair count does not need to be
normalized.
The VI correlation contains odd-order multipoles and the

lowest-order term is the dipole, because we use the line-of-
sight component of the velocity, vAðxÞ ¼ vAðxÞ · x̂. Hence,
we propose the following estimator for the density-
weighted VI correlation dipole:

ξpAþðrÞ ¼
P

i;jjrvAðxiÞγþðxjÞμijP
i;jjrμ2ij;rand

; ð38Þ

where μij ≡ r̂ · x̂iþx̂j
2

is the directional cosine between the
separation vector of each pair and the line of sight, and
μij;rand is the same as μij but for the random distributions.
Thus, the denominator is similar to RARB but each pair is
weighted by the square of the direction cosine. In this
analysis, the shape information is always taken from
clusters, while the field A can be either matter, galaxies
or clusters themselves.
We then present estimators for the alignment density and

velocity correlation statistics. The alignment correlation
function of the density (A) and shape (B) samples can be
measured by

ξABðr; θÞ ¼
DADBðr; θÞ
RARBðr; θÞ

− 1; ð39Þ

whereDADBðr; θÞ is the pair counts of the data as functions
of separation r and angle θ. As is the case with the VI
correlation, the dominant contribution for the alignment
pairwise infall momentum is the dipole moment. We adopt
an estimator for the pairwise momentum dipole [84,85],

pABðr; θÞ ¼
P

i;jjr;θ½vAðxiÞ − vBðxjÞ�μijP
i;jjr;θμ2ij;rand

: ð40Þ

From Eq. (24), the conventional momentum correlation
function contains contributions from the monopole and
quadrupole moments, and the higher-order moments are
produced by IAs. Thus, here we consider only the monop-
ole component for the alignment momentum correlation
function and use the estimator

ψABðr; θÞ ¼
P

i;jjr;θvAðxiÞvBðxjÞ
RARBðr; θÞ

; ð41Þ

where the numerator is the pair count of samples A and B
weighted by the products of the line-of-sight components
of their velocities as functions of r and θ. Likewise, for the
(density-weighted) alignment velocity dispersion which
has the monopole moment as the dominant contribution
followed by the quadrupole, we use the estimator for the
monopole,

Σ2
ABðr; θÞ ¼

P
i;jjr;θ½vAðxiÞ − vBðxjÞ�2μij

RARBðr; θÞ
: ð42Þ

Once again, the shape information is taken from clusters,
so that sample B is always a cluster, B ¼ fcg. In the
following analysis, we measure these statistics where
A ¼ fmg and A ¼ fg; cg from four and eight realizations,
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respectively, and present the means and their errors from
the scatters.

C. Measurements

We start by presenting the GI correlation which has been
extensively studied in the literature in the context of weak
lensing systematics. In Fig. 2, the red points show the GI
correlation function of cluster shapes with dark matter,
ξδmþðrÞ. The inset shows the zoomed view of the GI
correlation around the BAO scales. The blue points show a
measurement of the density-weighted VI correlation func-
tion, ξpmþ.
In the top panel of Fig. 3, we show the cluster-matter

density cross-correlation function binned in θ. Again, the
inset zooms the correlation around the BAO scales [86,87].
As found in Ref. [88], the BAO features are more enhanced
in the correlation function perpendicular to the major axes
of halos. The bottom panel shows the ratio, ξmcðr; θÞ=
ξmcðrÞ − 1, and thus the effect of IA is seen as the deviation
from zero. The sign changes at ∼120 h−1Mpc because the
conventional correlation function crosses zero there (see the
upper panel).
The next quantity to consider is the pairwise mean infall

momentum. The upper-left panel of Fig. 4 shows the align-
ment pairwise mean momentumpmcðr; θÞ and the lower-left
panel shows its ratio with the conventional pairwise mean
momentum, pmcðr; θÞ=pmcðrÞ − 1. The sign of the statistic
is negative over all the scales probed because objects
approach each other on average through gravity. One can
see the clear alignment signal up to very large scales, which
indicates that dark matter residing along the major axis

of a cluster tends to move faster toward the cluster than
that perpendicular to the major axis. Note that the align-
ment signal in pmc persists beyond r ∼ 200h−1 Mpc, up to
∼500 h−1Mpc.
We turn to another velocity statistic: the alignment

momentum correlation function. Its numerical results are
shown in the upper- and lower-middle panels of Fig. 4.
The IA signal in the momentum correlation vanishes at
r ∼ 100 h−1Mpc, on scales much smaller than that of the
density correlation. This is expected because the con-
tributions of IAs to the momentum correlation function
appear as products of two correlation functions, as seen
in Eq. (24). Finally, we show the density-weighted
alignment velocity dispersion in the upper-right panel
of Fig. 4 and its ratio with the conventional one in the
lower-right panel. As is the case with the alignment
momentum correlation function, the effect of IA becomes
negligible at large scales, as shown in the lower-right
panel of Fig. 4.

FIG. 3. Alignment density correlation function of cluster
orientation with matter in real space. In the top panel the blue
and red points respectively show the correlations parallel and
perpendicular to the major axes of the clusters ξmcðr; θÞ, while
the black points shows the angularly averaged, conventional
correlation function, ξmcðrÞ. The dotted curves are the LA model
predictions. Note that the vertical axis mixes logarithmic and
linear scalings. The inset provides the zoomed view on BAO
scales. Here we also show how the NLA model (dashed curves)
improves the fit around BAO scales compared to the LA
model (dotted curves). The bottom panels show the ratio,
ξmcðr; θÞ=ξmcðrÞ − 1. Essentially, the difference between LA
(dotted) and NLA (dashed) models is the accuracy near BAO
scales, 70 < r < 110 h−1 Mpc.

FIG. 2. GI and VI correlation functions shown by the red and
blue points respectively. The density/velocity field is sampled by
dark matter and the ellipticity field is sampled by clusters. The
dotted curves are the LA model predictions. The inset shows an
expanded view on BAO scales for the GI correlation with a linear
vertical axis. In the inset we also show the NLA model using
REGPT as the dashed curve.
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V. COMPARISON OF MODEL PREDICTIONS
TO N-BODY RESULTS

In this section, we compare the predictions of the LA
model for the density and velocity alignment statistics to
the measurements from N-body simulations obtained in
Sec. IV C. We first show the results for the density
statistics, namely the GI and alignment density correlation
functions in Sec. VA, and then those for the velocity
statistics in Sec. V B. Since multiple terms contribute to the
alignment signal in each velocity statistic, we discuss the
individual contributions of these terms in Sec. V C.
Section V D presents the results when biased objects are
used rather than dark matter particles as a tracer of IA.

A. Density statistics

In Fig. 2, the prediction of the LA model for the GI
correlation is compared to the N-body result. The ampli-
tude, C1 in Eq. (29), is determined by comparing the model
to the GI measurement and minimizing the χ2 statistic. We
find the best-fitting value to be C1ρ̄=D̄ ¼ 1.50. Note that
the best-fitting value determined here is used for all the
statistics presented below. The red dotted curve shows the
prediction from the LA model. The result is consistent with
the work of Ref. [12], and we extend the modeling to larger
scales. We find perfect agreement between the measure-
ment and the LA model at 20 < r < 640 h−1Mpc. As
shown in the inset of Fig. 2, there is a small but non-
negligible discrepancy between the measurement and the
LA model prediction around BAO scales. However, the

NLA model with the PT-based nonlinear correction to
the spectra using the REGPT code [75], depicted by the
dashed curve, dramatically improves the agreement, con-
sistent with the result of Ref. [33].
The dotted curves in Fig. 3 are the result of the LAmodel

prediction for the alignment density correlation function.
Note again that for the parameter C1, we use the same value
as determined from the GI correlation. Since the alignment
correlation is equivalent to the GI correlation, the accuracy
of the LA model is the same as that for the GI correlation.
And thus, as shown in the inset of the upper panel, the LA
model fails to reproduce the nonlinear smearing effect
around the BAO peak while the NLA model significantly
improves the accuracy. The lower panel of Fig. 3 shows that
although the LA model overpredicts the amplitude of IA at
r ∼ 80 h−1 Mpc, the NLA model perfectly predicts it.
Our analysis reproduces the modeling result of Ref. [12]

but we extend it to larger scales, >100 h−1Mpc. Since the
alignment correlation along the major axis (θ ∼ 0°) at such
scales is close to zero, the ratio ξmcðr; θÞ=ξmcðrÞ − 1
becomes quite noisy as seen in the bottom panel. On the
other hand, the correlation perpendicular to the major axis
(θ ∼ 90°) can be accurately modeled by the LA model up
to ∼400 h−1Mpc.

B. Velocity statistics

We now discuss the predictions of the LA model for
the velocity alignment statistics we proposed. While the
measured VI correlation function is density weighted, our
model prediction in Eq. (30) is volume weighted, ξvmþ.

FIG. 4. Upper panels: Alignment pairwise mean infall momentum (left), alignment momentum correlation function (middle) and
density-weighted alignment velocity dispersion (right), which respectively have units of h−1 Mpc, h−2 Mpc2 and h−2 Mpc2. Since the
pairwise infall momentum has negative values at all scales, we show −pmc in the left panel. For the velocity dispersion we shift the linear
theory prediction by a constant value vertically to match the measured dispersions in the large-scale limit (see text). The dotted curves
are our model predictions for these velocity statistics based on the LA model. Lower panel: Ratios of alignment velocity statistics to the
corresponding conventional one, pmcðr; θÞ=pmcðrÞ − 1 (left), ψmcðr; θÞ=ψmcðrÞ − 1 (middle) and Σ2

mcðr; θÞ=Σ2
mcðrÞ − 1 (right). Just like

in the upper panels, the dotted curves show the LA model predictions.
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Thus, we also compare our model to the measurement of
ξ̂vmþ ≡ ξpmþð1þ ξδmδcÞ−1. We do not plot the measurement

of ξ̂vmþ because not only are they not the exact same
quantities (see Appendix B of Ref. [85]), but there is also a
negligible difference between the measurements of ξpmþ
and ξ̂vmþ except at r < 25 h−1 Mpc. The LA model for the
VI correlation with the same value of C1 as the GI
correlation predicts the measurement on large scales.
The model, however, fails to predict the VI correlation
at r < 50 h−1 Mpc, which is a relatively larger scale than
the GI correlation.
The LA model prediction for the alignment pairwise

mean momentum is shown as the dotted curves and
compared to the result from N-body simulations in the
upper- and lower-left panels in Fig. 4. The conventional
pairwise mean momentum is consistent with linear theory,
½ξδmvcðrÞ − ξvmδcðrÞ�, on large scales and starts to deviate at
the scale r ∼ 30 h−1Mpc, as studied in Refs. [85,89]. The
LA model can accurately predict the IA of the pairwise
mean momentum up to similar scales. As shown in the
lower-left panel of Fig. 4, the large-scale velocity alignment
in N-body simulations perfectly matches the model pre-
diction and the nonzero alignment signal is detected up to
∼500 h−1Mpc. Compared to the result in Fig. 3, this
implies that the alignment signal can be better probed by
using the phase-space information. While the LA model
fails to predict the nonlinearity of the pairwise infall
momentum on small scales, it is canceled out by taking
the ratio, pmcðr; θÞ=pmcðrÞ − 1, and the alignment effect
itself can be well captured by the LA model on such scales,
as demonstrated in the lower-left panel of Fig. 4. Many

terms contribute to the IA of the pairwise infall momentum
[Eq. (23)], and the contribution of each term will be
discussed in Sec. V C.
Let us now present our prediction for the alignment

momentum correlation function based on the LA model.
First, we study the prediction for the conventional momen-
tum correlation, ψABðrÞ ¼ ð1þ ξδAδBÞξvAvB þ ξδAvBξvAδB ,
shown as the black dotted curve and compared to the
N-body result in the middle set of Fig. 4. The prediction for
the alignment momentum correlation function is depicted
by the blue (0 < θ < 30°) and red (60 < θ < 90°) curves.
As seen in the lower panel, there is no large-scale IA effect
in the momentum correlation, consistent with the meas-
urement. The measured momentum correlation has a lower
amplitude than the linear prediction on very large scales,
particularly at r > 300 h−1Mpc. This is caused by the
finite simulation box (survey) size, which is more signifi-
cant for the velocity field than the density field (see, e.g.,
Refs. [85,90]). Investigating the finite-volume effect is
beyond the scope of this paper and it will be discussed in
further detail in our future work. There are several terms
which contribute to the IA signal seen on small scales
[Eq. (24)], and they will be addressed in Sec. V C below.
Finally, the LA model is tested for the density-weighted

alignment velocity dispersion in the upper- and lower-
right panels of Fig. 4. It is well-known that the linear
theory prediction for the one-dimensional (1D) velocity
dispersion, σvA ¼ 3.49 h−1Mpc (at z ¼ 0.306), causes a
constant offset for the density-weighted velocity dispersion
[85,91,92]. Thus, an extra term needs to be added to σ2vA ,
σ2vA → σ2vA;nl ¼ σ2vA þ Δσ2vA . Since modeling the nonlinear
velocity dispersion is not within the scope of this paper,

FIG. 5. Contributions of each term to the IA in the pairwise infall momentum (left), momentum correlation (middle) and density-
weighted velocity dispersion (right) for 0 < r < 30°. In each panel, the points are the N-body measurements, which are the same data
points as the blue points shown in the lower panels of Fig. 4. In the left panel, contributions of the terms with ξvmþ, ξδmδcξvmþ, ξδmδcξδmþ,
and ξvmþξδmþ in Eq. (23) are shown as red, blue, green and yellow dotted curves, respectively, and the sum of these terms is shown as
black dashed curves. In the middle panel, two terms contribute to the IA of the momentum correlation, and the ξvmvcξδmþ and ξδmvcξvmþ
terms are shown by the red and blue curves, respectively. Because there are many terms contributing to the IA of the density-weighted
velocity dispersion, in the right panel we show the contributions of the cos ð2θÞ terms proportional to ξδmþ (red), ξvmþ (blue) and
ξδmþξ

2
vmþ (green), and the sum of the cos ð4θÞ terms (yellow). Since the size of the θ bin is 30°, there is no contribution from the

cos ð6θÞ term.
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to match the amplitude of the measured velocity disper-
sion on large scales we simply add a constant so that

σv;nl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2vm;nlþσ2vc;nlÞ=2

q
¼ 4.08 h−1Mpc. Just for com-

parison, the 1D velocity dispersions directly computed from
the simulations are σvm;nl ¼ 4.17 h−1 Mpc and σvc;nl ¼
3.95 h−1Mpc, and thus σv;nl ¼ 4.06 h−1Mpc. Although
the two σv;nl’s are not the exact same quantities, adding
the constant to have σv;nl similar to the directly measured
value would be a reasonable manipulation. As seen in the
upper panel, the behavior of the alignment velocity
dispersion is qualitatively captured by the LA model.
However, the model significantly underpredicts the meas-
urement as in the lower panel. We discuss the individual
contributions in Sec. V C.

C. Contribution of each term

We look into the modeling of the velocity align-
ment statistics in more detail. From the left to right panels
of Fig. 5, the points with error bars show the measured
ratios, pmcðr; θÞ=pmcðrÞ − 1, ψmcðr; θÞ=ψmcðrÞ − 1 and
Σ2
mcðr; θÞ=Σ2

mcðrÞ − 1 with 0 < θ < 30°. They are respec-
tively the same as the blue points in the lower panels of
Fig. 4 from left to right.
The pairwise momentum has a linear-order contribution of

IA, proportional to the VI correlation, ξvmþ, depicted by the

red curves in the upper panel. This term dominates the signal
at scales larger than r ∼ 50 h−1 Mpc. On small scales, on the
other hand, many terms contribute. The major contribution is
the term proportional to ξδmδcξvmþ, followed by the term of
ξδmδcξδmþ, shown by the blue and green curves, respectively.
The cos ð4θÞ moment, proportional to ξvmþξδmþ, has a
negligible contribution (yellow curve).
For the momentum correlation function, there are two

terms which contribute to the IA effect, ξvAvBðrÞξδAþðrÞ and
ξδAvBðrÞξvAþðrÞ, shown as the red and blue curves in the

FIG. 6. Same as in Fig. 2, but for the GI and VI correlation
functions for cluster shapes whose density/velocity fields are
sampled by galaxies (top) and clusters (bottom).

FIG. 7. Same as in Fig. 3, but for the alignment density
correlation function of cluster orientation with galaxies (upper
set) and clusters (lower set). The top panel of each set shows the
correlation function itself, ξAcðr; θÞ where A ¼ fg; cg, while the
bottom panel shows the ratios, ξAcðr; θÞ=ξAcðrÞ − 1.
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middle panel of Fig. 5. As expected, all the terms are higher
order and vanish on large scales r ∼ 100 h−1 Mpc. Many
terms contribute to the IA in the density-weighted velocity
dispersion. In the right panel of Fig. 5 we show contribu-
tions of the cos ð2θÞ terms proportional to ξδmþ (red), ξvmþ
(blue) and ξδmþξ

2
vmþ (green), and the sum of the cos ð4θÞ

terms (yellow). Note that since our statistics are binned by
30° in θ, the term proportional to cos ð6θÞ vanishes. Just as
in the case of the momentum correlation, the IA effect in
the velocity dispersion becomes zero at large scales.
However, unlike the former velocity statistics, the LA
model significantly underpredicts the IA effect on small
scales. This implies that the nonlinearity of IA needs to be
taken into account properly for the precise modeling of the
alignment velocity dispersion on small scales.

D. Biased tracers

So far we have studied the IAs of halos based on the
density and velocity fields of dark matter particles relative

to the cluster orientations. In this subsection we investigate
this effect using the biased objects as a tracer of IA, namely
the cross correlations between the cluster orientations with
density/velocity fields of clusters or galaxies. Even for the
alignment statistics of these biased objects, we use the
single number C1 determined for the matter-cluster GI
correlation function in Sec. VA. The upper and lower
panels of Figs. 6–9 show respectively the results for galaxy-
cluster and cluster-cluster statistics, corresponding to those
for matter-cluster statistics in Figs. 2–5.
The upper panel of Fig. 6, shows the GI correlation

between galaxy density and cluster orientation. On large
scales where linear theory holds, the GI cross correlation is
related to that with dark matter by a linear relation, ξδgþ ¼
bgξδmþ [20], where the galaxy bias bg is determined to be
bg ∼ 1.70 (Sec. IVA). Just like in Fig. 2, the LA model
predicts the N-body result of the GI correlation, and the
NLA model with the nonlinear power spectrum based on
PT improves the accuracy around BAO scales as shown in

FIG. 8. Same as in Fig. 4, but in the upper and lower sets, galaxies and clusters are respectively used instead of dark matter as a tracer
of the velocity field for the velocity alignment statistics.
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the inset of the upper panel of Fig. 6. However, if clusters
are used as a tracer of the IA, the nonlinear smearing of the
measured BAO signal still slightly deviates from the NLA
model prediction as shown in the lower panel of Fig. 6. This
could be due to the nonlinearity of the bias. We show the
alignment galaxy-cluster and cluster-cluster density corre-
lation function in Fig. 7. This signal has been measured
both in simulations and observations [23,49,93], and the
LA model fitting was performed in Ref. [12]. Again, our
analysis extends the previous results toward larger scales.
The NLA model improves the agreement with the mea-
sured alignment correlation around BAO scales. However,
the BAO features are slightly more significant than the
NLA model prediction with the linear bias ansatz, unlike
the matter-cluster correlation. It is known that in peak
theory the BAO peak is amplified for high peaks which
correspond to highly biased objects such as luminous
galaxies and clusters [94,95]. Thus, the result obtained
here is consistent with the peak theory prediction.
We show the VI correlation function, namely the

correlation of the cluster orientation with galaxy and cluster
velocities, respectively, in the upper and lower panels of
Fig. 6. Because the VI correlation does not depend on the
bias in the LA model, the blue dashed and dotted curves are
equivalent to those in Fig. 2. Perfect agreement between the
measurements and the corresponding model predictions is
achieved at r > 50 h−1 Mpc up to the largest scale probed
in this paper, r ∼ 600 h−1Mpc.

The alignment pairwise infall momenta for biased tracers
are shown in the left panels of Fig. 8. By comparing them to
the matter-cluster alignment pairwise momentum in the left
panel of Fig. 4, one can see that the IA of the pairwise infall
momentum slightly depend on the bias of the density/
velocity tracer, and more biased objects have smaller
alignments. The middle panel of Fig. 8 presents the
alignment momentum correlation function for these biased
objects. Just like the alignment matter-cluster momentum
correlation, the effect of IA vanishes at scales beyond
r ∼ 100 h−1Mpc. On smaller scales the deviation of the
shape of the measured momentum correlation from the
linear theory becomes more significant for more biased
tracers, although the IA of the galaxy-cluster momentum
correlation is still consistent with the LA model prediction
even at such small scales, as shown in the bottom of the
upper-middle panel of Fig. 8. The result for the alignment
density-weighted pairwise velocity dispersion of the biased
objects is shown in the upper- and lower-right panels
of Fig. 8. Once again, the nonlinear correction to the
linear-theory velocity dispersion, Δσ2vA ¼ σ2vA;nl − σ2vA , is
added by hand to match the measured simulation result
in the large-scale limit. Since the 1D velocity dispersion
of clusters directly measured from the simulations, σvc;nl ¼
3.95 h−1Mpc, provides a perfect match with the large-
scale amplitude of Σ2

cc, we simply use the value of Δσvc
which gives this value of σvc;nl. For Σ2

gc, we choose

FIG. 9. Same as in Fig. 5, but in the upper and lower sets, galaxies and clusters are respectively used instead of dark matter as a tracer
of the velocity field for the velocity alignment statistics.
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σv;nl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2vg;nl þ σ2vc;nlÞ=2

q
¼ 4.12 h−1Mpc, which is

slightly higher than the directly computed value,
σv;nl ¼ 4.06 h−1Mpc.
Figure 9 is similar to Fig. 5, but it presents the ratios

of the IA velocity statistics to the corresponding con-
ventional ones, Xgcðr; θÞ=XgcðrÞ − 1 (upper row) and
Xccðr; θÞ=XccðrÞ − 1 (lower row), where X ¼ fp;ψ ;Σ2g
from left to right. The points with the error bars and the
black curves are the same as the blue points and curves in
the bottom parts of the upper panels in Fig. 8. The other
curves show the contribution of each term to the total IA.
As shown in the left panels, the large-scale IA signal in the
pairwise infall momentum is well predicted by the LA
model even for biased tracers. The alignment signals in the
momentum correlation function at scales r < 100 h−1Mpc
get stronger for tracers with larger biases, as demonstrated
in the middle panels of Fig. 9 compared to the middle panel
of Fig. 5. Although our prediction uses the LA model with
the linear power spectrum, such a trend can be well
captured. The behavior of the IA effect measured for the
density-weighted velocity dispersion is not very different
for different tracers, even from dark matter, as in the right
panels of Figs. 5 and 9. Thus, as in the dark matter case, our
LA model largely underpredicts the measurement at scales
less than r ≃ 60 h−1Mpc.

VI. BARYON ACOUSTIC OSCILLATION
FEATURES IN VELOCITIES

In the previous section we studied the BAO features
encoded in only the density and its alignment statistics.
However, it is natural to expect such features in the velocity
statistics as well. The BAO features encoded in the velocity
statistics in Fourier space have already been discussed in
Ref. [85]. In Sec. VI A we present such BAO features for
the corresponding configuration space. Then in Sec. VI B

we demonstrate that the VI correlation function and align-
ment pairwise infall momentum also contain the BAO
information.

A. BAOs in conventional velocity statistics

Figure 10 shows the conventional pairwise infall momen-
tum, momentum correlation function, and density-weighted
velocity dispersion of clusters with matter from left to right.
The black points are the same as those in the upper panels of
Fig. 4, but these quantities are multiplied by some powers of
the separation, rn, in order to flatten the results near the BAO
scales. The black dotted and dashed curves are the linear and
nonlinear model predictions, the latter of which is computed
using the REGPT code. The yellow curve is computed by
the linear model with the linear power spectrum without
BAO wiggles, Pnw

δmδm
, where the superscript “nw” denotes a

“no-wiggle” power [96].
For the pairwise infall momentum in the left panel of

Fig. 10, one can see a small but systematic offset of the
amplitude between the N-body result and any of the
theoretical predictions. Since the correlation between
different separation bins in the velocity field in configu-
ration space is stronger than that in the density field, it is
possible for the correlation to be systematically shifted
vertically. Subtracting a small constant from the measured
pmc at all scales indeed provides agreement with the PT-
based model visually perfect (see Fig. 2. of Ref. [86] for the
same trend found in the redshift-space correlation function
which also contains velocity information). However, our
intent here is simply to demonstrate that the BAO infor-
mation is indeed encoded in the velocity statistics, not to
test which model is preferred. Thus, we will leave the more
detailed modeling for future work. Because the results for
the other two pairwise infall momenta, pgcðrÞ and pccðrÞ
are more or less equivalent to that for pmcðrÞ, we do not
show them here.

FIG. 10. BAO features in velocity statistics shown in the upper panels of Fig. 4. We plot the pairwise infall momentum (left),
momentum correlation (middle) and pairwise velocity dispersion (right) between matter and clusters, multiplied by some powers of r to
make the slopes flatter. The black points and dotted curves are respectively the N-body measurements and the model predictions based
on linear theory, which are the same as those in the upper panels of Fig. 4. The black dashed curves are the PT-based nonlinear model,
while the yellow dotted curves are the linear predictions with the BAO wiggles smeared out.
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As shown in the middle panel of Fig. 10, the difference
between the predictions with BAOs in linear and nonlinear
perturbation theory is quite small. It is not even easy to
distinguish between the models and the linear prediction
without BAOs. Moreover, the difference is smaller than the
finite-volume effect which becomes significant at scales
r ≥ 100 h−1 Mpc, although the measurement is consistent
with all three predictions within the error bars. Thus it will
be of essential importance to fully understand the effect of
the finite survey volume for the momentum correlation
function if we want to use the BAO information in the
correlation.
As is the case with the momentum correlation function, it

is hard to distinguish between different theoretical models
for the pairwise velocity dispersion at the BAO scales as
seen in the right panel of Fig. 10, although one can see a
bump that could be due to the BAO signal. Note that, as
described in Sec. V B, a constant, Δσ2v, is added to the
prediction of the velocity dispersion to match with the
measurement in the large-scale limit. For this statistics, it is
interesting to see the case of highly biased objects because
Σ2
ABðrÞ contains a term proportional to σ2vξδAδBðrÞ ¼

σ2vbAbBξδmδmðrÞ [see Eq. (25)]. We show the velocity
dispersion for galaxy-cluster pairs, Σ2

gc in the upper panel
of Fig. 11. Here the bump caused by BAOs is more
prominent than that in the matter-cluster pairwise velocity
dispersion as expected. There is a small (<1%) offset
between the N-body result and our predictions because the

constant Δσ2v is added so that they match at larger scales,
r > 200 h−1Mpc. The BAO bump is more enhanced for
the cluster-cluster velocity dispersion because of the
k2-dependent bias predicted by peak theory [94,95], as
shown in the lower panel of Fig. 11. However, the mea-
surement is so noisy due to the sparseness of clusters that it
is hard to conclude anything concrete based on this result.

B. BAOs in alignment velocity statistics

Here, let us extend the analysis of BAOs in the former
subsection to velocity statistics with IA. Figure 12 plots the
VI correlation function, the same as in Fig. 2, but multiplied
by r1.3. Just like the GI correlation, BAOs contribute to the
VI correlation negatively as emphasized in the figure.
While the yellow dotted curve is the theoretical prediction
of the LA model with BAOs smeared out, the blue dotted
and dashed curves are respectively those of the LA and
NLA models with BAOs included. Obviously, our meas-
urement prefers the models with BAOs.
Finally, we move on to the alignment velocity statistics.

Because there is no linear-level contribution to the IA of the
momentum correlation function and pairwise velocity
dispersion, we consider only the alignment pairwise infall
momentum. Figure 13 shows the ratios of the alignment
mean infall momentum to that without BAOs, pmcðr; θÞ=
pnw
mcðr; θÞ. The numerator is computed from the simulations

(points), the LA model (dotted curves) and the NLA model
(dashed curves), while the denominator is from the LA
model prediction with BAOs smeared out using the fitting
formula of Ref. [96].
Since the IA mean infall momentum consists of the

conventional mean infall momentum and the VI correlation

FIG. 12. Same as in Fig. 2 but for the matter-cluster VI
correlation function times r1.3. The blue points and dotted curve
are the same as those in Fig. 2, i.e., the N-body result and the LA
model prediction, respectively. The blue dashed and yellow
dotted curves are the predictions with the NLA and no-wiggle
LA models, respectively.

FIG. 11. Same as in the right panel of Fig. 10 but for the
pairwise velocity dispersion for galaxy-cluster (top) and cluster-
cluster (bottom) pairs.
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function, the small offsets seen in Fig. 10 would affect the
result. Nevertheless, the enhancement of BAO features for
the separation perpendicular to the major axes of clusters is
qualitatively captured by the LA and NLA models as
shown by the red curves. On the other hand, BAO features
for the IA mean infall momentum are suppressed along the
major axis of a cluster due to the negative contribution
of the VI correlation to BAOs. Thus, the BAO signals for
θ ∼ 0 are less prominent, though the deviation of the
measurement from the predictions is at most ∼3%.
A more detailed modeling of the IA velocity statistics

and their cosmological impacts will be studied in our future
papers.

VII. DISCUSSION AND CONCLUSIONS

In the literature the IA of galaxy/halo orientations have
been studied in detail only with regard to the surrounding
overdensity field. In this paper we focused on the statistics
of IA characterized in phase space with density and velocity
fields rather than the traditional one in three-dimensional
position space with just the density field. For this purpose,
we considered various velocity statistics, including the
density-weighted VI correlation function, alignment pair-
wise infall momentum, alignment momentum correlation
function, and density-weighted alignment pairwise velocity
dispersion.
We derived simple analytic formulas for these velocity

statistics under the assumption that thedensity fluctuation is a

random Gaussian field and the velocity and tidal fields are
related to the density by linear theory. The alignment mean
infall momentum, pABðr; θÞ [Eq. (14)], momentum correla-
tion function ψABðr; θÞ [Eq. (15)], and density-weighted
pairwise velocity dispersion Σ2

ABðr; θÞ [Eq. (16)] are
expressed in terms of the GI and VI correlation functions
with the cos ðnθÞ terms with n even as well as the conven-
tional density and velocity correlation functions. The GI
and VI functions in the formulas have been computed based
on the LA model. We tested our theoretical models of
velocity statistics by comparing them to the measurements
of large-volumeN-body simulations.We then found that our
formula can explain the large-scale alignment signals in the
measured mean infall momentum beyond 100 h−1 Mpc up
to ∼600 h−1Mpc.
We have also studied how signatures of BAOs are

imprinted into the velocity statistics and the IA in them.
We detected the BAO signals in the conventional mean
infall momentum, momentum correlation function, and
pairwise velocity dispersion, which confirms the earlier
measurement in the density-momentum and momentum-
momentum power spectra in Fourier space in Ref. [85].
In the VI correlation function, the contributions of BAOs

are negative and they appear as a trough rather than a bump
as is the case in the GI correlation function. Thus, the
alignment pairwise infall momentum perpendicular and
parallel to the major axes of clusters has a more and less
prominent BAO bump, respectively, than the conventional
pairwise infall momentum. This feature has been predicted
by our models to some extent.
The alignment pairwise momentum, pABðr; θÞ, or its

ratio with the density correlation, may serve as a powerful
tool to probe inflation. Future kSZ surveys will enable us to
measure the large-scale velocity field and constrain cos-
mological models using the higher-order velocity moments
[97]. A possible contaminant of utilizing kSZ surveys is
the effect of the optical depth. However, a promising
method of measuring it has recently been proposed based
on a semianalytic technique calibrated with x-ray obser-
vations [98].
In this paper we have presented the measurements of IA

statistics and their theoretical modelings only in real space.
Note that, however, in observations such as peculiar
velocity and kSZ surveys, the velocity field is also sampled
in redshift space, and thus is affected by redshift-space
distortions (RSDs) [99], as formulated in Refs. [85,90,100].
The effect of RSDs on the alignment clustering statistics
has been studied in Refs. [101,102] in a different context. A
preliminary analysis of RSDs in IA statistics has been
performed in Ref. [61]. It is straightforward to extend the
presented modeling of velocity IA by the LA model in real
space to that in redshift space. On the other hand, it is
important to model the nonlinearity of IA statistics in order
to maximize the encoded cosmological information [13]. A
detailed modeling of the effects of nonlinear RSDs on the

FIG. 13. Ratio of the alignment mean infall momentum to that
in linear theory without BAOs, pmcðr; θÞ=pnw

mcðr; θÞ, where the
denominator, pnw

mc, is the linear power spectrum without BAOs
computed using the fitting formula [96]. The numerator,
pmcðr; θÞ, is computed from the simulations (points), the LA
model (dotted curves) and the NLA model (dashed curves). The
blue and red points/curves are the results for 0 < θ < 30° and
60 < θ < 90°, respectively. The blue and red points have been
offset along the horizontal direction, �0.25 h−1 Mpc, respec-
tively, for clarity.
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IA statistics as well as the higher-order multipoles will be
presented in our future work.
On very large scales, the amplitude of clustering of the

density field is known to be affected by the effect of weak
gravitational lensing [103]. However, such an effect on the
velocity statistics has not been considered yet, while we are
interested in the mean infall momentum on extraordinarily
large scales. We will study the impact of the lensing
effect on velocities including intrinsic alignments in our
future work.
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APPENDIX: INTEGRAL FORMULAS FOR
CONDITIONAL AVERAGE OF GAUSSIAN

RANDOM FIELDS

In this Appendix, we present the formulas for the
conditional average of the Gaussian fields, which are used
to derive the analytical expressions for the IA statistics of
density and velocity fields in Sec. III B.
Our goal is to derive useful analytical formulas to

compute the conditional average given in Eq. (20). To
do so, as a first step, we define another conditional average,
fixing both of the variables γ0 and θ. Denoting it by
hFjγ0; θi, we have

hFjγ0; θi≡ 1

ð2πÞ3j detCj1=2

×
Z Y4

a¼1

dqaF exp

�
−
1

2
qiC−1

ij qj

�
; ðA1Þ

where q is given by Eq. (19) and C is its covariance matrix.
In what follows, unless explicitly mentioned, subscripts i, j
will run over the range 1–6, while a, b run from 1 to 4, i.e.,
1 ≤ i; j ≤ 6 and 1 ≤ a; b ≤ 4. Given Eq. (A1), the condi-
tional average for the alignment statistics, given in Eq. (20),
is computed by further integrating it over γ0:

hFjθi ¼ 2π

Z
∞

0

hFjγ0; θiγ0dγ0: ðA2Þ

In this Appendix, we derive several analytical formulas
for Eq. (A1). Below, for notational simplicity, we adopt the
Einstein summation convention, and an index variable,
such as qi and qa, that appears twice in a single term
implies summation over the index. Let us first decompose
the exponent in Eq. (A1) as

−
1

2
qiC−1

ij qj ¼ −
1

2
qaQabqb þ Aaðq05; q06Þqa þ Bðq05; q06Þ:

ðA3Þ
Here, q05 and q06 are the new variables transformed from q5
and q6. To be explicit, ðq05; q06Þ ¼ ðγ0; θÞ (see Sec. III A).
The matrix Qab is the submatrix of C−1

ij , namely,
Qab ¼ C−1

ab , and Aa and B are given by

Aa ¼ −C−1
a5q5 − C−1

a6q6

¼ −γ0ðC−1
a5 cos 2θ þ C−1

a6 sin 2θÞ; ðA4Þ

B ¼ −
1

2

X6
i;j¼5

C−1
ij qiqj

¼ γ20
2
ðC−1

55 cos
2 2θ þ C−1

66 sin
2 2θ þ C−1

56 sin 4θÞ: ðA5Þ

In order to analytically perform the multivariate Gaussian
integral, we next change the integration variables from qa,
by introducing new variables ya:

ya ¼ Qabqb − Aa: ðA6Þ

Using
Q

4
a¼1 dqa ¼ j detQj−1Q4

a¼1 dya, Eq. (A1) is
recast as

hFjγ0; θi ¼
1

ð2πÞ3j detCj1=2j detQj exp
�
1

2
AaQ−1

abAb þ B

�

×
Z Y4

c¼1

dycF exp

�
−
1

2
yaQ−1

abyb

�
: ðA7Þ

Then, for the quantity F given as the polynomial forms of
qc, the Gaussian integral in Eq. (A7) can be analytically
performed.
The simplest example is F ¼ qa. The final expression

becomes

hqajγ0; θi ¼
Q−1

abAb

2πj detCj1=2j detQj1=2

× exp

�
1

2
AaQ−1

abAb þ B

�
: ðA8Þ

The second simplest case is to set F ¼ qaqb. We then
obtain an analytical expression of the form
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hqaqbjγ0; θi ¼
1

2πj detCj1=2j detQj1=2Q
−1
acQ−1

bdðQcd þ AcAdÞ exp
�
1

2
AaQ−1

abAb þ B

�
: ðA9Þ

Likewise, the cases for higher-order polynomials can also be computed, and we have

hqaqbqcjγ0;θi¼
1

2πjdetCj1=2jdetQj1=2Q
−1
adQ

−1
beQ

−1
cf ðQdeAfþQdfAeþQefAdþAdAeAfÞexp

�
1

2
AaQ−1

abAbþB

�
; ðA10Þ

and

hqaqbqcqdjγ0; θi ¼
1

2πj detCj1=2j detQj1=2 ðQ
−1
abQ

−1
cd þQ−1

acQ−1
bd þQ−1

adQ
−1
bc þQ−1

abUcUd þQ−1
acUbUd þQ−1

bcUaUd

þQ−1
adUbUc þQ−1

bdUaUc þQ−1
cdUaUb þ UaUbUcUdÞ exp

�
1

2
AaQ−1

abAb þ B
�
; ðA11Þ

where we defined Ua ≡Q−1
abAb.

The formulas given above are used to further compute the
conditional average of Eq. (A2), together with the covari-
ancematrix given inEq. (21). The remaining calculationswe
need to performare just one-dimensionalGaussian integrals.
Thus, the final integration can also be performed analyti-
cally. Hence, by applying Eqs. (A8)–(A11) to each term of
the alignment statistics of density and velocity fields

[Eqs. (6) and (14)–(16)], the analytical expressions sum-
marized in Sec. III B can be obtained through a straightfor-
ward algebraic manipulation, which can be done easily with
mathematical software such as Mathematica.4
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