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Galaxy intrinsic alignments (IA) are a critical uncertainty for current and future weak lensing
measurements. We describe a perturbative expansion of IA, analogous to the treatment of galaxy biasing.
From an astrophysical perspective, this model includes the expected large-scale alignment mechanisms for
galaxies that are pressure-supported (tidal alignment) and rotation-supported (tidal torquing) as well as the
cross-correlation between the two. Alternatively, this expansion can be viewed as an effective model
capturing all relevant effects up to the given order. We include terms up to second order in the density and
tidal fields and calculate the resulting IA contributions to two-point statistics at one-loop order. For fiducial
amplitudes of the IA parameters, we find the quadratic alignment and linear-quadratic cross terms can
contribute order-unity corrections to the total intrinsic alignment signal at k ∼ 0.1 h−1 Mpc, depending on
the source redshift distribution. These contributions can lead to significant biases on inferred cosmological
parameters in Stage IV photometric weak lensing surveys. We perform forecasts for an LSST-like survey,
finding that use of the standard “nonlinear linear alignment” model for intrinsic alignments cannot remove
these large parameter biases, even when allowing for a more general redshift dependence. The model
presented here will allow for more accurate and flexible IA treatment in weak lensing and combined probes
analyses, and an implementation is made available as part of the public FAST-PT code. The model also
provides a more advanced framework for understanding the underlying IA processes and their relationship
to fundamental physics.
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I. INTRODUCTION

State-of-the-art weak lensing surveys will measure
correlations between the shapes of galaxies to unprec-
edented levels of precision. These measurements provide
precise constraints on cosmological models and contribute
to key tests of gravity on large scales. However, these
correlations are sourced not only by lensing of background
galaxies, but also by the intrinsic shapes and alignments of
galaxies and the non-negligible cross-correlation between
these effects. These “intrinsic alignments” (IA) are an
interesting physical phenomenon that depend on the for-
mation and evolution of galaxies as well as the relationship
between galaxies, their surrounding halos, and the under-
lying large-scale structure (for recent reviews on IA,
see [1,2]).
The processes underlying the correlated alignments of

galaxies remain uncertain, and it is likely that different
mechanisms may be relevant for galaxies with different
kinematic properties. Most notably, galaxies whose ori-
entations are set by angular momentum and those with

primarily pressure support are likely to exhibit different
alignment behavior. These kinematic types are typically
classified through morphological properties as “spirals”
and “ellipticals,” respectively, or even using color (e.g.,
“blue” and “red”) as a proxy. However, it may be that a
more subtle distinction is necessary, including e.g.,
the difference between rapidly and slowly rotating
ellipticals [3].
For weak lensing measurements in current and upcoming

photometric surveys,1 including an appropriate model for
IA is necessary to avoid biased inference of cosmological
parameters [4,5]. To date, most analyses (e.g., [6–8]) have
used some version of the “tidal alignment” model [9–11].
However, this theory has only been definitively shown to
describe massive elliptical galaxies on large scales [12–17].

*blazek@berkeley.edu

1For example, Dark Energy Survey (DES),
https://www.darkenergysurvey.org; Kilo Degree Survey (KiDS),
http://kids.strw.leidenuniv.nl/; Hyper Suprime-Cam (HSC),
http://www.subarutelescope.org/Projects/HSC/; Euclid,
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=102;
Large Synoptic Survey Telescope (LSST), http://www.lsst.org;
and Wide-Field Infrared Survey Telescope (WFIRST),
http://wfirst.gsfc.nasa.gov/
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Spirals, and less luminous ellipticals, dominate the pop-
ulations of galaxies found in typical weak lensing mea-
surements, which are also sensitive to correlations on
smaller scales. The most recent observations suggest that
these typical lensing sources may also exhibit IA [18–20].
Improved understanding, measurement, and mitigation of
IA are critical for the success of future lensing experiments,
which will achieve exquisite statistical precision and thus
will be dominated by systematic uncertainties.
One potential approach to simplify the modeling of IA in

weak lensing measurements would be to split the source
population (e.g., by color or morphological classification)
into groups in which a single IA mechanism is expected to
dominate. However, such source splits may remove stat-
istical power or increase the complexity of the analysis
(e.g., if shear calibration must be separately performed on
each subsample). Moreover, as discussed below, it is likely
that multiple alignment mechanisms apply to a given
source sample (analogous to multiple contributions to
galaxy bias). It is thus critical to develop a general model
for IA, including all relevant contributions and cross-
correlations. In this paper, we present a mixed model for
IA, including all tidal alignment and tidal torquing effects
up to second order. This model is a natural extension to the
nonlinear tidal alignment model described in [21] and
incorporates second-order contributions from the tidal
torquing model [9,22–24], including mixed terms between
galaxies with alignments sourced by different mechanisms.
This perturbative approach is inspired by analogous

work in galaxy bias (e.g., [25,26]). The underlying prin-
ciple is that all potential contributions at a given order,
consistent with the required symmetries of the observable,
are included. Each term carries an amplitude parameter
which can receive contributions from higher-order corre-
lations through “renormalization.” In this manner, the effect
of small-scale physics on correlations at larger scales
(where a perturbative expansion is sensible) are naturally
included. We believe this approach will form a foundation
for a more rigorous treatment of IA and will benefit from
the significant insights available from studies of galaxy
biasing. Moreover, unifying the treatment of biasing and IA
will benefit future analyses that rely on multiple probes
(e.g., galaxy clustering and weak lensing) to measure both
cosmological parameters and astrophysical effects. Finally,
in addition to their importance in weak lensing measure-
ments, IA can provide a powerful probe of both astrophys-
ics and new fundamental physics (e.g., [27,28]). The
approach outlined here provides a useful framework for
including the potential IA signatures of these effects. The
model described here has been implemented in the publicly
available FAST-PT code [29,30] and has been applied to
the current state-of-the-art cosmic shear analysis [18].
The structure of the paper is as follows. In Sec. II, we

summarize the background concepts and describe the IA
expansion in terms of cosmological fields. In Sec. III, we

calculate the relevant correlations for two-point weak
lensing observables and discuss a number of related details,
including renormalization of the IA parameters and scaling
the overall amplitudes. Section IV describes how we
implement the model and presents the resulting contribu-
tions to cosmic shear statistics. We also present a forecast
for the impact of this IA model on an LSST-like survey. We
conclude in Sec. V. In an appendix, we present the analytic
forms of the IA power spectra as well as the decomposition
of the terms into the basis used for FAST-PT evaluation.
Where relevant, we assume a flat ΛCDM cosmology with
Ωm ¼ 0.315, σ8 ¼ 0.82, h ¼ 0.67, Ωb ¼ 0.044, ns ¼ 0.96
and that a single massive neutrino eigenstate provides a
neutrino density Ωνh2 ¼ 6.5 × 10−4.

II. PERTURBATIVE EXPANSION FOR IA

Our goal is to construct a perturbative IA model that
includes both tidal alignment (linear in the tidal field) and
tidal torquing (quadratic in the tidal field) terms, as well as
their cross-correlations. In the following, we motivate this
approach and provide a brief summary of quantities that
will be directly useful for our calculations.

A. Preliminary definitions and conventions

We begin by considering perturbative expansions of
galaxy bias, where the relevant symmetry is that all
contributions must be scalars. Following the notation of
[31], we can write a local bias model complete to second
order in the matter density and tidal fields, ignoring higher
derivative terms and functions of the velocity divergence θ
which enter at higher order,

δgðxÞ ¼ b1δðxÞ þ
b2
2
ðδðxÞ2 − hδ2iÞ þ bs

2
ðsðxÞ2 − hs2iÞ

þ � � � ; ð1Þ

where δ and s are the (nonlinear) density and tidal fields,
which can be expanded in terms of the linear density field
and relevant gravity kernels in standard perturbation theory
(SPT; e.g., [32]),

δ ¼ δð1Þ þ δð2Þ þ δð3Þ þ � � � : ð2Þ

It is convenient to work in Fourier space, where we define
power spectra in terms of the ensemble average over the
Fourier space fields,

hAðkÞBðk0Þi ¼ ð2πÞ3δð3ÞD ðkþ k0ÞPABðkÞ: ð3Þ

The linear density field is δð1Þ. The second-order contri-
bution is

δð2ÞðkÞ ¼
Z

d3k1

ð2πÞ3 F2ðk1;k2Þδð1Þðk1Þδð1Þðk2Þ; ð4Þ
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where k2 ≡ k − k1, μ12 ≡ k̂1 · k̂2, and the second-order
density kernel is

F2ðk1;k2Þ ¼
5

7
þ 1

2
μ12

�
k1
k2

þ k2
k1

�
þ 2

7
μ212: ð5Þ

We define the normalized Fourier-space tidal tensor sij,

sijðkÞ ¼
�
k̂ik̂j −

1

3
δij

�
δðkÞ≡ Ŝij½δðkÞ�: ð6Þ

The squared tidal tensor is then

s2ðkÞ ¼
Z

d3k1

ð2πÞ3 S2ðk1;k2Þδðk1Þδðk2Þ; ð7Þ

where S2ðk1;k2Þ ¼ μ212 − 1
3
. More complicated bias expan-

sions are possible, for instance including the density and
velocity of the relative baryon-dark matter fluid [21,33] as
well as higher-order derivative contributions—see [26] for
a detailed review.

B. Application to IA

We now apply these techniques to develop a general
perturbative expansion for IA. The basic procedure is the
same as with galaxy bias, except that we now use (local)
functions of the cosmological fields with the correct
symmetry for galaxy shapes, namely traceless, symmetric
tensors. We begin by expanding in 3D quantities to
describe the 3D intrinsic galaxy shapes, γIij. In the next
subsection, we project these quantities onto the plane of the
sky to obtain expressions for the projected shapes, which
will have spin-2 symmetry.2 We will then decompose these
projected shapes into E- and B-mode components before
calculating the relevant correlations. This approach is only
exact in the flat-sky approximation—for a more rigorous
treatment of this projection in the full-sky regime, see [27].
Expanding up to second-order in the linear density field,

and as before considering contributions from only the total
matter (rather than the DM-baryon relative fluid), we have

γIijðxÞ ¼ C1sij þ C2

�
sikskj −

1

3
δijs2

�
þ C1δðδsijÞ

þ Cttij þ � � � ; ð8Þ

where all fields are evaluated at x and summation over
repeated indices is implied. The Ci parameters are analo-
gous to galaxy bias parameters, capturing the effective
strength of each term, including the contributions from
small-scale physics (see also [27] for a similar treatment of

IA in the context of non-Gaussianity). In this expansion, we
have included the tensor tij ¼ Ŝij½θ − δ�, which involves
the velocity shear (see [25]). Due to spin-2 symmetry of
galaxy shapes, the fields sij and tij both contribute to γIij at
lower order than in the case of the (scalar) galaxy density.
The tidal field sij provides the linear contribution, rather
than appearing at second order, and tij enters at second
rather than third order. We note that the “intrinsic shape” of
a galaxy is not a uniquely defined quantity and will depend
on the shape measurement technique (see, e.g., [34]), which
will also impact the measured values of the Ci parameters.
The relationship between measured shapes and the under-
lying gravitational shear is similarly dependent on the
particular measurement technique. Equation (8) can thus be
considered to describe either the intrinsic “shapes” of
galaxies or the intrinsic “shears” (i.e., the quantity added
to the gravitational shear when modeling the underlying
signal). Note that we do not explicitly include stochastic
shape contributions in this expansion, an issue discussed in
Sec. III G 2.
We treat this model in Eulerian perturbation theory,

evaluating all quantities at the observed position of the
galaxy. When including the tij term, the above expansion is
complete to second order, neglecting higher-order deriva-
tives of these terms, which are suppressed on large scales.
The expansion can thus be consistently evaluated at either
Eulerian or Lagrangian galaxy positions. The mapping
between the two, reflecting galaxy advection, is captured
by relationships between the terms in the complete expan-
sion (see [35,36], or for discussion in the context of galaxy
biasing [31,37–39]). Interestingly, tij plays a similar role as
its third-order analog in the galaxy biasing case (b3;NL, see
[38]) capturing nonlinear evolution of the tidal field (or,
equivalently, dependence of intrinsic shapes on the tidal
field at the Lagrangian position, or position of formation,
rather than the Eulerian position). We will consider the tij
contribution to IA in separate work [35] and will neglect it
in what follows. Thus, the correlations calculated below are
not formally equivalent between Eulerian and Lagrangian
treatments. Similarly, since we have not included contri-
butions to the intrinsic shapes at third order in the linear
density field, the two-point correlations are not complete at
one-loop, i.e., OðP2

linÞ. We leave these issues for future
work [36].
A basic requirement for this expansion is that it includes

the existing astrophysically-motivated models for IA,
namely tidal alignment (linear) for pressure-supported
galaxies and tidal torquing (quadratic) for galaxies domi-
nated by angular momentum [9,22]. Indeed, these models
are captured by the C1 and C2 terms. However, as a
perturbative expansion, the amplitude of these terms can
now capture all relevant effects at this order, regardless of
their astrophysical origin. Similarly, the C1δ term can be
motivated from the fact that the intrinsic shape field is

2Since shape measurement is not a linear process, the mea-
sured 2D shape is not necessarily the same as the projected 3D
shape. We leave this subtlety for future consideration.
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measured only at the positions of galaxies, and the
observable quantity is γ̃I ¼ ð1þ δgÞγI.3 Linear galaxy
biasing naturally produces an IA term corresponding to
C1δ ¼ b1C1 (and similar for higher-order contributions,
such as C2δ ¼ b1C2). However, as with the other terms,
C1δ can be thought of more generally as capturing any
alignment physics with effective large-scale correlations
that depend on δsij and in this context can have a value
different from the density-weighting prediction.

C. Projection and shape components

Equation (8) is expressed in terms of 3D quantities.
However, we observe shapes projected onto the plane of the
sky, which have two components,

ðγ1; γ2Þ ¼ γ0ðcos 2ϕ; sin 2ϕÞ; ð9Þ

with the angle ϕ measured with respect to some fixed
coordinate system. In configuration space measurements,
this angle is typically measured with respect to the
separation vector between galaxies, in which case these
components are typically referred to as ðγþ; γ×Þ. In Fourier
space, it is best to decompose into curl-free (E) and
divergence-free (B) components, as is done in standard
weak lensing and CMB polarization measurements [24,40].
Since this decomposition is coordinate independent, we are
free to choose a convenient coordinate system for perform-
ing calculations. We put the x–y plane on the sky and
measure shape components with respect to the x-axis. In
this case, we have

γEðkÞ ¼ pðk̂Þ−1½fEðk̂ÞγþðkÞ þ fBðk̂Þγ×ðkÞ�; ð10Þ

γBðkÞ ¼ pðk̂Þ−1½−fBðk̂ÞγþðkÞ þ fEðk̂Þγ×ðkÞ�; ð11Þ

where we have defined the angular operators,

fEðûÞ ¼ û2x − û2y; fBðûÞ ¼ 2ûxûy; ð12Þ

as well as the projection operator pðûÞ ¼ 1 − û2z ≡ 1 − μ2u,
which removes the unobservable line-of-sight ellipticity.
Because the fðE;BÞ operators already include the relevant
projection, we include p−1 to avoid projecting twice. In
this coordinate system, the observable ellipticity compo-
nents are

ðγþ; γ×Þ ¼ ðC1 þ C1δδÞðsxx − syy; 2sxyÞ
þ ðC2 þ C2δδÞðsxksxk − syksyk; 2sxksykÞ þ � � � ;

ð13Þ

where products of cosmological fields in configuration
space are convolutions in Fourier space. We have included
the third-order C2δ term, although as we see below it does
not contribute to two-point correlations at one-loop order.
We then have

γðE;BÞðkÞ

¼ C1fðE;BÞðk̂ÞδðkÞ þ C1δ

Z
d3k1

ð2πÞ3 fðE;BÞðk̂1Þδðk1Þδðk2Þ

þ C2

Z
d3k1

ð2πÞ3 hðE;BÞðk̂1; k̂2Þδðk1Þδðk2Þ

þ C2δ

Z
d3k1

ð2πÞ3
d3k2

ð2πÞ3 hðE;BÞðk̂1; k̂2Þδðk1Þδðk2Þδðk3Þ þ � � � ;

ð14Þ

where k1 þ k2 þ k3 ¼ k, with k3 ¼ 0 in all but the final
term. We have defined the additional angular operators
(e.g., [9]),

hEðû; v̂Þ ¼ û · v̂ðûxv̂x − ûyv̂yÞ −
1

3
ðû2x þ v̂2x − û2y − v̂2yÞ;

ð15Þ

hBðû; v̂Þ ¼ û · v̂ðûxv̂y þ ûyv̂xÞ −
2

3
ðûxûy þ v̂xv̂yÞ; ð16Þ

where we have explicitly symmetrized the hB operator in its
arguments (hE is naturally symmetric).

III. IA CORRELATIONS

In cosmic shear, where correlations of pairs of galaxy
shapes are measured, there are two relevant IA contribu-
tions: intrinsic-intrinsic (“II”), in which the intrinsic galaxy
shapes are correlated with each other due to physical
proximity; and gravitational-intrinsic (“GI”), in which
the same large-scale structure induces a lensing shear in
one galaxy and influences the intrinsic shape of the
other [9]. In total, when combined with the gravita-
tional-gravitational term (“GG”, i.e., the standard lensing
signal), the observed correlation between source bins i and
j is given by

Pobs
ij ¼ PGG

ij þ PGI
ij þ PIG

ij þ PII
ij: ð17Þ

Equation (17) is typically considered for E-mode correla-
tions. Beyond leading order, there can be B-mode con-
tributions to both the gravitational and intrinsic shape
contributions, although the lensing B-modes are suppressed
on all but the smallest scales [9]. In the following, we
consider B-modes from the II term only. Under parity, all
EB correlations must be zero.
While we group these calculations by the associated

astrophysical model (i.e., tidal alignment and tidal torquing),
3This is analogous to the fact that it is the galaxy momentum

rather than the velocity field that is observable.
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the correlations can be combined for a general IA expansion
(Sec. III D). In the following, we calculate the GI and II
terms. We express the correlations with a single set of IA
parameters Ci, which could be thought of as the parameters
for a homogenous galaxy population or the effective average
parameters for a mixed population (weighted by the fraction
of each subpopulation). The generalization to cross-corre-
lations between subpopulations is straightforward. It is also
straightforward to extend the model to include the gI term,
the correlation between galaxy density and intrinsic shapes,
which can impact galaxy-galaxy lensing and “combined
probe” measurements (e.g., [19,41]) and provides the most
straightforward method for directly measuring IA. For linear
galaxy biasing, the gI term is given by the GI correlations
presented here, multiplied by the galaxy bias, while it will
contain additional contributions due to nonlinear galaxy
biasing (see [21] for the tidal alignment case).
In this section, we derive the structure of the terms—the

full analytic form of each convolution integral is given in
Appendix A. For simplicity, the redshift dependence has
been suppressed. Because the terms are expansions in the
linear power spectrum, this dependence is simple, with
one-loop correlations scaling as GðzÞ4, for linear growth
factor GðzÞ. As noted above, the projection operator p is
implicitly included in our definitions of the f and h
operators. While p factors out in most correlations, it does
not in cases where there are convolutions involving
two projections (i.e., shape-shape correlations beyond
linear order). The expressions are simplified in the
Limber approximation, where only transverse modes
(μk ¼ 0 → pðk̂Þ ¼ 1) contribute. The Limber approxima-
tion is generally valid on scales of interest in weak lensing,
since the lensing kernel and broad source redshift bins lead
to a large projection length. In the appendix, we present
the full expressions, which depend on μk, but we use
the Limber approximation when actually evaluating them.
In the calculations below, we use the shorthand notation
fðδÞ or hðδ; δÞ to denote the f and g angular operators
(Eq. [14]) acting on a density field (or two density fields,
including the convolution, for h).

A. Tidal alignment

The tidal alignment model at one-loop order, i.e., the C1

and C1δ terms, is presented in [21]. Here, we summarize the
relevant contributions.

1. GI correlation

The GI term, from hδjγEi, is given by C1hδjfEðδÞi þ
C1δhδjδfEðδÞi. The C1 term is easy to calculate:
C1pðk̂ÞPδðkÞ, where Pδ can be evaluated at one-loop order
to be consistent with the other terms. It can also be
evaluated at arbitrary precision in the context of this
perturbative expansion without introducing unphysical
effects (see discussion in [21]). In the following, we choose

to use the fully nonlinear PNL, for instance using the Halofit
prescription [42,43].
At one-loop order, the C1δ term can be expanded,

hδjδfEðδÞi ¼ ½hδð2Þjδð1ÞfEðδð1ÞÞi þ hδð1Þjδð2ÞfEðδð1ÞÞi
þ hδð1Þjδð1ÞfEðδð2ÞÞi�

≡ A0j0E þ B0j0E þ C0j0E: ð18Þ

These terms are

A0j0Eðk; μkÞ ¼ 2

Z
d3q
ð2πÞ3 fEðq̂ÞF2ðq2;qÞPlinðqÞPlinðq2Þ;

ð19Þ

B0j0Eðk; μkÞ ¼
�

8

105
σ2pðk̂ÞPlinðkÞ

�
; ð20Þ

C0j0Eðk; μkÞ ¼
�
10

21
σ2pðk̂ÞPlinðkÞ

�

þ 2PlinðkÞ
Z

d3q
ð2πÞ3 PlinðqÞ

×

�
fEðq̂2ÞF2ð−q;kÞ −

5

21
pðk̂Þ

�
: ð21Þ

Where we define q2 ¼ k − q and σ2n¼R
Λ d3q
ð2πÞ3PlinðqÞn,

which is dependent on the high-k cutoff (e.g., the relevant
smoothing scale—see Sec. III F). Note that we have
explicitly separated the k → 0 contribution to the integral
in C0j0E, placing it in brackets. This contribution, along
with B0j0E are both proportional to the linear C1 term. As
discussed below in Sec. III G, we renormalize the C1

parameter by absorbing these cutoff-dependent terms.
Thus, the terms in brackets are not included in any
subsequent evaluations of these functions, and we omit
the analogous terms in subsequent expressions. In total, the
resulting power spectrum is given by

PδEðk;μkÞ¼C1pðk̂ÞPδðkÞþC1δ½A0j0Eðk;μkÞþC0j0Eðk;μkÞ�
þOðP3

LÞ: ð22Þ

We note the similarity between the C0j0E term and the
terms that contribute to the third-order nonlocal galaxy bias
b3;NL [25,38]. Both arise from the nonlinear evolution of
tidal field and consist of the linear power spectrum
multiplied by a filtered power spectrum. We speculate that
this term, and similar terms seen below, will combine with
the tij contribution to provide an analogous “nonlocal”
contribution to the IA power spectrum. We will explore this
issue further in [36].
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2. II correlation

The II term, from hγðE;BÞjγðE;BÞi, is given by C2
1hfEðδÞj

fEðδÞi þ 2C1C1δhfEðδÞjδfEðδÞi þ C2
1δhδfðE;BÞδÞjδfðE;BÞ ×

ðδÞi. As before, the first term is straightforward:
C2
1pðk̂Þ2PδðkÞ. The C1C1δ term has the same form as

the C1δ contribution to GI above (although with a different
dependence on μk beyond the Limber approximation). The
C2
1δ term has only one correlator at one-loop order.

However, this term can contribute both E- and B-modes.
Although pure tidal alignment (γij ∝ sij) produces only
E-modes (just as gravitational lensing does at leading
order), C1δ corresponds to a modulation of the signal by
the density weighting, which converts some of the E-modes
into B-modes. The E-modes are given by

hδfEðδÞjδfEðδÞi ¼ hδð1ÞfEðδð1ÞÞjδð1ÞfEðδð1ÞÞi
≡ A0Ej0E

¼
Z

d3q
ð2πÞ3

�
PlinðqÞPlinðq2ÞðfEðq̂ÞfEðq̂2Þ

þ f2Eðq̂ÞÞ −
8

15
pðk̂Þ2P2

linðqÞ
�
; ð23Þ

where the equivalent expression holds for A0Bj0B, and we
have explicitly subtracted out the k → 0 piece, which is
absorbed into the effective “shape noise” contribution
(along with similar terms below—see Sec. III G 2). In
total, we have

PEEðk; μkÞ ¼ C2
1pðk̂Þ2PδðkÞ þ 2C1C1δpðk̂Þ½A0j0Eðk; μkÞ

þ C0j0Eðk; μkÞ� þ C2
1δA0Ej0Eðk; μkÞ þOðP3

linÞ;
ð24Þ

PBBðk; μkÞ ¼ C2
1δA0Bj0Bðk; μkÞ þOðP3

linÞ: ð25Þ

Note that the frequently used (and ambiguously named)
“nonlinear linear alignment model” (NLA) consists of the
first terms in Eqs. (22) and (24), where a fully nonlinear
model is used for Pδ.

B. Tidal torquing

1. GI correlation

We write all potential terms in hδjγEi involving C2

or C2δ,

C2hδjhðδ; δÞi þ C2δhδjδhðδ; δÞi
¼ C2½hδð2Þjhðδð1Þ; δð1ÞÞi þ 2hδð1Þjhðδð2Þ; δð1ÞÞi�
þ C2δhδð1Þjδð1Þhðδð1Þ; δð1ÞÞi

≡ C2½A0jE2 þ B0jE2� þ C2δC0j0E2: ð26Þ

These power spectra are

A0jE2ðk;μkÞ¼2

Z
d3q
ð2πÞ3PlinðqÞPlinðq2ÞF2ðq;q2ÞhEðq̂;q̂2Þ;

ð27Þ

B0jE2ðk; μkÞ ¼ 4PlinðkÞ
Z

d3q
ð2πÞ3 PlinðqÞ

×

�
F2ðq;−kÞhEðq̂; q̂2Þ −

29

630
pðk̂Þ

�
; ð28Þ

C0j0E2ðk; μkÞ ¼ 0: ð29Þ

We have explicitly removed the k → 0 contribution to
B0jE2ðkÞ, which is absorbed (renormalized) into the defi-
nition of C1. Note that A0jE2ðk → 0Þ ¼ 0.

2. II correlation

At OðP2
linÞ, only one term in hγðE;BÞjγðE;BÞi contributes,

C2
2hhðδð1Þ; δð1ÞÞjhðδð1Þ; δð1ÞÞi, corresponding to

PEEðk; μkÞ ¼ C2
2AE2jE2ðk; μkÞ; ð30Þ

AE2jE2ðk; μkÞ ¼ 2

Z
d3q
ð2πÞ3

�
PlinðqÞPlinðq2Þh2Eðq̂; q̂2Þ

−
4

135
pðk̂Þ2P2

linðqÞ
�
; ð31Þ

and the equivalent for PBB. We have subtracted off the
constant k → 0 contribution.

C. Cross terms in the II correlation

For galaxy populations where both linear and quadratic
alignments are relevant, the II correlation will have a
contribution from cross terms,

2C1C2hfðδÞjhðδ;δÞiþ2C1C2δhfðδÞjδhðδ;δÞi
þ2C1δC2hδfðδÞjhðδ;δÞi
¼2C1C2½hfðδð2ÞÞjhðδð1Þ;δð1ÞÞiþ2hfðδð1ÞÞjhðδð2Þ;δð1ÞÞi�
þ2C1C2δhfðδð1ÞÞjδð1Þhðδð1Þ;δð1ÞÞi
þ2C1δC2hδð1Þfðδð1ÞÞjhðδð1Þ;δð1ÞÞi

≡2C1C2½AEjE2þBEjE2�þ2C1C2δCEj0E2þ2C1δC2D0EjE2:

ð32Þ
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These power spectra are

AEjE2ðk; μkÞ ¼ pðk̂ÞA0jE2 ¼ 2pðk̂Þ
Z

d3q
ð2πÞ3 PlinðqÞPlinðq2Þ

× F2ðq;q2ÞhEðq̂; q̂2Þ; ð33Þ

BEjE2ðk; μkÞ ¼ pðk̂ÞB0jE2 ¼ 4PlinðkÞpðk̂Þ
Z

d3q
ð2πÞ3 PlinðqÞ

×

�
F2ðq;−kÞhEðq̂; q̂2Þ −

29

630
pðk̂Þ

�
; ð34Þ

CEj0E2ðk; μkÞ ¼ 0; ð35Þ

D0EjE2ðk;μkÞ ¼ 2

Z
d3q
ð2πÞ3

�
PlinðqÞPlinðq2ÞfEðq̂2ÞhEðq̂; q̂2Þ

−
4

45
pðk̂Þ2P2

linðqÞ
�
; ð36Þ

with the equivalent expression for D0BjB2 (only this term
can contribute to PBB). As before, we have subtracted the
k → 0 contribution to the B and D terms.

D. Complete model

Combining all terms, we obtain the following expres-
sions for the GI and II power spectra:

PδEðk;μkÞ ¼ C1pðk̂ÞPδðkÞ
þC1δ½A0j0Eðk;μkÞ þC0j0Eðk;μkÞ�
þC2½A0jE2ðk;μkÞ þB0jE2ðk;μkÞ�; ð37Þ

PEEðk;μkÞ ¼ C2
1pðk̂Þ2PδðkÞ þ 2C1C1δpðk̂Þ½A0j0Eðk;μkÞ

þC0j0Eðk;μkÞ� þC2
1δA0Ej0Eðk;μkÞ

þC2
2AE2jE2ðk;μkÞ þ 2C1C2pðk̂Þ½A0jE2ðk;μkÞ

þB0jE2ðk;μkÞ� þ 2C1δC2D0EjE2ðk;μkÞ; ð38Þ

PBBðk;μkÞ ¼ C2
1δA0Bj0Bðk;μkÞ þC2

2AB2jB2ðk;μkÞ
þ 2C1δC2D0BjB2ðk;μkÞ: ð39Þ

In Fig. 1, we show all model components to the II term.
Since the GI term is made of a subset of the II components,
we do not show it separately. In the following subsections,
we discuss some of the technical details of the model.

E. Normalization

The parameters Ci are dimensionless numbers that
capture the effective large-scale response for each term.
In analogy with galaxy bias parameters, they can be treated
as general functions of redshift (and galaxy properties) and
measured for a given sample. Historically, these parameters
have been rescaled to capture the expected amplitude and

FIG. 1. The components of the z ¼ 0, II power spectra in Eqs. 38 and 39 are shown. The relevant prefactors are included, with
C1 ¼ C1δ ¼ −1 and C2 ¼ 5, corresponding to the fiducial relative scaling between C1 and C2, without the factor of C̄1ρcritΩm in
Eqs. (40)–(42). We assume transverse modes (μk ¼ 0). Negative values are indicated with dashed lines. Left panel: contributions from
tidal alignment (C1 and C1δ). Right panel: contributions from tidal torquing (C2) and mixed terms. For reference, in both panels the
leading tidal alignment contribution C2

1Pδ is shown, with the solid line for PNL (the NLA model) and the dotted line for Plin. All higher-
order II terms approach a constant value at high-k. As discussed in Sec. III G 2, these constant terms can be viewed as contributions to
the observed shape noise.
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redshift evolution. As we intend this work to be useful for
implementing models in upcoming weak lensing analyses,
we will briefly outline these conventions and describe one
reasonable set of choices. While these conventions would
not impact a fully general IA analysis (where the amplitude
and redshift dependence are allowed complete freedom), in
practice, parametrizations typically limit the redshift evo-
lution to follow Eq. (40) below or a variant thereof (e.g.,
with an additional power law in redshift).
Several conventions exist for this normalization rescal-

ing. Early works [22,24] used the ellipticity variance
between individual galaxies to set the scale of the ampli-
tude, assuming that these deterministic IA expansions were
responsible for (nearly) the entire observed variance. By
assuming that stochasticity from smaller scale physics
(i.e., terms not captured in this perturbative expansion)
is negligible, this approach sets an upper limit on the IA
amplitude parameters. An additional issue with such an
approach is that the value can be highly dependent on the
minimum scale of fluctuations considered when calculating
the variance (i.e., the relevant smoothing scale, whether it is
implicit or explicit)—see [11,44] for further discussion.
To partially avoid these issues, [9] used the variance of
galaxies smoothed on large angular windows, analogous to
how density fluctuations are normalized using the σ8
parameter. The particular measurements used in that work,
from the low-redshift SuperCOSMOS survey [45], are not
particularly well-matched to modern lensing surveys.
However, this normalization convention, formalized in
[10], has become fairly standard, and as recent observations
have shown, it provides roughly the correct scale for
observed IA correlations (up to an order-unity parameter).
Note that [9] assumed redshift evolution corresponding

to the “primordial alignment” scenario, in which the tidal
field at high redshift, around galaxy formation, was
responsible for the observed IA at late times. Outside
of the redshift dependence, the choice of “primordial”
or “instantaneous” alignment can be thought of as the
Lagrangian or Eulerian description, respectively. In the
context of a complete effective theory at a given order,
these two approaches should be equivalent. We note that
our current treatment emits one term at Oðδ2Þ, the velocity
shear tij, and will revisit this topic in upcoming work [35].

1. Tidal alignment

Synthesizing these results, the tidal alignment conven-
tion has become (see [21] for further discussion),

C1ðzÞ ¼ −A1ðzÞðC̄1ρcritÞΩmGðzÞ−1: ð40Þ

The minus sign enforces the expected behavior that
galaxies (and their host halos) will tend to be oriented
towards overdense regions rather than tangentially aligned
as results from lensing shear. The number C̄1 ¼ 5×
10−14 h−2M−1

⊙ Mpc3, corresponding to C̄1ρcrit ≈ 0.014,

was determined from the windowed ellipticity variance
in SuperCOSMOS and assuming the NLA model (i.e., the
nonlinear matter power spectrum used with the linear IA
model; [10]). The growth factor GðzÞ, normalized to unity
at z ¼ 0, is included to cancel the linear growth of the
density field and yield a constant amplitude in the pri-
mordial alignment scenario.4 The fractional matter density
Ωm is factored out to reflect the fact that a larger density
increases the amplitude of the tidal field, while the
combination A1C̄1 captures the response to the tidal field.5

The remaining free parameter A1ðzÞ is now expected to
be an order-unity parameter that describes the particular
galaxy samples and captures potential deviations from the
assumed redshift dependence. Current constraints on A1

from cosmic shear measurements (e.g., [18]) are consistent
with A1 ∼ 1 for typical lensing sources (although there is
not yet a strong detection), while direct IA measurements
with massive elliptical galaxies (e.g., [14–16]) find
A1 ∼ 3–10, depending on the redshift and luminosity.
As discussed above, if C1δ is assumed to come purely

from density weighting effect, at one-loop order it will take
the value C1δ ¼ b1C1. More generally, we can define an
analogous scaling,

C1δðzÞ ¼ −A1δðzÞðC̄1ρcritÞΩmG−1ðzÞ: ð41Þ

2. Tidal torquing

Conventions for setting the expected amplitude of tidal
torquing, C2, have typically relied on assuming that this
quadratic term is responsible for the full variance between
individual galaxy ellipticities (e.g., [24,44]). Instead, we
propose following a similar procedure as for C1 in Eq. (40),
namely that the fiducial pre-factor is set by matching to the
observed variance in large angular windows. In this case,
we can write

C2ðzÞ ¼ A2ðzÞ
�
5C̄1ρcrit
Ωm;fid

�
Ω2

mGðzÞ−2: ð42Þ

We have multiplied the factor C̄1ρcrit by 5 to account for the
approximate difference in windowed variance produced by
the different (unnormalized) IA power spectrum in the pure
tidal alignment and tidal torquing cases. Under this con-
vention, the C2

1 and C
2
2 contributions to the II term produce

approximately the same windowed ellipticity variance at
z ¼ 0, for jA1j ¼ jA2j. This correction factor is mildly
dependent on cosmology, but we choose to apply an

4The original treatment in [9] normalized the growth function
differently, which would lead to a roughly 30% difference with
the current convention. The value of C̄1 quoted here was
determined by [10] using our convention for GðzÞ.

5The Hubble parameter also determines the matter density, and
thus factors of h could also be factored out here. Following
(arbitrary) convention, we absorb these factors into C̄1ρcrit.
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approximate and cosmology-independent value for sim-
plicity. Because the quadratic term has two powers of the
tidal field, there are two factors of both Ωm and GðzÞ,
although we divide by a fiducial Ωm;fid to maintain the
approximately matched shape variance.6 The overall differ-
ence in sign compared to C1 is to maintain the convention
that positive Ai corresponds to galaxy shape alignment with
overdense regions (i.e., a negative GI contribution). In the
case of tidal alignment, a positive A1 corresponds to both
the theoretical expectation and what has been widely
observed in both real galaxies and hydrodynamic simu-
lations. However, the expected sign of A2 is less clear, with
some simulations (e.g., [46]) finding tangential alignment
between the major axes of spiral galaxies and matter
overdensities, corresponding to negative A2, with others
(e.g., [47,48]) finding the opposite. There is not yet strong
evidence for A2 in galaxy observations, although the recent
analysis of [18,49] found hints of A2 < 0. In the absence
of a strong indication for either sign, we assume a fiducial
A2 ¼ 1 in the following forecasts.
While Eq. (42) sets a scaling for C2 that is consistent

with the motivation for the established convention in
Eq. (40), it does not necessarily correspond to an equivalent
level of overall IA contamination. This scaling is deter-
mined using windowed ellipticity variance, a measure of
the II term. However, the GI term is often the dominant IA
contribution, and this term differs significantly between the
linear and quadratic IA contributions. Indeed, because there
is no leading-order C2 contribution to GI, the overall IA
impact from C2 is suppressed compared to a C1 model with
equivalent windowed variance.
Finally, we emphasize that these proposed scalings are

somewhat arbitrary, although they are useful in establishing
a standardized approach to compare results between sur-
veys. However, given the particular assumptions made in
these scalings, care must be taken when limiting the
allowed redshift dependence of IA in an analysis.

F. Smoothing

In several earlier works on IA modeling, a smoothing
filter was explicitly applied to the tidal field to remove
fluctuations below the halo or galaxy scale (e.g.,
[9,11,21,50]). Following the typical treatment in galaxy
bias, we instead choose to treat the smoothing of the tidal
(and density) fields as an implicit element of the model,
considering correlations only on scales much larger than
the smoothing scale ðk ≪ ksmÞ and incorporating contri-
butions to these correlations from small scales into
the effective (renormalized) IA bias parameters Ci.

As discussed in [27,51], the effect of nonlocal contribu-
tions, such as smoothing, can be incorporated through
higher derivative operators which will scale as powers of
ðk=ksmÞ2 and thus become significant on small scales
(including where a perturbative expansion will begin to
break down). The inclusion of such terms can be similarly
motivated by considering a Taylor expansion of a Fourier-
space Gaussian smoothing filter. We do not include such
terms here but note that they are generically present and
may reflect the small-scale physics of galaxy and halo
formation relevant to IA correlations. Accounting for these
terms will be especially important when attempting to
extend a perturbative expansion to smaller scales and
including the impact of the one-halo term.

G. Renormalized contributions

1. IA bias parameters

As seen above, we absorb the cutoff-dependent contri-
butions (i.e., those proportional to σ2 or σ4) into the
definitions of the effective IA parameters. This process
is identical to the renormalization of bias parameters (e.g.,
[25,26,52]), which was inspired by the renormalization of
coupling constants in quantum field theory. The underlying
principle is that contributions to large-scale correlations
sourced by small scale physics can be absorbed into
effective bias coefficients which are the observable quan-
tities, rather than the “bare” parameters. Because these
small-scale processes are not accurately modeled (or
modeled at all) in a perturbative expansion, we cannot
attempt to predict the amplitude of these contributions
through these calculations, even if the integrals are not
actually divergent in a ΛCDM universe. Instead, the
resulting parameters are determined through observation,
simulation, or more detailed modeling of small-scale
physics. Our treatment of these cutoff-dependent contri-
butions in this work is in contrast to [21], where the
preferred approach was to include them as physical con-
tributions determined by the tidal field smoothing. As with
galaxy bias, this renormalized parameter approach to IA
can be incorporated into a more comprehensive effective
field theory (EFT) of modeling large-scale structure and
galaxy observables (e.g., [51,53]). Contributions from
smoothing or higher-derivative operators, mentioned
above, would similarly be combined with EFT terms
arising from nonlinear structure.
Because correlations involving higher-order terms are

absorbed into the lower-order parameters, we see that each
of these parameters is naturally “generated” by higher-
order corrections, unless an underlying symmetry forces it
to zero. For instance, if we had started with C1 ¼ 0 (e.g., a
pure tidal torquing scenario), the existence of C2 ≠ 0
generates an effective amplitude for C1, as seen from
the k → 0 limit in the BðkÞ terms above. Thus all galaxies
should exhibit some tidal alignment behavior on

6In practice, without a precise prediction for the shape
response to the tidal field, IA contains no usable information
on Ωm, which can be equivalently absorbed into the prefactor.
The recent analysis in [18] treats both C1 and C2 as scaling
linearly with Ωm.
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sufficiently large scales, even if the underlying astrophysi-
cal processes that determine intrinsic shapes are based on
tidal torquing, or some other nonlinear process. Although
phrased in different language, the generation of this linear
term is the same as the contribution to linear galaxy
alignment discussed in [54] (see also [44]).

2. Stochasticity and shape noise

We have not explicitly included stochastic contributions
into our IA expansion (Eq. (8). However, the existence of a
random component of galaxy shapes, “shape noise,” has
long been understood as a critical element to weak lensing
measurements because this component is significantly
larger than the induced gravitational shears [55]. Shape
noise is typically thought of as an underlying property of
the galaxy sample, characterized by one-point ellipticity
variance σ2SN. As the number density of galaxy shapes is
increased, the relative importance of shape noise decreases.
In the measured ellipticity power spectrum, if every galaxy

shape were measured perfectly and completely uncorre-
lated, we would expect the resulting shape noise contri-
bution to scale as σ2SN=n, for galaxy number density n.
However, because shapes are imperfectly measured due to
measurement noise, an “effective number density” is
introduced to capture the observed contribution to the
ellipticity power spectrum: σ2SN=neff [56–58]. Although
not typically considered in the same language, correlations
between galaxy shapes, i.e., intrinsic alignments, will also
alter neff. This effect is intuitively straightforward: a
correlated ensemble of measured shapes is not sampling
the underlying shape distribution as completely as the raw
number of objects would suggest.
As before, the similarity with galaxy biasing is strong.

In the case of galaxy bias, the leading stochastic contri-
bution is “shot noise,” and the basic model is a Poissonian
contribution to the power spectrum equal to n−1. In
perturbative bias expansions, it was seen that quadratic
bias b2 and other higher-order terms contributed correla-
tions with a constant k → 0 limit [25,52]. In the spirit of

FIG. 2. IA contributions (combined II and GI) to the angular auto- and cross-power spectra for two source bins with Gaussian nðzÞ,
with means hzi ¼ 0.4 and 0.8 and width Δz ¼ 0.1. Dashed lines indicate negative values, and B-modes are denoted “BB.” For
reference, the lensing contribution is shown in black. The labels denote which terms in the IA expansion are contributing to the given
contribution. The correspondence to the terms in Eqs. (37)–(39) are as follows: “Tidal alignment (GI)” ∝ C1; C1δ; “Tidal alignment
(II)” ∝ C2

1; C
2
1δ; C1C1δ; “Tidal torque (GI)” ∝ C2, “Tidal torque (II)” ∝ C2

2; “Mixed (II)” ∝ C1C2; C1δC2.
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renormalization, to restore the expected (and measured)
linear biasing behavior on large-scales, these constant
contributions were absorbed into an effective stochasticity
term, which was then allowed to display non-Poissonian
behavior, including cross-correlations between different
samples. Studies of halos in N-body simulations showed
that non-Poissonian stochasticity was indeed present [59],
with large halos displaying sub-Poissonian stochasticity.
Models for this behavior, including nonlinear biasing and
halo exclusion, have been developed [60,61]. Importantly,
this work has demonstrated that the stochastic component
is not expected to be the same in the k → 0 and k → ∞
limits. Even if Poissonian shot noise is recovered at k → ∞,
on finite scales, we expect to see non-Poissonian stochas-
ticity, including scale dependence.
It is clear that higher-order terms in the perturbative IA

expansion contribute to the observed shape noise, since
higher-order II terms have constant, nonzero k → 0 limits.
We have absorbed these constant contributions into an
effective shape noise, which becomes a free parameter,
leaving the remaining scale dependence as part of the IA
model. This choice also results in contributions to the II
power spectra that approach a constant at high k, or
equivalently high l (Figs. 1–2). Conceptually, this effective
shape noise can be expressed through the use of neff ,
defined to include the absorbed IA contributions. If these
contributions induce positive shape correlations, we would
expect neff to decrease, thus increasing shape-noise (analo-
gous to nonlinear galaxy clustering and super-Poissonian
shot noise). Conversely, negative shape correlations would
increase neff and reduce shape noise (analogous to halo
exclusion and sub-Poissonian shot noise).
However, the central lesson from the galaxy biasing case

is that the IA “shape noise” contribution to the power
spectrum on finite scales is decoupled from the zero-lag
shape variance. Thus, while neff can, in principle, be
defined to include IA contributions to shape noise, the
method used to estimate it must also include these con-
tributions. Typically, neff is measured from the one-point
ellipticity variance, appropriately weighted by measure-
ment noise (e.g., [58]), and will not include these IA effects.
Moreover, the IA contributions can impact the ellipticity
cross-power spectrum between different samples, leading
to a free shape noise, ϵij, for correlations between redshift
bins i and j. In practice, estimating the “true” σ2SN=neff from
the data is equivalent to measuring ϵij along with the
lensing and IA signals. There may be additional informa-
tion in higher-point correlations, which we leave for future
work. If galaxy shapes are dominated by physics on
subhalo scales, then shape noise on measurable scales will
likely still be reasonably well described by the traditional
approach based on the zero-lag shape variance. In this case,
the zero-lag estimate may be sufficient for determining the
covariance and would provide fairly tight priors on ϵij for
Fourier space analyses. In configuration space, a free

constant shape noise only impacts the covariance (since
changing the power spectrum by an overall constant only
affects the correlation function at zero-lag). In the simulated
Cl analysis below, we marginalize over a free ϵij for each
source bin pair.
Finally, we note that there is often no meaningful

distinction between “stochasticity” and physics on scales
below what is modeled. As biasing and IA theory becomes
more sophisticated, including a fully nonlinear treatment
of the one-halo term, much of what is currently called
“stochasticity” will become deterministic features of
the model.

IV. MODEL IMPLEMENTATION AND IMPACT

A. Implementation

We have implemented the integrals in Sec. III using the
FAST-PT code [29,30], which uses FFTs to decompose
the input linear power spectrum into power-law compo-
nents for which the convolution integrals can be analyti-
cally performed, allowing for extremely rapid evaluation
(see also [62]). These capabilities are included in the public
versions7 of FAST-PT, beginning with v2.1. Appendix B
shows the decomposition of each term into the basis of
FAST-PT [30].
We have also incorporated the FAST-PT code as a

module in the cosmological inference package CosmoSIS
[63], which we use to perform the forecasts below. Figure 2
shows the contributions to the observed angular shape
power spectra, Cl, from this implementation of our model,
assuming two equal number density source bins with
Gaussian nðzÞ, with mean redshifts of 0.4 and 0.8 and
width Δz ¼ 0.1. A similar CosmoSIS implementation
was used in the recent DES Year 1 tomographic cosmic
shear analysis [18]. That analysis assumed that C1δ ¼ C1,
corresponding to the case where the C1δ term arises purely
from density weighting of the lensing sources with linear
bias b1 ¼ 1. The analysis of [49] relaxes this assumption
and finds little impact at the level of statistical precision in
DES Year 1.

B. Impact on cosmic shear constraints from
a Stage IV weak lensing survey

Future wide-field galaxy imaging surveys such as LSST,
Euclid, and WFIRST will use cosmic shear to constrain
several cosmological parameters, including the dark energy
equation of state. A tomographic (i.e., multiple redshift bin)
analysis allows the separation of the observed correlations
into those from weak lensing shear and those due to IA. In
this section, we implement a simulated likelihood analysis
to assess the biases in inferred cosmological parameters
when assuming the wrong intrinsic alignment model.
Operationally, we use a theoretical prediction for the

7Available at https://github.com/JoeMcEwen/FAST-PT.
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observed correlations (including IA contamination when
relevant) and use this “data vector” as input to a parameter
estimation analysis, along with a suitable covariance matrix
to describe the expected measurement uncertainty. With
these inputs, we sample the relevant parameter space using
the nested sampling algorithm MultiNest [64].8 An analysis
combining galaxy clustering and weak lensing (including the
cross-correlation between the two, i.e., galaxy-galaxy lens-
ing) can provide additional constraints on intrinsic align-
ments as well as calibration of other systematic errors such as
photometric redshift biases (e.g., [4,19,65]). While the
models presented here are applicable to such a combined
probes analysis, we choose to limit this impact study to
cosmic shear for simplicity. We assume that the E-mode
angular power spectra Cl are the two-point statistic used,
and therefore we do not include the B-mode contributions.
Note that a real-space analysis using shear correlation
functions, which are a mixture of E- and B-modes, would
need to include these contributions. Our choice of fiducial IA
parameters, A1 ¼ A2 ¼ A1δ ¼ 1, matches our normalization
scheme and is consistent with current observations (e.g.,
[18,49]). Although there is some marginal evidence in these
data for A2 < 0, the magnitude of the contribution is more
important for this simplified forecast.
We assume an 18000 deg2 LSST-like survey with an

effective number density of source galaxies of 30 arcmin−2,
with redshift distribution parametrized as [66]

PðzÞ ¼ zα exp
h
− z
z0

β
i
; ð43Þ

with α ¼ 1.23, z0 ¼ 0.51 and β ¼ 1.01, following [57]. We
assume that the photometric redshift estimate used to place
galaxies in redshift bins is Gaussian distributed around the
true redshift with scatter σðzÞ ¼ 0.05ð1þ zÞ. Finally, we
assume the sample is divided into five equal number
density redshift bins and use for our data vector the angular
shear power spectra, Cl for all redshift bin combinations in
the multipole range 100 < l < 1000. We use the Gaussian
approximation for the covariance (e.g., [67])—we assume
the shear field is a Gaussian random field and do not
include the effects of a realistic survey geometry or
supersample covariance (e.g., [68]). As discussed in
Sec. III G 2, we do not assume to know the constant
contribution to the observed Cl due to shape noise; we
marginalize over a free constant contribution for each
redshift bin pair.9 Apart from intrinsic alignments, we do

not include systematics nuisance parameters in this forecast
(e.g., the photo-z distributions are fixed to their correct
values). We thus do not consider this a fully realistic
forecast of the constraining power of LSST, but rather an
instructive demonstration of the impact of this more
sophisticated IA model and the potential systematic bias
in the inferred cosmological parameters due to IA.
For the likelihood analyses we vary Ωm and σ8 and the

dark energy equation of state using the two-parameter
model [69,70],

wðaÞ ¼ w0 þ wað1 − aÞ; ð44Þ

where a is the scale factor of the Universe normalized to
unity at the present. We use uniform priors 0.1<Ωm<0.6,
0.5 < σ8 < 1.1, −3 < w0 < −0.3, and −3 < wa < 3.
We perform the following likelihood analyses:
(i) We generate a fake data vector without intrinsic

alignment contributions (A1 ¼ A2 ¼ A1δ ¼ 0) and
do not include intrinsic alignments in the modeling.
This should trivially produce unbiased constraints
on the cosmological parameters and provide a
baseline for the statistical constraining power under
our set of assumptions.

(ii) We generate a fake data vector with the full intrinsic
alignment model and fiducial amplitudes (A1 ¼
A2 ¼ A1δ ¼ 1), but use the NLA model in the
analysis, with a uniform prior on the single ampli-
tude of −5 < A1 < 5. This case serves to test the
impact of using the NLA model (see e.g., [6–8] for
recent cosmic shear analyses that assumed this
model) if the galaxy alignments are in fact described
by the full model. We expect the inferred cosmo-
logical parameters to be biased to some extent in this
case, since the intrinsic alignment model used is
insufficiently flexible to describe the data vector.

(iii) We repeat (ii), but add an additional free parameter
to the NLA model—a power-law in redshift such
that the NLA amplitude is A1ðzÞ¼ð1þzÞαA1ðz¼0Þ
(see, e.g., [71,72] for recent cosmic shear analyses
that used this model).

(iv) We use the same fake data vector as in case (ii), but
now use the full intrinsic alignment model in the
likelihood analysis, marginalizing over A1 and A2 in
the range ½−5; 5� and setting A1δ ¼ A1. This case
should also produce unbiased constraints.

Figure 3 shows the results of these forecasts. The green,
unfilled contours are the 68% and 95% parameter credible
intervals for case (i): no intrinsic alignment contamination
in the data vector or the model. It is instructive to consider
the constraints on wðapivÞ, where apiv is the scale factor at
which wðaÞ is best constrained. We find apiv ¼ 0.75
(z ¼ 0.33) and use this value in all of the following quoted
constraints. Given that we generate our data vectors

8We have chosen accuracy settings to optimize for speed while
robustly recovering the parameter means and confidence regions,
although some minor noise is present in these contours, as seen
in Fig. 3.

9We do this marginalization analytically by adding a large
number to each block diagonal in the covariance matrix. We have
verified that this approach is equivalent to explicitly marginal-
izing over a free additive parameter for each redshift bin with
prior range −1 × 10−3 to 1 × 103.
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assuming a ΛCDM universe, the true value of wðapivÞ is −1.
For this case, we find wðapivÞ ¼ −1.01� 0.06 (68%).
The orange unfilled contour represents case (ii): the data

vector is contaminated by the full intrinsic alignment model
with fiducial amplitudes, but is modeled assuming the NLA
model. Clearly this scenario results in large biases in most

parameters, for example wðapivÞ ¼ −2.13� 0.13. The grey
filled contour corresponds to case (iii): an extra free para-
meter is varied, allowing the NLA amplitude to vary with
redshift according to a power-law. Because the linear and
quadratic terms can have significantly different redshift
dependence (e.g., when assuming the scaling described in

FIG. 3. Constraints on cosmological and intrinsic alignment parameters for an idealized LSST-like cosmic shear survey. Dashed lines
indicate the input parameter values used to create the data vectors. Green outlined contours use a data vector and model without intrinsic
alignment contributions, case (i). The orange outlined contour uses a data vector with contamination by the full IA model, with fiducial
amplitudes (see Sec. IV B), but uses a model which assumes the NLA model for the intrinsic alignment contribution, case (ii). The black
contour is the same as the orange, except the model also includes a free power law in redshift, case (iii). The purple contour uses the same
data vector as orange and black, but uses the full IA modeling, thereby recovering unbiased parameter constraints, case (iv). Note that
there are no green contours for the IA parameters (A1 and A2), since case (i) corresponds to a model with no IA. Similarly, A2 only has
purple contours, corresponding to case (iv).

BEYOND LINEAR GALAXY ALIGNMENTS PHYS. REV. D 100, 103506 (2019)

103506-13



Sec. III E), this additional freedom in the model should allow
for a more accurate fit. Indeed, this case performs signifi-
cantly better; however it still results in biased inferred
parameters, with wðapivÞ ¼ −1.13� 0.13—the systematic
bias from assuming the wrong IA model is roughly
equivalent to the statistical uncertainty. Finally, the purple
filled contour represents case (iv): the full IA model is used
to generate the data vector and is used in the parameter
estimation, with the amplitudes A1 and A2 marginalized
over. As expected, the correct cosmological parameters are
recovered, with wðapivÞ ¼ −1.03� 0.08. The uncertainty
on the inferred value of wðapivÞ is fractionally larger by
roughly one-third compared to the case when no intrinsic
alignment parameters are marginalized over.
Marginalization over a free shape noise parameter for

each auto- and cross-spectrum removes some constraining
power, since there is nontrivial degeneracy between such an
additive term and the overall amplitude of the lensing
signal. This marginalization produces constraints that are
qualitatively similar to those from a correlation function
analysis, where this constant term appears only at zero-lag
and is thus inaccessible, although a more detailed quanti-
tative comparison is challenging due to the inherent mixing
of scales when transforming between configuration and
Fourier space (see [73] for a more detailed discussion in the
context of galaxy clustering). Even in the absence of the IA
contributions discussed in this work, this type of margin-
alization is likely necessary for future Fourier-space cosmic
shear analyses, given the statistical precision of the mea-
surements and the uncertainties in estimating the shape
noise. Finally, we note that in our simplified forecast, the
loss of constraining power due to the expanded IA model is
quite modest due to our ability to separate the lensing and
IA contributions using redshift tomography. Indeed, the
constraints on some cosmological parameters can actually
be slightly improved by the presence of IA modeling, even
if the amplitude parameters are unknown, since there is
cosmological information in the shape of the IA power
spectrum (e.g., the constraints on Ωm and σ8 in Fig. 3).
Accessing this information requires sufficiently good
photo-z information to separate the IA and lensing signals
through tomography—as this information decreases, the
degeneracy between the two will increase, and the overall
cosmological constraints will degrade in the presence of IA.
Alternatively, combining weak lensing with galaxy cluster-
ing and galaxy-galaxy lensing will enable better separation
of these signals. A more detailed consideration of these
analyses, including the impact of varying A1δ and photo-
metric redshift parameters, is ongoing work.

V. CONCLUSIONS

Given the current uncertainty in the IA of typical
lensing sources and its potentially significant impact, it
is important that future lensing experiments use sufficiently

sophisticated modeling. We have presented a perturbative
model for intrinsic alignments, motivated by the treatment
of galaxy biasing, which incorporates both tidal alignment
and tidal torquing mechanisms and allows for more general
alignment effects. We have also performed forecasts that
show the potential impact of IA if an insufficient model is
adopted. Using the traditional NLA model when the true
underlying IA signal has quadratic contributions leads to
systematic biases in the inferred cosmology significantly
larger than the underlying statistical uncertainty. These
biases partially remain even when allowing for a more
flexible redshift dependence in the NLA model. To date,
most weak lensing surveys have used some version of the
NLA model to describe IA in all of their sources (i.e., both
red and blue). Although the statistical uncertainties in these
surveys likely still dominate the potential bias from IA (see
e.g., the tests in [74]), our results here indicate that such an
approach will not be sufficient in the near future.
The recent weak lensing analysis of DES Year 1 data

[18] applied this mixed model and found indications for
nonzero values of both C1 and C2, respectively at the 83%
and 84% confidence levels. Using this more flexible IA
model caused a nontrivial shift in the recovered cosmo-
logical parameters, although they caution that further study
is required to understand this result. A follow-up analysis,
splitting lensing sources by color to more robustly separate
cosmological and IA effects [49] found a similar shift that is
somewhat sensitive to the assumed redshift dependence
of IA. This model will also provide a valuable tool in
“combined probe” analyses that use both weak lensing and
galaxy clustering information to improve statistical infor-
mation and break degeneracies between both cosmological
and astrophysical/systematics parameters (e.g., [19]). By
including correlations between the (biased) density field
and the intrinsic shapes, such analyses allow a more
effective separation of the IA and lensing signals and thus
better measurement of both. However, optimal combined
probe analyses will require consistent, nonlinear modeling
of IA, galaxy biasing, and their cross-correlation. The
perturbative approach described here provides exactly such
a description. We note that, like any perturbative expansion,
this model will break down on fully nonlinear scales, where
the strength and impact of IA correlations remains an open
question. One potential approach to treating these scales
would be to combine a perturbative model with methods
inspired by the halo occupation distribution (HOD) used in
galaxy clustering (see [75] and references therein). The
tensorial nature of galaxy shapes makes modeling IA more
complicated, since the shapes and orientations of galaxies
must be specified in addition to their number and position.
Moreover, the shapes and orientations of the halos them-
selves must be considered. Despite these challenges,
however, some modeling in this spirit has been done
(e.g., [76,77]), and this topic is currently receiving renewed
attention. Environmental and formation effects, analogous
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to assembly bias, may be significant for IA and should also
be considered in this context.
Cosmological hydrodynamic simulations also present an

opportunity to test the predictions of this model and to
potentially extend predictions into the deeply nonlinear
regime. However, the current state of IA measurements in
these simulations has not converged, with fairly low signal-
to-noise (driven by the maximum volumes that can be
simulated) and a strong dependence on subgrid physics
which leads to a lack of qualitative and quantitative
agreement between simulations. We expect that the inter-
action of analytic theory and hydrodynamic simulations
will be a valuable area of study in the near future.
Finally, this modeling approach reveals interesting theo-

retical features of IA. Due to IA parameter renormalization,
we see that tidal (linear) alignment terms are generated even
when starting with a higher-order astrophysical model (e.g.,
tidal torquing). More generally, this renormalization
approach provides a framework in which the small-scale
physics of galaxy formation and evolution are responsible
for the shape correlations observed on large scales, thus
motivating a significant dependence of the IA parameters
on galaxy properties. Similarly, the nonlinear IA correla-
tions include k → 0 contributions, suggesting that the
effective shape noise contribution to measured shear
correlations may be decoupled from the zero-lag ellipticity
variance and should instead be treated as a free parameter of

the model. Exploring the connection between IA and
galaxy biasing is yielding valuable insights, and we believe
it will continue to do so as the modeling of both further
develops in the new era of lensing measurements.
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APPENDIX A: ANGULAR KERNELS

The evaluation of the convolution integrals is simplified
if we rotate to a spherical coordinate system in which k̂ is
the polar axis, allowing us to analytically integrate over the
azimuthal angle. For the alternative FAST-PT decompo-
sition, see Appendix B. We express the resulting integrals
in terms of α ¼ q=k and μ ¼ k̂ · q̂. For convenience, we
define the following functions:

X1 ¼ α2 − 2αμþ 1; ðA1Þ

X2 ¼ −3ðα2 þ 1Þμ2 þ α2 þ 3αμ3 þ αμþ 1; ðA2Þ

X3 ¼ αð10μ2 − 3Þ − 7μ; ðA3Þ

X4 ¼ −10αþ 7ð1þ α2Þμ − 4αμ2; ðA4Þ

X5 ¼ α3ð−38μ5 þ 4μ3 þ 2μÞ þ α2ð19μ6 þ 44μ4 − 17μ2 þ 2Þ þ αð−34μ5 − 4μ3 þ 6μÞ
þ ð1þ α4Þð19μ4 − 14μ2 þ 3Þ; ðA5Þ

X6 ¼ αð1 − μ2Þð2μþ αð−3þ α2 þ 5αμ − 5ð1þ α2Þμ2 þ 5αμ3ÞÞ; ðA6Þ

X7 ¼ ð1 − μ2Þðα − μÞ2ð1 − 2αμÞ2; ðA7Þ

X8 ¼ −4þ 12μ2 þ 4αμð1 − 9μ2Þ þ α2ð−3þ 10μ2 þ 41μ4Þ þ α3μð9 − 22μ2 − 19μ4Þ þ α4X6; ðA8Þ

X9 ¼ −2þ 4αμ − α2ð−1þ 3μ2Þ; ðA9Þ

X10 ¼ −1 − 2μ2 þ 19μ4 þ α2ð6 − 28μ2 þ 38μ4Þ þ αð2μþ 4μ3 − 38μ5Þ; ðA10Þ

X11 ¼ 6þ 12μ2 − 50μ4 − 4α2ð1 − 18μ2 þ 25μ4Þ þ 4αμð−7 − 2μ2 þ 25μ4Þ; ðA11Þ

X12 ¼ −1 − 18μ2 þ 35μ4 þ 2αμð9þ 10μ2 − 35μ4Þ þ α2ð6 − 60μ2 þ 70μ4Þ; ðA12Þ

X13 ¼ ð−1þ μ2Þð−1þ 5μ2Þ; ðA13Þ
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X14 ¼ αð−1þ μ2Þð−4μþ αð−1þ 5μ2ÞÞ; ðA14Þ

X15 ¼ 2μðμ2 − 1Þ
�
α − α2μ

X1

− μ

�
; ðA15Þ

X16 ¼ 1 − 12μ2 þ 19μ4 þ 2α3μð7þ 2μ2 − 25μ4Þ þ α4ð1 − 18μ2 þ 25μ4Þ
þ αð6μþ 8μ3 − 46μ5Þ þ α2ð4 − 41μ2 þ 60μ4 þ 25μ6Þ; ðA16Þ

X17 ¼ 3 − 18μ2 þ 23μ4 þ 2α3μð9þ 10μ2 − 35μ4Þ þ 2αμð7þ 2μ2 − 25μ4Þ
þ α4ð3 − 30μ2 þ 35μ4Þ þ α2ð−2 − 45μ2 þ 60μ4 þ 35μ6Þ; ðA17Þ

X18 ¼ ðμ2 − 1Þð−1þ 2μ2 − 2αμð2þ μ2Þ þ α4ð−1þ 5μ2Þ − 2α3ðμþ 5μ3Þ þ α2ð3þ 5ðμ2 þ μ4ÞÞÞ; ðA18Þ

X19 ¼ −2ð−4þ 12μ2 þ 8αμð1 − 5μ2Þ þ α4ð1 − 18μ2 þ 25μ4Þ þ α2ð−5 − 2μ2 þ 55μ4Þ
þ α3μð23 − 5μ2ð6þ 5μ2ÞÞÞ; ðA19Þ

X20 ¼ −4þ 12μ2 þ 4αμð3 − 11μ2Þ þ α4ð3 − 30μ2 þ 35μ4Þ þ α2ð−11 − 6μ2 þ 65μ4Þ
þ α3μð33 − 5μ2ð6þ 7μ2ÞÞ; ðA20Þ

X21 ¼ 2αðμ − αÞðαμ − 1Þð2αμ − 1Þðμ2 − 1Þ: ðA21Þ
We can then express the relevant correlations,

A0j0Eðk; μkÞ ¼ 2ð1 − μ2kÞ
Z

k3α2dαdμ
ð2πÞ2

ð3μ2 − 1ÞX3

28αX1

PlinðqÞPlinðq2Þ; ðA22Þ

C0j0Eðk; μkÞ ¼ 2ð1 − μ2kÞPlinðkÞ
Z

k3α2dαdμ
ð2πÞ2

�
X4X9

28αX1

−
5

21

�
PlinðqÞ; ðA23Þ

A0Ej0Eðk; μkÞ ¼
Z

k3α2dαdμ
ð2πÞ2

��
X10 þ X11μ

2
k þ X12μ

4
k

8X1

�
PlinðqÞPlinðq2Þ −

8

15
P2
linðqÞ

�
; ðA24Þ

A0Bj0Bðk; μkÞ ¼
Z

k3α2dαdμ
ð2πÞ2

��
X15 þ

�
X13

2
þ X14

2X1

�
μ2k

�
PlinðqÞPlinðq2Þ −

8

15
P2
linðqÞ

�
; ðA25Þ

A0jE2ðk; μkÞ ¼ 2ð1 − μ2kÞ
Z

k3α2dαdμ
ð2πÞ2

X2X3

84X2
1α

PlinðqÞPlinðq2Þ; ðA26Þ

B0jE2ðk; μkÞ ¼ 4ð1 − μ2kÞPlinðkÞ
Z

k3α2dαdμ
ð2πÞ2

�
X2X4

84X1α
−

29

630

�
PlinðqÞ; ðA27Þ

AE2jE2ðk; μkÞ ¼ 2

Z
k3α2dαdμ
ð2πÞ2

�
X5 − 2X16μ

2
k þ X17μ

4
k

72X2
1

PlinðqÞPlinðq2Þ −
4

135
P2
linðqÞ

�
; ðA28Þ

AB2jB2ðk; μkÞ ¼ 2

Z
k3α2dαdμ
ð2πÞ2

�
X7 þ X18μ

2
k

18X2
1

PlinðqÞPlinðq2Þ −
4

135
P2
linðqÞ

�
; ðA29Þ

D0EjE2ðk; μkÞ ¼ 2

Z
k3α2dαdμ
ð2πÞ2

�
X8 þ X19μ

2
k þ X20μ

4
k

24X2
1

PlinðqÞPlinðq2Þ −
4

45
P2
linðqÞ

�
; ðA30Þ

D0BjB2ðk; μkÞ ¼ 2

Z
k3α2dαdμ
ð2πÞ2

�
X21 þ X6μ

2
k

6X2
1

PlinðqÞPlinðq2Þ −
4

45
P2
linðqÞ

�
: ðA31Þ
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The remaining angular integral for B0jE2 and C0j0E can be done analytically, yielding

B0jE2ðkÞ ¼ 4ð1 − μ2kÞPlinðkÞk3
Z

α2dα
ð2πÞ2 PlinðqÞ

�
Z1ðαÞ −

29

315

�
; ðA32Þ

C0j0EðkÞ ¼ 2ð1 − μ2kÞPlinðkÞk3
Z

α2dα
ð2πÞ2 PlinðqÞ

�
Z2ðαÞ −

10

21

�
; ðA33Þ

Z1ðαÞ ¼
2αð225 − 600α2 þ 1198α4 − 600α6 þ 225α8Þ þ 225ðα2 − 1Þ4ðα2 þ 1Þ log j α−1αþ1

j
20160α5

; ðA34Þ

Z2ðαÞ ¼
4αð45þ 379α2 − 165α4 þ 45α6Þ þ 90ðα2 − 1Þ4 log j α−1αþ1

j
1344α3

: ðA35Þ

For large α (relevant at low k), the leading behavior of the kernels simplifies,

α2
�
Z1ðαÞ −

29

315

�
→ −

16

147
þ 32

441α2
þOðα−4Þ; ðA36Þ

α2
�
Z2ðαÞ −

10

21

�
→

24

49
−

8

147α2
þOðα−4Þ: ðA37Þ

APPENDIX B: INTEGRALS IN FAST-PT

The evaluation of these integrals can performed signifi-
cantly faster by decomposing the convolution kernels into
terms with different dependences on wave vector amplitude
and angle (expressed as an expansion in Legendre poly-
nomials). The angular part of the resulting component
integrals can be performed analytically, while the remain-
ing 1D convolution over wave number can be performed
rapidly using FFTs. Below, we provide the decomposition
of the relevant terms into this basis, described in [30] and
implemented in the publicly available code FAST-PT.
Note that the current implementation assumes the Limber
approximation (μk ¼ 0).
As discussed above, the k → 0 contributions are

removed from each term and absorbed into either the
renormalized IA parameters or the effective shape noise. In
the FAST-PT decomposition, ∝ Plin contributions of this
type are removed through kernel redefinition. However, the
shape noise terms, ∝ σ4, cannot be removed from the
convolution before evaluation and must be explicitly
subtracted from the result. FAST-PT returns σ4 for the
input power spectrum, which can be used to perform this
subtraction from the final results, but it is not done by
default to allow the user to control numerical precision.
Below, we list the terms that are output by the relevant

FAST-PT functions, denoted with the F superscript,
related to the integrals in Sec. III. In cases where there
is an overall prefactor in front of the integral, it is applied
after combining the individual components, and it is thus
not included in the FAST-PT coefficients quoted here.
C0j0E and B0jE2 are P13-like integrals. The analytic forms
for these terms in Appendix A are directly implemented in
FAST-PT using discrete convolutions [29].

AF
0j0E ¼ 2

Z
d3q
ð2πÞ3 fEðq̂ÞF2ðq2;qÞPlinðqÞPlinðq2Þ: ðB1Þ

The corresponding coefficients shown in Table I.

AF
0Ej0E ¼

Z
d3q
ð2πÞ3 ½fEðq̂ÞfEðq̂2Þ þ fEð−q̂ÞfEðq̂Þ�

× PlinðqÞPlinðq2Þ; ðB2Þ

with AF
0Bj0B given by E → B. The coefficients are in

Table II, where α ¼ β ¼ 0 for all the terms.

TABLE I. The coefficient of each term in the Legendre
polynomial expansion of the ½fEðq̂ÞF2ðq2;qÞ� kernel in Eq. (B1).
α β l l1 l2 Aαβ

l1l2l

0 0 0 0 2 17=21
2 0 2 4=21

1 −1 1 0 2 1=2
−1 1 1 0 2 1=2

TABLE II. The coefficient of each term in the Legendre
polynomial expansion of ½fðE;BÞðq̂1ÞfðE;BÞðq̂2Þ þ fðE;BÞð−q̂1Þ ×
fðE;BÞðq̂1Þ� in Eq. (B2).

l l1 l2 A00ðEÞ
l1l2l

A00ðBÞ
l1l2l

0 0 0 29=90 2=45
4 19=35 −16=35

2 0 5=63 −44=63
2 19=18 −8=9

1 1 1 � � � 2
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AF
E2jE2ðkÞ ¼ 2

Z
d3q
ð2πÞ3 ½PlinðqÞPlinðq2Þh2Eðq̂; q̂2Þ�; ðB3Þ

with AF
B2jB2 given by E → B. The coefficients are in

Table III, where α ¼ β ¼ 0 for all the terms.

AF
0jE2ðkÞ ¼ 2

Z
d3q
ð2πÞ3 PlinðqÞPlinðq2ÞF2ðq;q2ÞhEðq̂; q̂2Þ:

ðB4Þ
The coefficients are shown in Table IV.

DF
0EjE2ðkÞ ¼ 2

Z
d3q
ð2πÞ3 ½fEðq̂2ÞhEðq̂; q̂2Þ�PlinðqÞPlinðq2Þ;

ðB5Þ
and the equivalent for DF

0BjB2. The coefficients are given in
Table V, with α ¼ β ¼ 0 for all terms.
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