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We reconsider the fine-tuning problem of scalar-driven inflation arising from the need to couple the
inflaton to ordinary matter in order to make reheating efficient. Quantum fluctuations of this matter induce
Coleman-Weinberg corrections to the inflaton potential, depending (for de Sitter background) in a complex
way on the ratio of the inflaton to the Hubble parameter. These corrections are not Planck-suppressed and
cannot be completely subtracted because they are not even local for a general geometry. A previous study
showed that it is not satisfactory to subtract a local function of just the inflaton and the initial Hubble
parameter. This paper examines the other allowed possibility of subtracting a local function of the inflaton
and the Ricci scalar. The problem in this case is that the new, scalar degree of freedom induced by the
subtraction causes inflation to end almost instantly.
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I. INTRODUCTION

Primordial inflation driven by the potential energy of a
scalar inflaton,

L ¼ R
ffiffiffiffiffiffi−gp

16πG
−
1

2
∂μφ∂νφgμν

ffiffiffiffiffiffi
−g

p
− VðφÞ ffiffiffiffiffiffi

−g
p

; ð1Þ

suffers from many fine-tuning problems [1]. These include
the need to make the potential very flat, the need to choose
very special initial conditions to make inflation start, and
the need to keep inflation predictive by avoiding the
formation of a multiverse [2]. The implications of the
increasingly stringent upper limits on the tensor-to-scalar
ratio have caused some of the pioneers of inflation to
question its testability [3–5].
This paper is aimed at a different sort of fine-tuning

problem which may prove equally serious: the Coleman-
Weinberg corrections [6] to the inflaton potential that are
generated when ordinary matter is coupled to the inflaton to
facilitate reheating. These corrections are too large to be
ignored because they are not Planck-suppressed [7]. The
usual assumption has been that Coleman-Weinberg cor-
rections are local functions of the inflaton which could be
completely subtracted off; however, it has recently been
shown that cosmological Coleman-Weinberg corrections
depend nonlocally on the metric [8], which precludes their
complete subtraction.

There are two possible local subtraction schemes:
(1) Subtract a local function of the inflatonwhich exactly

cancels the cosmological Coleman-Weinberg poten-
tial at the beginning of inflation; or

(2) Subtract a local function of the inflaton and the Ricci
scalar which exactly cancels the cosmological
Coleman-Weinberg potential when the first slow roll
parameter vanishes.

A recent study of the first possibility concluded that it is not
viable [9].When the inflation is coupled to fermions, inflation
never ends unless the coupling constant is chosen so small as
to endanger reheating, and then an initial reduction of the
expansion rate still results in de Sitter expansion at a lower
rate. When a charged inflaton is coupled to gauge bosons,
inflation ends almost immediately, again unless the coupling
constant is chosen so small as to endanger reheating.
The purpose of this paper is to study the second possible

subtraction scheme. Section II details the form of cosmo-
logical Coleman-Weinberg potentials for fermionic and for
bosonic couplings. Section III gives the evolution equations
associated with the second subtraction scheme. The effect
on the simple VðφÞ ¼ 1

2
m2φ2 model is worked out for

fermion and boson couplings in Sec. IV. We discuss the
results in Sec. V.

II. REVIEW OF PAST WORK
ON THE PROBLEM

The purpose of this section is to explain the cosmological
Coleman-Weinberg corrections from fermions and from
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gauge bosons, which differ profoundly from the simple
∓φ4 lnðφÞ form that pertains in flat space [6]. The section
begins by reviewing explicit results from computations in
de Sitter background. We then explain our assumption for
how to generalize these de Sitter results to a general,
spatially flat, homogeneous, and isotropic background
geometry,

ds2 ¼ −dt2 þ a2ðtÞdx⃗ · dx⃗

⇒ HðtÞ≡ _a
a
; ϵðtÞ≡ −

_H
H2

: ð2Þ

The section closes with a discussion of the Ricci sub-
traction scheme.

A. Fermion corrections on de Sitter

Explicit results have so far only been obtained for de Sitter
background, which corresponds to ϵ ¼ 0, with H exactly
constant. Suppose the inflaton φ is Yukawa-coupled to a
massless, Dirac fermion on this background via the inter-
action LYukawa ¼ −λφψ̄ψ ffiffiffiffiffiffi−gp

. The one loop correction to
the inflaton effective potential on de Sitter was originally
derived by Candelas and Raine in 1975 [10].
Of course their result depends slightly on conventions
of regularization and renormalization. Our more recent
computation [11] employed dimensional regularization
in D spacetime dimensions with conformal and quartic
counterterms,

ΔLf ¼ −
1

2
δξfφ2R

ffiffiffiffiffiffi
−g

p
−

1

4!
δλfφ4 ffiffiffiffiffiffi

−g
p

: ð3Þ

To simplify the resultwe took the dimensional regularization
scale μ to be proportional to the constant Hubble parameter
of de Sitter,

δξf0 ¼ 4λ2HD−4

ð4πÞD2
�
Γð1 − D

2
Þ

DðD − 1Þ þ
ð1 − γÞ

6
þOðD − 4Þ

�
; ð4Þ

δλf0 ¼
24λ4HD−4

ð4πÞD2
�
Γ
�
1−

D
2

�
þ 2ζð3Þ− 2γ þOðD− 4Þ

�
;

ð5Þ

where γ ¼ 0.577… is the Euler-Mascheroni constant. These
choices result in a cosmological Coleman-Weinberg poten-
tial of the form ΔVf

0ðφ; HÞ ¼ − H4

8π2
× fðzÞ, where z≡ λφ

H ,
and the function fðzÞ is

fðzÞ ¼ 2γz2 − ½ζð3Þ − γ�z4

þ 2

Z
z

0

dxðxþ x3Þ½ψð1þ ixÞ þ ψð1 − ixÞ�; ð6Þ

and ψðxÞ≡ d
dx ln½ΓðxÞ� is the digamma function.

We assume that de Sitter results can be extended to
general homogeneous and isotropic geometries (2) by
simply replacing the constant de Sitter Hubble parameter
with the time-dependent HðtÞ for a general background.
However, we must be careful to keep the dimensional
regularization scale constant, which amounts to a small
change of the counterterms (4) and (5),

δξf1 ¼ 4λ2μD−4

ð4πÞD2
�
Γð1 − D

2
Þ

DðD − 1Þ þ
ð1 − γÞ

6
þOðD − 4Þ

�
; ð7Þ

δλf1 ¼ 24λ4μD−4

ð4πÞD2
�
Γ
�
1 −

D
2

�
þ 2ζð3Þ − 2γ þOðD − 4Þ

�
:

ð8Þ

The net effect is to change ΔVf
0ðφ; HÞ to

ΔVf
1ðφ;HÞ ¼ −

H4

8π2

�
fðzÞ þ z2 ln

�
H2

μ2

�
þ 1

2
z4 ln

�
H2

μ2

��
:

ð9Þ

B. Gauge boson corrections on de Sitter

The contribution of a gauge boson to a charged inflaton,

Lvector ¼ −ð∂μ þ ieAμÞφ�ð∂ν − ieAνÞφgμν
ffiffiffiffiffiffi
−g

p
; ð10Þ

was originally computed on de Sitter background using
mode sums by Allen in 1983 [12]. As always, the precise
result depends on conventions of regularization and
renormalization. Our more recent, dimensionally regulated
computation [13] employed the massive photon propagator
[14] with conformal and quartic counterterms,

ΔLb ¼ −δξbφ�φR
ffiffiffiffiffiffi
−g

p
−
1

4
δλbðφ�φÞ2 ffiffiffiffiffiffi

−g
p

: ð11Þ

We again chose the dimensional regularization mass scale
μ to be proportional to the constant de Sitter Hubble
parameter,

δξb0 ¼
e2HD−4

ð4πÞD2
�

1

4 −D
þ 1

2
γ þOðD − 4Þ

�
; ð12Þ

δλb0 ¼
DðD − 1Þe4HD−4

ð4πÞD2
�

2

4 −D
þ γ −

3

2
þOðD − 4Þ

�
:

ð13Þ

These choices result in a cosmological Coleman-Weinberg
potential of the formΔVb

0ðφ�φ; H2Þ ¼ þ 3H4

8π2
× bðzÞ, where

z≡ e2φ�φ
H2 and bðzÞ is
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bðzÞ ¼ ð−1þ 2γÞzþ
�
−
3

2
þ γ

�
z2

þ
Z

z

0

dxð1þ xÞ
�
ψ

�
3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p �

þ ψ

�
3

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p ��
: ð14Þ

When generalizing the constant de Sitter Hubble param-
eter to the time-dependent one of a general homogeneous
and isotropic geometry, we must revise the counterterms
(12) and (13) to keep the mass scale of dimensional
regularization strictly constant:

δξb1 ¼
e2μD−4

ð4πÞD2
�

1

4 −D
þ 1

2
γ þOðD − 4Þ

�
; ð15Þ

δλb1 ¼
DðD − 1Þe4μD−4

ð4πÞD2
�

2

4 −D
þ γ −

3

2
þOðD − 4Þ

�
:

ð16Þ

The net effect is to change ΔVb
0ðφ�φ; H2Þ to

ΔVb
1ðφ�φ;H2Þ¼þ3H4

8π2

�
bðzÞþzln

�
H2

μ2

�
þ1

2
z2 ln

�
H2

μ2

��
:

ð17Þ

C. Ricci subtraction

Ricci subtraction amounts to subtracting the primitive
contribution with the replacement H2ðtÞ → 1

12
RðtÞ. In a

homogeneous and isotropic geometry, this can be thought
of as an ϵ-dependent Hubble parameter H̄ðtÞ,

RðtÞ¼ 12H2ðtÞþ6 _HðtÞ¼ 12

�
1−

1

2
ϵðtÞ

�
H2ðtÞ≡12H̄2ðtÞ:

ð18Þ

Because the quartic terms cancel between the primitive
potential and the Ricci subtraction, the full fermionic result
takes the form ΔVf

2ðφ; HÞ − ΔVf
2ðφ; H̄Þ, where

ΔVf
2ðφ;HÞ ¼ −

H4

8π2

�
ΔfðzÞ þ z2 ln

�
H2

H2
inf

��
; z≡ λφ

H
;

ð19Þ

ΔfðzÞ ¼ 2γz2 −
1

2
z4 lnðz2Þ

þ 2

Z
z

0

dxðxþ x3Þ½ψð1þ ixÞ þ ψð1− ixÞ�: ð20Þ

Note that we have chosen the constant mass scale to be the
Hubble parameter at the beginning of inflation, μ ¼ Hinf .

The full bosonic result takes the form ΔVb
2ðφ�φ; H2Þ−

ΔVb
2ðφ�φ; H̄2Þ, where

ΔVb
2ðφ�φ; H2Þ ¼ þ 3H4

8π2

�
ΔbðzÞ þ z ln

�
H2

H2
inf

��
;

z≡ e2φ�φ
H2

; ð21Þ

ΔbðzÞ ¼ ð−1þ 2γÞz − 1

2
z2 lnð2zÞ

þ
Z

z

0

dxð1þ xÞ
�
ψ

�
3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p �

þ ψ

�
3

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8x

p ��
: ð22Þ

III. THE MODIFIED EVOLUTION EQUATIONS

The purpose of this section is to work out the two
Freidmann equations for the case in which the cosmologi-
cal Coleman-Weinberg potential depends on the Hubble
parameter, and it is subtracted by a function which depends
on the Ricci scalar. We also change to dimensionless
dependent and independent variables.
It is useful to change the evolution variable from

comoving time t to the number of e-foldings from the
beginning of inflation,

n≡ ln

�
aðtÞ
aðtiÞ

�
⇒

d
dt

¼H
d
dn

;
d2

dt2
¼H2

�
d2

dn2
− ϵ

d
dn

�
:

ð23Þ

It is also useful to make the dependent variables
dimensionless,

ϕðnÞ≡ ffiffiffiffiffiffiffiffiffi
8πG

p
× φðtÞ; χðnÞ≡ ffiffiffiffiffiffiffiffiffi

8πG
p

×HðtÞ: ð24Þ

With these variables the slow roll approximation to the
(already dimensionless) scalar power spectrum becomes

Δ2
R ≃

GH2

πϵ
¼ 1

8π2
χ2

ϵ
: ð25Þ

Finally, it is natural to use a dimensionless potential and
mass parameter,

U ≡ ð8πGÞ2 × V; k2 ≡ 8πG ×m2: ð26Þ

The simplest way of expressing the modified field
equations is to imagine that the dimensionless form of
the classical potential plus the primitive Coleman-Weinberg
potential takes the form Uðϕ; χÞ. The Ricci-subtraction
takes the similar form Usubðϕ; χ̄Þ, where we define
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χ̄ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

2
ϵ

r
χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 1

2
χχ0

r
: ð27Þ

The two potentials enter the scalar evolution equation the
same way,

χ2½ϕ00 þ ð3 − ϵÞϕ0� þ ∂U
∂ϕ þ ∂Usub

∂ϕ ¼ 0: ð28Þ

However, the fact that the subtracted potentialUsub depends
upon ϵ, in addition to χ, makes the form of its contributions
to the gravitational field equations very different. The first
Friedmann equation becomes

3χ2 ¼ 1

2
χ2ϕ02 þU − χ

∂U
∂χ þ Usub −

1

2
ð1 − ϵÞχ2 ∂Usub

∂χ̄2
þ 1

2
χ2

d
dn

∂Usub

∂χ̄2 : ð29Þ

The second Friedmann equation is

−ð3 − 2ϵÞχ2 ¼ 1

2
χ2ϕ02 −U þ χ

∂U
∂χ þ 1

3
χ
d
dn

∂U
∂χ

−Usub þ
1

2

�
1 −

1

3
ϵ

�
χ2

∂Usub

∂χ̄2

−
1

6
χ2
�
d
dn

þ 2 − ϵ

�
d
dn

∂Usub

∂χ̄2 : ð30Þ

One consequence of the final term in Eq. (29) is that the
first Friedmann equation involves second derivatives of
χðnÞ. To see this, we use the chain rule to exhibit the
implicit higher derivatives,

1

2
χ2

d
dn

∂Usub

∂χ̄2 ¼ 1

2
χ2
�
ϕ0 ∂2Usub

∂ϕ∂χ̄2

þ
�
2χχ0 þ 1

2
χ02 þ 1

2
χχ00

� ∂2Usub

∂χ̄4
�
: ð31Þ

Recalling that ϵ ¼ −χ0=χ allows us to express the first
Friedmann equation (29) as

ϵ0 ¼ −4ϵþ 2ϵ2 þ 4

χ4 ∂2Usub∂χ̄4

�
−χ2

�
3 −

1

2
ϕ02

�
þ U þ Usub

− χ2
�
2
∂U
∂χ2 þ

1

2
ð1 − ϵÞ ∂Usub

∂χ̄2
�
þ 1

2
χ2ϕ0 ∂2Usub

∂ϕ∂χ̄2
�
:

ð32Þ

The natural initial conditions derive from the slow roll
solutions for the purely classical model (U ¼ 1

2
k2ϕ2 and

Usub ¼ 0Þ,

ϕ2ðnÞ ≃ ϕ2ð0Þ − 4n; χ2ðnÞ ≃ 1

6
k2½ϕ2ð0Þ − 4n�;

ϵðnÞ ≃ 2

ϕ2ð0Þ − 4n
: ð33Þ

Hence we obtain a two-parameter family of initial con-
ditions based on ϕð0Þ≡ ϕ0 and k:

ϕð0Þ ¼ ϕ0; ϕ0ð0Þ ¼ −
2

ϕ0

; ð34Þ

χð0Þ ¼ kϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − ð 2

ϕ0
Þ2

q ; χ0ð0Þ ¼ −
2χ0
ϕ2
0

: ð35Þ

Note that these initial conditions (34) and (35) exactly
satisfy the classical Friedmann equation 3χ20 ¼ 1

2
χ20ϕ

0
0
2 þ

1
2
k2ϕ2

0 and also make the first slow roll parameter ϵ0 ¼
2=ϕ2

0 agree with the slow roll approximation (33).
Using the slow roll approximations (33) we see that

ϕ0 ¼ 20 will give about 100 total e-foldings of inflation.
We can also express the power spectrum and the scalar
spectral index in terms of the evolving first slow roll
parameter ϵðnÞ,

Δ2
R ≃

1

8π2
χ2

ϵ
→

1

8π2
k2

3ϵ2
; ð36Þ

1 − ns ≃ 2ϵþ ϵ0

ϵ
→ 4ϵ: ð37Þ

Of course relations (36) and (37) allow us to determine the
constant k in terms of the measured scalar amplitude As and
spectral index ns [15],

k ≃ πð1 − nsÞ
ffiffiffiffiffiffiffiffi
3

2
As

r
≃ 6.13 × 10−6: ð38Þ

IV. THE FATE OF THE m2φ2 MODEL

The purpose of this section is to numerically simulate the
effect of primitive Coleman-Weinberg potentials with Ricci
subtraction in the context of the classical Vclass ¼ 1

2
m2φ2

model. We begin with the case of fermionic corrections and
then discuss bosonic corrections. The generic problem in
each case is that the χ00ðnÞ terms in the first Friedmann
equation (29) excite a new scalar degree of freedom that
causes inflation to end almost immediately when starting
from the classical initial conditions (34) and (35).

A. Fermionic corrections

The Ricci subtraction scheme for fermionic corrections
is defined by the potentials,
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Ufðϕ;χÞ ¼ 1

2
k2ϕ2 −

χ4

8π2

�
Δf

�
λϕ

χ

�
þ
�
λϕ

χ

�
2

ln

�
χ2

χ2ð0Þ
��

;

ð39Þ

Uf
subðϕ; χ̄Þ ¼ þ χ̄4

8π2

�
Δf

�
λϕ

χ̄

�
þ
�
λϕ

χ̄

�
2

ln

�
χ̄2

χ2ð0Þ
��

;

ð40Þ

where ΔfðzÞ was defined in (20) and χ̄ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
ϵ

q
χ.

Figure 1 displays the classical evolution (in blue) versus
the quantum-corrected model (in red dots) for a moderate
coupling of λ ¼ 5.5 × 10−4. While the initial evolution of
the scalar and the Hubble parameter is not visibly affected
by the quantum correction, the first slow roll parameter
rises above the inflationary threshold of ϵ ¼ 1 almost
immediately.
To understand why Ricci subtraction engenders imme-

diate deviations for λ ¼ 5.5 × 10−4, first note that the initial
conditions of the classical model (34) and (35) force the
initial value of the parameter z≡ λϕ

χ to be much larger
than 1:

z0 ¼
λϕ0

χ0
¼ λ

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 −

�
2

ϕ0

�
2

s
≃ 220: ð41Þ

This means it is valid to use the large z expansion
of (20) [8],

ΔfðzÞ ¼ −
1

4
z4 þ z2 lnðz2Þ −

�
5

6
− 2γ

�
z2

þ 11

60
lnðz2Þ þOð1Þ: ð42Þ

Substituting (42) in expressions (39) and (40) implies

Ufðϕ; χÞ ¼ 1

2
k2ϕ2 −

χ4

8π2

�
−
1

4

�
λϕ

χ

�
4

þ
�
ln

�
λ2ϕ2

χ20

�
−
5

6
þ 2γ

��
λϕ

χ

�
2

þ 11

60
ln

�
λ2ϕ2

χ2

�
þ…

�
; ð43Þ

Uf
subðϕ; χ̄Þ ¼

χ̄4

8π2

�
−
1

4

�
λϕ

χ̄

�
4

þ
�
ln

�
λ2ϕ2

χ20

�
−
5

6
þ 2γ

��
λϕ

χ̄

�
2

þ 11

60
ln

�
λ2ϕ2

χ̄2

�
þ…

�
: ð44Þ

The ðλϕÞ4 terms cancel out between (43) and (44) so that
the leading contribution usually comes from the ðλϕÞ2 term,

Uf þUf
sub− χ2

�
2
∂Uf

∂χ2 þ
1

2
ð1− ϵÞ∂U

f
sub

∂χ̄2
�

¼ 1

2
k2ϕ2þ χ4

8π2
×
3

2
z2
�
ln
�
λ2ϕ2

χ20

�
−
5

6
þ 2γ

�
þ… ð45Þ

1

2
χ2ϕ0 ∂2Uf

sub

∂ϕ∂χ̄2 ¼ χ4

8π2
×
ϕ0

ϕ
z2
�
ln

�
λ2ϕ2

χ20

�
þ 1

6
þ 2γ

�
þ…

ð46Þ

However, the ðλϕÞ2 term makes no contribution to the
denominator, so one must go one order higher,

FIG. 1. Plots of the dimensionless scalar ϕðnÞ (left), the dimensionless Hubble parameter χðnÞ (middle), and the first slow roll
parameter ϵðnÞ (right) for the classical model (in blue) and the quantum-corrected model (in red dots) with Yukawa coupling
λ ¼ 5.5 × 10−4.
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χ4
∂2Uf

sub

∂χ̄4 ¼ χ4

8π2
×
11

60

�
2 ln

�
λ2ϕ2

χ̄2

�
− 3

�
þ… ð47Þ

Taking into account the fact that the classical terms initially
cancel and that ϕ0

0=ϕ0 ¼ −ϵ0, the large z0 form of (32) is

ϵ00 ≃ −4ϵ0 þ 2ϵ20

þ 6z20½lnðz20Þ − 5
6
þ 2γ� − 4ϵ0z20½lnðz20Þ þ 1

6
þ 2γ�

11
60
½2 lnðz20Þ − 2 lnð1 − 1

2
ϵ0Þ − 3�

≃ 9.4 × 105: ð48Þ

This compares with the slow roll result of ϵ00 ¼ 2ϵ20 ¼
5 × 10−5 and explains why the subtraction term brings
inflation to such an abrupt end.
Because the large fraction in (48) scales like λ2, one

might expect that decreasing λ reduces ϵ0ð0Þ. This is indeed
true for as long as the large z regime pertains, but ϵ0ð0Þ
approaches a constant value of about 6 in the small z
regime, as can be seen from Fig. 2. The asymptotic limit of
ϵ0ð0Þ ≃ 6 is still much too large, corresponding to only
about one e-folding of inflation.
To understand the small z limit of ϵ0ð0Þ, note first that the

small z expansion of ΔfðzÞ is [8]

ΔfðzÞ ¼ −
1

2
z4 lnðz2Þ þ ½ζð3Þ − γ�z4

þ 2

3
½ζð3Þ − ζð5Þ�z6 þOðz8Þ: ð49Þ

Comparison with expressions (39) and (40) implies that
the small λ limiting forms derive from the conformal
renormalization,

Ufðϕ; χÞ − 1

2
k2ϕ2 → −

λ2ϕ2χ2

8π2
ln

�
χ2

χ20

�
; ð50Þ

Uf
subðϕ; χ̄Þ → þ λ2ϕ2χ̄2

8π2
ln

�
χ̄2

χ20

�
: ð51Þ

Substituting (50) and (51) in the final term of (32) gives

ϵ00→−4ϵ0þ2ϵ20þ
6−2ϵ0þ2ð1−2ϵ0Þ lnð1− 1

2
ϵ0Þ

ð1− 1
2
ϵ0Þ−1

: ð52Þ

A striking feature of Fig. 2 and expression (52) is that the
limit λ → 0 fails to agree with the case of λ ¼ 0 for which
there is no change to classical inflation. This seems
contradictory but is in fact the standard signature of a
perturbation that changes the number of derivatives. A
simple example is the higher derivative extension of the
simple harmonic oscillator considered in Sec. 2.2 of [16].
The oscillator’s position is xðtÞ and its Lagrangian is

L ¼ −
ϵm
2ω2

ẍ2 þm
2
_x2 −

mω2

2
x2: ð53Þ

When ϵ ¼ 0 this system reduces to the simple harmonic
oscillator which has two pieces of initial value data and
whose energy is bounded below. However, for any nonzero
value of ϵ, the system has four pieces of initial value data,
and its energy is unbounded below. Because the effect of
the higher derivative perturbation (in our inflation model)
never becomes small, no matter how small the coupling
constant, it follows that perturbation theory breaks down.

B. Corrections from gauge bosons

Making the inflaton complex causes a few small changes
in the key equations of Sec. III. Because the two potentials
Ubðϕ�ϕ; χ2Þ and Ub

subðϕ�ϕ; χ̄2Þ depend on the norm-
squared of the scalar, the evolution equation for the inflaton
becomes

χ2½ϕ00þð3−ϵÞϕ0�þϕ

�∂Ubðϕ�ϕ;χ2Þ
∂ϕ�ϕ

þ∂Ub
subðϕ�ϕ; χ̄2Þ
∂ϕ�ϕ

�
¼0:

ð54Þ
The first Friedmann equation takes the form

3χ2 ¼ χ2ϕ0�ϕ0 þUb þUb
sub − χ2

�
2
∂Ub

∂χ2 þ 1

2
ð1− ϵÞ∂U

b
sub

∂χ̄2
�

þ 1

2
χ2

d
dn

∂Ub
sub

∂χ̄2 : ð55Þ

This gives an evolution equation for the first slow roll
parameter analogous to (32):

ϵ0 ¼−4ϵþ2ϵ2þ 4

χ4
∂2Ub

sub
∂χ̄4

�
−χ2½3−ϕ0�ϕ0�þUbþUb

sub

−χ2
�
2
∂Ub

∂χ2 þ
1

2
ð1− ϵÞ∂U

b
sub

∂χ̄2
�
þ1

2
χ2ðϕ�ϕÞ0 ∂2Ub

sub

∂ϕ�ϕ∂χ̄2
�
:

ð56Þ
Even though we do not use it, the second Friedmann
equation is

FIG. 2. Log-log plot of the final term in relation (32) for ϵ0ð0Þ as
a function of λ in the range 10−13 < λ < 10−4.
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−ð3 − 2ϵÞχ2 ¼ χ2ϕ0�ϕ0 −Ub −Ub
sub

þ χ2
�
2
∂Ub

∂χ2 þ 1

2

�
1 −

1

3
ϵ

� ∂Ub
sub

∂χ̄2
�

þ 1

3
χ2
�
d
dn

− ϵ

� ∂Ub

∂χ2

−
1

6
χ2
�
d
dn

þ 2 − ϵ

�
d
dn

∂Ub
sub

∂χ̄2 : ð57Þ

And the initial values (assuming ϕ0 is real) become

ϕð0Þ ¼ ϕ0; ϕ0ð0Þ ¼ −
2

ϕ0

; ð58Þ

χð0Þ ¼ kϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ð 2

ϕ0
Þ2

q ; χ0ð0Þ ¼ −
2χ0
ϕ2
0

: ð59Þ

We continue to use ϕ0 ¼ 20, with the value of k given
in (38).
The Ricci subtraction scheme for bosons is defined by

these potentials,

Ubðϕ�ϕ;χ2Þ¼ k2ϕ�ϕ

þ 3χ4

8π2

�
Δb

�
e2ϕ�ϕ
χ2

�
þe2ϕ�ϕ

χ2
ln
�

χ2

χ2ð0Þ
��

;

ð60Þ

Ub
subðϕ�ϕ; χ̄2Þ¼−

3χ̄4

8π2

�
Δb

�
e2ϕ�ϕ
χ̄2

�
þe2ϕ�ϕ

χ̄2
ln

�
χ̄2

χ2ð0Þ
��

;

ð61Þ

where ΔbðzÞ was defined in (22) and χ̄ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2
ϵ

q
χ.

Figure 3 compares the classical evolution (in blue) with
the quantum-corrected one (in red dots) for a charge

e2 ≃ 2.9 × 10−10, which is three hundred million times
weaker than electromagnetism.
The rapid onset of deviations from classical evolution

evident in Fig. 3 has the same explanation for bosons as for
fermions. Even for the small coupling e2 ≃ 2.9 × 10−10, the

initial value of z ¼ e2ϕ�ϕ
χ2

is larger than 1,

z0 ≡ e2ϕ2
0

χ20
¼ e2

k2

�
3 −

4

ϕ2
0

�
≃ 23.1: ð62Þ

Just as for fermions, this means we can simplify relation
(56) using the large z expansion of ΔbðzÞ [8],

ΔbðzÞ ¼ −
1

4
z2 þ z lnð2zÞ−

�
5

3
− 2γ

�
zþ 19

60
lnðzÞ þOð1Þ:

ð63Þ

The corresponding large argument expansions of the
potentials are

Ubðϕ�ϕ; χ2Þ ¼ k2ϕ�ϕþ 3χ4

8π2

�
−
1

4

�
e2ϕ�ϕ
χ2

�
2

þ
�
ln

�
2e2ϕ�ϕ

χ20

�
−
5

3
þ 2γ

�
e2ϕ�ϕ
χ2

þ 19

60
ln

�
e2ϕ�ϕ
χ2

�
þ…

�
; ð64Þ

Ub
subðϕ�ϕ; χ̄2Þ ¼ −

3χ̄4

8π2

�
−
1

4

�
e2ϕ�ϕ
χ̄2

�
2

þ
�
ln

�
2e2ϕ�ϕ

χ20

�
−
5

3
þ 2γ

�
e2ϕ�ϕ
χ̄2

þ 19

60
ln

�
e2ϕ�ϕ
χ̄2

�
þ…

�
: ð65Þ

FIG. 3. Plots of the dimensionless scalar ϕðnÞ (left), the dimensionless Hubble parameter χðnÞ (middle), and the first slow roll
parameter ϵðnÞ (right) for the classical model (in blue) and the quantum-corrected model (in red) with the charge-squared
e2 ¼ 4π

137
× 10−8.5 ≃ 2.9 × 10−10.
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Just as for fermions, the order e2ϕ�ϕ terms in (64) and (65)
make the dominant contributions to the numerator of
expression (56), but the denominator is a crucial order
weaker:

ϵ00 ≃ −4ϵ0 þ 2ϵ20

þ 6z0½lnð2z0Þ − 5
3
þ 2γ� − 4ϵ0z0½lnð2z0Þ − 2

3
þ 2γ�

19
60
½2 lnðz0Þ − 2 lnð1 − 1

2
ϵ0Þ − 3�

≃ 441: ð66Þ

Just as we found for fermions, ϵ0ð0Þ can be decreased by
reducing the coupling constant, but it eventually
approaches a value that is still much too large. This can
be seen from Fig. 4. The analytic derivation follows from
the small e2 limiting forms of the quantum part of Ub and
Ub

sub,

Ubðϕ�ϕ; χ2Þ − k2ϕ�ϕ →
3e2ϕ�ϕχ2

8π2
ln

�
χ2

χ20

�
; ð67Þ

Ub
subðϕ�ϕ; χ̄2Þ → −

3e2ϕ�ϕχ̄2

8π2
ln

�
χ̄2

χ20

�
: ð68Þ

The analysis and even the result are the same as for
fermions. Note that the limit e2 → 0, for which there is
always an instability, again fails to agree with the e2 ¼ 0
model, which is classical inflation.

V. DISCUSSION

Cosmological Coleman-Weinberg potentials are induced
when the inflaton is coupled to ordinary matter, typically to
facilitate reheating. Without subtraction, these potentials
are disastrous to inflation because they are far too steep and
not Planck-suppressed. If they depended only on the
inflaton, it would be straightforward to subtract them,
but they also involve the metric in a deep and profound
way. Explicit computations on de Sitter background, for
fermions [10,11] and for vector bosons [12,13], reveal
complicated functions of the dimensionless ratio of
the coupling constant times the inflaton, all divided by
the Hubble parameter. Indirect arguments show that the

constant Hubble parameter of de Sitter in this ratio cannot
be constant for a general geometry, nor can it even be local
[8]. That poses a major obstacle to subtracting away
cosmological Coleman-Weinberg potentials because only
local functions of the inflaton and the Ricci scalar can be
employed [17], and neither can completely subtract the
potentials.
A previous study explored the possibility of subtracting a

function of just the inflaton, chosen to completely cancel
the cosmological Coleman-Weinberg potential at the onset
of inflation [9]. What we found for moderate coupling
constants is that inflation never ends for the corrections due
to fermions, and it ends too soon for the corrections due to
vector bosons. Making the Yukawa coupling very small
results in a nearly classical evolution until late times, at
which point the Universe approaches de Sitter with a much
smaller Hubble parameter. An acceptable evolution can
only be obtained by making the vector boson coupling very
small, and this degrades the efficiency of reheating.
This paper studied the other possibility: subtracting a

function of the inflaton and the Ricci scalar. One might
think (as we originally hoped) that corrections for this type
of subtraction would be suppressed by the smallness of the
first slow roll parameter. However, the higher time deriv-
atives in the subtraction change the first Friedmann
equation (29) from being algebraic in the Hubble parameter
to containing second derivatives of it, and the particular
way (32) this change manifests is fatal for inflation. We
were able to construct an analytic proof (52)—supported by
explicit numerical analysis in Figs. 2 and 4—that the initial
value of ϵ0 can never be less than about 6. That compares
with its initial value of 5 × 10−5 in the classical model,
and it means that inflation cannot last more than a single
e-folding. So the Ricci subtraction scheme is much worse
than the initial time subtraction, but neither method is
satisfactory.
Before closingwe shouldmake a few comments. First, the

problem with ϵ0ð0Þ is almost completely independent of the
classical model of inflation. So one should not expect that a
different model would lead to a different result. Second, we
need better control of the ϵ dependence of cosmological
Coleman-Weinberg potentials. The present study was car-
ried out by assuming that the constant Hubble parameter of
de Sitter background becomes the instantaneous Hubble
parameter of an evolving geometry. In reality, the cosmo-
logical Coleman-Weinberg potential should depend as well
on ϵðnÞ [18].Accounting for this dependencewill tighten the
argument, and we expect it to extend the ϵ0ð0Þ problem even
to the initial time subtraction. Finally, it should be possible to
extend these studies to the case in which derivatives of the
inflaton are coupled to matter. Such a coupling would not
induce a cosmological Coleman-Weinberg potential but
would change the kinetic term. It would be very interesting
to work out the consequences for evolution and the gen-
eration of perturbations.

FIG. 4. Plot of the third term in expression (56) for ϵ0ð0Þ as a
function of e2.
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