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Neutron star interiors provide the opportunity to probe properties of cold dense matter in the QCD phase
diagram. Utilizing models of dense matter in accord with nuclear systematics at nuclear densities, we
investigate the compatibility of deconfined quark cores with current observational constraints on the
maximum mass and tidal deformability of neutron stars. We explore various methods of implementing the
hadron-to-quark phase transition, specifically, first-order transitions with sharp (Maxwell construction) and
soft (Gibbs construction) interfaces, and smooth crossover transitions. We find that within the models we
apply, hadronic matter has to be stiff for a first-order phase transition and soft for a crossover transition. In
both scenarios and for the equations of state we employed, quarks appear at the center of premerger neutron
stars in the mass range ≈1.0–1.6 M⊙, with a squared speed of sound c2QM ≳ 0.4 characteristic of strong
repulsive interactions required to support the recently discovered neutron star masses ≥ 2 M⊙. We also
identify equations of state and phase transition scenarios that are consistent with the bounds placed on tidal
deformations of neutron stars in the recent binary merger event GW170817. We emphasize that
distinguishing hybrid stars with quark cores from normal hadronic stars is very difficult from the
knowledge of masses and radii alone, unless drastic sharp transitions induce distinctive disconnected
hybrid branches in the mass-radius relation.
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I. INTRODUCTION

The observation that the dense matter inside neutron
stars might consist of weakly interacting quark matter
owing to the asymptotic freedom of quantum chromody-
namics (QCD) was first made by Collins and Perry [1].
Since then, numerous explorative studies have been con-
ducted to isolate neutron star observables that can establish
the presence of quarks deconfined from hadrons. Starting
from the QCD Lagrangian, lattice gauge simulations at
finite temperature T and net baryon number nB ¼ 0
naturally realize hadronic and quark degrees of freedom
in a smooth crossover transition. However, lattice simu-
lations for finite nB at T ¼ 0, of relevance to neutron stars,
have been thwarted due to the unsolved fermion sign
problem and untenable imaginary probabilities. As a result,
the possible phases of dense matter at T ¼ 0 have been
generally explored by constructing equation of state (EoS)
models of hadrons and quarks that are independent of each
other although a few exceptions do exist.

Extensive studies of nucleonic matter in neutron stars for
nB ≲ 0.5n0, where n0 ≃ 0.16 fm−3 is the isospin symmetric
nuclear matter equilibrium density, have predicted the
presence of a solid crust. Observations of the surface
temperatures of accreting neutron stars in their quiescent
periods have indeed confirmed the presence of a crust (see
Ref. [2], and references therein). This region is charac-
terized by a Coulomb lattice of neutron-rich nuclei sur-
rounded by dripped neutrons with admixtures of light
nuclei and a uniform background of electrons in chemical
potential and pressure equilibrium in a charge-neutral state.
Differences among different equations of state [3–6] are
small and are of minor importance to the structure of stars
more massive than 1 M⊙. In this work, we use the EoSs of
Ref. [4] (for 0.001 < nB < 0.08 fm−3) and Ref. [3] (for
nB < 0.001 fm−3) to determine the structural properties of
the star.
Models of the hadronic EoS for nB > 0.08 fm−3 can be

grouped into three broad categories: nonrelativistic potential
models, Dirac-Brueckner-Hartree-Fock models, and relativ-
istic field-theoretical models. Microscopic many-body cal-
culations in the first two of these categories (e.g., Brueckner-
Hartree-Fock, variational, Greens’ function Monte Carlo
calculations, chiral effective field theory, as well as Dirac-
Brueckner-Hartree-Fock) employ free-space two-nucleon
interactions supplemented by three-nucleon interactions
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required to describe the properties of light nuclei as input. In
contrast, coupling strengths of the two- and higher-body
nucleon interactions mediated by meson exchanges are
calibrated at n0 in the relativistic field-theoretical models.
Several schematic potentialmodels based on zero- and finite-
range forces also exist that take recourse in the Hohenberg-
Kohn-Sham theorem [7,8] which assures that the ground
state energy of a many-body system can be expressed in
terms of local densities alone. Refinements in all of these
approaches are guided by laboratory data on the bulk
properties of isospin symmetric and asymmetric matter, such
as the binding energy BE ¼ −16� 1 MeV [9,10] at the
saturation density n0 ¼ 0.16� 0.01 fm−3 [9–11], compres-
sion modulus Knm ¼ 240� 20 MeV [12–14], nucleon’s
Landau effective mass m�=M ¼ 0.75� 0.1 [15–17], sym-
metry energy S2 ¼ 28–35 MeV [18,19], and the symmetry
energy slope parameter L ¼ 60� 20 MeV [18,19] at satu-
ration. Low-to-intermediate energy (0.5–2 GeV) heavy-ion
collisions have been used to determine the EoS for densities
up to 2–3n0 through studies of matter, momentum, and
energy flow of nucleons [20–25]. The consensus has been
that as long as momentum-dependent forces are employed
inmodels that use Boltzmann-type kinetic equations, the use
of Knm ∼ 240� 20 MeV, suggested by the analysis of the
giant monopole resonance data [26–28], fits the heavy-ion
data as well [25].
The lack of Lorentz invariance in nonrelativistic models

leads to an acausal behavior at some high density particu-
larly if contributions from three- and higher-body inter-
actions to the energy are not screened in medium [29,30].
The general practice has been to enforce causality from
thermodynamic considerations [31,32]. In some cases, the
reliability of nonrelativistic models is severely restricted,
often only up to 2n0 as in the case of chiral effective
field-theoretical (EFT) models owing to the perturbative
scheme and the momentum cutoff procedure employed
there [33,34].
To explore consequences of the many predictions of

these models at supranuclear densities, piecewise poly-
tropic EoSs that are causal have also been extensively used
to map out the range of pressure vs density relations (EoSs)
that are consistent with neutron star phenomenology
[35–38]. The viability of these EoSs at supranuclear
densities necessarily depends on the growing neutron star
data to be detailed below.
The possibility of non-nucleonic degrees of freedom

such as strangeness-bearing hyperons, pion and kaon
condensates, and deconfined quarks above n0 has also
been examined in many of these models [35,39,40]. At
some nB ≳ ð2–4Þn0, the presence of quark degrees of
freedom has been invoked on the physical basis that the
constituents of hadrons could be liberated as the com-
pression in density progressively increases. First-principle
calculations [41–48] of the EoS of quark matter have
thus far been limited to the perturbative region of QCD

valid at asymptotically high baryon densities. The
Nambu–Jona-Lasinio (NJL) model [49], which shares
many symmetries with QCD—but not confinement—
has been used to mimic chiral restoration in quark matter
[50–52]. Also in common use are variations [53,54] of the
MIT bag model [41].
Lacking knowledge about the nature of the phase tran-

sition, it has been common to posit a first-order phase
transition in many recent studies [54–58]. Even in this case,
the magnitude of the hadron-quark interface tension is
uncertain [59–62]. If the interface tension is regarded
as being infinite, a Maxwell construction can be employed
to determine the range of density for which chemical
potential and pressure equality between the hadronic and
quark phases exists [63]. The other extreme case corresponds
to a vanishing interface tension when a Gibbs construction
is considered more appropriate. The Gibbs construction
also corresponds to global charge neutrality instead of local
charge neutrality, appropriate for matter with two conserved
charges (baryon number and charge) [64].
Depending on the models used to calculate the EoSs of

the hadron and quark phases, chemical potential and
pressure equilibrium between the two phases may not be
realized [65]. In such cases, several interpolatory proce-
dures have been used to connect the two phases on the
premise that at nB ≫ n0, a purely hadronic phase is
physically unjustifiable [65–68]. As a result, the hadron-
quark transition becomes one of a smooth crossover with
the proportion of each phase depending on the specific
interpolation procedure used. This is in contrast to the
Gibbs construction (which also renders the transition into a
mixed phase to be smooth) in which the fraction of each
phase is determined self-consistently.
Although differing in details, other examples of a smooth

crossover transition are the chiral model of Ref. [69] and
the quarkyonic model of Ref. [70]. A quark phase with
additional hadronic admixtures such as hyperons and Bose
condensates has also been explored [71]. The precise
manner in which the hadron-quark transition is treated
influences the magnitudes of the mass and radius of the star.
In addition, the behavior of the speed of sound with density
affects the magnitude of tidal deformations. It is worth
mentioning, however, that stars with purely hadronic matter
(HM) can sometimes masquerade as stars with quark matter
(QM) [72].
The objectives of this work are to seek answers to

probing questions such as (a) What is the minimum neutron
star (NS) mass consistent with the observational lower limit
on the maximum mass (Mmax) that is likely to contain
quarks? (b) What is the minimum physically reasonable
density at which a hadron-quark transition of any sort can
occur? (c) Which astronomical observations have the best
potential to attest to the presence of quarks?
Toward providing answers to the above questions, we

have undertaken a detailed study of the hadron-to-quark
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matter transition in neutron stars. Our focus is to study the
sensitivity of outcomes on neutron star structure, principally
mass-radius relations, in the different treatments of the phase
transition. Results so obtained are then subjected to the
constraints provided by precisemassmeasurements of heavy
neutron stars [73–76], bounds on the tidal deformability of
neutron stars in the binary merger event GW170817
[77–80], and radius estimates of 1.4 M⊙ available from
x-ray observations of neutron stars [35,36,81].
Earlier studies in this regard have generally chosen one

favored EoS in the hadronic sector and one approach to the
quark matter EoS [53,54,58,82–84]. Contrasts between the
Maxwell and Gibbs constructions have also been made in
some of these works, but with the result that R1.4 are
typically larger than 14 km or more [characteristic of the
use of mean-field theoretical (MFT) models] which is at
odds with most of the available estimates. This work differs
in that variations in the EoSs of both the hadronic and quark
sectors are considered as well as a global view of the
outcomes of different treatments of the transition is taken.
By including terms involving scalar-vector and scalar-
isovector interactions in MFT models, we show that values
of R1.4 more in consonance with data can be achieved.
Additionally, we present an extension of the quarkyonic
matter model of Ref. [70] to isospin asymmetric matter
with the inclusion of interactions between quarks (not
considered there) to enable calculations of beta-equilibrated
neutron stars. This extension will be useful in applications
involving compositional and thermal gradients in quar-
kyonic stars, such as their long-term cooling as well as
quiescent cooling following accretion on them from a
companion star and in investigating f-, p-, and g-mode
oscillations. Our in-depth study of the thermodynamics of
quarkyonic matter sheds additional physical insight into the
role that the nucleon shell plays in stiffening the EoS.
Our findings in this work reveal that several aspects of

neutron star properties deduced from observations may
have to be brought to bear in finding answers to the
questions posed above. These properties include the masses
M, radii R, periods P and their time derivatives _P and P̈,
surface temperatures Ts of isolated neutron stars and of
those that undergo periodic accretion from companions,
and tidal deformations Λ from the detection of gravitational
waves during the inspiraling phase of neutron star mergers.
Currently, the accurately measured neutron star masses
around and above 2 M⊙ [73,74,76] pose stringent restric-
tions on the EoS. Even so, the EoS would be better
restricted with knowledge of radii of stars for which the
masses are also known, although this would not reveal
the constituents of dense matter as the structure equations
depend only on the pressure vs density relation εðPÞ,
and not on how it was obtained. In contrast, the surface
temperatures of both isolated neutron stars and of quiescent
cooling of accreting neutron stars are sensitive to the
composition, but simultaneous knowledge of their masses

and radii are yet unknown. The anomalous behavior of the
braking indices n ¼ ΩΩ̈= _Ω2, where Ω ¼ 2π=P is the spin
rate, of several known pulsars [85–87] can also be put to
good use in this connection.
The organization of this paper is as follows. In Sec. II, we

present the models in the hadronic and quark sectors chosen
for our study. The rationale for our choice and basic
features of these models are highlighted here for orienta-
tion. We stress that our choices are representative, but not
exhaustive. Results of neutron star properties for different
treatments of the hadron-quark transition introduced in
Sec. III are shown and discussed in Sec. IV. Our con-
clusions and outlook are contained in Sec. V. Appendix
contains details about the thermodynamics of nucleons in
the shell of quarkyonic matter.
We use units in which ℏ ¼ c ¼ 1.

II. EQUATION OF STATE MODELS

A. Nucleonic EoSs

To explore sensitivity to the hadronic part of the EoS, we
use representative examples from both potential and
relativistic mean-field–theoretical (RMFT) models. In the
former category, the EoS of Akmal, Pandharipande,
and Ravenhall (APR) [88], which is a parametrization of
the microscopic variational calculations of Akmal and
Pandharipande [89], is chosen as its energy vs baryon
density up to 2n0 closely matches those of modern EFT
calculations of pure neutron matter and symmetric nuclear
matter [33,34]. Moreover, it is compatible with current
nuclear phenomenology from both structure (equilibrium
density and energy, compression modulus, symmetry
energy and its slope, etc.) and heavy-ion experiments
[25] as well as with the latest constraints from astrophysical
observations (largest known NS mass, upper limit on
maximum NS mass, tidal deformability, NS radii, etc.).
Explicit expressions for the energy density ε, pressure P,
compression modulus K0, Landau effective mass m�=M,
symmetry energy S2, and the symmetry energy slope
parameter L along with the coupling strengths of the
various terms therein can be found in Ref. [90]. Recent
fits of the APR calculations to the traditional Skyrme
energy-density functional (EDF) can be found in
Refs. [91,92]. The latter also details the calculation of a
complete tabular EoS based on the original APR parametric
form.
To provide contrast, we have constructed three EoSs,

MS-A, MS-B, and MS-C, using the RMFT model of
Müller and Serot [93] employing terms that contain
scalar-isovector and vector-isovector mixings as in
Refs. [94,95]. The numerical results to be reported in this
work are from these RMFT models; that is, we consider
many-body effects at the Hartree level exclusive of quan-
tum fluctuations in the meson fields. Fock (exchange) terms
are beyond the scope of this paper. As demonstrated in
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Ref. [96], a simple reparametrization of the couplings in the
MFT Hartree models at T ¼ 0 yields very nearly the same
P vs ε relations (and hence masses, radii, and tidal
deformabilities of neutron stars) as models with the
inclusion of Fock terms. Note, however, that Fock terms
and additional many-body contributions influence thermal
effects in a way that is not reproducible by reparametriza-
tion; see, e.g., Refs. [97–99]. In this work, however, we do
not consider hot matter. Specifically, we have devised three
new parametrizations for the coupling constants appearing
in the MS Lagrangian such that consistency with contem-
porary experimental and observational data is achieved.
Many other EoSs based on the MS model are currently in
use; for an exhaustive list, see Ref. [100]. Explicitly, the
Lagrangian density for this model is

L ¼ Ψ̄½i∂ − gω=ω −
1

2
gρ · τ −M þ gσσ −

1

2
eð1þ τ3Þ=A�Ψ

þ 1

2
ð∂μσÞ2 − VðσÞ− 1

4
fμνfμν þ

1

2
m2

ωω
μωμ

−
1

4
BμνBμν þ 1

2
m2

ρρ
μρμ −

1

4
FμνFμν

þ ζ

24
g4ωðωμωμÞ2 þ

ξ

24
g4ρðρμρμÞ2 þ g2ρfðσ;ωμω

μÞρμ · ρμ
ð1Þ

with

VðσÞ ¼ 1

2
m2

σσ
2 þ κ

6
ðgσσÞ3 þ

λ

24
ðgσσÞ4;

fðσ;ωÞ ¼ Λσg2σσ2 þ Λωg2ωω2: ð2Þ

Expressions for the energy per particle ε=n, P, K0, the
Dirac effective mass M�, and hence the sigma field σ0 ¼
ðM −M�Þ=gσ in the mean-field approximation can be
found in Ref. [91]. With input values of these quantities
at n0, the coupling strengths gσ, gω, κ, and λ are straight-
forwardly determined by numerically solving the system
of nonlinear equations containing these quantities. The
strengths ζ and ξ, Λσ and Λω of the quartic ω and ρ fields,
remain as adjustable input parameters to control the high-
density behavior. The density-dependent symmetry energy
in this model is [95]

S2 ¼ S2k þ S2d

¼ k2F
6E�

F
þ 1

8

g2ρn

m�2
ρ
; E�

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM�2

q
;

m�2
ρ ¼ 2g2ρðΛσg2σσ20 þ Λωg2ωω2

0Þ: ð3Þ
The first term on the right-hand side above contains effects
of interaction through σ-meson exchange, whereas the
second term includes those from the ρ-meson exchange
along with ρ-σ and ρ-ω mixing. The corresponding slope
parameter at n0 becomes

L ¼ 3n0
dS2
dn

����
n0

¼ Lkjn0 þ Ldjn0 ;

Lk ¼ 2S2k

�
1 − 18

�
S2k
kF

�
2
�
1þ 3

�
M�

kF

�
2 d lnM�

d ln n

�	
;

Ld ¼ 3S2d

�
1 − 32S2d

�
Λσg2σσ0

dσ0
dn

þΛωg2ωω0

dω0

dn

�	
: ð4Þ

Analogous expressions but without the term involving Λσ

can be found in Ref. [101]. The strength gρ may be fixed
with a prescribed value of S2 at n0, which leaves one or a
combination of Λσ and Λω to obtain a desired value of L.
The values of the various couplings used in this work are
listed in Table I.
As noted in Refs. [91,95], the quartic and scalar-

isovector and vector-isovector terms in Eq. (1) enable
acceptable values [18] of the symmetry energy slope
parameter L at n0 to be obtained. The reduction in L from
its generally large value found for RMFT models is made

TABLE I. RMFT coupling strengths. Values of the meson
masses used are mσ ¼ 660 MeV, mω ¼ 783 MeV, and
mρ ¼ 770 MeV.

Model gσ gω gρ κ λ

MS-A 12.819 12.258 12.079 0.02544 −0.02179
MS-B 11.369 10.143 9.446 0.05098 −0.03396
MS-C 10.026 7.961 8.492 0.10841 −0.00365

Model ζ ξ Λσ Λω

MS-A 0.0001 1.0 0.001 0.05
MS-B 0.0001 1.0 0.001 0.05
MS-C 0.0001 1.0 0.001 0.05

TABLE II. Properties at the nuclear equilibrium density n0 for
EoSs used in this work compared to that of the APR EoS [90].
Entries in this table are the Landau effective mass m�=M, isospin
symmetric matter compression modulus K0, kinetic and inter-
action parts S2k and S2d of the total symmetry energy S2, and the
corresponding parts of the symmetry energy slope parameter L.
In MS models, m� ¼ E�

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þM�2p

.

Property APR MS-A MS-B MS-C Units

n0 0.16 0.16 0.16 0.16 fm−3

m�=M 0.698 0.662 0.763 0.847
K0 266 230 230 230 MeV

S2k 9.79 18.55 16.09 14.49 MeV
S2d 22.80 11.45 13.91 15.51 MeV
S2 32.58 30.0 30.0 30.0 MeV

Lk 12.69 61.74 44.35 34.52 MeV
Ld 45.78 −13.40 8.65 30.88 MeV
L 58.47 48.34 53.00 65.40 MeV
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possible by the second term in Ld of Eq. (4), the term in
braces being positive definite. These density-dependent
terms also influence the high-density behavior of
these EoSs, leaving the near-nuclear-density behavior
intact. Salient properties at n0 for these nucleonic models
are presented in Table II. The values of L in Table II are to
be compared with those of the Florida State University
(FSU) models [101,102] in the literature; see, e.g., Fig. 2
and Table IV in Ref. [101]: L ¼ 60.5 MeV for FSU (but it
does not achieve 2 M⊙) and L ¼ 112.8� 16.1 MeV for
FSU2 with Mmax ¼ 2.07� 0.02 M⊙, Rmax ¼ 12.2 km,
and R1.4 ¼ 14.42� 0.26 km. In comparison to FSU2,
the values of L for the MS models of this work are
significantly smaller, which result in smaller radii for the
maximum mass and 1.4 M⊙ neutron stars (see Table III).

B. Properties of nucleonic neutron stars

Structural properties of charge-neutral and beta-
equilibrated neutron stars resulting from the chosen

EoSs are listed in Table III. Two of the three MS EoSs
satisfy the requirement of supporting a star with mass
≥ 2 M⊙. The EoS of MS-C does not obey the 2 M⊙
constraint, but we have retained it in our analysis because,
in conjunction with crossover transitions involving quark
matter, masses well in excess of this observational limit can
be obtained (see Secs. III and IV). Although the RMFT
models employ terms that contain scalar-isovector and
vector-isovector mixings as in Refs. [94,95] to yield
acceptable values of the symmetry energy slope parameter
L at n0, the radii of neutron stars stemming from these
models are somewhat larger than that of the APR model,
but lie within the range of those extracted from data [18].
The largest differences between the APR and RMFT
models are in the central pressures of the maximum-mass
stars. The proton fractions, yc;1.4 and yc;max, are such that
stars close to the maximum-mass stars allow the direct Urca
processes with electrons and muons to occur [103].
An examination of L in Table II and R1.4 and Rmax in

Table III would seem to imply an anticorrelation between
these quantities for the MS models. That is, smaller values
of L appear to lead to larger values of R1.4 and Rmax, which
is a trend opposite to that observed for many EoS models.
The reason for this reversal becomes clear when L’s
corresponding to different m�’s within the same model
are compared; see Fig. 1(b) and Table IV. In other words,
the standard L-R correlation holds within a class of MS
models with the same effective mass, whereas there exists
an anticorrelation between m�-R which, if not taken into
account explicitly, manifests itself as a turnabout in L-R.
Similar trends of correlation with L and anticorrelation with
m� are also seen in Ref. [104] which used the MS
Lagrangian but without the term involving Λσ in Eq. (2)
as in Ref. [101]. Figure 7 of Ref. [104] suggests that, when
both m� and L are varied, L and R can appear correlated,
anticorrelated, or uncorrelated. The latter two possibilities
are due to the competing effects ofm� and L on neutron star
radii. We have verified that nonrelativistic potential models
also yield similar trends, which are not shown here for
brevity.

TABLE III. Structural properties of nucleonic neutron stars
with M ¼ 1.4 M⊙ and Mmax for the indicated EoSs. For
each mass, the compactness parameter β ¼ ðGM=c2RÞ ≃
ð1.475RÞðM=M⊙Þ; nc, Pc, and yc are the central values of the
density, pressure, and proton fraction, respectively.

Property APR MS-A MS-B MS-C Units

R1.4 11.74 13.21 12.41 11.85 km
β1.4 0.176 0.157 0.167 0.174
nc;1.4=n0 3.35 2.05 2.80 3.72
Pc;1.4 89.33 41.78 64.43 94.24 MeV fm−3
yc;1.4 0.11 0.104 0.106 0.106

Rmax 10.26 12.44 10.91 9.94 km
Mmax 2.185 2.63 2.21 1.83 M⊙
βmax 0.314 0.312 0.299 0.273
nc;max=n0 6.97 4.71 6.38 8.30
Pc;max 884.69 498.32 632.66 664.60 MeV fm−3
yc;max 0.16 0.14 0.14 0.128

(a) (b)

FIG. 1. Pressure versus baryon density and M-R curves for the MS models in Table IV. The circles on the pressure curves in panel
(a) indicate the densities of 1.4 M⊙ stars for EoSs that yield the smallest radius R1.4 in each class of MS models.
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Moreover, further examination of the P versus nB and
M-R relations for the MS models (Fig. 1) shows that the
central densities of 1.4 M⊙ stars for the EoSs chosen are all
≥2n0 with that of the MS-C star being the largest. The
symmetry energy slope parameter L, however, refers to that
at n0. The behaviors of the pressures [see Fig. 1(a)] at
nB ≥ 2n0 for all of these EoSs are distinctly different from
their corresponding behaviors at nB ≃ n0. The M-R curves
in Fig. 1(b) and Table IValso clearly show how the value of
nc;1.4 differs in each of these cases. Evidently, the manner in
which the size of a 1.4 M⊙ is built depends sensitively on
the behavior of the EoS well above n0. These features
deliver the alert that the standard L-R1.4 correlation
involves more subtleties than generally thought.

C. Quark EoSs

For completeness, we briefly describe the quark matter
EoSs considered in this work; details can be found in the
references cited. Since the discovery of 2 M⊙ neutron
stars [73,74,76], the traditional MIT bag [41] and NJL [50]
models have been supplemented with vector interactions
[53] to achieve consistency with data. These models have
been termed vMIT, vBag, vNJL, etc., and are outlined
below. Common and different features of these models will
be highlighted after a brief description of each model.

1. The bag model and its variations

The Lagrangian density of the MIT bag model is [41]

L ¼
X
i

½ψ̄ iði∂ −mi − BÞψ i þ Lint�Θ; ð5Þ

which describes quarks of massmi confined within a bag as
denoted by the Θ function. For three flavors i ¼ u; d; s and
three colors Nc ¼ 3 of quarks, the number and baryon
densities, energy density, pressure and chemical potentials
in the bag model are [41]

ni ¼ 2Nc

Z
kFi d3k

ð2πÞ3 ; nB ¼ 1

3

X
i

ni;

εQ ¼ 2Nc

X
i

Z
kFi d3k

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
þ εpert þ B;

PQ ¼ 2Nc

3

X
i

Z
kFi d3k

ð2πÞ3
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
i

p þ Ppert − B;

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fi þm2

i

q
þ μpert;i: ð6Þ

The superscript kFi in the integral signs is the Fermi wave
number for each species i, at which the integration over k is
terminated at zero temperature. The first terms in εQ and PQ

are free Fermi gas contributions, εFG and PFG, respectively,
the second terms are QCD perturbative corrections due to
gluon exchange corresponding to Lint, and B is the so-
called bag constant that accounts for the cost in confining
the quarks into a bag. The quark masses mi are generally
taken to be current quark masses. Often, the u and d quark
masses are set to zero (as at high density, kFi in these cases
far exceed mi), whereas that of the s quark is taken at its
Particle Data Group (PDG) value. References [41–47]
detail the QCD perturbative calculations of εpert and
Ppert, and the ensuing results for the structure of neutron
stars containing quarks within the cores as well as self-
bound strange quark stars. At leading order of QCD
corrections, the results are qualitatively similar to what
is obtained by just using the Fermi gas results with an
appropriately chosen value of B [105].
In recent years, variations of the bag model have been

adopted [53,54,106] to calculate the structure of neutron
stars with quarks cores to account for ≥ 2 M⊙ maximum-
mass stars. Termed as vMIT or vBag models, the QCD
perturbative results are dropped and replaced by repulsive
vector interactions between quarks in such works. We will
provide some numerical examples of the vMIT model for
contrast with other models as those of the vBag model turn
out to be qualitatively similar.

2. The vMIT model

The form Lint ¼ −Gv
P

i ψ̄γμV
μψ þ ðm2

V=2ÞVμVμ,
where interactions among the quarks occur via the
exchange of a vector-isoscalar meson Vμ of mass mV , is
chosen in Ref. [54]. Here, the quark masses are chosen
close to their current quark masses. Explicitly,

εQ ¼
X
i

εFG;i þ
1

2

�
Gv

mV

�
2

n2Q þ B;

PQ ¼
X
i

PFG;i þ
1

2

�
Gv

mV

�
2

n2Q − B;

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fi þm2

i

q
þ
�
Gv

mV

�
2

nQ; ð7Þ

TABLE IV. Effective mass dependence of the L-R1.4 relation.
Entries are as in Tables II and III, but organized differently.

Model m�=M Λσ Λω L½MeV� R1.4½km� nc;1.4=n0

MS-A 0.662 0.001 0.05 48.34 13.21 2.05
0.662 0.001 0.01 85.49 13.81 2.00
0.662 0.0 0.0 96.1 14.07 1.93

MS-B 0.763 0.001 0.05 52.99 12.41 2.80
0.763 0.001 0.01 78.71 12.93 2.68
0.763 0.0 0.0 86.08 13.25 2.53

MS-C 0.847 0.001 0.05 65.40 11.85 3.72
0.847 0.001 0.01 77.53 12.41 3.35
0.847 0.0 0.0 81.05 12.67 3.12
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where nQ ¼ P
i ni, and the bag constant B is chosen

appropriately to enable a transition to matter containing
quarks. Note that terms associated with the vector interaction
above are similar to those in hadronic models. In the results
reported below, we vary the model parameters in the range
B1=4¼ð155–180ÞMeV and a¼ðGv=mVÞ2¼ð0.1–0.3Þ fm2.

3. The vNJL model

In its commonly used form, the Lagrangian density for
the vNJL model in the mean-field approximation is

L ¼ q̄ði∂ − m̂0Þqþ Gs

X8
k¼0

½ðq̄λkqÞ2 þ ðq̄iγ5λkqÞ2�

− K½detfðq̄ð1þ γ5ÞqÞ þ detfðq̄ð1 − γ5ÞqÞ�
þ Gv

X
i

ðq̄γμqÞ2: ð8Þ

Here, q denotes a quark field with three flavors u; d; s and
three colors, m̂0 is the 3 × 3 diagonal current quark mass
matrix, λk represents the eight generators of SU(3), and λ0
is proportional to the identity matrix. The four-fermion
interactions are from the original formulation of this model
[49], whereas the flavor mixing, determinantal interaction
is added to break the UAð1Þ symmetry [107]. The last term
accounts for vector interactions [52]. As the constants Gs,
K, and Gv are dimensionful, the quantum theory is non-
renormalizeable. Therefore, an ultraviolet cutoff Λ is
imposed, and results are meaningful only for quark
Fermi momenta well below this cutoff.
The Lagrangian density in Eq. (8) leads to the energy

density

ε ¼ εFG þ εint;

εint ¼ −2Nc

X
i

Z
Λ d3k
ð2πÞ3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

o;i

q �

þ 2Gs

X
i

hq̄iqii − 4K
Y
i

hq̄iqii þ 2Gv

X
i

n2i ; ð9Þ

where the sums above run over u; d; s. The subscript “0”
denotes current quark masses, and the superscript Λ in the
integral sign indicates that an ultraviolet cutoff Λ is
imposed on the integration over k. In both εFG [see
Eq. (6)] and εint, the quark masses mi are dynamically
generated by requiring that ε be stationary with respect to
variations in the quark condensate hq̄iqii,

mi ¼ m0;i − 4Gshq̄iqii þ 2Khq̄jqjihq̄kqki; ð10Þ

ðqi; qj; qkÞ representing any permutation of ðu; d; sÞ. The
quark condensate hq̄iqii is given by

hq̄iqii ¼ −2Nc

Z
Λ

kFi

d3k
ð2πÞ3

miffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p ; ð11Þ

and the quark number density ni ¼ hq†i qii is as in Eq. (6).
Note that the integrals appearing in Eqs. (9)–(11) can all be
evaluated analytically. Equations (10) and (11) render the
dynamically generated masses mi density dependent,
which tend tom0;i at high density mimicking the restoration
of chiral symmetry in QCD.
To facilitate a comparison between the vMIT and vNJL

models, Ref. [51] recommends a constant energy density
B0 ¼ εintjmu¼md¼ms¼0 to be added to εint which makes the
vacuum energy density zero. With this addition, the energy
density takes the form ε ¼ εFG þ Beff , with Beff ¼B0þ εint.
The quark chemical potentials are

μi ¼
dε
dni

����
nj;nk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2Fi

q
þ 4Gvni; ð12Þ

and the pressure is obtained from the thermodynamic
identity

P ¼
X
i

niμi − ε ¼ PFG − Beff : ð13Þ

To mimic confinement absent in the vNJL model,
often a constant term Bdc is used with the replacement
Beff → Beff − Bdc.
For numerical calculations, we use the Hatsuda-Kunihiro

parameter set [108]: Λ ¼ 631.4 MeV, GsΛ2 ¼ 1.835,
KΛ5 ¼ 0.29, mu;d ¼ 5.5 MeV, ms ¼ 135.7 MeV, and
Bdc ¼ 0.

4. The vBag model

In Ref. [53], vector interactions are used in the form of
flavor-independent four-fermion interactions as in the NJL
models (described below): Lint ¼ Gv

P
iðψ̄γμψÞ2. In this

case [53],

εQ ¼
X
i

εFG;i þ
Gv

2

X
i

n2i þ Beff ;

PQ ¼
X
i

PFG;i þ
Gv

2

X
i

n2i − Beff ;

μi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fi þm2

i

q
þGvni; ð14Þ

where the explicit forms of εFG;i and PFG;i can be read off
from Eq. (6). The effective bag constant Beff in this model is
composed of two parts: Beff ¼

P
i B

i
χ − Bdc, where the

flavor-dependent chiral bag constant

TREATING QUARKS WITHIN NEUTRON STARS PHYS. REV. D 100, 103022 (2019)

103022-7



Bi
χ ¼Pðm0;i;kFi¼0Þ−Pðmi;kFi¼0Þ

¼2Nc

X
i

Z
Λ d3k
ð2πÞ3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

o;i

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

i

q �
; ð15Þ

wheremi is the dynamically generated quark mass as in the
NJL model, m0;i is the current quark mass, and Λ is an
ultraviolet cutoff on the integration over k. The quantity Bdc
is tuned to control the onset of quark deconfinement.

5. Charge neutrality and beta-equilibrium conditions

Equilibrium with respect to weak-interaction processes
d → ue−ν̄e and s → ue−ν̄e leads to the chemical potential
equalitiesμd ¼ μu þ μe ¼ μs in neutrino-freematter.Charge
neutrality requires that 2nu − nd − ns − 3ne ¼ 0. Together
with the baryon number relation nu þ nd þ ns ¼ 3nB, the
simultaneous solution of the equations

ð1þ xeÞ þ
�
x2=3s þCs −Cd

r2=3

	
3=2

þ xs ¼ 3;

�
ð1þ xeÞ2=3 þ

Cu

r2=3

	
1=2

−
�
x2=3s þ Cs

r2=3

	
1=2

þ ð3xeÞ1=3 ¼ 0;

ð16Þ

assures that quark matter with the three flavors u; d; s is
charge neutral and is in beta equilibrium. In Eq. (16), xi ¼
ni=nB denote the particle concentrations, r ¼ nB=n0, and the
factor Ci ¼ m2

i =ðπ4=3n2=30 Þ, i ¼ u; d; s. Note that Ci can
depend on the density compression ratio r through mi ≡
miðrÞ as in the vNJL model. The concentrations of the u and
d quarks are given by

xu ¼ 1þ xe and xd ¼
�
x2=3s þ Cs − Cd

r2=3

	
3=2

; ð17Þ

respectively. Owing to the charges carried by the quarks, the
electron concentration in quarkmatter is generally very small
with increasing r.

6. Distinguishing features of the quark EoSs

The vMIT and vNJL models differ in important ways.
Fashioned after the MIT bag for the nucleon, the vMIT
model incorporates overall confinement of quarks within a
giant bag [41,42] through its density-independent (non-
perturbative) bag constant B. Repulsive vector interactions
in this model are ∝ n2Q with nQ ¼ P

nu;d;s in the pressure
and energy density. The kinetic energy is calculated with
current quark masses, although use of constituent masses
mu;d;s ¼ Mn=3 can also be found in the literature. Effects of
interactions are included from perturbative QCD calcula-
tions, but often they are set to zero in favor of an altered
value of B to simulate the same effect.

The most important and distinguishing feature of the
mean-field vNJLmodel is the chiral restoration of the quark
masses present in the original QCD Lagrangian. Starting
from the dynamically generated quark masses mu ¼ md ≃
350 MeV and ms ≃ 525 MeV in vacuum, the masses
decrease steadily toward their current quark values with
increasing density. In our numerical calculations, we have
used the current quark masses m0;u ¼ m0;d ¼ 5 MeV and
m0;s ¼ 140 MeV to conform to the values used in Ref. [51]
(use of the current PDG valuesmu ≃ 2 MeV,md ≃ 5 MeV,
and ms ≃ 100 MeV does not significantly affect the
results). In addition to generating the quark masses, the
scalar field energies involving the couplings Gs and K also
enter the energy density (and hence the pressure). Vector
interactions in the vNJL model are ∝

P
i n

2
i , i ¼ u; d; s; this

differs from the vMIT model in that cross terms such as
njnk are absent in the former case. The vNJL model lacks
confinement, although a constant B0 is added to the energy
density so that Beff ¼ B0 þ εint to facilitate comparison
with the B of the vMIT bag model. Beff is, however, density
dependent, unlike the B of the vMIT model.
In short, both the vMIT and vNJL models incorporate

some aspects of the QCD Lagrangian, but only partially.
Lacking a truly nonperturbative approach to QCD, we have
explored both models as representative of the current status.
Note that in the vBag model, Bi

χ and Bdc, and thus Beff ,
are independent of density. Unlike in the vNJL model in
which all terms in the energy density and pressure are
calculated with density-dependent dynamical masses mi,
the Fermi gas contributions in the vBag model are
calculated with miðkFi ¼ 0Þ.
The striking similarity of the vMIT and vBag models is

worthy of an explicit discussion. For the purpose of com-
parison, we can impose avMIT ¼ GvBag

v (numerically), B ¼
Beff and set the quark masses the same. Then, the difference
in the vector-interaction terms in εQ and PQ in Eqs. (7) and
(14) becomes apparent. Specifically, those of vMITare∝ n2Q
with nQ ¼ P

i ni,whereas those of vBag are∝
P

i n
2
i . These

differences are caused by the associated terms in the
respective Lagrangians. The corresponding terms in the
chemical potentials will be avMITnQ for vMIT and avMITni
for vBag. When charge neutrality and beta equilibrium are
imposed, even the Fermi gas parts in the two models will be
different as the corresponding Fermi momenta will be
different. Thus, although the two models look similar, they
are different because of the way interactions are treated.
Consequences of the vBag model on neutron star

structure have been studied extensively in Refs. [53,58]
(and in this work) and will not be repeated here.

III. TREATMENT OF PHASE TRANSITIONS

A. First-order transitions

The manner in which the hadron-quark transition occurs
is unknown. Even if the phase transition is assumed to be of

HAN, MAMUN, LALIT, CONSTANTINOU, and PRAKASH PHYS. REV. D 100, 103022 (2019)

103022-8



first order, a description of the transition depends on the
knowledge of the surface tension σs between the two
phases [59–62]. In view of uncertainties in the magnitude
of σs, two extreme cases have been studied in the literature.

1. Maxwell construction

For very large values of σs, a Maxwell construction in
which the pressure and chemical potential equalities,
PðHÞ¼PðQÞ and μnðHÞ ¼ μnðQÞ, are established between
the two phases, hadronic (H) and quark (Q), has been
deemed appropriate. In charge-neutral and beta-equilibrated
matter, only one baryon chemical potential, often chosen to
be μn, is needed to conserve the baryon number as local
charge neutrality is implicit. The range of densities over
which these equalities hold can be found using the methods
detailed in Refs. [90,109].

2. Gibbs construction

For very low values of σs, a Gibbs construction in which
a mixed phase of hadrons and quarks is present is more
appropriate [63,64]. The description of the mixed phase is
achieved by satisfying Gibbs’ phase rules: PðHÞ ¼ PðQÞ
and μn ¼ μu þ 2μd. Further, the conditions of global charge
neutrality and baryon number conservation are imposed
through the relations

Q ¼ fQðHÞ þ ð1 − fÞQðQÞ ¼ 0;

nB ¼ fnBðHÞ þ ð1 − fÞnBðQÞ; ð18Þ

where f represents the fractional volume occupied by
hadrons and is solved for at each nB. Unlike in the pure
phases of the Maxwell construction, QðHÞ and QðQÞ do
not separately vanish in the Gibbs mixed phase. The total
energy density is ε ¼ fεðHÞ þ ð1 − fÞεðQÞ. Relative to the
Maxwell construction, the behavior of pressure vs density
is smooth in the case of Gibbs construction. Discontinuities
in its derivatives with respect to density, reflected in the
squared speed of sound c2s ¼ dP=dε, will, however, be
present at the densities where the mixed phase begins
and ends.
The Maxwell and Gibbs constructions represent extreme

cases of treating first-order phase transitions, and reality
may lie in between these two cases. However, there are
situations in which neither method can be applied as the
required pressure and chemical potential equalities cannot
be met for many hadronic and quark EoSs [65]. In such
cases, an interpolatory method which makes the transition a
smooth crossover has been used [65–68,110].

B. Crossover transitions

As it is not clear that a first-order phase hadron-to-quark
transition at finite baryon density is demanded by
fundamental considerations, crossover or second-order
transitions have also been explored recently; see, e.g.,

Refs. [65,69,70]. As details of results ensuing from the
model of Ref. [69] have been recorded earlier in
Refs. [111,112], we will only examine the cases of
interpolated and quarkyonic models in what follows.

1. Interpolated EoS

We follow the simple recipe in Ref. [66] where the
interpolated EoS in the hadron-quark crossover region is
characterized by its central value n̄ and width 2Γ. Pure
hadronic matter exists for n≲ n̄ − Γ, whereas a phase of
pure quark matter is found for n≳ n̄þ Γ. In the crossover
region, n̄ − Γ≲ n≲ n̄þ Γ, strongly interacting hadrons
and quarks coexist in prescribed proportions. The inter-
polation is performed for pressure vs baryon number
density according to

PðnÞ ¼ PHðnÞf−ðnÞ þ PQðnÞfþðnÞ; ð19Þ

f�ðnÞ ¼
1

2

�
1� tanh

�
n − n̄
Γ

�	
; ð20Þ

where PH and PQ are the pressure in pure hadronic and
pure quark matter, respectively. The interpolated EoS for
the crossover, Eq. (19), is different from that of the Gibbs
construction within the conventional picture of a first-order
phase transition in that the pressure equality between the
two phases has been abandoned. Also, f− and fþ are not
solved for, but chosen externally. (Alternative forms of
interpolation have also been suggested in Refs. [67,68], but
do not qualitatively change the outcome.) The energy
density ε vs n is obtained by integrating P ¼ n2∂ðε=nÞ=∂n:

εðnÞ ¼ εHðnÞf−ðnÞ þ PQðnÞfþðnÞ þ Δε;

Δε ¼ n
Z

n

n̄
dn0½εHðn0Þ − εQðn0Þ�

gðn0Þ
n0

;

gðn0Þ ¼ sech2X
2Γ

; X ¼ n0 − n̄
Γ

: ð21Þ

2. Quarkyonic matter

The transition to matter containing quarks in the model
termed quarkyonic matter [70,113] is of second or higher
order, depending on the behavior of the squared speed of
sound c2s ¼ dP=dε ¼ d ln μ=d ln nB ¼ ðn=μÞðd2P=dμ2Þ−1
with nB. The order of the phase transition is not determined
by the quarkyonic matter scenario a priori but depends on
its specific implementation. In the model proposed in
Ref. [70], c2s exhibits a kink at the onset of the transition;
hence its derivative with respect to nB is discontinuous. It is
in this sense that the transition is of second order for
Ref. [70] which may not be the case in other implementa-
tions of the quarkyonic matter scenario. This model is a
departure from the first-order phase transition models
insofar as once quarks appear, both nucleons and quarks
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are present until asymptotically large densities when the
nucleon concentrations vanish. Keeping the structure of the
quarkyonic matter model as in Refs. [70,113] in which
isospin symmetric nuclear matter (SNM) and pure neutron
matter (PNM) were considered, we present below its
generalization to charge-neutral and beta-equilibrated neu-
tron star matter. In quarkyonic matter, the appearance of
quarks is subject to the threshold condition [70]

kFq ¼
ðkFB − ΔÞ

Nc
ΘðkFB − ΔÞ; ð22Þ

where kFB is the baryon momentum, Nc ¼ 3 is the number
of colors, and the momentum threshold Δ is chosen to be

Δ ¼ Λ3
Q

k2FB
þ κ

ΛQ

N2
c
: ð23Þ

Above, ΛQ ∼ ΛQCD ≃ 300–500 MeV, and κ ≃ 0.1–0.3 is
suitably chosen to preserve causality. In PNM, the tran-
sition density, ntrans, for the appearance of quarks is
0.77ð3.55Þn0 for Δ ¼ 300ð500Þ MeV and κ ¼ 0.3, where
n0 is the SNM equilibrium density. The corresponding
values for κ ¼ 0.1 are 0.75n0 and 3.47n0, respectively, and
show weak dependence of ntrans on κ. Unlike in the other
approaches, the transition density at which quarks begin to
appear in this model is independent of the EoSs used in the
hadronic and quark sectors, being dependent entirely on
ΛQCD and large Nc physics.
The total baryon density of quarkyonic matter is

nB ¼
X
i¼n;p

2

Z
kFi

NckFq

d3k
ð2πÞ3 þ

X
q¼u;d;s

2Nc

3

Z
kFq

0

d3k
ð2πÞ3 : ð24Þ

Notice that once quarks appear, the shell width Δ in which
nucleons reside decreases with density as n−2=3B , yielding
the preponderance of quarks with increasing nB. Including
leptonic (electron and muon) contributions εl, the total
energy density is

ε ¼
X
i¼n;p

2

Z
kFi

NckFq

d3k
ð2πÞ3 ek þ εintðnn; npÞ

þ
X

q¼u;d;s

2Nc

Z
kFq

0

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

q

q
þ εintðqk; qlÞ

þ
X

l¼e−;μ−
εl; ð25Þ

where ek is the single particle kinetic energy inclusive of
the rest mass energy. The nucleonic part of the energy
density for n ≳ 0.5n0 can be taken from a suitable potential
or field-theoretical model that is constrained by nuclear
systematics near nuclear densities and preserves causality
at high densities. Below 0.5n0, the energy density is that of

crustal matter as in, e.g., Refs. [3,4]. It is important to
realize that the term εintðnn; npÞ contributes in regions
where kFB < Δ as well as where kFB > Δ.
The chemical potentials and pressure are obtained from

μk ¼
∂ε
∂nk

����
nj

; P ¼ n2B
∂ðε=nBÞ
∂nB þ

X
l¼e−;μ−

Pl

¼
X
k

nkμk − ε; ð26Þ

where the sum above runs over all fermions.
As with nucleons, an appropriate choice of the quark

EoS is also indicated. Reference [70] set εintðqk; qlÞ ¼ 0,
and the quark masses Mq were taken as Mn=3. The use of
the nucleon constituent quark masses takes account of
quark-gluon interactions to a certain degree as has been
noted in the case of finite temperature QCD as well. This
procedure, however, omits density-dependent contributions
from interactions between quarks. In our work, we will
employ quark models (such as vMIT, vNJL) in which
contributions from interacting quarks are included.
Subtleties involved in the calculation of the kinetic part
of the nucleon chemical potentials and in satisfying the
thermodynamic identity are detailed in Appendix.
This model has a distinct behavior for c2s ¼ dP=dε vs nB

in that c2s exhibits a maximum (its location controlled by
ΛQ, and the magnitude depending on bothΛQ and κ) before
approaching the value of 1=3 characteristic of quarks at
asymptotically large densities [70].

IV. RESULTS WITH PHASE TRANSITIONS

The hadronic EoSs chosen in this study satisfy the
available nuclear systematics near the nuclear equilibrium
density (see Tables I–III). Their supranuclear density
behavior can, however, be varied to yield a soft or stiff
EoS by varying the parameters in the chosen model.
Depending on the quark EoS examined, such as vMIT,
vNJL, or that of quarkyonic matter, the examination of a
broad range of transitions into quark matter—soft-to-soft,
soft-to-stiff, stiff-to-soft, and stiff-to-stiff—become pos-
sible. For both first-order and crossover transitions, we
calculate the mass-radius curves and tidal deformabilities,
and then we discuss the results in view of the existing
observational constraints. Of particular relevance to the
zero-temperature EoS is the limit set by the data on the
binary tidal deformability [114,115]

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð27Þ

For each star, the dimensionless tidal deformability (or
induced quadrupole polarizability) is given by [116]
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Λ1;2 ¼
2

3
kð1;2Þ2

�
R1;2c2

Gm1;2

�
5

; ð28Þ

where the second tidal Love number kð1;2Þ2 depends on the
structure of the star, and therefore on the mass and the EoS.
Here G is the gravitational constant and R1;2 are the radii.

The computation of kð1;2Þ2 with input EoSs is described in
Refs. [117–119]. For a wide class of neutron star EoSs,
k2 ≃ 0.05–0.15 [118,120,121].
Combining the electromagnetic (EM) [122] and gravi-

tational wave (GW) information from the binary neutron
star (BNS) merger GW170817, Ref. [123] provides con-
straints on the radius Rns and maximum gravitational mass
Mg

max of a neutron star:

Mg
max ≲ 2.17 M⊙;

R1.3 ≳ 3.1 ðG=c2ÞMg
max ≃ 9.92 km; ð29Þ

where R1.3 is the radius of a 1.3 M⊙ neutron star and its
numerical value above corresponds to Mg

max ¼ 2.17 M⊙.
These estimates have been revisited in a recent analysis of
Ref. [124] where a weaker constraint on the upper limit of
the maximum mass Mg

max ≲ 2.3 M⊙ has been reported.

Combining the total mass measurement of 2.74þ0.04
−0.01 M⊙

from GW170817 with (empirical) universal relations
between the baryonic and the maximum rotating and
nonrotating masses of neutron stars, Ref. [125] constrains
the maximum nonrotating neutron star mass in the
range 2.01þ0.04

−0.01 M⊙ ≤ Mnonrot
max ≤ 2.16þ0.17

−0.15 M⊙.

A. First-order transitions: Maxwell vs Gibbs

We first survey the allowed parameter space for valid
first-order phase transitions, namely, a critical pressure
exists above which quark matter is energetically favored.
We then proceed with both Maxwell and Gibbs construc-
tions, calculating quantities to be compared with observa-
tional constraints. Our results are summarized in Figs. 2–4.
Where possible, we also characterize the behavior of the
hadron-to-quark transition with quantities introduced in the
“constant-sound-speed (CSS)” approach in Ref. [126]. This
approach can be viewed as the lowest-order Taylor expan-
sion of the high-density EoS about the transition pressure
Ptrans, by specifying the discontinuity in energy density Δε
at the transition, and the density-independent squared
sound speed c2QM in quark matter. This generic paramet-
rization has been widely used in recent studies on the
manifestation of a first-order phase transition with Maxwell

(a) (b) (c)

(d) (e) (f)

FIG. 2. Energy density vs pressure, squared speed of sound vs ratio of baryon density to the nuclear equilibrium density, and mass vs
radius curves for the models indicated. (a)–(c) Maxwell construction. (d)–(f) Gibbs construction. The quark model parameters used are
in the inset and results are for beta-equilibrated matter. The 1.4 M⊙ and maximum-mass stars are marked with open circles and triangles,
respectively, in c2sðnBÞ plots.
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construction in neutron star phenomenology; see, e.g.,
[56,127–129]. Despite different choices of the baseline
hadronic EoS, comparison between separate works is
afforded by mapping onto the CSS parameter space. To
facilitate such a comparison, we list in Table V the
corresponding CSS parameter values for calculations from
our physically based models.

1. MS-A+ vMIT (stiff → soft=stiff)

Fixing the hadronic EoS to be the stiff model MS-A, we
choose in the vMIT model six parameter sets of (B1=4; a),
where B is the bag constant and a ¼ ðGv=mvÞ2 measures
the strength of vector interactions between quarks. The bag
constant is adjusted so that the transition to quark matter
occurs at ntrans ¼ 1.5–2.4n0, and the finite vector coupling

(a) (b) (c)

(d) (e) (f)

FIG. 3. Tidal deformability parameters k2 (Love number), Λ and Λ̃ in Eqs. (27) and (28) as functions of the indicated masses. For
comparison, results of Λ̃ for the EoS of the APR model are also shown; the bottom dash-dotted lines in (b) and (e), as well as the dark red
bands at the bottom in (c) and (f), refer to the “maximally compact EoS” for self-bound strange quark stars (SQSs) [35].

(a) (b) (c)

FIG. 4. As in Fig. 2, but for Maxwell and Gibbs constructions in MS-A ðstiffÞ þ vNJL (soft) models; the 1.4 M⊙ and maximum-mass
stars are marked with open circles and triangles, respectively, in the c2sðnBÞ plot. Here, BNS merger observables with m1, m2 ¼
1.0–1.6 M⊙ only constrain the hadronic matter EoS as the onset density for quarks is too high (Mtrans ≳ 1.7 M⊙). Since the stiff MS-A is
ruled out by Λ̃ðMÞ of GW170817 (see Fig. 3), this indicates that the vNJL model (or NJL-type models) is ruled out in the first-order
transition scenario. Resorting to the crossover scenario is inevitable for it to survive.

HAN, MAMUN, LALIT, CONSTANTINOU, and PRAKASH PHYS. REV. D 100, 103022 (2019)

103022-12



a stiffens the quark matter EoS. Soft hadronic EoSs are not
applied, as they either (with softer quark EoSs) violate the
Mmax ≥ 2 M⊙ constraint or (with stiffer quark EoSs)
cannot establish a valid first-order phase transition; i.e.,
there is no intersection between the two phases in the P-μ
plane. We note that this limitation (hadronic matter being
stiff) does not necessarily hold if a generic parametrization
such as CSS is utilized instead of specific quark models to
perform first-order transitions.
In the vMIT model, the sound speed varies little even

with the inclusion of vector repulsive interactions within
the star [see Figs. 2(b) and 2(e)] and can be approximated as
being density independent. The mass-radius topology with
the Maxwell construction is determined by the three
parameters (Ptrans=εtrans, Δε=εtrans, c2QM) in CSS, giving
rise to connected, disconnected (i.e., twin stars or third-
family stars), or both branches of stable hybrid stars; Ptrans
and εtrans are the pressure and energy density in hadronic
matter at the transition, respectively; Δε is the discontinuity
in energy density at Ptrans; and c2QM is the squared speed of
sound in quark matter just above Ptrans. The threshold value
Δεcrit below which there is always a stable hybrid branch
connected to the purely hadronic branch is given by
Δεcrit=εtrans ¼ 1

2
þ 3

2
Ptrans=εtrans [130–132]. The relevant

quantities for the mapping between the stiff MS-Aþ
vMIT model (Maxwell) and the CSS parametrization are
listed in Table V.
After extensively varying all parameters and calculating

the corresponding mass-radius relations, we find that a ¼
0.18 is most likely the smallest value (corresponding to
c2QM ≈ 0.4) that barely ensures Mmax ≃ 2 M⊙. When a is
increased from zero, the energy density discontinuity
becomes progressively smaller (Δε=εtrans ≲ 0.5) and
eventually the twin-star solutions disappear, roughly at

a ≥ 0.15. Within the range a ¼ 0.18 − 0.3, the MðRÞ
curves of stable hybrid stars obtained are continuous,
and quarks can appear at 1.0 ≤ Mtrans ≤ 1.8 M⊙, pertinent
to the range of component masses in BNS mergers. For too
large vector interaction couplings, e.g., a ¼ 0.5, the onset
for quarks is beyond the central density of the maximum-
mass hadronic star, and thus no stable quark cores would be
present even though QM is sufficiently stiff.
Figure 2(c) shows that requiringMmax ≥ 2 M⊙ excludes

certain twin-star solutions obtained from EoSs with zero
(gray dash-dot-dotted line) and small (orange dotted line)
repulsive vector interactions between quarks, mainly due to
the insufficient stiffness of the quark matter EoS. By
invoking very stiff EoSs with c2s → 1 in the quark sector
and using the CSS parametrization coupled with hadronic
EoSs at low density, recent works have reported twin stars
compatible with the constraint Mmax ≥ 2 M⊙ and bounds
on Λ̃ from GW170817 (see, e.g., Refs. [127–129,133,134]
and references therein). Moreover, the typical neutron star
radius R1.4 can be observationally constrained by radius
estimates from x-ray emission and/or tidal deformability
(Λ) measurements in premerger gravitational-wave detec-
tions. For hybrid EoSs with a sharp phase transition, the
value of R1.4 or Λ1.4 is sensitive to the onset density ntrans,
above which MðRÞ and ΛðMÞ deviate from normal had-
ronic EoSs without a sharp transition. We demonstrate
this effect in Fig. 3 by confronting calculated tidal
deformations with inferred bounds from the first BNS
event GW170817 [77–79].
With high accuracy, the chirp mass M ¼

ðm1m2Þ3=5=ðm1 þm2Þ1=5, where m1;2 are the masses of
the merging neutron stars, was determined to be M ¼
1.186þ0.001

−0.001 M⊙ in GW170817 [80]. This event also
revealed information on the binary tidal deformability,
Λ̃ðM ¼ 1.186þ0.001

−0.001 M⊙Þ ¼ 300þ420
−230 for low-spin priors

(using a 90% highest posterior density interval).
Furthermore, by assuming a linear expansion of ΛðMÞ,
which holds fairly well for normal hadronic stars without
sharp transitions, limits on the dimensionless tidal deform-
ability of a 1.4 M⊙ NS were derived [78]: 70 ≤ Λ1.4 ≤ 580
for low spin priors (at 90% confidence level). This single
detection of GW170817 rules out purely hadronic EoSs
that are too stiff and correlated with large tidal deform-
abilities, as shown in Figs. 3(b) and 3(c). The stiff MS-A
model by itself is incompatible with the estimated ranges of
Λ1.4 and Λ̃. The only solution to rescue such a stiff hadronic
EoS is to introduce a phase transition at not-too-
high densities, e.g., a possible smaller Λ can be achieved
in a hybrid star that already exists in the premerger stage.
For Maxwell constructions, one of the six parameter sets,
ðB1=4; aÞ ¼ ð159; 0.2Þ (blue dash-dotted line) with
ntrans=n0 ¼ 1.77 (see Table V) is successful to survive
the LIGO constraint. Together with the maximum-mass
constraint, the parameter space for sharp phase transitions
is severely limited.

TABLE V. Mapping onto the CSS phase transition parameters
[126] for the stiff MS-Aþ vMIT=vNJL hybrid EoSs with
Maxwell construction; see also Figs. 2(a)–2(c). Meanings of
the various entries are explained in the associated text.



B1=4

MeV ; a
�

ntrans
n0

Ptrans
εtrans

Δε
εtrans

c2QM
Δεcrit
εtrans

MðRÞ
(159, 0.2) 1.77 0.084 0.33 0.407 0.626 Connected
(162, 0.2) 2.10 0.136 0.33 0.416 0.704 Connected
(165, 0.2) 2.34 0.180 0.38 0.424 0.77 Connected
(180, 0.0) 2.04 0.127 1.13 0.326 0.691 Disconnected
(170, 0.1) 2.08 0.133 0.63 0.380 0.70 Both
(155, 0.3) 2.08 0.134 0.13 0.442 0.701 Connected



B1=4
eff

MeV ;
Gv
Gs

�
ntrans
n0

Ptrans
εtrans

Δε
εtrans

c2QM
Δεcrit
εtrans

MðRÞ
(218.3, 0.15) 2.91 0.284 0.594 0.236 0.926 Connecteda

aThis connected branch is tiny ðMmax −MtransÞ≲ 10−3 M⊙
[invisible on the magnified MðRÞ plot; see Fig. 4(c)], and thus
hybrid stars are undetectable.
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Figures 2(e), 2(f), 3(e), and 3(f) represent results for the
stiff MS-Aþ vMIT model with Gibbs constructions, for
which the model parameters remain the same as in their
Maxwell counterparts [Figs. 2(a)–2(c) and Figs. 3(a)–3(c)].
The smooth feature of the Gibbs construction advances the
appearance of quarks in the mixed phase to lower densities,
while it defers the region of the purely quark phase to
higher densities. These features are also manifested in the
corresponding εðPÞ relation and its finite speed-of-sound
behavior [Figs. 2(e) and 2(f)]. Effectively, the softening due
to (Gibbs) phase transition occurs earlier, smoothly
decreasing the NS radii and tidal deformabilities for a
broader range of masses, which gives rise to increased
compatibility with observational constraints. Three more
parameter sets of the stiff MS-Aþ vMIT model that satisfy
Mmax ≥ 2 M⊙ are now consistent with the tidal deform-
ability constraint [Figs. 3(e) and 3(f)], in contrast to the
only candidate that qualifies in Maxwell constructions. In
this respect, applying Gibbs construction is advantageous
to enlarging the quark model parameter space that suitably
satisfies the current constraints from observation (and also
revives previously excluded stiff hadronic models).
However, the clear-cut distinction between hybrid and
purely hadronic branches in terms of MðRÞ and ΛðMÞ
diminishes: the drastic effect from a sharp hadron/quark
transition is toned down, and thus distinguishability of
quarks with regard to global observables becomes less
feasible if they take the form of a mixture with hadrons.
This feature accentuates the significance of dynamical
properties such as NS cooling and spin-down and the
evolution of merger products.

2. MS-A+ vNJL (stiff → soft)

In the vNJL model, pressures at ≲2n0 exhibit an
unphysical behavior (of being negative and/or decreasing
with density) which forbids attempts to shift ntrans to low
densities. If a finite vector coupling Gv is introduced, the
onset of quarks is typically reached at ntrans ≳ 2.3n0
(Mtrans ≳ 1.7 M⊙), leading to a short stable hybrid branch
that obeysMmax ≥ 2 M⊙ because of the stiff hadronic EoS.
We display one such example in Fig. 4 for both Maxwell
and Gibbs constructions. Note that the speed of sound in
the quark phase remains small, restricted by the fact that a
too large Gv (correlated with stiffer QM) delays the onset
for quarks significantly which yields no stable hybrid stars.
Some relevant points to note are the following:

(i) Mtrans ≳ 1.7 M⊙ indicates that most likely there will
be no quarks in, e.g., the component neutron stars of
a binary before they coalesce. Thus, tidal properties
are not shown in Fig. 4 due to the high onset density
for quarks: i.e., in this case BNS observables are
irrelevant.

(ii) A smallGv has little effect on stiffening quark matter
(c2QM ≲ 1=3), which is not desirable in terms of
supporting 2 M⊙ mostly by quarks.

(iii) Gibbs construction helps maintain slightly more
quark content than Maxwell in the most massive
stars, but quarks are effectively “invisible” even if
they exist.

Note that the tidal deformability constraint rules out a
very stiff hadronic EoS, e.g., MS-A. This stiffness in the
hadronic EoS is nevertheless a prerequisite for vNJL to
construct a valid first-order transition; stable hybrid stars
that are consistent with observation do not exist in this
scenario. There is no solution other than an alternative
treatment, such as a crossover transition to which we turn
below. It is noteworthy that the only successful scenario we
find for first-order phase transitions to be compatible with
observations is a stiff HM → stiff QM transition (see
summary in Table VII). This conclusion agrees fairly well
with those from other previous studies in which specific
models of quark matter were used; see, e.g., [54–57].

B. Crossover transitions: Interpolatory
procedures and quarkyonic matter

In obtaining the results shown below in Figs. 5 and 6, we
have followed the methods detailed in Sec. III for con-
structing crossover hadron-to-quark transitions. Although
the generalization of the quarkyonic matter model to beta-
equilibrated stars is presented in that section, results shown
here for this case are for pure neutron matter only to provide
a direct comparison with the results of Ref. [70].

1. Interpolated EoSs

The results shown for this case correspond to a smooth
interpolation in the window ðn̄;ΓÞ ¼ ð3n0; n0Þ between the
soft hadronic EoS MS-B and stiff quark EoSs in the vNJL
model with Gv=Gs ¼ 1.5; 2.0; 2.5. Outside this window in
density, pure hadronic and pure quark phases are expected
to exist. Because of the abrupt cutoff imposed in the
boundary condition, there is a finite jump in c2s at the
lower end of the crossover window n̄ − Γ ¼ 2n0 ≡ ntrans
below which only a pure hadronic phase is present. At the
higher-end and above, we continue to use the interpolated
form. This is different from Ref. [66], where the interpo-
lated form extended to all densities. As we will see below,
the cutoffs are important to typical radii and thus could be
significant.
Effects of introducing quarks above ntrans ¼ 2n0

through smooth interpolations in the EoS are shown in
Figs. 5(a)–5(c). The maximum mass is primarily deter-
mined by the stiffness above 4n0, hence the use of large
vector-coupling strengths in vNJL. Consequently, one can
derive a constraint on Gv=Gs from Mmax ≥ 2 M⊙ if other
parameters are fixed, e.g., Gv=Gs ¼ 1.5 is probably ruled
out. On the other hand, typical radii for 1.0–1.6 M⊙ stars
are sensitive to the stiffness in the hadronic phase for
nB ≲ 2n0, as well as to the choice of the threshold density.
For instance, we have found that for ntrans ¼ 1.5n0 instead
of 2n0, R1.4 decreases by about 0.3 km. Note that the
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hyperbolic construction results in admixtures of the hadron
and quark EoSs in the interpolated region. This feature
causes a finite discontinuity in c2sðnBÞ at low density, which
is an artifact of the scheme. Alternative forms of inter-
polation suggested in, e.g., Refs. [67,68] do not allow for
spillovers into the region of interpolation. The use of such
forms, however, does not qualitatively change the outcome:
while 2 M⊙ NS can still be produced, the constraints on
R1.4 and Λ̃ cannot easily be transformed into constraints on
the parameters of interpolated EoSs. If, however, a stiff
hadronic matter EoS such as MS-A in Sec. III A is applied,
the resulting radius and tidal deformability are apparently
too large and violate the condition Λ̃ðM ¼ 1.186 M⊙Þ ≤
720 [80].
As can be seen from Figs. 5(d)–5(f), the softer MS-B

EoS is by itself compatible with the current constraint on
the binary tidal deformability. Implementing the crossover
region through interpolation further enhances the compat-
ibility. Better measurements of Λ̃ðMÞ from multiple
merger detections in the future might help in limiting
the relevant interpolation parameters. Recall that such “soft
HM → stiff QM” combination is usually forbidden in a
first-order transition, given the absence of an intersection in

the P-μ plane between pure hadronic and pure quark phases
(see summary in Table VII).

2. Quarkyonic matter

In this case, we present results obtained by using the
hadronic EoSs MS-B/C for pure neutron matter and two-
flavor quark EoSs with and without interactions between
quarks when they appear. The main reason for the rapid
increase in pressure at supranuclear densities and the
attendant behavior of c2s vs nB is also elucidated in more
detail than was done in Ref. [70].
In the quarkyonic picture, both the maximum mass and

typical radii are larger than those obtained by EoSs with
neutrons only. In fact, some EoSs that are too soft to survive
theMmax ≥ 2 M⊙ constraint can be rescued by the boost in
stiffness once quarkyonic matter appears; see, e.g., MS-C
(PNM) in Figs. 6(a)–6(c). However, for a stiff neutrons-
only EoS, if a transition into quarkyonic matter takes place,
compatibility with binary tidal deformability constraint
from GW170817 becomes reduced, because of the ten-
dency to increase R and therefore Λ. These increases put
the model at more risk of breaking the upper limit on Λ.

(a) (b) (c)

(d) (e) (f)

FIG. 5. The EoSMS-B is a soft version within MSmodels, but can be stiffer than normal hadronic EoSs based on other models such as
Skyrme or APR; MS-A is not applied here because its stiff hadronic part leads to violation of the tidal deformability constraint
Λ̃ðM ¼ 1.186 M⊙Þ ≤ 720 [80]. The 1.4 M⊙ and maximum-mass stars are marked with open circles and triangles, respectively, in the
c2sðnBÞ plot. In the Λ̃ðMÞ plot, only EoSs that satisfyMmax ≥ 2 M⊙ are shown. In the interpolation picture, although the maximummass
is mostly determined by the high-density quark part and increases with its stiffness, changes in radii are flexible depending on, e.g., the
choice of window parameters and the low-density hadronic part (for an extensive exploration, see Ref. [66]). (c)MðRÞ for a lower cutoff
density ntrans ¼ 1.5n0 (solid colored curves).
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This is evident in Figs. 6(d)–6(f), where the MS-B (PNM)
EoS is at the edge of exclusion and with quarkyonic matter
the situation is slightly worse.
An examination of the behavior of c2s vs nB with and

without quarks offers insights into the role played by the
presence of the shell for kFn > Δ in the quarkyonic model.
Figure 7 shows results of c2s for the cases in which there is
no shell (i.e., neutrons only throughout the star), neutrons
only below and above Δ, as well as with the inclusion of
quarks for kFn > Δ. The results in this figure correspond to
the neutron matter EoSs used in Ref. [70] and the MS-Cþ
vNJLmodel of this work withGv=Gs ¼ 0.5. For the former
EoS, values of ΛQ ¼ 420 MeV and κ ¼ 1 were used to
calculate the shell width Δ. The onset of quarks in this case
occurs at ntrans ¼ 0.37 fm−3. This is to be compared with
ntrans ¼ 0.24 fm−3 with ΛQ ¼ 380 MeV and κ ¼ 0.3 in the
EoS of Ref. [70]. For the two-flavor vNJL model used
in this connection, values of the parameters used were
Λ ¼ 631.4 MeV and GsΛ2 ¼ 1.835 as in Ref. [108].
The main differences between the models in Ref. [70]

and this work are the following:
(i) For pure neutron matter (no quarks), the EoS of

Ref. [70] becomes acausal for nB=n0 ≃ 6 owing to

the term proportional to n3n in its interacting part. As
the central density of the star is ≃6.74n0, this feature
may be of some concern. However, the MS-B=Cþ
vNJL models—being relativistically covariant—
remain causal for all densities.

(ii) Interactions between quarks are not included in the
EoSofRef. [70] except in the kinetic energy termwith
the use of Mq ¼ Mn=3, whereas the MS-B=Cþ
vNJL model uses density-dependent dynamically
generated u, d quark masses that steadily decrease
with increasing density from their vacuum values of
≃Mn=3. In addition, repulsive vector interactions
between quarks were used in the vNJL models.

The above differences notwithstanding, the inner work-
ings of the quarkyonic model—particularly, the influence
of quarks—are apparent from Figs. 7(a) and 7(c). Without
the presence of quarks in the shell, the EoSs in both models
are very stiff even to the point of being substantially
acausal. The presence of quarks in the shell abates this
undesirable behavior by softening the overall EoS (dash-
dotted blue curves) relative to the case when only nucleons
are present (dotted gray curves). With progressively
increasing density, the density of nucleons is depleted

(a) (b) (c)

(d) (e) (f)

FIG. 6. The EoS MS-C is an example of even softer EoSs within the same model that cannot support 2 M⊙ stars by themselves; MS-A
is not applied here because its stiff hadronic part leads to violation of the tidal deformability constraint Λ̃ðM ¼ 1.186 M⊙Þ ≤ 720 [80].
The 1.4 M⊙ and maximum-mass stars are marked with open circles and triangles, respectively, in the c2sðnBÞ plot. In the two-flavor
quarkyonic picture, switching to the smooth crossover region increases both the maximum masses and typical radii (hence the tidal
deformabilities). Note that here quark masses are dynamically generated here with vNJL (Gv=Gs ¼ 0.5) instead of the original
assumption thatMq ¼ Mn=3 as in the Fermi gas model of Ref. [70]. In the Λ̃ðMÞ plot, only EoSs that satisfyMmax ≥ 2 M⊙ are shown.
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within the shell, whereas that of the quarks becomes
predominant. As c2s → 1=3 for quarks at asymptotically
high densities, it exhibits a maximum (as well as a
minimum) at some intermediate density. Note, however,
that compared to the neutron-matter only case everywhere
(black solid curves), the overall EoS of the quarkyonic
matter is stiffer within the central densities of the corre-
sponding stars.
Insofar as c2s is a measure of the stiffness of the EoS, the

M-R curves shown in Figs. 7(b) and 7(d) reflect the
corresponding c2s vs nB behavior. The presence of quar-
kyonic matter (dash-dotted blue curve) causes an increase
in the Mmax for both models. If only the neutron content of
quarkyonic matter is considered (dotted gray curve), then
the increase inMmax is more substantial. Similarly, the radii
of both the maximum mass and 1.4 M⊙ stars are signifi-
cantly larger in quarkyonic matter. Quantitative differences
between the two cases can be attributed to the presence of
interactions between quarks in the MS-Bþ vNJL model.
The hadron-to-quark transition density ntrans, the peak

value of the squared speed of sound c2s;max, and the
maximum mass Mmax all depend on the choice of ΛQ

and κ used to calculate the shell width Δ. Figure 8 shows

the variation of these quantities as a function of ΛQ with
κ ¼ 0.1, 0.6, and 1 for the MS-Cþ vNJL model chosen
here. Intermediate values of κ lead to results that lie within
the boundaries shown in Fig. 8. Note that high values of
both ΛQ and κ are required to ensure that ntrans ≳ 1.5n0 and
c2s < 1. This requirement, however, decreases Mmax but
masses above the current constraint of ≳2 M⊙ can still be
obtained. In the absence of interactions between quarks as
in Ref. [70], the window of ΛQ and κ values that are usable
is very small. We stress however, that the optimum choice
of these parameters is model dependent in that if a different
hadronic or quark EoS is used, the values of ΛQ and κ can
change.
On a physical level, low values of ΛQ and κ lead to a

substantial quark content in the star, but at the expense of
ntrans → n0—a disturbing trend. Although quarks soften the
overall EoS, the presence of the shell and the redistribution
of the baryon number between nucleons and quarks causes
a substantial stiffening of the overall EoS, which in turn
leads to very high values of Mmax. Conversely, very high
values of ΛQ and κ decrease the quark content which makes
the overall EoS to be nearly that without quarks. This
feature is generic to the quarkyonic model, which enables it

(a) (b)

(c) (d)

FIG. 7. (a) and (c) The squared speed of sound vs baryon density in PNM for the EoS models of Ref. [70] and MS-C (PNM) of this
work. The 1.4 M⊙ and maximum-mass stars are marked with open circles and triangles, respectively, in c2sðnBÞ plots. (b) and (d) The
corresponding M-R curves. The different curves illuminate the influence of the shell on the results.
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to achieve maximum values consistent with the observa-
tional mass limit even when the EoS with hadrons only fails
to meet this constraint.
The low transition densities and the extreme stiffening of

the EoS caused by the shell in quarkyonic matter bear
further investigation. Although inspired by QCD and large
Nc physics, the width of the shell is independent of the
EoSs in both hadronic and quark sectors, at least in the
initial stage of the development of the model. The energy
cost in creating such a shell in dense matter is another issue
that warrants scrutiny.

V. CONCLUSION AND OUTLOOK

In this work, we have performed a detailed comparison
of first-order phase transition and crossover treatments of
the hadron-to-quark transition in neutron stars. For first-
order transitions, results of both Maxwell and Gibbs
constructions were examined. Also studied were interpo-
latory schemes and the second-order phase transition in
quarkyonic matter, which fall in the class of crossover
transitions. In both cases, sensitivity of the structural
properties of neutron stars to variations in the EoSs in
the hadronic as well as in the quark sectors were explored.
The ensuing results were then tested for compatibility
with the strict constraints imposed by the precise measure-
ments of 2 M⊙ neutron stars, the available limits on the
tidal deformations of neutron stars in the binary merger
GW170817, and the radius estimates of 1.4 M⊙ stars
inferred from x-ray observations. These independent con-
straints from observations are significant in that the lower
limit on the maximum mass reflects the behavior of the
dense matter EoS for densities≳4–6n0, whereas bounds on
binary tidal deformability Λ̃ and estimates of R1.4 depend
on the EoS for densities ≳2–3n0, respectively.
Table VI provides a summary of the transition density

ntrans=n0 for the appearance of quarks and the associated
neutron star mass, Mtrans, for the EoSs and different
treatments of the phase transition considered in this work.

The entries in this table allow us to answer the first two of
the three questions posed in the Introduction:
(a) What is the minimum NS mass consistent with the

observational lower limit of the maximum mass
(Mmax) that is likely to contain quarks? The answer
to this question depends on both the low-density
hadronic and high-density quark EoSs as well as
the order and the method of implementing the phase
transition. Barring rare cases, such as in the Gibbs
construction and interpolation (see why below), the
minimum mass is Mtrans ≳ 1 M⊙.

(b) What is the minimum physically reasonable density at
which a hadron-quark transition of any sort can occur?
Our results indicate the minimum density ntrans to be
≳2n0, again excluding the rare cases. The reasons for
the exclusions are as follows. In the Gibbs construc-
tion, valid in the extreme case of the interface tension
between the phases being zero, the onset density is
generally lower than that of the correspondingMaxwell
construction. Depending on the softness or stiffness
of the hadronic and quark EoSs, ntrans can approach
near-nuclear densities. Such cases should be discarded
as being in conflict with nuclear data near saturation.
In the case of interpolation, the onset density is chosen
a priori. In this approach, input values of ntrans ≳ 2n0
yield the minimum mass Mtrans ≳ 1 M⊙.

The values of ntrans and Mtrans quoted in Table VI do
not conflict with experimental data on nuclei that probe
densities near and below n0. A mild tension, however, exists

(a) (b) (c)

FIG. 8. Variation of the hadron-to-quark transition density (in units of n0), the squared speed of sound and the maximum mass as
functions of the parameters ΛQ and κ that determine the shell width Δ.

TABLE VI. Summary of the minimum density and minimum
neutron star mass when quarks start to appear in various treat-
ments of phase transitions explored in our work; see also the
indicated figures for detailed information.

Treatment ntrans=n0 Mtrans Figure reference

Maxwell 1.77 0.97 M⊙ Fig. 2(b) and 2(c)
Gibbs ≲1.5 ≲0.6 M⊙ Fig. 2(e) and 2(f)
Interpolation 2.0, 1.5 0.81; 0.48 M⊙ Fig. 5(b) and 5(c)
Quarkyonic 2.31 0.97; 1.21 M⊙ Fig. 6(b) and 6(c)
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with theoretical interpretations of low-to-intermediate energy
heavy-ion data [25] which probe densities up to 3–4n0. We
wish to note, however, that analysis of such data using
Boltzmann-type kinetic equations has not yet been performed
with quark degrees of freedom and their subsequent hadro-
nization as in RHIC and CERN experiments.
Table VII provides a summary of the generic outcomes

of our study. If the hadron-to-quark transition is strongly
first order, as is the case for standard quark models such as
vMIT and vNJL that we used, then the hadronic part needs
to be relatively stiff to guarantee a proper intersection in the
P-μ plane. For a hadronic EoS as stiff as MS-A, this
combination brings tension with Λ1.4 or R1.4 estimates.
Concomitantly, a too-high transition density that yields
Mtrans ≳ 1.7 M⊙ results in either very small quark cores or
completely unstable stars that are indistinguishable from
those resulting from the (stiff) purely hadronic EoS. Thus,
such hybrid EoSs can easily be ruled out. This is typical
for NJL-type models; see, e.g., Fig. 4. In contrast, lower
transition densities (that yield Mtrans ≲ 1.0–1.6 M⊙) are
capable of decreasing radii, and if accompanied by a stiff
quark matter EoS with sizable repulsive interactions, these
hybrid EoSs produce Mmax ≥ 2 M⊙. Figures 2 and 3 show
examples in which the vMIT model was used with
Maxwell/Gibbs constructions.
Our analysis indicates that use of the Gibbs construction

is beneficial in satisfying the current constraints from
observation for many stiff hadronic EoSs, as it enlarges
the parameter space of quark models. As similarMðRÞ and
ΛðMÞ relations for hybrid and purely hadronic stars can be
obtained, the distinction between the two is, however, lost.
This feature underscores the significance of dynamical
properties such as neutron star cooling and spin-down, and
the evolution of merger products.
To sum up the part about first-order phase transitions,

current observational constraints disfavor weakly interact-
ing quarks at the densities reached in neutron star cores.
Should a first-order transition into strongly interacting
quark matter (as described by the vMIT bag model or

vNJL-type models) take place, the onset density is likely of
relevance also to canonical neutron star masses in the
range 1.0-1.6 M⊙.
One should keep in mind, however, that perturbative

approaches to the quark matter EoS are not expected to
hold in the density range ≈2–4n0. This limitation brings the
validity of first-order phase transitions caused by such EoSs
into question. In this regard, model-independent paramet-
rizations circumvent the issue and have the advantage of
translating observational constraints more generically. For
instance, specific QM models prohibit the transition into
soft hadronic matter, but in the CSS parametrization this
restriction disappears and a much larger parameter space
can be explored including soft HM → stiff QM [134].
However, such parametrizations lack a physical basis and
beg for the invention of a nonperturbative approach.
If the hadron-to-quark transition is a smooth crossover,

as in the case of interpolatory schemes and in quarkyonic
matter, the pressure in the transition region is stiffened
unlike the sudden softening of pressure caused by a first-
order transition. This stiffening is also reflected in a local
peak in the sound velocity before the pure quark phase is
entered. This stiffening is responsible for supporting
massive stars that are compatible with the current lower
limit of 2 M⊙.
It is also common that the onset density for quarks is

somewhat low (Mtrans ≲ 1.0–1.6 M⊙) in these crossover
approaches. This feature implies that all neutron stars we
observe should contain some quarks admixed with hadrons.
We find that at low densities soft hadronic EoSs are
necessary, but above the transition changes in radii rely
heavily on the methods of implementing the crossover in
both the interpolation approach and in quarkyonic matter.
Consequently, it is difficult to obtain physical constraints
on the crossover EoSs from a better determination of the
radius, e.g., R1.4, or improved tidal deformability measure-
ments. It is promising, however, in limiting parameters,
e.g., the vector coupling strength Gv=Gs in vNJL or κ and
ΛQ in the quarkyonic model, pertinent to the required

TABLE VII. Summary of different treatments with the introduction of quarks in the dense matter EoS. For a sharp first-order transition
with Maxwell construction, the most readily compatible scenario is stiff hadronic matter undergoes phase transition into stiff
(c2QM ≳ 0.4) quark matter. For a crossover transition, soft HM → stiff QM is necessary.

HM → QM First-order transition (Maxwell)a Crossover transition

Stiff to soft
vMIT: cannot support Mmax ≥ 2 M⊙ unphysical decreasing function of PðnBÞ
vNJL: Mtrans ≳ 1.7 M⊙, Λ̃ðM ¼ 1.186 M⊙Þ > 720

Soft to stiff no intersection for PðμÞb ✓ interpolation: Mtrans ≲ 1.0 M⊙, R1.4 < 13 km
✓ quarkyonic: Mmax ≥ 2 M⊙; R1.4 and Mtrans vary

Soft to soft cannot support Mmax ≥ 2 M⊙ cannot support Mmax ≥ 2 M⊙

Stiff to stiff
✓ vMIT: Mmax ≥ 2 M⊙; R1.4 and Mtrans vary Λ̃ðM ¼ 1.186 M⊙Þ > 720, R1.4 > 13 km
vNJL: onset for quarks too high; immediately destabilize

aSee text for details if the Gibbs construction is applied. Gibbs construction satisfies many observational constraints such as R1.4 and
Mmax due to the earlier onset of quarks. However, distinguishability from purely hadronic stars is lost.

bLimited by the specific quark models applied here; in a generic parametrization (e.g., CSS) the soft HM → stiff QM is possible.
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stiffening to satisfy the limits imposed by mass measure-
ments of heavy neutron stars.
Regardless of the phase transition being first order or

crossover, our results suggest that the presence of quarks in
the premerger component neutron stars of GW170817 is a
viable possibility. If quarks only appear after the merger
(before the remnant collapsing into a black hole), there is a
valid soft HM → stiff QM first-order transition that cannot
be captured by the vMIT bag or vNJL models. There are
exceptions when the onset occurs close to the 2 M⊙ limit so
that quarks are precluded in cold beta-equilibrated NSs due
to immediate collapse. While we rejected these solutions by
default, these cases can, however, be relevant for the
dynamic products of mergers where quarks may emerge
temporarily [135,136]. Numerical simulations that involve
quarks [135,137] will assist in identifying such cases
during postmerger gravitational-wave evolution. Better
understanding and progress in theory, experiments, and
observations are required to clarify the situation.
Although the presence of quarks in neutron stars is not

ruled out by currently available constraints, it is nearly
impossible to confirm it even with improved deter-
minations of radii from x-ray observations and tidal
deformabilities from gravitational wave detections. This
conundrum arises because purely hadronic EoSs can also
satisfy the current constraints of Mmax, R1.4, and Λ̃; i.e.,
the “masquerade problem” [72] persists. Similarly, it will
be difficult to identify the nature of the phase transition on
the basis of M and R observations only, unless there is a
sufficiently strong first-order transition that gives rise to
separate branches of twin stars with discontinuous M-R
and/or Λ̃-M relations.
We now turn to the third question in the introduction:

(c) Which astronomical observations have the best potential
to attest to the presence of quarks? Dynamical observables
such as supernovae neutrino emission, thermal/spin evo-
lution, global oscillation modes, continuous gravitational
waves, dynamic collapse that are sensitive to transport
properties would potentially provide more distinct signa-
tures of exotic matter in neutron stars [138–140]. In future
work, it is worthwhile to achieve consistency with dynami-
cal observables, particularly for the crossover scenarios of
the transition to quark matter.
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APPENDIX: THERMODYNAMICS
OF NUCLEONS IN THE SHELL
OF QUARKYONIC MATTER

In this appendix, we provide some details of the
evaluation of the kinetic parts of the energy density,
chemical potential, and energy density and pressure for
nucleons in the shell. The expressions we obtain will then
be used to establish the thermodynamic identity (TI) in the
presence of a shell. For the evaluation of these quantities
the relation

d
dα

Z
ϕ2ðαÞ

ϕ1ðαÞ
Fðx; αÞdx

¼
Z

ϕ2ðαÞ

ϕ1ðαÞ

∂Fðx; αÞ
∂α dxþ Fðϕ2; αÞ

∂ϕ2

∂α − Fðϕ1; αÞ
∂ϕ1

∂α ;

ðA1Þ

where α is a parameter in the functions ϕ1;ϕ2 and F will be
useful.

1. Energy density

The kinetic energy density of nucleons, neutrons to be
specific, in the shell is

εðkinÞn ¼ 1

π2

�Z
kFn

0

−
Z

kFn−Δ

0

�
dkk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

n

q
;

¼ F1ðkFnÞ − F2ðkFn − ΔÞ; ðA2Þ

where Δ ¼ Λ3
Q=k

2
Fn þ κΛQ=N2

c. In analytical form,

εðkinÞn ¼ 1

4π2

�
k3ek þ

M2
n

2
kek −

M4
n

2
lnðkþ ekÞ

	
U

L
: ðA3Þ

For kFn < Δ, the upper limit U ¼ kFn, the lower limit
L ¼ 0, and ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

n

p
, which leads to the familiar

expression for spin-1
2
relativistic particles of mass Mn. For

neutrons in the shell with kFn > Δ, however, U ¼ kFn and
L ¼ ðkFn − ΔÞ with ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − ΔÞ2 þM2

n

p
.

2. Chemical potential

The associated chemical potential ensues from

μðkinÞn ¼ dεðkinÞn

dkFn

dkFn
dnn

¼
�
dF1

dkFn
−

dF2

dkFn

�
dkFn
dnn

: ðA4Þ

For the neutrons in the shell,
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nn ¼
1

3π2
½k3Fn − ðkFn − ΔÞ3�;

dnn
dkFn

¼ 1

π2

�
k2Fn − ðkFn − ΔÞ2

�
1 −

∂Δ
∂kFn

�	

¼ 1

π2

�
k2Fn − ðkFn − ΔÞ2

�
1þ 2Λ3

Q

k3Fn

�	
: ðA5Þ

For evaluating dF1=dkFn, use of the relations

ϕ1ðkFnÞ ¼ 0;ϕ2ðkFnÞ ¼ kFn;

∂ϕ1

∂kFn ¼ 0;
∂ϕ2

∂kFn ¼ 1; ðA6Þ

in Eq. (A1) yields

dF1

dkFn
¼ 1

π2
k2Fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fn þM2

n

q
: ðA7Þ

The evaluation of dF2=dkFn proceeds along similar lines,
but with

ϕ1ðkFnÞ ¼ 0; ϕ2ðkFnÞ ¼ kFn − Δ;
∂ϕ1

∂kFn ¼ 0;
∂ϕ2

∂kFn ¼ 1 −
∂Δ
∂kFn ; ðA8Þ

with the result

dF2

dkFn
¼ 1

π2
ðkFn − ΔÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkFn − ΔÞ2 þM2

n

q �
1þ 2Λ3

Q

k3Fn

�
:

ðA9Þ

Putting these results together, we obtain after some sim-
plification

μðkinÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fn þM2

n

p
−R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkFn − ΔÞ2 þM2

n

p
1 −R

;

R ¼
�
1 −

Δ
kFn

�
2
�
1þ 2Λ3

Q

k3Fn

�
: ðA10Þ

3. Pressure

The kinetic theory expression for a single species of
spin-1

2
fermions is

P ¼ 2T
Z

U

L

d3k
ð2πÞ3 ln½1þ eðμ−eÞβ�; ðA11Þ

where β ¼ 1=T, e is the single particle spectrum and μ the
chemical potential. A partial integration on the right-hand
side yields

P ¼ T

�
1

3π2
k3 ln½1þ eðμ−eÞβ�

	
U

L

þ 1

3
2

Z
U

L

d3k
ð2πÞ3 k

dek
dk

1

1þ eðμ−eÞβ
: ðA12Þ

At finite T, the first term vanishes when U ¼ ∞ and L ¼ 0
leaving the second term as the kinetic pressure. For T → 0
and finite L and U, however, we have

P ¼ 1

3π2
½k3ðμ − eÞ�UL þ 1

3
2

Z
U

L

d3k
ð2πÞ3 k

dek
dk

: ðA13Þ

The expressions for PðkinÞ
n thus take different forms in the

regions kFn < Δ and kFn > Δ. For kFn < Δ, the limits
U ¼ kFn and L ¼ 0 yield the familiar kinetic theory
expression

PðkinÞ
n ¼ 1

3
2

Z
U

L

d3k
ð2πÞ3 k

dek
dk

¼ 1

12π2

�
k3ek −

3

2
M2

nkek þ
3

2
M4

n lnðkþ ekÞ
	
U

L
;

ðA14Þ

where ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

n

p
. The last two terms in Eqs. (A3) and

(A14) cancel, and thus in this region, εðkinÞn þ PðkinÞ
n ¼ nnμkinn

(the TI) with nn ¼ k3Fn=ð3π2Þ and μðkinÞn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fn þM2

n

p
.

In the region kFn > ΔwithU ¼ kFn and L ¼ ðkFn − ΔÞ,
the kinetic theory pressure becomes

PðkinÞ
n ¼ 1

3π2
½k3ðμkinn − ekÞ�UL þ 1

3
2

Z
U

L

d3k
ð2πÞ3 k

dek
dk

:

ðA15Þ

The first term above gives the contribution from the
boundaries of the shell. Inserting the appropriate limits
for the shell, this term reads as

1

3π2

�
μnðk3Fn − ðkFn −ΔÞ3Þ

−


k3Fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fn þM2

n

q
− ðkFn −ΔÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkFn −ΔÞ2 þM2

n

q �	
:

ðA16Þ

4. Thermodynamic identity

Collecting the results in Eqs. (A15) and (A16) and

evaluating εðkinÞn in Eq. (A3) for the shell, we obtain the TI
(after many cancellations)
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εðkinÞn þ PðkinÞ
n ¼ nnμkinn with

nn ¼
1

3π2
½k3Fn − ðkFn − ΔÞ3�; ðA17Þ

the last relation giving the number density of neutrons in
the shell. The neutron chemical μkinn here is independently
calculated from Eq. (A10). We have verified that numerical

calculations of μkinn ¼ dεðkinÞn =dnn and PðkinÞ
n ¼ n2ndðεðkinÞn =

nnÞ=dnn in the shell yield the same results as evaluations
from the analytical formulas above, which provide addi-
tional physical insight concerning the role played by
the shell.
All expressions in this appendix apply also to protons so

that a generalization to a 2-component system consisting of
neutrons and protons is straightforward.
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