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We study bulk viscosity arising from weak current Urca processes in dense baryonic matter at and
beyond nuclear saturation density. We consider the temperature regime where neutrinos are trapped and
therefore have nonzero chemical potential. We model the nuclear matter in a relativistic density functional
approach, taking into account the trapped neutrino component. We find that the resonant maximum of the
bulk viscosity would occur at or below the neutrino trapping temperature, so in the neutrino trapped regime
the bulk viscosity decreases with temperature as T−2, this decrease being interrupted by a drop to zero at a
special temperature where the proton fraction becomes density-independent and the material scale-
invariant. The bulk viscosity is larger for matter with lower lepton fraction, i.e., larger isospin asymmetry.
We find that bulk viscosity in the neutrino-trapped regime is smaller by several orders of magnitude
than in the neutrino-transparent regime, which implies that bulk viscosity in neutrino-trapped matter is
probably not strong enough to affect significantly the evolution of neutron star mergers. This also implies
weak damping of gravitational waves emitted by the oscillations of the post-merger remnant in the
high-temperature, neutrino-trapped phase of evolution.
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I. INTRODUCTION

The recent detection of gravitational waves by the LIGO-
Virgo collaboration, in coincidence with electromagnetic
counterparts, has brought into focus the study of the
physics of binary neutron star mergers [1]. In these events,
a postmerger object is formed which either evolves into a
stable neutron star or collapses to a black hole, once it
cannot be supported by the differential rotation. As seen in
numerical simulations [2–15] there are significant density
oscillations in the post-merger remnant, which can generate
observable gravitational waves.
These oscillations will be damped eventually by dis-

sipative processes on characteristic secular timescales
controlled by thermodynamics of background matter and
the kinetics of the relevant dissipative process. Bulk
viscosity is known to be one of the dissipative processes
that could efficiently damp certain classes of oscillations of
general relativistic equilibria.

Studies of damping mechanisms in the context of binary
neutron star mergers are still at an embryonic stage.
Reference [16] has suggested that modified Urca processes
can produce significant bulk viscous dissipation on time-
scales of order a few milliseconds, i.e., on timescales that
are relevant to neutron star merger and postmerger evolu-
tion. This might then affect the emitted gravitational signal.
It remains less clear whether shear viscosity and thermal
conduction could play a significant role [16]. In parallel,
the electrical conductivity was computed in the relevant
regime to assess its impact on the evolution of the
electromagnetic fields. It was shown that the Hall effect
could be important on characteristic timescales of the
merger and postmerger evolution [17,18].
To quantify the amount of bulk viscous dissipation a

more detailed analysis is required that takes into account
the realistic temperature and density conditions encoun-
tered in this context. The aim of this work is to obtain the
bulk viscosity of dense matter created in neutron star
mergers in the temperature and density regime character-
istic for such events. Specifically, we will consider the
dominant weak-interaction processes of Urca type at
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temperatures that are above the trapping temperature T tr ≃
5 MeV [19,20]. In this regime, the neutrinos have a mean
free path that is significantly shorter than the stellar size,
and consequently a nonzero chemical potential. This affects
the composition of the background baryonic matter. Thus,
compared to the extensively studied case of cold neutron
stars, the key new features that arise in the neutron-star
merger and postmerger context is the higher temperatures at
which the weak reactions take place and the significantly
different background composition of baryonic matter.
The bulk viscosity of baryonic matter has been studied

extensively in the low-temperature limit for purely nucle-
onic matter [21–27], including possible leptonic contribu-
tions [28], for hyperonic matter [29–34], and for quark
matter [35–45] including the effects of an interface with the
nuclear matter envelope [46]. For a review see [47]. At
temperatures T ≲ 1 MeV the physics of bulk viscosity is
affected by the superfluidity of baryons [48–50], but we
will assume that the temperatures are always larger than the
critical temperatures for the pairing of various baryons, as
our focus is on the regime where neutrinos are trapped, i.e.,
temperatures T ≥ T tr. The neutrino transparent case is
discussed in Ref. [51] and Appendix D.
Physical conditions that are similar to those we are

aiming to study are encountered also in proto-neutron stars
born in supernova explosions. In this case, the matter is
much more isospin symmetrical, but the rest of the physics
is quite analogous. We will cover this case as well having in
mind the possibility of observations of oscillations of a
proto-neutron star, should a supernova explosion occur
within the detectable range.
In the present study we will assume that thermal

conduction is efficient enough to keep matter isothermal
while it is being compressed and uncompressed. A
rough estimate [Ref. [16], Eq. (2)] gives the timescale
for relaxation of thermal gradients order of 1 sec×
ðztyp=kmÞ2ðT=10 MeVÞ2, where ztyp is the typical scale
of thermal gradients. Thus, for thermal gradients on a
distance scale of about 30 m or less, the relaxation time
would be 1 ms or less, i.e., the characteristic time-scale of
binary neutron star merger. So, for density fluctuations on
this distance scale the assumption of isothermal matter is
the relevant one. In particular, if turbulent flow arises in the
merger then this could give flows and density variations on
such distance scale. On the scales over which thermal
conduction is inefficient, the matter should be treated as
isoentropic. The formalism presented below can be simply
adapted to this case. We anticipate that for an adiabatic
calculation the bulk viscosity will be of the order as found
here. We will return to this problem in a separate work.
This work is organized as follows. In Sec. II we discuss

the rates of the two relevant processes. Section III derives
the corresponding formulas for the bulk viscosity of matter.
In Sec. IV we first describe the properties of the back-
ground matter derived on the basis of the density functional

theory at a finite temperature which accounts for a neutrino
component with nonzero chemical potential (Sec. IVA).
This is followed by a discussion of perturbed quantities and
bulk viscosity in Sec. IV B. Our conclusions are collected
in Sec. V.
In this work we use the natural (Gaussian) units with

ℏ ¼ c ¼ kB ¼ 1, and the metric gμν ¼ diagð1;−1;−1;−1Þ.

II. URCA PROCESS RATES

We will consider the simplest composition of baryonic
matter consisting of neutrons (n), protons (p), electrons (e),
muons (μ), and neutrinos at densities in the range 0.5n0 to
3n0 (n0 ≃ 0.16 fm−3) and temperatures in the range T tr ≃ 5
to 50 MeV. Other constituents and forms of matter have
been proposed, but we will focus on the standard scenario
for this regime, which can serve as a starting point for
future explorations of more complex phases of baryonic
matter. Note that positrons do not appear in matter in
substantial amounts because the electron chemical potential
is of the order of 100 MeV, see Sec. IVA. The weak
processes involving positrons will be suppressed roughly
by a factor expð−μe=TÞ ≃ 0.1 at T ¼ 50 and 0.01 at
T ¼ 30 MeV.
In the dynamically evolving environment of a neutron

star merger, fluid elements undergo rhythmic cycles of
compression and decompression, which can lead to bulk
viscous dissipation if the rate at which the proton fraction
relaxes toward its equilibrium value (“beta equilibrium”) is
comparable to the frequency of the compression cycles. To
analyze this, we consider the simplest beta equilibration
processes, the Urca processes:

n ⇄ pþ e− þ ν̄e; ð1Þ

pþ e− ⇄ nþ νe: ð2Þ

The first process is the β-decay of a neutron and the second
one is the electron capture on a proton. If the matter is in
β-equilibrium, then the chemical potentials of particles
obey the relation

μn ¼ μp þ μe þ μν̄; ð3Þ

μp þ μe ¼ μn þ μν; ð4Þ

where the neutrino and antineutrino chemical potentials
are related by μν̄ ¼ −μν, which leaves us with a single
relation. As noted above, the matter can be driven out of
β-equilibrium by a cycle of compression and rarefaction,
and this can be characterized via a nonzero value of
the chemical potential that measures the deviation from
β-equilibrium

μΔ ≡ μn þ μν − μp − μe. ð5Þ

ALFORD, HARUTYUNYAN, and SEDRAKIAN PHYS. REV. D 100, 103021 (2019)

103021-2



The rate at which μΔ relaxes to zero is a measure of the
speed at which the chemical constitution of the matter
adjusts to a change in pressure. We start with the compu-
tation of the β-equilibration rate assuming a given value
of μΔ ≠ 0.
The squared matrix element of processes (1) and (2) is

given by the well-known expression [52]

X
jMUrcaj2 ¼ 32G̃2ðk · p0Þðp · k0Þ; ð6Þ

where p0 and p refer to the four-momenta of the neutron
and proton, k and k0 to the four-momenta of neutrino
(antineutrino) and electron, respectively, and the sum
includes summation over the spins of neutron, proton,
and electron. Note that each of baryon four-momenta is
dotted into a four-lepton momentum. We consider only the
Standard Model neutrinos (antineutrinos) which are left-
handed (right-handed) only, therefore they have only one
projection of helicity that has to be counted. In the

following, we will use the nonrelativistic limit of the
matrix element (6) because in the temperature and density
range that we consider the baryons are nonrelativistic to
an accuracy of about 10%.
Thus we keep only the contribution of timelike parts of

the scalar products in the matrix element,

jMUrcaj2 ¼ 32G̃2p0p0
0k0k

0
0; ð7Þ

where index 0 refers to the timelike component of a
four-vector, G̃2 ≡G2

F cos
2 θcð1þ 3g2AÞ, where GF ¼

1.166 × 10−5 GeV−2 is the Fermi coupling constant, θc
is the Cabibbo angle (cos θc ¼ 0.974) and gA ¼ 1.26 is
the axial-vector coupling constant.

A. The rates of the processes n ⇄ p+ e− + ν̄e
The β-equilibration rate for the neutron decay n → pþ

e− þ ν̄e is given by

Γ1pðμΔÞ ¼
Z

d3p0

ð2πÞ32p0
0

Z
d3p

ð2πÞ32p0

Z
d3k0

ð2πÞ32k00

Z
d3k

ð2πÞ32k0
X

jMUrcaj2

× fðp0Þ½1 − fðk0Þ�½1 − fðkÞ�½1 − fðpÞ�ð2πÞ4δð4Þðpþ kþ k0 − p0Þ; ð8Þ

where fðpÞ ¼ fexp½ðEp − μÞ� þ 1g−1 etc. are the Fermi distributions of particles, with energies Ep and chemical potential
μ. Similarly, the rate of the inverse process, i.e., pþ e− þ ν̄e → n is given by

Γ1nðμΔÞ ¼
Z

d3p0

ð2πÞ32p0
0

Z
d3p

ð2πÞ32p0

Z
d3k0

ð2πÞ32k00

Z
d3k

ð2πÞ32k0
X

jMUrcaj2

× fðk0ÞfðkÞfðpÞ½1 − fðp0Þ�ð2πÞ4δð4Þðpþ kþ k0 − p0Þ: ð9Þ

Some of the phase-space integrals in Eqs. (8) and (9) can be carried out analytically; the details are relegated to Appendix A.
We find

Γ1pðμΔÞ ¼ G̃2m
�2T6

8π5

Z
∞

−αeþαν

dygðy − μΔ=TÞ
Z

yþαe−αν

0

dz ln

���� 1þ expð−y0Þ
1þ exp ð−y0 − yþ μΔ=TÞ

����
×
Z

xmax

xmin

dxðx − ανÞðyþ αe − xÞfðx − yÞ½1 − fðxÞ�; ð10Þ

Γ1nðμΔÞ ¼ G̃2 m
�2T6

8π5

Z
∞

−αeþαν

dy½1þ gðy − μΔ=TÞ�
Z

yþαe−αν

0

dz ln

���� 1þ expð−y0Þ
1þ expð−y0 − yþ μΔ=TÞ

����
×
Z

xmax

xmin

dxðx − ανÞðyþ αe − xÞfðxÞ½1 − fðx − yÞ�; ð11Þ

where αj ≡ μ�j=T and index j ¼ n, p, e, ν labels the
constituents of matter with μ�j being the effective chemical
potentials of particles (see Sec. IVA), m� stands for the
nonrelativistic effective mass of a nucleon [53], the Fermi
and Bose functions of nondimensional arguments have the
form fðxÞ ¼ ðex þ 1Þ−1 and gðxÞ ¼ ðex − 1Þ−1,

y0 ¼
m�

2Tz2

�
αn − αp þ y − z2

T
2m� −

μΔ
T

�
2

− αp; ð12Þ

and the integration limits xmin and xmax are given by
xmin =max ¼ ðyþ αe þ αν ∓ zÞ=2. The integration variables
y and z are the transferred energy and momentum,
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respectively, normalized by the temperature, and the
variable x is the normalized-by-temperature antineutrino
energy computed from the chemical potential, i.e., x ¼
ðϵν̄ þ μνÞ=T (recall that antineutrino chemical potential is
−μν). Note that in our rate calculations we numerically
evaluate the full three-dimensional integral. We do not use
the Fermi surface approximation (assuming that all mo-
menta lie close to the Fermi momentum) because it is no
longer valid at the temperatures of interest to us.
When the system is in beta equilibrium, μΔ ¼ 0 and

the rates of the direct and inverse processes are equal

Γ1n ¼ Γ1p ≡ Γ1 in exact β-equilibrium. For small depar-
tures from β-equilibrium, μΔ ≪ T, only the terms that are
linear in the departure μΔ are of interest; the coefficients of
the expansion involve the derivatives

λ1 ≡ ∂Γ1pðμΔÞ
∂μΔ

����
μΔ¼0

−
∂Γ1nðμΔÞ

∂μΔ
����
μΔ¼0

¼ Γ1

T
; ð13Þ

where Γ1 is the rate in β-equilibrium (as defined above) and
is given explicitly by

Γ1 ¼
m�2G̃2

8π5
T6

Z
∞

−αeþαν

dy gðyÞ
Z

yþαe−αν

0

dz ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞ

����
×
Z

xmax

xmin

dxðx − ανÞðyþ αe − xÞfðx − yÞ½1 − fðxÞ�: ð14Þ

Note that if in some density-temperature range neutrinos are trapped and are degenerate, i.e., μν ≫ T, then one can
approximate ϵν ≃ μν, y ≃ 1, therefore x − y ≃ 2μν=T ≫ 1, and the electron Fermi function fðx − yÞ in Eq. (14) vanishes. If
one were to extrapolate the neutrino-trapped rate to low temperature, one would find that Γ1 ¼ λ1 ¼ 0 in this limit.
In the case of neutrino-transparent matter, one should drop the antineutrino distribution fðxÞ and substitute μν ¼ 0 in the

neutron-decay rate Γ1p, while the rate of the inverse process Γ1n vanishes. In this case, the λ1 parameter is given by

λ1 ¼
m�2G̃2

8π5
T5

Z
∞

−αe
dy gðyÞ

Z
yþαe

0

dz

�
ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞ

����½1þ gðyÞ�

− fðy0 þ yÞ − ½fðy0 þ yÞ − fðy0Þ�
m�

z2T

�
αn − αp þ y − z2

T
2m�

��

×
Z

xmax

xmin

dx xðyþ αe − xÞfðx − yÞ: ð15Þ

In the limit of strongly degenerate matter (T ≲ 1 MeV [20]) we find the following limits for Γ1p and λ1 for the neutrino-
transparent case

Γ1p ¼ αm�2G̃2T5pFeθðpFp þ pFe − pFnÞ; ð16Þ

where α ¼ 3½π2ζð3Þ þ 15ζð5Þ�=16π5 ¼ 0.0168, and pFi are the Fermi-momenta of the particles, and

λ1 ¼
17

480π
m�2G̃2T4pFeθðpFp þ pFe − pFnÞ: ð17Þ

B. The rates of the processes n+ νe ⇄ p+ e−
The computation of the rates of the processes (2) is carried out in an analogous manner. The rates of the direct and the

inverse processes are given, respectively, by

Γ2pðμΔÞ ¼
G̃2

2

Z
d3p0

ð2πÞ32p0
0

Z
d3p

ð2πÞ32p0

Z
d3k0

ð2πÞ32k00

Z
d3k

ð2πÞ32k0
X

jMUrcaj2

× fðp0ÞfðkÞ½1 − fðk0Þ�½1 − fðpÞ�ð2πÞ4δðp − kþ k0 − p0Þ; ð18Þ

Γ2nðμΔÞ ¼
G̃2

2

Z
d3p0

ð2πÞ32p0
0

Z
d3p

ð2πÞ32p0

Z
d3k0

ð2πÞ32k00

Z
d3k

ð2πÞ32k0
X

jMUrcaj2

× fðk0ÞfðpÞ½1 − fðp0Þ�½1 − fðkÞ�ð2πÞ4δðp − kþ k0 − p0Þ: ð19Þ
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These rates can be reduced to the following (see Appendix A)

Γ2pðμΔÞ ¼ G̃2m
�2T6

8π5

Z
∞

−∞
dy gðy − μΔ=TÞ

Z
∞

jyþαe−ανj
dz ln

�
1þ exp ð−y0Þ

1þ exp ð−y0 − yþ μΔ=TÞÞ
�

×
Z

∞

x̄min

dxðxþ ανÞðyþ αe þ xÞfðxÞ½1 − fðxþ yÞ�; ð20Þ

Γ2nðμΔÞ ¼ G̃2m
�2T6

8π5

Z
∞

−∞
dy½1þ gðy − μΔ=TÞ�

Z
∞

jyþαe−ανj
dz ln

�
1þ exp ð−y0Þ

1þ exp ð−y0 − yþ μΔ=TÞÞ
�

×
Z

∞

x̄min

dxðxþ ανÞðyþ αe þ xÞfðxþ yÞ½1 − fðxÞ�; ð21Þ

with x̄min ¼ ðz − y − αe − ανÞ=2. One can verify that Γ2p ¼ Γ2n when μΔ ¼ 0. In this case, the λ-parameter is given by

λ2 ≡ ∂Γ2pðμΔÞ
∂μΔ

����
μΔ¼0

−
∂Γ2nðμΔÞ

∂μΔ
����
μΔ¼0

¼ Γ2

T
; ð22Þ

where

Γ2 ¼
m�2G̃2

8π5
T6

Z
∞

−∞
dy gðyÞ

Z
∞

jyþαe−ανj
dz ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞÞ

����
×
Z

∞

x̄min

dxðxþ ανÞðyþ αe þ xÞfðxÞ½1 − fðxþ yÞ�: ð23Þ

If we extrapolate the neutrino-trapped result into the low-
temperature regime (where in reality neutrinos are no
longer trapped) of highly degenerate matter where the
fermionic chemical potentials satisfy the condition μi ≫ T
(i ∈ n, p, e, ν) the rate Γ2 given by Eq. (23) reduces to

Γ2 ¼
m�2G̃2

12π3
T3pFepFνðpFe þ pFν − jpFn − pFpjÞ: ð24Þ

Thus, the computation of the parameters λ1;2, which
determine the nonequilibrium relaxation rate of Urca
processes at arbitrary degeneracy of the involved fermions,
nonzero temperature and in the presence of neutrino

trapping reduces to an evaluation of three-dimensional
integrals given by Eqs. (14) and (23). These results are
essentially exact, the only approximation being the neglect

of the termsOðm�=EÞ, where E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�2p

, in the tree-
level weak-interaction matrix element. Note, however, that
many-body correlations in the baryonic matter, which arise
from a resummation of particle-hole diagrams are not
included yet. In other words, our results correspond to
the evaluation of the polarization tensor of baryonic matter
in the one-loop approximation.
We consider also the neutrino-transparent case, where we

have Γ2p ¼ 0, and for λ2 we find

λ2 ¼ −
m�2G̃2

8π5
T5

Z
∞

−∞
dy½1þ gðyÞ�

Z
∞

jyþαej
dz

�
gðyÞ ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞÞ

����
− fðy0 þ yÞ − ½fðy0 þ yÞ − fðy0Þ�

m�

z2T

�
αn − αp þ y − z2

T
2m�

��

×
Z

∞

x̄min

dx xðyþ αe þ xÞfðxþ yÞ: ð25Þ

In the limit of strongly degenerate matter (T ≲ 1 MeV [20]), the rate Γ2n is the same as in the case of Γ1p

Γ2n ¼ αm�2G̃2T5pFeθðpFp þ pFe − pFnÞ: ð26Þ

Similarly, the low-temperature limit for λ2 reads
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λ2 ¼
17

480π
m�2G̃2T4pFeθðpFp þ pFe − pFnÞ; ð27Þ

therefore, the total rate λ≡ λ1 þ λ2 is given by

λ ¼ 17

240π
m�2G̃2T4pFeθðpFp þ pFe − pFnÞ; ð28Þ

which agrees with the corresponding expression given in
Ref. [48].

III. BULK VISCOSITY

The purpose of this section is to derive a microscopic
formula for the bulk viscosity. Although there are large-
amplitude density oscillations in a merger [2,16], we will
restrict our analysis to the “subthermal” case where the
matter is only slightly perturbed from equilibrium by
density oscillations of some characteristic frequency ω.
We will not study the “suprathermal” case of high ampli-
tude oscillations, but it can only lead to an enhancement
of the bulk viscosity when the beta equilibration rate is
slower than the density oscillation frequency, and, as we
will show, in the neutrino-trapped temperature range we are
in the opposite regime of fast equilibration. In our analysis
we take into account the contribution of muons to the
thermodynamic quantities, but neglect their contribution to
the bulk viscosity, as it is subdominant to the processes
involving electrons.
In the case where neutrinos are trapped, the equilibrium

with respect to weak interactions implies the conditions (3).
The charge neutrality condition implies np ¼ ne þ nμ.
These two conditions are sufficient to fix the number
densities of the constituents for any given temperature
T, the value of the baryon number density nB ¼ nn þ np
and the lepton number density nL ¼ ne þ nν. Here the
neutrino net density is given by nν ≡ ñν − ñν̄ where ñν
and ñν̄ are the neutrino and antineutrino number den-
sities, respectively.
Consider now small-amplitude density oscillations in the

matter, with characteristic timescales that are long com-
pared to the strong interaction timescale ∼10−23 s. Since
the strong interactions establish thermal equilibrium, the
particle distributions are always thermal (Fermi-Dirac or
Bose-Einstein); the only deviation from equilibrium that
is induced by the oscillations is a departure from beta
equilibrium, which can be expressed in terms of a single
chemical potential μΔ (5).
The perturbed densities are written as nBðtÞ ¼ nB0 þ

δnBðtÞ, and nLðtÞ ¼ nL0 þ δnLðtÞ, with nB0 and nL0 being
the unperturbed background densities of baryons and
leptons. The time-dependence of the density perturbations
is taken as δnBðtÞ, δnLðtÞ ∼ eiωt. The continuity equation
∂ni=∂tþ divniv ¼ 0 then implies

δniðtÞ ¼ −
θ

iω
ni0; i ¼ fB;Lg; ð29Þ

where v is the bulk (hydrodynamic) velocity of matter and
θ ¼ divv. (Note that we consider only linear perturbation in
densities.)
The density perturbations above imply density pertur-

bation of particle number which can be separated into
equilibrium and nonequilibrium parts

njðtÞ ¼ nj0 þ δnjðtÞ; δnjðtÞ ¼ δneqj ðtÞ þ δn0jðtÞ; ð30Þ

where j ¼ fn; p; e; νg labels the particles. The variations
δneqj ðtÞ denote the shift of the equilibrium state for the
instantaneous values of the baryon and lepton densities
nBðtÞ and nLðtÞ, whereas δn0jðtÞ denote the deviations of the
corresponding densities from their equilibrium values.
Due to the nonequilibrium shifts δn0jðtÞ the composition
balance of matter is disturbed leading to a small shift
μΔðtÞ ¼ δμnðtÞ þ δμνðtÞ − δμpðtÞ − δμeðtÞ, which can be
written as

μΔðtÞ ¼ ðAnn − ApnÞδnnðtÞ þ AννδnνðtÞ
− ðApp − AnpÞδnpðtÞ − AeeδneðtÞ

≡X
i

siAiδniðtÞ ð31Þ

where si ¼ þ1 for n, ν and −1 for p, e; An ¼ Ann − Apn,
Ap ¼ App − Anp, and Ae ¼ Aee, Aν ¼ Aνν with

Aij ¼
�∂μi
∂nj

�
0

; ð32Þ

and index 0 denotes the static equilibrium state. The off-
diagonal elements Anp and Apn are nonzero because of
the cross-species strong interaction between neutrons and
protons. Since we treat the electrons and neutrinos as
ultrarelativistic noninteracting gas, we have kept only the
terms that are diagonal in indices i, j, which we will further
denote simply as Ae and Aν. The computation of suscep-
tibilities Ai is performed in Appendix B.
If the weak processes are turned off, then a perturbation

conserves all particle numbers, therefore

∂
∂t δnjðtÞ þ θnj0 ¼ 0; δnjðtÞ ¼ −

θ

iω
nj0: ð33Þ

Once the weak reactions are turned on, there is an
imbalance between the rates of weak processes given by
Eqs. (14) and (23). To linear order in μΔ the imbalance is
given by [23,24,45]

Γp − Γn ¼ λμΔ; λ > 0; ð34Þ
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where Γj ¼ Γ1j þ Γ2j and λ ¼ λ1 þ λ2 see Eqs. (13) and
(22) (in the case of neutrino-transparent matter one should
use Eqs. (17) and (27) for λj). Then instead of Eq. (33) we
will have the following rate equations which take into
account the loss and gain of particles via the weak
interactions

∂
∂t δnnðtÞ ¼ −θnn0 − λμΔðtÞ; ð35Þ

∂
∂t δnpðtÞ ¼ −θnp0 þ λμΔðtÞ: ð36Þ

We next substitute δnjðtÞ ∼ eiωt, eliminate μΔ using
Eq. (31), and employ the relations δnp ¼ δnB − δnn, δne ¼
δnp and δnL ¼ δne þ δnν, and Eq. (29) to find

δnnðtÞ ¼ −
iωnn0 þ λðAp þ Ae þ AνÞnB0 − λAνnL0

iωþ λA
θ

iω
;

ð37Þ

δnpðtÞ ¼ δneðtÞ ¼ −
iωnp0 þ λAnnB0 þ λAνnL0

iωþ λA
θ

iω
; ð38Þ

δnνðtÞ ¼ −
iωnν0 þ λðAn þ Ap þ AeÞnL0 − λAnnB0

iωþ λA
θ

iω
;

ð39Þ

where

A ¼
X
j

Aj ¼
�∂μn
∂nn

�
0

þ
�∂μp
∂np

�
0

−
�∂μn
∂np

�
0

−
�∂μp
∂nn

�
0

þ
�∂μe
∂ne

�
0

þ
�∂μν
∂nν

�
0

¼ −
1

nB

�∂μΔ
∂xp

�
nB

; ð40Þ

so A is the “beta-disequilibrium–proton-fraction” sus-
ceptibility: it measures how the out-of-beta-equilibrium
chemical potential is related to a change in the proton
fraction. In order to separate the nonequilibrium
parts of δnj we need to find also the equilibrium shifts
δneqj . According to the definition of the β-equilibrium
state we have μeqn ðtÞ þ μeqν ðtÞ − μeqp ðtÞ − μeqe ðtÞ ¼ 0,
therefore

Anδn
eq
n ðtÞþAνδn

eq
ν ðtÞ−Apδn

eq
p ðtÞ−Aeδn

eq
e ðtÞ¼ 0: ð41Þ

Using the relations δneqn þ δneqp ¼ δnB, δneqe ¼ δneqp ,
δneqe þ δneqν ¼ δnL, and substituting also δnB and δnL
from Eq. (29) we find

δneqn ðtÞ ¼ −ðAp þ Ae þ AνÞnB0 þ AνnL0
A

θ

iω
; ð42Þ

δneqp ðtÞ ¼ δneqe ðtÞ ¼ −
AnnB0 þ AνnL0

A
θ

iω
; ð43Þ

δneqν ðtÞ ¼ −ðAn þ Ap þ AeÞnL0 þ AnnB0
A

θ

iω
: ð44Þ

Then, according to Eq. (30), we find for δn0j

δn0nðtÞ ¼ δn0νðtÞ ¼ −
C

Aðiωþ λAÞ θ; ð45Þ

δn0pðtÞ ¼ δn0eðtÞ ¼
C

Aðiωþ λAÞ θ; ð46Þ

with

C¼nn0Anþnν0Aν−np0Ap−ne0Ae¼nB

�∂μΔ
∂nB

�
xp

; ð47Þ

so C is the “beta-disequilibrium–baryon-density” sus-
ceptibility: it measures how the out-of-beta-equilibrium
chemical potential is related to a change in the baryon
density at fixed proton fraction. Now we are in a
position to compute the full nonequilibrium pressure
which is given by

pðtÞ ¼ pðnjðtÞÞ ¼ p½nj0 þ δneqj ðtÞ� þ δp0ðtÞ
¼ peqðtÞ þ δp0ðtÞ; ð48Þ

where the nonequilibrium part of the pressure, referred
to as bulk viscous pressure, is given by

ΠðtÞ≡ δp0ðtÞ ¼
X
j

�∂p
∂nj

�
0

δn0jðtÞ: ð49Þ

Using the Gibbs-Duhem relation dp ¼ sdT þP
j njdμj, which is valid also out of equilibrium, we

can write [54]

�∂p
∂nj

�
0

¼
X
l

nl0Alj; ð50Þ

from which we can identify

� ∂p
∂nn

�
0

þ
�∂p
∂nν

�
0

−
� ∂p
∂np

�
0

−
�∂p
∂ne

�
0

¼ C; ð51Þ

where we used the symmetry relation Anp ¼ Apn.
Collecting the results (45), (46), (51) we find that the
bulk viscous pressure (49) is given by

Π ¼ C2

A
iω − λA
ω2 þ λ2A2

θ: ð52Þ
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The bulk viscosity is the real part of −Π=θ,

ζ ¼ C2

A
λA

ω2 þ λ2A2
; ð53Þ

which has the classic resonant form depending on two
quantities: the prefactor C2=A which is a ratio of
susceptibilities (40), (47), depending only on the EoS,
and the relaxation rate λA which depends on the weak
interaction rate λ ¼ λ1 þ λ2 (13), (22) and the suscep-
tibility that relates μΔ to the proton fraction. Note that
if we extrapolate the neutrino-trapped calculation to the
low-temperature, degenerate limit, we can compute the
susceptibility A analytically, see Appendix B.

IV. NUMERICAL RESULTS

To quantify the amount of dissipation through bulk
viscosity in the present context we need first to specify the
propertiesofβ-equilibratednuclearmatter.Wechoose todoso
using the density functional theory (DFT) approach to the
nuclear matter, which is based on phenomenological baryon-
mesonLagrangiansof the typeproposedbyWalecka,Boguta-
Bodmer and others [55–57]. We will use the parametrization
of such a Lagrangian with density-dependent meson-nucleon
coupling [58] and will apply the DFT to nuclear matter with
trapped neutrinos, see also [59].

A. Beta-equilibrated nuclear matter

The Lagrangian density of matter can be written as
L ¼ LN þ Ll, where the baryonic contribution is given by

LN ¼
X
N

ψ̄N

�
γμ
�
i∂μ − gωNωμ −

1

2
gρNτ · ρμ

�
− ðmN − gσNσÞ

�
ψN

þ 1

2
∂μσ∂μσ −

1

2
m2

σσ
2 −

1

4
ωμνωμν þ

1

2
m2

ωω
μωμ −

1

4
ρμνρμν þ

1

2
m2

ρρμ · ρμ; ð54Þ

where N sums over nucleons, ψN are the nucleonic Dirac
fields with masses mN . The meson fields σ;ωμ, and ρμ
mediate the interaction among baryon fields, ωμν and ρμν
represent the field strength tensors of vector mesons and
mσ , mω, and mρ are their masses. The baryon-meson
coupling constants are denoted by giN with i ¼ σ, ω, ρ.
The leptonic contribution is given by

Ll ¼
X
λ

ψ̄λðiγμ∂μ −mλÞψλ; ð55Þ

where λ sums over the leptons e−, μ−, νe and νμ, which
are treated as free Dirac fields with masses mλ; the mass
of electron neutrino is negligible and is set to zero. We do
not consider electromagnetic fields, therefore their contri-
bution is dropped. The coupling constants in the nucleonic
Lagrangian are density-dependent and are parametrized
according to the relation giNðnBÞ ¼ giNðn0ÞhiðxÞ, for i ¼ σ,
ω, and gρNðnBÞ ¼ gρNðn0Þ exp½−aρðx − 1Þ� for the ρμ-
meson, where nB is the baryon density, n0 is the saturation
density and x ¼ nB=n0. The density dependence of the
couplings is encoded in the functions

hiðxÞ ¼ ai
1þ biðxþ diÞ2
1þ ciðxþ diÞ2

: ð56Þ

This parametrization has in total eight parameters, which
are adjusted to reproduce the properties of symmetric and
asymmetric nuclear matter, binding energies, charge radii,
and neutron radii of spherical nuclei, see Table I. We recall

that the Lagrangian of this model has only linear in meson
field interaction terms and the coupling nucleon-meson
constants are density-dependent. We will also employ
below the NL3 model [60] as an alternative, which has
density-independent meson-nucleon couplings but contains
nonlinear in meson fields terms.
From the Lagrangian densities (54) and (55) we obtain

the pressure of the nucleonic component

PN ¼ −
m2

σ

2
σ20 þ

m2
ω

2
ω2
0 þ

m2
ρ

2
ρ203

þ 1

3

X
N

2JN þ 1

2π2

Z
∞

0

k4dk

ðk2 þm�2
N Þ1=2

× ½fðEN
k − μ�NÞ þ fðEN

k þ μ�NÞ�; ð57Þ

where m�
N ¼ mN − σ0gσN is the relativistic (Dirac) effec-

tive nucleon mass, μ�N ¼ μN − gωNω0 − gρNI3ρ03 is the

TABLE I. Meson masses mi and their couplings giN to the
baryons in DD-ME2 parametrization. The remaining parameters
specify the density dependence of the couplings.

σ ω ρ

mi [MeV] 550.1238 783.0000 763.0000
giNðn0Þ 10.5396 13.0189 3.6836
ai 1.3881 1.3892 0.5647
bi 1.0943 0.9240 � � �
ci 1.7057 1.4620 � � �
di 0.4421 0.4775 � � �
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nucleon chemical potential including the time component
of the fermion self-energy, I3 is the third component of
nucleon isospin and σ0, ω0 and ρ03 are the mean values of
the meson fields, EN

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

N

p
are the single particle

energies of nucleons. The first three terms in this expression
are associated with mean values of the mesonic fields,
whereas the last term is the fermionic contribution which
is temperature-dependent.
The leptonic contribution to the pressure is given by

PL ¼ gλ
3π2

X
λ

Z
∞

0

k4dk

ðk2 þm2
λÞ1=2

½fðEλ
k − μλÞ þ fðEλ

k þ μλÞ�;

ð58Þ

where gλ is the leptonic degeneracy factor and Eλ
k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þm2
λ

q
are the single particle energies of leptons. At

nonzero temperature, the net entropy of the matter is the
sum of the nucleon contribution

SN ¼−
X
N

2JN þ1

2π2

Z
∞

0

dkk2f½fðEN
k −μ�NÞ lnfðEN

k −μ�NÞ

þ f̄ðEN
k −μ�NÞ ln f̄ðEN

k −μ�NÞ�þðμ�N →−μ�NÞg ð59Þ

and the lepton contribution

SL ¼ −
X
λ

Z
∞

0

dk
π2

½fðEλ
k − μλÞ ln fðEλ

k − μλÞ

þ f̄ðEλ
k − μλÞ ln f̄ðEλ

k − μλÞ�; ð60Þ

where f̄ðyÞ ¼ 1 − fðyÞ. The energy density of the
system and other thermodynamical parameters, for
example, the free-energy can be computed in an analo-
gous manner.
In the case of the neutrino-transparent medium, the

composition of hadronic matter includes neutrons, protons,
electrons and muons. Neutrinos are assumed to escape.
We will use the approximation that the beta equilibrium
conditions become μn ¼ μp þ μe and μμ ¼ μe. At the
temperatures of interest to us there are corrections to these
expressions [20] but we will neglect them.
If the neutrinos are trapped in the matter they contribute

to the energy density and entropy of matter. We take into
account the two lightest flavors of neutrinos, electron and
muon neutrinos, and their antineutrinos [61]. In this case,
the chemical equilibrium conditions read μn þ μνl ¼ μp þ
μl with l ¼ fe; μg, and the lepton number nL conserva-
tion implies nl þ nνl ¼ nLl

¼ YLl
nB, where the lepton

fractions YLl
should be fixed for each flavor separately.

In our numerical calculations we will consider two cases:
(i) YL ¼ 0.1 for both flavors, which is typical for matter
in binary neutron star mergers; (ii) YL ≡ YLe

¼ 0.4 and

YLμ
¼ 0 which are typical for matter in supernovae and

proto-neutron stars [62–64].
The neutrino transparent case Yν ¼ 0 which applies for

temperatures below the transparency temperature T tr ≃
5 MeV is discussed in Ref. [51] and Appendix D.
Before presenting our results on the bulk viscosity in

Sec. IV B we first discuss the thermodynamics of the
underlying relativistic density functional model of nuclear
matter, which will be used as the background equilibrium
for our subsequent perturbation analysis. We will employ
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FIG. 1. Particle fractions in neutron-star-merger matter, (lepton
fraction YL ¼ 0.1). We plot Yi ¼ ni=nB as functions of the
baryon density nB for temperatures (a) T ¼ 5 MeV, and
(b) T ¼ 50 MeV. At high temperature [panel (b)] the net electron
neutrino density becomes negative at sufficiently low baryon
density: the corresponding dotted line shows the net antineutrino
fraction.
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FIG. 2. Particle fractions in supernova matter, (lepton fraction is
YL ¼ 0.4 for electrons, and is zero for muons). We plot Yi ¼
ni=nB as functions of the baryon density nB for temperatures
(a) T ¼ 5 MeV, and (b) T ¼ 50 MeV. The particle fractions
show little dependence on temperature.
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the DD-ME2 parametrization of the density functional
given in Ref. [58].
Figures 1 and 2 show the particle fractions Yj ¼ nj=nB

as functions of the baryon density normalized to the nuclear
saturation density, which is n0 ¼ 0.152 fm−3 in the DD-
ME2 model. Figures 1 and 2 refer to the cases of neutron
star mergers and supernovae, respectively. The results are
shown for two temperatures T ¼ 5 MeV (which is of the
order of T tr) [panels (a)] and T ¼ 50 MeV [panels (b)],
which is close to the upper limit of the temperature range
achieved in these events. Comparing the panels (a) and
(b) in Figs. 1 and 2 we see that the particle fractions are
generally not sensitive to the temperature for the given

value of YL. The only exception is for low lepton-fraction
matter, where at low density and high temperature
[Fig. 1(b)], the net electron neutrino density becomes
negative, indicating that there are more (electron) antineu-
trinos than neutrinos. As one would expect, merger (low
lepton fraction) matter has much smaller electron neutrino
fraction; the electron and muon fractions are ∼10%, so
by charge neutrality Yp ¼ Ye þ Yμ the proton fraction
is ∼20%.
Since the bulk viscosity is related to departure from beta

equilibrium, it is instructive to examine the chemical
potentials of particles as functions of density and temper-
ature. These are shown as functions of the baryon density in
Figs. 3 and 4.
There are two different chemical potentials for bary-

ons: the thermodynamic chemical potentials μn and μp,
which enter into the thermodynamic relations and the
β-equilibrium condition (3), and the effective chemical
potentials μ�n and μ�p, which enter into the baryon distri-
bution functions and are defined after Eq. (57). We show
also the effective nucleon mass m� with dotted lines.
In low lepton-fraction matter at low density and high

temperature [Fig. 3(b)], we see that the neutrino chemical
potentials become negative, as expected from the particle
fraction results [Fig. 1(b)] which showed that there are
more antineutrinos than neutrinos in this regime.
For completeness and reference, we show the equation

of state (EoS) of the DD-ME2 model at two temperatures
in Fig. 5. For T ¼ 50 MeV the EoS is shown for two
values of lepton fractions corresponding to a supernova
and binary-neutron-star merger settings. The increase in
the pressure at larger temperatures is due to the additional
thermal contribution from baryons and the contribution
from trapped neutrinos which is absent in the case when
T ¼ 0.1 MeV.
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FIG. 3. Chemical potentials in the neutron-star-merger
matter, (lepton fraction YL ¼ 0.1). We plot μi as functions of
the baryon density nB=n0 for temperatures (a) T ¼ 5 MeV, and
(b) T ¼ 50 MeV. The labels n� and p� correspond to the
effective chemical potentials of the neutron and proton, respec-
tively, defined after Eq. (57). The effective baryon massm� ≡m�

B
is shown by the dotted lines.
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FIG. 4. Chemical potentials in supernova matter, (YL ¼ 0.4 for
electrons). We plot μi as functions of the baryon density nB=n0
for temperatures (a) T ¼ 5 MeV, and (b) T ¼ 50 MeV.
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B. Perturbations and bulk viscosity

Now we turn to the discussion of perturbations on
the background equilibrium of matter presented above
and concentrate on the β-relaxation rates and the bulk
viscosity.
Our numerical calculations show that the main

contribution to the beta-disequilibrium–proton-fraction
susceptibility A (40) comes from neutrinos whereas
electron contribution is minor. The baryon contributions
are much smaller than those of leptons because of their
finite mass, see Eq. (B27). The contribution from ρ
meson is negligible in the whole regime of interest. The
susceptibility A does not depend strongly on the density
and the temperature and has roughly the same order of
magnitude A ∼ 10−3 MeV−2 in the relevant portion of
the phase diagram.
The beta-disequilibrium–proton-fraction susceptibility C

is an increasing function of density and has the same order
of magnitude in the cases of neutron star mergers and
supernovas. At sufficiently high temperatures T ≳ 30 MeV
C crosses zero at a temperature-dependent critical value of
the density, close to saturation density. The vanishing of C
arises when the proton fraction in beta-equilibrated matter
is independent of the density (passing through a minimum
in this case). At the critical density the system is scale-
invariant: it can be compressed and remain in beta
equilibrium. Thus the bulk viscosity vanishes at the critical
density.
Figure 6 shows the ratio C2=A as a function of density.

As seen from the figure, this ratio is temperature-sensitive
only close to the point were C crosses zero.
In Appendix C we discuss the rates of neutron decay and

electron capture that combine to establish beta equilibrium.

Electron capture dominates because the neutron decay
process involves antineutrinos the population of which is
damped by a factor of expð−μν=TÞ.
In Fig. 7 we show the beta equilibrium relaxation rate

λA, which determines where the bulk viscosity reaches
its resonant maximum [Eq. (53)]. For comparison here
we show also the case of neutrino-transparent matter
(solid line). The relaxation rate is slowest in the neu-
trino-transparent case and increases with the lepton fraction
in the neutrino-trapped case.
The relaxation rate λA of the neutrino-trapped matter

is several orders of magnitude larger than the oscillation
frequencies f ¼ ω=2π ≲ 10 kHz typical to neutron star
mergers and supernovas. In Fig. 7 the horizontal lines
for different oscillations frequencies intersect the λA
curves at low temperatures T ≲ 0.1 MeV, indicating that
the resonant maximum occurs at low temperatures
where the assumption of neutrino trapping is no
longer valid. The neutrino-trapped regime lies at
higher temperatures, where the bulk viscosity is inde-
pendent of the oscillation frequency and takes the
form ζ ≈ C2=ðλA2Þ.
In contrast, the neutrino-transparent matter features bulk

viscosity which strongly depends on the oscillation fre-
quency, see Ref. [51] and Appendix D for details.
We also see from Fig. 7, that λA is almost independent

of the baryon density in the range 0.5 ≤ nB=n0 ≤ 3 for
neutrino-trappedmatter. Atmoderately temperatures λ scales
as λ ∝ T2 for temperatures T ≤ 10 MeV: this scaling is
clearly seen from Eqs. (22) and (24), which are applicable as
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FIG. 6. The ratio of beta-disequilibrium–baryon-density sus-
ceptibility (47) squared C2 over A as a function of the baryon
density for two values of the temperature for (a) YL ¼ 0.1
and (b) YL ¼ 0.4.
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to fixed values of λA ¼ ω ¼ 2πf for the frequencies f ¼ 1 kHz
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show the extrapolation of our results for Yν ¼ 0 case to the high-
temperature regime T ≥ 10 MeV where these are inapplicable.
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long as the fermions are semidegenerate, i.e., T ≤ 10 MeV
in the relevant density range.
Figure 8 shows the density dependence of the bulk

viscosity for various values of the temperature. Because the
beta relaxation rate λA is almost independent of the baryon
density, the density dependence of the bulk viscosity
follows that of the susceptibility prefactor C2=A, and,
therefore, as noted above, may drop to zero at a critical
density where the system becomes scale-invariant. The
critical density is present only at sufficiently high temper-
atures T ≥ 30 MeV.
The temperature dependence of the bulk viscosity is

shown in Fig. 9. The temperature dependence of ζ arises
mainly from the temperature dependence of the beta
relaxation rate λA ∝ T2 [see Eqs. (22) and (24)], so the
bulk viscosity decreases as ζ ∝ T−2 in the neutrino-trapped
regime, as can be seen also from Fig. 9. This scaling breaks
down at special temperatures where the bulk viscosity has
zeros when the matter becomes scale-invariant (see our
discussion of Fig. 6).
In order to check whether the high-temperature

behavior found in Fig. 9 is a universal behavior or is
specific to the EoS we used, we compared our results
with those obtained in the framework of NL3 model, see
Fig. 10. The figure shows that the minimums arise
independently of the equation of state, and, therefore,
are typical to the high-temperature regime of dense
nuclear matter.
Comparing the results shown in panels (a) and (b) of

Figs. 8 and 9 we see that the bulk viscosity is generally
by a factor of few smaller for larger lepton fractions,
which is a consequence of larger values of λA for
higher YL, as was seen from Fig. 7. However, the order
of magnitude of the bulk viscosity is the same in
both cases.

In Figs. 11 and 12 we combine and compare our
results for the neutrino-trapped matter with the results
for neutrino-transparent matter (see also [51]). In the
interval 5 ≤ T ≤ 10 MeV we interpolate the numerical
results for the bulk viscosity between the two regimes.
We see that the bulk viscosity in the neutrino transparent
regime is larger, for two reasons. First, the beta relaxation
rate is slower, so the resonant peak of the bulk viscosity
occurs within its regime of validity, whereas for neutrino
trapped matter the regime of validity starts at temperatures
well above the resonant maximum. Second, the prefactor
C2=A is larger in the neutrino-transparent matter, so the
bulk viscosity reaches a higher value at its resonant
maximum.
It, therefore, seems likely that bulk viscosity will have its

greatest impact on neutron star mergers in regions of the
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merger that are neutrino transparent rather than neutrino
trapped [51].

V. CONCLUSIONS

In this work, we have studied the bulk viscosity of
hadronic component of neutron stars composed of neu-
trons, protons, electrons, muons, and neutrinos. The main
new ingredient of our study is the trapped neutrinos, which
modify significantly the composition of the background
equilibrium matter. We have derived semianalytical expres-
sions for the weak interaction rates in the case of trapped
neutrinos and corresponding expressions for the bulk
viscosity. Our numerical study of the relevant quantities
displays the following features:
(a) Electron capture dominates. In neutrino-trapped mat-

ter, beta equilibration, and hence bulk viscosity, is
dominated by the electron capture process and its

inverse (2). Neutron decay and its inverse (1) involve
antineutrinos and are therefore suppressed by factors
of expð−μν=TÞ.

(b) Role of susceptibilities. The beta-disequilibrium–
baryon-density susceptibility C (47) plays an essential
role in the bulk viscosity since it measures the degree
to which matter is driven out of beta equilibrium when
compressed at constant proton fraction (i.e., without
any weak interactions). We find that C vanishes, i.e.,
the proton fraction becomes independent of density, at
a critical density that is in the vicinity of saturation
density at high temperatures T ≳ 30 MeV. The sub-
thermal bulk viscosity vanishes at this critical density
because the equilibrium value of the proton fraction is
density-independent, so compression does not drive
the system out of beta equilibrium.

(c) Temperature dependence. The bulk viscosity as a
function of temperature at fixed oscillation frequency
ω shows the standard resonant form (53), with a
maximum when the beta relaxation rate λAmatches ω.
At the temperatures where our assumption of neutrino
trapping is valid (T ≳ 5 MeV), we are always in the
regime where beta relaxation is fast (λA is greater than
typical frequencies for neutron star density oscilla-
tions, which are in the kHz range) so ζ ≈ C2=ðλA2Þ.
Since the relaxation rate rises with temperature (due to
increasing phase space), the bulk viscosity drops with
increasing temperature as ζ ∝ T−2. This scaling can
be understood, by noting that the factor λA scales
approximately as T−2. Given that the remaining factor
C2=A mildly depends on the temperature (except the
points where it goes to zero, see Fig. 6), we recover
the ζ ∝ T−2 scaling. At some temperatures and densities
the material becomes scale-invariant, soC goes through
zero, driving the bulk viscosity to zero at those points.

(d) Dependence on lepton fraction. The dependence of the
bulk viscosity on lepton fraction can be inferred from
Figs. 8, 9, and 10. It is seen that the bulk viscosity is
smaller for larger lepton fraction, specifically compar-
ing the cases of supernova matter with YL ¼ 0.4 and
neutron-star/binary-merger matter with YL ¼ 0.1 one
finds that the bulk viscosity of supernova matter is a
few times smaller compared to that of neutron-star/
binary-merger matter.

(e) Effect of neutrino trapping. In astrophysical scenarios
of supernova and binary-mergers, the object formed in
the aftermath of these events will cool eventually
below the neutrino trapping temperature T tr. Therefore,
one may ask how the bulk viscosity of matter changes
as it passes through T tr. Figure 11 shows the temper-
ature dependence of the bulk viscosity, where we
combine the results obtained in the neutrino-trapped
(T > T tr) and neutrino-transparent matter (T < T tr).
It is seen that the bulk viscosity ofmatter with neutrinos
is several orders of magnitude smaller than that for
the matter which is transparent to neutrinos.
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(f) Dependence on the density-functional model. All
computations have been carried out for two alternative
relativistic density functional models one being
the density-dependent DD-ME2 parametrization the
other being the NL3 nonlinear parametrization.
The key results show insignificant dependence on
the chosen model, therefore we conclude that our
results are largely independent of this input (see also
Ref [65]).

(g) Relevance for mergers. It seems likely that the presence
of neutrino-trapped matter will not be an important
source of bulk viscosity inmergers. Ref. [51] found that
the bulk viscosity in neutrino transparent matter was
just enough to yield dissipation times in the 20 ms
range. We find that bulk viscosity in neutrino-trapped
matter is thousands of times smaller, so the correspond-
ing dissipation times are likely to be too long to affect a
merger, provided other input in the analysis of Ref. [51]
does not change by orders of magnitude.

In the future it would be interesting to extend our
discussion to more complicated compositions of dense
matter which would include heavy baryons such as hyper-
ons and delta-isobars [66,67]. We also hope that this
work will help to clarify which dissipative processes are
important enough to be worth including in hydrodynamic
simulations of neutron star mergers.
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APPENDIX A: PHASE SPACE INTEGRALS

For further computations it is convenient to write the energy conservation in the form δðp0 � k0 þ k00 − p0
0Þ ¼

δðϵp � ϵν̄=ν þ ϵe − ϵn − μΔÞ, where we added and subtracted μΔ in the argument of the δ-function, and denoted by ϵi
the energies of the particles computed from their chemical potentials, e.g., ϵp ¼ p0 − μp. To simplify the calculation of the
β-equilibration rates it is useful to introduce a so-called “dummy” integration, so that, by substituting Eq. (7) into the rates
(8) and (18) we obtain

Γ1pðμΔÞ ¼ 2G̃2

Z
d4qI1ðqÞI2ðqÞ; ðA1Þ

Γ2pðμΔÞ ¼ 2G̃2

Z
d4qI1ðqÞI3ðqÞ; ðA2Þ

where

I1ðqÞ ¼
Z

d3p0

ð2πÞ3
Z

d3p
ð2πÞ3 ½1 − fðpÞ�fðp0Þð2πÞ4δð4Þðp − p0 þ qÞ; ðA3Þ

I2ðqÞ ¼
Z

d3k0

ð2πÞ3
Z

d3k
ð2πÞ3 ½1 − fðk0Þ�½1 − fðkÞ�δð4Þðkþ k0 − qÞ; ðA4Þ

I3ðqÞ ¼
Z

d3k0

ð2πÞ3
Z

d3k
ð2πÞ3 fðkÞ½1 − fðk0Þ�δð4Þðk0 − k − qÞ; ðA5Þ

with δð4Þðp−p0 þ qÞ ¼ δðp− p0 þ qÞδðϵp − ϵp0 þω− μΔÞ, δð4Þðk0 � k − qÞ ¼ δðk0 � k − qÞδðϵk0 � ϵk − ωÞ. The rates of
the inverse processes (9) and (19) can be obtained from Eqs. (A1) and (A2) by replacing fðpiÞ → 1 − fðpiÞ for all particles.
Thus, the problem reduces to the computation of three q-dependent integrals I1ðqÞ, I2ðqÞ and I3ðqÞ in Eq. (A3)–(A5).
To compute the integral I1ðqÞ we use the following identity between the Fermi fðpÞ and Bose gðpÞ functions

fðp0Þ½1 − fðpÞ� ¼ gðqÞ½fðpÞ − fðp0Þ�: ðA6Þ

Then, integrating over neutron momentum and separating the angular part of the remaining integral we obtain (ω̃ ¼ ω − μΔ)
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I1ðqÞ ¼ ð2πÞ−1gðqÞ
Z

∞

0

dpp2½fðϵpÞ − fðϵp þ ω̃Þ�
Z

1

−1
dx δðω̃þ ϵp − ϵpþqÞ; ðA7Þ

where x is the cosine of the angle between p and q. Using the nonrelativistic spectrum for the nucleons ϵi ¼ p2=2m� − μ�i ,
i ¼ fp; ng, we obtain for I1ðqÞ

I1ðqÞ ¼ ð2πÞ−1gðqÞ
Z

∞

0

dpp2½fðϵpÞ − fðϵp þ ω̃Þ�m
�

pq
θð1 − jx0jÞ; ðA8Þ

where x0 is the zero of the argument of the δ-function, i.e.,

x0 ¼
m�

pq

�
μ�n − μ�p þ ω̃ −

q2

2m�

�
: ðA9Þ

The step-function sets the following limit on the momentum of a particle

p ≥ pmin ¼
m�

q

����μ�n − μ�p þ ω̃ −
q2

2m�

����: ðA10Þ

Taking now the momentum integral we finally obtain (note that gðqÞ depends only on ω)

I1ðqÞ ¼ gðω̃Þm
�2

2πq

Z
∞

ϵmin

dϵp½fðϵpÞ − fðϵp þ ω̃Þ� ¼ gðω − μΔÞ
m�2T
2πq

ln

���� 1þ exp ð− ϵmin
T Þ

1þ exp ð− ϵminþω−μΔ
T Þ

����; ðA11Þ

where the lower limit ϵmin follows from pmin, i.e.,

ϵmin ¼
p2
min

2m� − μ�p ¼ m�

2q2

�
μ�n − μ�p þ ω − μΔ −

q2

2m�

�
2

− μ�p: ðA12Þ

We now transform the second integral (A4)

I2ðqÞ ¼
Z

d3k0

ð2πÞ3
Z

d3k
ð2πÞ3 ½1 − fðk0Þ�½1 − fðkÞ�δðϵk0 þ ϵk − ωÞδðkþ k0 − qÞ

¼
Z

k2dk
ð2πÞ5 ½1 − fðω − ϵkÞ�½1 − fðϵkÞ�

Z
1

−1
dyδ



kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 − 2kqy

q
− ω0

�
; ðA13Þ

where we neglected the electron mass and introduced the short-hand notation ω0 ¼ ωþ μe − μν. The argument of the
δ-function is zero at

y0 ¼
q2 − ω02 þ 2ω0k

2kq
; ðA14Þ

therefore for the δ-function, we obtain (note that the δ-function also implies ω0 − k ≥ 0)

δ


kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 − 2kqy

q
− ω0

�
¼ ω0 − k

kq
θðω0 − kÞδðy − y0Þ; ðA15Þ

and

Z
1

−1
dyδ



kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 − 2kqy

q
− ω0

�
¼ ω0 − k

kq
θðω0 − kÞθð1 − jy0jÞ: ðA16Þ

The condition jy0j ≤ 1 sets the following limits on the momentum k

−2kq ≤ q2 − ω02 þ 2ω0k ≤ 2kq; ðA17Þ

therefore the following two inequalities must be satisfied simultaneously
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ðω0 þ qÞðq − ω0 þ 2kÞ ≥ 0; ðω0 − qÞðqþ ω0 − 2kÞ ≥ 0: ðA18Þ

Note that because of the condition ω0 ≥ k ≥ 0 we have ω0 þ q ≥ 0. Then the first condition in Eq. (A18) gives
k ≥ ðω0 − qÞ=2. Next, if ω0 ≥ q, the second condition implies k ≤ ðω0 þ qÞ=2 ≤ ω0. If ω0 ≤ q instead, then the first
condition is satisfied automatically, and the second one gives k ≥ ðω0 þ qÞ=2 ≥ ω0, which is not allowed. Substituting these
results into Eq. (A13) we obtain

I2ðqÞ ¼ θðω0 − qÞ 1

qð2πÞ5
Z ðω0þqÞ=2

ðω0−qÞ=2
kdkðω0 − kÞ½1 − fðω − ϵkÞ�½1 − fðϵkÞ�: ðA19Þ

The integral I3ðqÞ given by Eq. (A5) is transformed as follows

I3ðqÞ ¼
Z

d3k0

ð2πÞ3
Z

d3k
ð2πÞ3 fðkÞ½1 − fðk0Þ�δðϵk0 − ϵk − ωÞδðk0 − k − qÞ

¼
Z

k2dk
ð2πÞ5 fðϵkÞ½1 − fðϵk þ ωÞ�

Z
1

−1
dyδ



−kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 þ 2kqy

q
− ω0

�
: ðA20Þ

The argument of the δ-function is zero at

y0 ¼ −
q2 − ω02 − 2ω0k

2kq
; ðA21Þ

and for the δ-function we obtain (note that the δ-function also implies ω0 þ k ≥ 0)

δ


−kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 þ 2kqy

q
− ω0

�
¼ ω0 þ k

kq
θðω0 þ kÞδðy − y0Þ; ðA22Þ

therefore

Z
1

−1
dyδ



−kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2 þ 2kqy

q
− ω0

�
¼ ω0 þ k

kq
θðω0 þ kÞθð1 − jy0jÞ: ðA23Þ

The condition jy0j ≤ 1 sets the following limits on the momentum k

−2kq ≤ q2 − ω02 − 2ω0k ≤ 2kq; ðA24Þ

therefore the following two inequalities must be satisfied simultaneously

ðω0 þ qÞðq − ω0 − 2kÞ ≤ 0; ðω0 − qÞðqþ ω0 þ 2kÞ ≤ 0: ðA25Þ

Because of the condition ω0 þ k ≥ 0 we have ω0 þ qþ 2k ≥ 0. Then the second condition in Eq. (A25) gives q ≥ ω0. Next,
if ω0 ≥ −q, the first condition implies k ≥ ðq − ω0Þ=2 ≥ −ω0. If ω0 ≤ −q instead, then the first condition implies
k ≤ ðq − ω0Þ=2 ≤ −ω0, which is not allowed. Substituting these results into Eq. (A20) we obtain

I3ðqÞ ¼ θðq − jω0jÞ 1

qð2πÞ5
Z

∞

ðq−ω0Þ=2
kdkðω0 þ kÞfðϵkÞ½1 − fðϵk þ ωÞ�: ðA26Þ

Combining now Eqs. (A1), (A2), (A11), (A19), and (A26) we obtain the final formulas for Γ1p and Γ2p given in the main
text by Eqs. (10) and (20). The rates of the inverse processes Γ1n and Γ2n given by Eqs. (11) and (21) can be obtained in an
analogous manner.
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For the derivatives of the rates Γ1p and Γ1n we obtain

∂Γ1pðμΔÞ
∂μΔ

����
μΔ¼0

¼ m�2G̃2

8π5
T5

Z
∞

−αeþαν

dygðyÞ
Z

yþαe−αν

0

dz

�
½1þ gðyÞ� ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞ

����
− fðy0 þ yÞ − ½fðy0 þ yÞ − fðy0Þ�

m�

z2T

�
αn − αp þ y − z2

T
2m�

��

×
Z

xmax

xmin

dxðx − ανÞðyþ αe − xÞ½1 − fðxÞ�fðx − yÞ; ðA27Þ

∂Γ1nðμΔÞ
∂μΔ

����
μΔ¼0

¼ m�2G̃2

8π5
T5

Z
∞

−αeþαν

dy½1þ gðyÞ�
Z

yþαe−αν

0

dz

�
gðyÞ ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞ

����
− fðy0 þ yÞ − ½fðy0 þ yÞ − fðy0Þ�

m�

z2T

�
αn − αp þ y − z2

T
2m�

��

×
Z

xmax

xmin

dxðx − ανÞðyþ αe − xÞfðxÞ½1 − fðx − yÞ�: ðA28Þ

In the same way we obtain for Γ2p and Γ2n

∂Γ2pðμΔÞ
∂μΔ

����
μΔ¼0

¼ m�2G̃2

8π5
T5

Z
∞

−∞
dy gðyÞ

Z
∞

jyþαe−ανj
dz

�
½1þ gðyÞ� ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞÞ

����
− fðy0 þ yÞ − ½fðy0 þ yÞ − fðy0Þ�

m�

z2T

�
αn − αp þ y − z2

T
2m�

��

×
Z

∞

x̄min

dxðxþ ανÞðyþ αe þ xÞfðxÞ½1 − fðxþ yÞ�; ðA29Þ

∂Γ2nðμΔÞ
∂μΔ

����
μΔ¼0

¼ m�2G̃2

8π5
T5

Z
∞

−∞
dy½1þ gðyÞ�

Z
∞

jyþαe−ανj
dz

�
gðyÞ ln

���� 1þ exp ð−y0Þ
1þ exp ð−y0 − yÞÞ

����
− fðy0 þ yÞ − ½fðy0 þ yÞ − fðy0Þ�

m�

z2T

�
αn − αp þ y − z2

T
2m�

��

×
Z

∞

x̄min

dxðxþ ανÞðyþ αe þ xÞfðxþ yÞ½1 − fðxÞ�: ðA30Þ

From these expressions, it is straightforward to obtain Eqs. (13), (15), (22), and (25) of the main text.

1. Low-temperature Urca rates

In the case of highly degenerate matter we have μi=T → ∞, therefore ϵmin=T → �∞. Thus we find from Eq. (A11) (for
μΔ ¼ 0)

I1ðqÞ ¼
m�2ω
2πq

gðωÞθð−ϵminÞ: ðA31Þ

In terms of momenta the condition ϵmin ≤ 0 can be written as jp2
Fn − p2

Fp − q2j ≤ 2qpFp, where we neglected ω ∼ T terms,
therefore

θð−ϵminÞ ¼ θðpFn þ pFp − qÞθðq − jpFn − pFpjÞ: ðA32Þ

In the case of neutrino-transparent matter, we can also set q ¼ pFe, therefore for Eq. (A31) we obtain

I1ðqÞ ¼
m�2ω
2πq

gðωÞθðpFp þ pFe − pFnÞ: ðA33Þ
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To obtain the low-temperature limit of integral I2 in the case of neutrino-transparent matter we drop the neutrino
momentum and neutrino distribution and approximate jk0j ¼ pFe in the first equation of (A13), which gives

I2ðqÞ ¼
Z

k2dk
ð2πÞ3

Z
dk0

ð2πÞ3 ½1 − fðk0Þ�
Z

dΩkδðϵk0 þ ϵk − ωÞδðpFe − jqjÞ: ðA34Þ

Performing the integrations over k0 and Ωk we obtain

I2ðqÞ ¼
4π

ð2πÞ6 δðpFe − jqjÞ
Z

∞

0

dk k2½1 − fðω − ϵkÞ�: ðA35Þ

Substituting Eqs. (A33) and (A35) into the neutron decay rate (A1) we find

Γ1p ¼ m�2G̃2

4π5
T5pFeθðpFp þ pFe − pFnÞ

Z
∞

0

dxx2
Z

∞

−∞
dy ygðyÞfðx − yÞ: ðA36Þ

In the same manner we can obtain the low-T result for Γ2n in the neutrino-transparent matter

Γ2n ¼
m�2G̃2

4π5
T5pFeθðpFp þ pFe − pFnÞ

Z
∞

0

dx x2
Z

∞

−∞
dy y½1þ gðyÞ�fðxþ yÞ: ðA37Þ

The integrals appearing in Eqs. (A36) and (A37) can be computed successively

Z
∞

−∞
dy ygðyÞfðx − yÞ ¼

Z
∞

−∞
dy y½1þ gðyÞ�fðxþ yÞ ¼ 1

2

x2 þ π2

1þ ex
; ðA38Þ

and

1

2

Z
∞

0

dx x2
x2 þ π2

1þ ex
¼ 3

4
½π2ζð3Þ þ 15ζð5Þ� ¼ 20.5633; ðA39Þ

from which we obtain the low-T results (16) and (26) of the main text.
Next, we find the low-temperature limit of Eqs. (15) and (25). By replacing ω → ω − μΔ in Eq. (A33) we find

∂I1
∂μΔ

����
μΔ¼0

¼
�
ω

T
½1þ gðωÞ� − 1

�
m�2

2πq
gðωÞθðpFp þ pFe − pFnÞ: ðA40Þ

Therefore, the low-temperature limit for λ1 can be found by replacing y → fy½1þ gðyÞ� − 1g=T in Eq. (A36). Thus

λ1 ¼
m�2G̃2

4π5
T4pFeθðpFp þ pFe − pFnÞ

Z
∞

0

dx x2
Z

∞

−∞
dygðyÞfy½1þ gðyÞ� − 1gfðx − yÞ: ðA41Þ

Similarly, λ2 can be obtained from Eq. (A37) by replacing y → −½ygðyÞ − 1�=T

λ2 ¼
m�2G̃2

4π5
T4pFeθðpFp þ pFe − pFnÞ

Z
∞

0

dx x2
Z

∞

−∞
dy½1þ gðyÞ�½1 − ygðyÞ�fðxþ yÞ: ðA42Þ

The double integrals in Eqs. (A41) and (A42) are identical and are equal to 17π4=120. Substituting this value we obtain the
final results given by Eqs. (17) and (27).
In the case where neutrinos remain trapped in the degenerate regime, one finds I2ðqÞ ¼ 0, because in this limit the

distribution function of antineutrinos is exponentially suppressed. To obtain the low-temperature limit of I3ðqÞwe substitute
k ¼ pFν and ω0 ¼ μe − μν ¼ pFe − pFν in Eq. (A26) (ϵk ≡ k − pFν) to find

I3ðqÞ ¼
pFepFν

qð2πÞ5 θð1 − jy0jÞ
Z

∞

−pFν

dϵkfðϵkÞ½1 − fðϵk þ ωÞ�: ðA43Þ

The inequalities (A25) in this approximation are independent of ϵk and imply
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jpFe − pFνj ≤ q ≤ pFe þ pFν: ðA44Þ

Combining now Eqs. (A2), (A31) and (A43) and approximating pFν=T → ∞ for Γ2 we obtain

Γ2 ¼
m�2G̃2

8π5
T3pFepFν

Z
pFeþpFν

jpFe−pFνj
dqθðpFn þ pFp − qÞθðq − jpFn − pFpjÞ

Z
∞

−∞
dx fðxÞ

Z
∞

−∞
dy ygðyÞfð−x − yÞ: ðA45Þ

The last two integrals give 2π2=3, and for the q-integral we have

Z
pFeþpFν

jpFe−pFνj
dqθðpFn þ pFp − qÞθðq − jpFn − pFpjÞ

¼ ðpFe þ pFν − jpFn − pFpjÞθðpFn þ pFp − pFe − pFνÞθðpFe þ pFν − jpFn − pFpjÞθðjpFn − pFpj − jpFe − pFνjÞ
þ ðpFn þ pFp − jpFe − pFνjÞθðpFe þ pFν − pFn − pFpÞθðpFn þ pFp − jpFe − pFνjÞθðjpFe − pFνj − jpFn − pFpjÞ
þ ðpFe þ pFν − jpFe − pFνjÞθðpFn þ pFp − pFe − pFνÞθðjpFe − pFνj − jpFn − pFpjÞ
þ ðpFn þ pFp − jpFn − pFpjÞθðpFe þ pFν − pFn − pFpÞθðjpFn − pFpj − jpFe − pFνjÞ: ðA46Þ

In neutron star matter we have typically pFn þ pFp ≥ pFe þ pFν ≥ jpFn − pFpj ≥ jpFe − pFνj, and we obtain the final
result given by Eq. (24).

APPENDIX B: COMPUTATION OF SUSCEPTIBILITIES Aj

To compute the susceptibilities Aij given by Eq. (32) we use the following formula for the particle densities

ni ¼
gi
2π2

Z
∞

0

p2dp½fiðpÞ − f̄iðpÞ�; ðB1Þ

where gi is the degeneracy factor, and fðpÞ and f̄ðpÞ are the distribution functions for particles and antiparticles,
respectively. For neutrons, protons, and electrons we have gi ¼ 2, and for neutrinos gν ¼ 1.
Differentiating the left and right sides of Eq. (B1) with respect to nj and exploiting the expressions

∂fi
∂nj ¼ −fið1 − fiÞ

1

T

�
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2 þ p2
p ∂m�

∂nj −
∂μ�i
∂nj

�
;

∂f̄i
∂nj ¼ −f̄ið1 − f̄iÞ

1

T

�
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2 þ p2
p ∂m�

∂nj þ
∂μ�i
∂nj

�
; ðB2Þ

in the case of baryons we obtain

δij ¼ −
�∂m�

∂nj
�
I−1i þ

�∂μ�i
∂nj

�
Iþ0i; ðB3Þ

where

I�qi ¼
1

π2T

Z
∞

0

p2dp

�
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2 þ p2
p

�
q
½fið1 − fiÞ � f̄ið1 − f̄iÞ�; i ¼ fn; pg: ðB4Þ

The average values of the meson fields are given by [68]

gωω0 ¼
�
gω
mω

�
2

ðnn þ npÞ; gρρ03 ¼
1

2

�
gρ
mρ

�
2

ðnp − nnÞ; ðB5Þ

which gives (recall that μ�i ¼ μi − gωω0 − gρρ03I3i)

Bij ≡ ∂μ�i
∂nj ¼ Aij −

�
gω
mω

�
2

− I3iI3j

�
gρ
mρ

�
2

: ðB6Þ

The scalar field is given by
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gσσ ¼ m −m� ¼ −
gσ
m2

σ

∂UðσÞ
∂σ þ 1

π2

�
gσ
mσ

�
2X
i¼n;p

Z
∞

0

p2dp
m�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm�2p ½fiðpÞ þ f̄iðpÞ�; ðB7Þ

with UðσÞ being the self-interaction potential of the scalar field, therefore

∂m�

∂nj ¼ gσ
m2

σ

∂2UðσÞ
∂σ2

∂σ
∂nj þ

�
gσ
mσ

�
2
�∂m�

∂nj
�
ðIþ2n þ Iþ2pÞ −

�
gσ
mσ

�
2

ðBnjI−1n þ BpjI−1pÞ

−
�
gσ
mσ

�
2
�∂m�

∂nj
�X

i¼n;p

1

π2

Z
∞

0

p2dp
p2

ðp2 þm�2Þ3=2 ½fiðpÞ þ f̄iðpÞ�: ðB8Þ

The last term is suppressed in the nonrelativistic limit and can be neglected, after which we obtain

∂m�

∂nj ¼ −
ð gσmσ

Þ2ðBnjI−1n þ BpjI−1pÞ
1 − ð gσmσ

Þ2ðIþ2n þ Iþ2pÞ þ 1
m2

σ

∂2U
∂σ2

: ðB9Þ

Substituting this into Eq. (B3) we obtain the following equations for coefficients Bij

BijI
þ
0i − γðBnjI−1n þ BpjI−1pÞI−1i ¼ δij; ðB10Þ

where

γ ¼ 1

Iþ2n þ Iþ2p − β
; β ¼

�
mσ

gσ

�
2
�
1þ 1

m2
σ

∂2U
∂σ2

�
: ðB11Þ

In the case of i ≠ j we find from Eq. (B10)

Bnp ¼ γBpp

I−1pI
−
1n

Iþ0n − γI−21n
; Bpn ¼ γBnn

I−1nI
−
1p

Iþ0p − γI−21p
: ðB12Þ

Substituting these expressions into Eq. (B10) for i ¼ j we obtain

Bnn ¼
Iþ0p − γI−21p

Iþ0nI
þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

; Bpp ¼ Iþ0n − γI−21n
Iþ0nI

þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

; ðB13Þ

and

Bnp ¼ Bpn ¼
γI−1pI

−
1n

Iþ0nI
þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p

: ðB14Þ

In the nonrelativistic limit we will use the expansion m=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
≃ 1 − p2=2m2 in the integrals (B4). We

will further drop the contribution of antiparticles because it is not important for the regime of interest. Then
Iþ0i ¼ I−0i ≃ Ĩ2i, I

þ
1i ¼ I−1i ≃ Ĩ2i − Ĩ4i=2m�2, and Iþ2i ¼ I−2i ≃ Ĩ2i − Ĩ4i=m�2, where

Ĩqi ¼
1

π2T

Z
∞

0

pqdpfið1 − fiÞ: ðB15Þ

Then in the nonrelativistic limit we find for Eq. (B11)

γ ¼ 1

ðĨ2n þ Ĩ2pÞ
þ 1

ðĨ2n þ Ĩ2pÞ2
�
Ĩ4n þ Ĩ4p

m�2 þ β

�
; ðB16Þ

and

Iþ0nI
þ
0p − γIþ0pI

−2
1n − γIþ0nI

−2
1p ¼ −β

Ĩ2pĨ2n
Ĩ2n þ Ĩ2p

: ðB17Þ

Then
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Bnn ¼ −
1

β
þ 1

Ĩ2n þ Ĩ2p

Ĩ2p
Ĩ2n

þ 1

m�2β

�
Ĩ2p
Ĩ2n

Ĩ4n þ Ĩ4p
Ĩ2n þ Ĩ2p

−
Ĩ4p
Ĩ2n

�
; ðB18Þ

Bpp ¼ −
1

β
þ 1

Ĩ2n þ Ĩ2p

Ĩ2n
Ĩ2p

þ 1

m�2β

�
Ĩ2n
Ĩ2p

Ĩ4n þ Ĩ4p
Ĩ2n þ Ĩ2p

−
Ĩ4n
Ĩ2p

�
;

Bnp ¼ Bpn ¼ −
1

β
−

1

Ĩ2n þ Ĩ2p
þ 1

2m�2β

�
Ĩ4n
Ĩ2n

þ Ĩ4p
Ĩ2p

− 2
Ĩ4n þ Ĩ4p
Ĩ2n þ Ĩ2p

�
: ðB19Þ

We next obtain the two combinations relevant to the bulk viscosity

Bnn − Bpn ¼
1

Ĩ2n
−

1

2m�2β

�
Ĩ4p
Ĩ2p

−
Ĩ4n
Ĩ2n

�
; Bpp − Bnp ¼ 1

Ĩ2p
−

1

2m�2β

�
Ĩ4n
Ĩ2n

−
Ĩ4p
Ĩ2p

�
: ðB20Þ

Substituting the expression for β from Eq. (B11) and recalling Eq. (B6) we obtain

An ¼
1

Ĩ2n
þ 1

2

�
gρ
mρ

�
2

þ 1

2m�2

�
gσ
mσ

�
2
�
1þ 1

m2
σ

∂2U
∂σ2

�−1�Ĩ4n
Ĩ2n

−
Ĩ4p
Ĩ2p

�
; ðB21Þ

Ap ¼ 1

Ĩ2p
þ 1

2

�
gρ
mρ

�
2

þ 1

2m�2

�
gσ
mσ

�
2
�
1þ 1

m2
σ

∂2U
∂σ2

�−1�Ĩ4p
Ĩ2p

−
Ĩ4n
Ĩ2n

�
: ðB22Þ

For leptons we have simply

Ae ¼
1

Ĩ2e
; Aν ¼

2

Ĩ2ν
: ðB23Þ

where the lepton energies in the integral are taken as ϵp ¼ p − μL. Then

A ¼
X
i

Ai ¼
1

Ĩ2n
þ 1

Ĩ2p
þ 1

Ĩ2e
þ 2

Ĩ2ν
þ
�
gρ
mρ

�
2

; ðB24Þ

and

nnAn − npAp ¼ nn
Ĩ2n

−
np
Ĩ2p

þ nn − np
2

�
gρ
mρ

�
2

þ nn þ np
2m�2

�
gσ
mσ

�
2
�
1þ 1

m2
σ

∂2U
∂σ2

�−1�Ĩ4n
Ĩ2n

−
Ĩ4p
Ĩ2p

�
: ðB25Þ

Taking into account also Eq. (B5) and the nonrelativistic limit of Eq. (B7) we obtain

C ¼ nn
Ĩ2n

−
np
Ĩ2p

−
ne
Ĩ2e

þ 2
nν
Ĩ2ν

− gρρ03 þ
gσσ
2m�2

�
1þ 1

σm2
σ

∂U
∂σ

��
1þ 1

m2
σ

∂2U
∂σ2

�−1�Ĩ4n
Ĩ2n

−
Ĩ4p
Ĩ2p

�
: ðB26Þ

The terms containing UðσÞ vanish in the case of DD-ME2 model and are numerically very small in the case of NL3
model. We find also, that the terms∝ gρ in Eqs. (B24) and (B26) are negligible in comparison to the first four terms. The last
term in Eq. (B26) is comparable to the rest of the terms.
In the case of degenerate matter the susceptibilities can be computed analytically

A ¼ π2

m�

�
1

pFn
þ 1

pFn

�
þ π2

p2
Fe

þ 2π2

p2
Fν

þ
�
gρ
mρ

�
2

; ðB27Þ

C ¼ p2
Fn − p2

Fp

3m� þ pFν − pFe

3
þ p2

Fn − p2
Fp

2m�2 gσσ − gρρ03: ðB28Þ

which agree with the results of Refs. [34,68].
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APPENDIX C: BETA EQUILIBRATION RATES

In this appendix we discuss the numerical results for the
β-equilibration rates Γ1 and Γ2 given by Eqs. (14) and (23).
Figures 13 and 14 show the temperature dependence of the
neutron decay and the electron capture rates, respectively,
for various values of the density and lepton fraction.
Figures 13 and 14 demonstrate that the electron capture

process and its inverse (2) dominate the beta equilibra-
tion and hence the bulk viscosity. The electron capture rate
Γ2 is always many orders of magnitude larger than the
neutron decay rate Γ1. This is because we are studying
neutrino-trapped matter, where the trapped species is
typically neutrinos rather than antineutrinos (Figs. 1, 2)
so any process involving antineutrinos will be suppressed
by factors of expð−μν=TÞ.

As seen from the upper panels of the figures, Γ1 is a
rapidly increasing function of the temperature and expo-
nentially vanishes at low temperatures because of vanishing
antineutrino density in the degenerate matter. The threshold
of temperature below which Γ1 practically vanishes is
located at higher temperatures for higher lepton fractions,
because the suppression of the antineutrino density is
stronger for larger YL.
The temperature dependence of the electron capture rate

differs significantly from that of Γ1. Indeed, Γ2 increases
with the temperature according to a power-law Γ2 ∝ T3 up
to the temperatures T ≃ 10 MeV, as seen from the low-
temperature limit given by Eq. (24). This scaling breaks
down at higher temperatures T ≥ 10 MeV and sufficiently
low densities nB ≤ n0, where the finite temperature effects
become important in the evaluation of the integral (23). We
have checked numerically that the exact result for Γ2 (23)
tends to its low-temperature limit (24) as T ≤ 1 MeV.
Comparing the upper and lower panels in Figs. 13 and

14, we see that Γ1 is smaller for larger lepton fraction,
whereas Γ2 shows the opposite behavior. The reason for
this behavior is clear: the neutron decay rate Γ1 is propor-
tional to the antineutrino (number) density, whereas the
electron capture rate Γ2 is proportional to the neutrino
density. Because the electron neutrino fraction increases
with the increase of YL, as was seen from Figs. 1 and 2, the
antineutrino population becomes more suppressed at higher
YL, thus leading to smaller Γ1 and larger Γ2.

APPENDIX D: BULK VISCOSITY OF
NEUTRINO-TRANSPARENT MATTER

In this appendix we are interested in the domain of
temperatures T ≤ T tr where the matter is neutrino trans-
parent (Yν ¼ 0). Below the temperature T ≃ 1 MeV, the
modified Urca process becomes important [20] therefore
our results are strictly relevant for the temperature domain
1 ≤ T ≤ 5 MeV. To account for uncertainty in the value of
T tr the numerical results will be shown up to T ¼ 10 MeV.
The particle fractions are shown in Fig. 15. In this case
muons appear only above a certain baryon density nB ≳ n0,
where the condition μe ≥ mμ ≃ 106 MeV is satisfied.
Below this threshold, the proton and electron fractions
are equal, as required by the charge neutrality condition,
whereas above the threshold the condition Yp ¼ Ye þ Yμ is
satisfied.
The relevant β-equilibration rates Γ1p and Γ2n are shown

in Fig. 16 and as functions of the temperature. Both
quantities rapidly increase with the temperature and are
exponentially damped in the low-temperature limit. The
reason is that the condition pFp þ pFe ≥ pFn is never
satisfied for the given model of hadronic matter because
of very small proton fraction Yp ≤ 7%, see Fig. 15. As a
consequence, the direct Urca processes for neutrino-
transparent matter are always blocked at low temperatures,
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therefore in that regime, the modified Urca processes
should be accurately taken into account [20].
Quantitatively, the neutron decay rate Γ1p in the case of

Yν ¼ 0 is larger than in the case of YL ¼ 0.1, whereas the
electron capture rate is smaller. This result can be antici-
pated from Eqs. (14) and (23), where one should substitute
αν ¼ 0 in the neutrino-transparent case. However, the
rate Γ1p again remains much smaller than Γ2n, and only
at sufficiently high densities approaches Γ2n, as seen in
Fig. 17, since both quantities have the same low-temperature
limit given by Eqs. (16) and (26).
We remark also, that the behavior of λ1 and λ2

is very similar to that of Γ1p and Γ2n, respectively. At
densities nB ≥ n0 we have approximately λ1 ≃ Γ1p=T and
λ2 ≃ Γ2n=T, as it was the case of neutrino-trapped matter,
see Eqs. (13) and (22).

Next, we show the density dependence of the bulk
viscosity in Fig. 18. As in the case of Yν ≠ 0, the frequency
dependence of ζ can be neglected at sufficiently high
temperatures T ≃ 10 MeV (see Fig. 7), and, because the
product λA is almost density-independent, the bulk vis-
cosity as a function of density increases as C2. For smaller
temperatures T ≲ 5 MeV the frequency dependence of ζ
becomes important, and the bulk viscosity drops rapidly
with ω. We show the bulk viscosity for three values of the
frequency in Fig. 18 for T ¼ 5 MeV. The general increase
of ζ with the density, in this case, is again caused by the
factor C2, but the hump structures of ζ in the range arise
from the weak density-dependence of the product λA. In the
case of T ¼ 1 MeV we have already the opposite limit

1 10
T [MeV]

10
-20

10
-16

10
-12

10
-20

10
-16

10
-12

Γ  
[M

eV
4 ]

n
B
/n

0
 = 0.5

n
B
/n

0
 = 1

n
B
/n

0
 = 2

n
B
/n

0
 = 3

Yν = 0

Γ1p(a)

(b) Γ2n

FIG. 16. The neutron decay rate Γ1p (a) and the electron capture
rate Γ2n (b) as functions of the temperature for fixed values of the
baryon density in the neutrino-transparent case.

1 2 3
n

B
/n

0

10
-22

10
-19

10
-16

10
-13

10
-10

Γ 
[M

eV
4 ]

T = 1 MeV
T = 5 MeV
T = 10 MeV

1 2 3
n

B
/n

0

Yν = 0

(a) (b)

Γ1p
Γ2n

FIG. 17. The neutron decay rate Γ1p (a) and the electron capture
rate Γ2n (b) as functions of the baryon density for fixed values of
the temperature in the neutrino-transparent case Yν ¼ 0.

1 2 3
n

B
/n

0

1 2 3
n

B
/n

0

10
-3

10
-2

10
-1

10
0

Y
i

n
p
e

−

μ−

T = 1 MeV T = 5 MeV

Yν = 0

(b)(a)

FIG. 15. Particle fractions as functions of the baryon density for
neutrino-transparent matter Yν ¼ 0 for two values of the temper-
ature: (a) T ¼ 1 MeV; (b) T ¼ 5 MeV.

1 2 3
n

B
/n

0

10
24

10
26

10
28

10
30

ζ 
[g

 c
m

-1
 s

-1
]

T =  1  MeV
T =  5  MeV
T = 10 MeV Yν = 0

f =
 0

f = 1 kHz

f =
 10 kHz

FIG. 18. The density dependence of the bulk viscosity for
various values of the temperature and the oscillation frequency in
the case of Yν ¼ 0. In the case of high temperatures (the violet
curve) ζ becomes independent of the frequency.

BULK VISCOSITY OF BARYONIC MATTER WITH TRAPPED … PHYS. REV. D 100, 103021 (2019)

103021-23



ω ≫ λA (see Fig. 7), therefore the bulk viscosity scales as
ζ ∝ λC2, which rapidly increases with the density and
drops to zero at sufficiently low densities nB ≲ 2n0. We
have checked that our low-temperature result for T ¼
0.1 MeV agrees with the result of the bulk viscosity shown
in Fig. 2 of Ref. [48] obtained for direct Urca processes for
the same state of hadronic matter.
For comparison, we show also the bulk viscosity of the

neutrino-transparent matter for the nuclear model NL3 in

Fig. 19. The results obtained within two models DD-ME2
and NL3 differ mainly in the low-temperature region,
where the bulk viscosity is strongly suppressed at low
densities because of blocking of direct Urca processes.
The suppression sets in at lower densities in the case of
the NL3 model because this model predicts larger proton
and electron fractions than the DD-ME2 model.
Figures 20 and 21 show the temperature dependence of

the bulk viscosity for models DD-ME2 and NL3, respec-
tively. It has a maximum at the temperature where ω ¼ λA,
and the slope of the curve on the right side of the maximum
is larger than in the case of Yν ≠ 0 because of stronger
λ ¼ λðTÞ dependence. Using the approximate scaling
λ ∝ T4, we find that Tmax ¼ ðω=λ0AÞ1=4, where λ0 is the
value of λðTÞ at T ¼ 1 MeV, i.e., the maximum shifts to
higher temperatures for higher frequencies. As seen from a
comparison of Figs. 8 and 9 with Figs. 18 and 20, the bulk
viscosity is larger in the case of neutrino-transparent matter,
as expected.
We also compare our results with the high-frequency

(low-temperature) result of Ref. [24] obtained from
direct Urca processes for the neutrino-transparent matter.
Choosing the parameters, e.g., T ¼ 1 MeV, f ¼ 1 kHz,
nB ¼ 2n0, we find from Figs. 1 and 2 and Eq. (13) of
Ref. [24] the values ζ ≃ 3.5 × 1028 g cm−1 s−1 for the
model I, and ζ ≃ 1029 g cm−1 s−1 for model II, whereas
our calculations givemuch lower result ζ ≃ 1021 g cm−1 s−1.
The reason for this is the lower proton fraction in our model,
which leads to blocking of direct Urca processes at low
temperatures and, therefore, to lower bulk viscosity.
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FIG. 21. Same as Fig. 20, but for model NL3.
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FIG. 20. The temperature dependence of the bulk viscosity for
model DD-ME2 for various values of the density in the case of
Yν ¼ 0. The oscillation frequency is fixed at (a) f ¼ 1 kHz
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