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It is well known that r-mode oscillations of rotating neutron stars may be unstable with respect to the
gravitational wave emission. It is highly unlikely to observe a neutron star with the parameters within the
instability window, a domain where this instability is not suppressed. But if one adopts the “minimal”
(nucleonic) composition of the stellar interior, a lot of observed stars appear to bewithin the r-mode instability
window. One of the possible solutions to this problem is to account for hyperons in the neutron-star core. The
presence of hyperons allows for a set of powerful (lepton-free) nonequilibrium weak processes, which
increase the bulk viscosity and thus suppress the r-mode instability. Existing calculations of the instability
windows for hyperon neutron stars generally use reaction rates calculated for theΣ−Λ hyperonic composition
via the contact W-boson-exchange interaction. In contrast, here we employ hyperonic equations of state
where the Λ and Ξ− are the first hyperons to appear (the Σ−’s, if they are present, appear at much larger
densities) and consider the meson-exchange channel, which is more effective for the lepton-free weak
processes.We calculate the bulk viscosity for the nonpairednpeμΛΞ−matter using themeson-exchangeweak
interaction. A number of viscosity-generating nonequilibrium processes is considered (some of them for the
first time in the neutron-star context). The calculated reaction rates and bulk viscosity are approximated by
simple analytic formulas, easy to use in applications. Applying our results to calculation of the instability
window, we argue that accounting for hyperons may be a viable solution to the r-mode problem.
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I. INTRODUCTION

There are two well-known types of viscosities in a fluid.
The shear viscosity η comes from the momentum diffusion
between fluid layers moving with different velocities. The
bulk viscosity ζ appears due to nonequilibrium reactions in
the compressing and decompressing fluid [1].
Both these viscosities are important in numerous studies

of neutron stars (NSs) [2], in particular, for damping of their
r-mode oscillations [3]. The Rossby (or simply r-) modes
are a subclass of the inertial oscillation modes, the restoring
force of which is the Coriolis force in a rotating star. The
r-modes appear to be unstable to the gravitational wave
emission due to the Chandrasekhar-Friedman-Schutz insta-
bility [4,5]. It is damped by the shear and bulk viscosities at
low and high temperatures, respectively. The domain in the
ν, T plot (ν is the rotation frequency, and T is the internal
temperature of the NS) where the star is unstable is called
the r-mode instability window. It is highly unlikely to
observe a NS with ν and T within it. See the reviews [3,6].
However, one meets a paradox [3]: a lot of observed NSs

in low-mass x-ray binaries (LMXBs) have their ν and T in
the unstable domain for NSs with the nucleonic (npeμ)

core composition. Namely, their typical temperatures
are too hot to damp the instability by η and too low to
do it via ζ. A lot of possible solutions to this paradox have
been proposed, mainly to introduce an additional damping
mechanism. Some of them are reviewed in Ref. [3]. Here,
we focus on the option to modify the bulk viscosity ζ by the
presence of hyperons in the NS core.
In a nucleonic core, ζ is mainly provided by the modified

Urca process, e.g., nþ n → nþ pþ eþ ν̃e and the
inverse. In the most massive nucleonic NSs, the direct Urca,
n → pþ eþ ν̃e and the inverse, can operate. These non-
equilibrium processes have the rates ∝ T6Δμ and ∝ T4Δμ,
respectively (Δμ is the chemical equilibrium distortions
due to the fluid motions) [7–9]. This means that at low
temperatures these rates are strongly suppressed by a factor
of approximately ðkT=μÞ4–6 (μ is a typical baryon chemical
potential). The bulk viscosity due to these processes can
damp the r-mode instability only at T ∼ 109–1010 K, while
NSs in LMXBs typically have T ∼ ð0.3–1Þ × 108 K. The
suppression of the reaction rates due to nucleon pairing
even worsens the problem [8,9].
However, there are numerous models of the NS core

equation of state (EoS) predicting the presence of hyperons
(baryons with at least one strange quark) in deep layers of
the core [10,11]. The most widely used ones are the
relativistic mean field (RMF) models due to their relative
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simplicity [12]. The presence of hyperons dramatically
changes the bulk viscosity. At low temperatures, the main
contribution to ζ comes from weak nonleptonic processes,
e.g., Σ− þ p ↔ nþ n or Λþ p ↔ nþ p. At T < 109 K,
their typical rate is proportional to T2Δμ is much larger than
the Urca process rates. Therewere numerous calculations of
the reaction rates of these processes and the corresponding
bulk viscosity [13–17] in both normal and paired matter.
Existing calculations of the r-mode instability windows for
hyperonic NSs [13,16] yield that the hyperonic enhance-
ment of ζ is generally not enough to solve the r-mode
paradox (except, maybe, for the most massive stars approx-
imately 2 M⊙, the central regions of which may be free of
baryon pairing). In the recent reviews [3,11], it is argued that
the hyperonic bulk viscosity is unable to close the instability
window for the observed NSs. However, previous calcu-
lations of the instability window for hyperonic NSs should
be revisited. First, they used theΣ−Λ hyperonic composition
of the NS core. Various modern EoS models [18–20], in
particular those calibrated to the up-to-date hypernuclear
data [21,22], predict that Λ and Ξ− are likely the first
hyperons that appear with growing density (Σ− hyperons
either appear at higher densities or do not appear at all in
NSs). Second, calculations of Refs. [13,16] employed
reaction rates for nonleptonic weak processes derived using
the contact exchange by theW boson of two baryon currents.
Still, it is well known (see, e.g., Ref. [23]) that the most
effective channel for a weak inelastic collision between a
hyperon and another baryon is the meson (e.g., π-meson)
exchange. However, this channel was analyzed only once in
Ref. [15] to calculate ζ in the NS hyperonic core. To the best
of our knowledge, the results of Ref. [15] have never been
used to compute the r-mode instability window.
In the present work, we revisit the bulk viscosity in a

nonsuperfluid hyperonic NS core. We consider RMF EoS
models (Sec. II), for which the Λ and Ξ− hyperons appear
first (Σ− hyperons are also present in some of our EoS,
but we focus on the ΛΞ− composition for simplicity). We
derive relations between ζ and the rates of the weak
nonleptonic processes for an arbitrary EoS (Sec. III).
Then, adopting the one meson-exchange weak interaction
model, we calculate the rates for all weak nonleptonic
processes operating in the npeμΛΞ− matter and respon-
sible for the bulk viscosity (Sec. IV). Simple analytic
approximations are proposed for ζ and the reaction rates.
We continue by applying our results to calculate the r-mode
instability windows for hyperonic NSs (Sec. V). Our results
indicate that the hyperonic solution to the r-mode paradox
is likely more viable than was thought before. Conclusions
and some discussion are given in Sec. VI.

II. MODERN EQUATIONS OF STATE

Four RMF models for the core EoS are employed in this
work: GM1A and TM1C from Ref. [18], NL3ωρ from
Ref. [24], and FSU2H from Ref. [22]. The two last EoS are

calibrated to the up-to-date (hyper)nuclear data, following
the approach presented in Ref. [21]; the former two are not.
For the FSU2H in particular, we use a Σ− potential in the
symmetric nuclear matter of 40 MeV so that Σ− appear at
large enough densities and masses: M > 1.9 M⊙ (see also
the discussion in Ref. [22]). In each case, the crust EoS is
calculated consistently to the core one, similarly as was
done in Refs. [22,25].
The main astrophysical parameters for the four models

are listed in Table I. Figure 1 shows the pressure P as a
function of the density, and Fig. 2 shows the associated
relations between the mass M and the radius R of NSs as
obtained when solving the Tolman-Oppenheimer-Volkov
equations (e.g., Ref. [26]) for these EoS. One can see that
for the models considered here Λ appears first, Ξ− comes
after, and then other hyperon species emerge at rather high
densities and NS masses. This allows us to diminish the
number of reactions responsible for the bulk viscosity we
have to consider. In particular, within this EoS set, we can
limit ourselves to the properties of npeμΛΞ− composition
up to M ≤ 1.9 M⊙.
All models we consider are consistent with the existence

of the most massive NSs with a precisely measured mass:
PSR J1614 − 2230 [27,28] and PSR J0348þ 0432 [29]
with NL3ωρ giving the largest maximum mass of all
models, approximately 2.7 M⊙ compared to approximately
2 M⊙ for the three other paramterizations. However, only
NL3ωρ and FSU2H have values of the symmetry energy

TABLE I. Parameters of key-point NS models for the used EoS
models: the central baryon density, nb; energy density, ρ; mass,
M; and radius, R.

nb
(fm−3)

ρ
(1014 g cm−3) M (M⊙) R (km)

GM1A Typical NS 0.332 5.92 1.40 13.72
Λ onset 0.348 6.25 1.48 13.71
Ξ− onset 0.408 7.49 1.67 13.64
Max mass 0.926 20.10 1.992 11.94
Ξ0 onset 0.988 21.85 � � � � � �

TM1C Typical NS 0.315 5.63 1.40 14.31
Λ onset 0.347 6.28 1.55 14.23
Ξ− onset 0.463 8.76 1.85 13.87
Max mass 0.852 18.42 2.054 12.48
Ξ0 onset 0.936 20.76 � � � � � �

NL3ωρ Typical NS 0.293 5.16 1.40 13.73
Λ onset 0.352 6.39 1.95 14.03
Ξ− onset 0.474 9.29 2.50 13.86
Σ− onset 0.500 9.97 2.56 13.77
Max mass 0.699 16.04 2.707 12.94

FSU2H Λ onset 0.328 5.82 1.38 13.30
Typical NS 0.331 5.87 1.40 13.31
Ξ− onset 0.421 7.73 1.69 13.35
Σ− onset 0.592 11.52 1.91 12.95
Max mass 0.901 19.32 1.993 11.98

OFENGEIM, GUSAKOV, HAENSEL, and FORTIN PHYS. REV. D 100, 103017 (2019)

103017-2



and its slope consistent with modern experimental con-
straints (see the discussion in, e.g., Refs. [25,30]). Of all
models, FSU2H gives the lowest radii R ∼ 13 km of NSs
with the canonical mass 1.4 M⊙. Note that for the hyper-
onic FSU2H EoS hyperons are present in NSs with a mass
larger than 1.38 M⊙.
Figure 3 shows that the four models have significantly

different composition, and we thus expect them to give
different properties for the bulk viscosity.
With the method presented in Ref. [18], we have

calculated the Landau effective masses m�
Lj and Landau

parameters Fjk
0 and Fjk

1 (j and k for all baryon species
presented for a given EoS). The quantities m�

Lj and Fjk
0 are

necessary for bulk viscosity calculations. We would like to
stress that baryon Fermi velocities vFj ¼ pFj=m�

Lj are close
to the unity (i.e., to the speed of light) in a wide range of
densities for all EoS considered; see Fig. 4 for details.
In other words, baryons (particularly nucleons) are essen-
tially relativistic even at densities typical of a moderately
heavy NS, M ∼ 1.5–1.9 M⊙. Thus, one has to work in the
relativistic framework like, e.g., in Refs. [13,15,16], rather
than in the nonrelativistic one (as, e.g., in Ref. [14]), while
calculating reaction rates for the bulk viscosity.

III. BULK VISCOSITY IN A NONSUPERFLUID
MATTER AND REACTION RATES

Bulk viscosity is generated due to nonequilibrium reac-
tions. In the case of the nucleon npeμ matter, the main
reactions are the Urca processes [8,9]. When the hyperons
appear, the nonleptonic weak processes become the main
source for the bulk viscosity (see, e.g., Refs. [13,14]), since
they are much more intensive at typical NS temperatures.
There are a lot of such processes. If Λ is the only hyperon
species in the matter, the reactions are

nþ p ↔ Λþ p; ð1aÞ

nþ n ↔ Λþ n; ð1bÞ

nþ Λ ↔ Λþ Λ: ð1cÞ

When Ξ− hyperons appear, we have two more reactions:

nþ Ξ− ↔ Λþ Ξ−; ð1dÞ

Λþ n ↔ Ξ− þ p: ð1eÞ

The appearance of any additional hyperon species increases
the number of the relevant processes significantly. Notice
also that we consider only those reactions which change the
strangeness by unity, jΔSj ¼ 1.
Nonequilibrium rates of these processes, ΔΓα, α ¼ ðaÞ,

(b), (c), (d), (e), depend on the chemical equilibrium
perturbations Δμα, where, e.g., ΔμðaÞ ¼ μn − μΛ, ΔμðeÞ ¼
μΛ þ μn − μΞ− − μp, etc. In the subthermal regime, Δμα ≪
kT (k is the Boltzmann constant), the reaction rates can be
written as

ΔΓα ¼ λαΔμα: ð2Þ

In what follows, the quantities λα and ΔΓα will be both
referred to as “the reaction rates”.
There are also strong hyperon reactions in the NS core.

In the absence of pairing they are approximately 14–16
orders of magnitude faster than the weak nonleptonic ones.

FIG. 2. Mass-radius relations for the chosen EoS models.

FIG. 1. Pressure vs density for the chosen EoS models.
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For NS oscillations of interest, with frequency approxi-
mately 102–104 Hz, the core matter can be considered as
equilibrated with respect to them. In spite of that, strong
processes are also important for the bulk viscosity calcu-
lation (see below).
There are no strong hyperon reactions in the npeμΛ

matter. If we add Ξ−, the only strong process is

Ξ− þ p ↔ Λþ Λ: ð3aÞ

If we add Σ−, the strong process

Σ− þ p ↔ Λþ n ð3bÞ

becomes available. Adding Ξ0, we switch on the process

Ξ0 þ n ↔ Λþ Λ: ð3cÞ

Linear combinations of these reactions are also possible.
The complete set of reactions for the full baryon octet can
be found in Appendix C of Ref. [18].
We follow Ref. [17] in describing the recipe to derive the

bulk viscosity in a form convenient for studying dissipation
during NS oscillations:

(i) Let us consider a small harmonic perturbation of the
fluid with the velocity u. It is assumed that the
perturbation depends on time t as ∝ expðiωtÞ, where

FIG. 3. Particle fractions yj ¼ nj=nb for species j ¼ n; p; e; μ;Λ;Ξ−;Σ−, which emerge in NSs of EoS models we consider.

FIG. 4. Baryon Fermi velocities for baryon species j ¼ n; p;Λ;Ξ−;Σ−, for the EoS models used.
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ω is the frequency of the perturbation. The unper-
turbed background is taken to be in full hydrostatic
and thermodynamic equilibrium.

(ii) The fluid motion causes small departures δnj ∝
expðiωtÞ from the equilibrium values of baryon
number densities, nj. Perturbations of chemical
potentials and pressure can then be presented as

δμj ¼
X
k

∂μj
∂nk δnk; δP ¼

X
j

njδμj; ð4Þ

where ∂μj=∂nk should be calculated near equilib-
rium. These derivatives are related to the Landau
effective masses and Landau parameters Fjk

0 (see,
e.g, Eq. (D1) in Ref. [18]).

(iii) The bulk viscosity ζ is defined as [17]

δP − δPeq ¼ −ζdiv u: ð5Þ

Here, δPeq is the pressure perturbation derived
assuming that weak processes (1) are prohibited.1

Notice that, since we use complex exponents, one
has to calculate Reζ when considering dissipation.

(iv) The relation between the reaction rates and divu is
provided by the continuity equations

∂nj
∂t þ divnju ¼ ΔΓj; ð6Þ

where ΔΓj is the total number of particles of the j
species produced in unit volume per unit time
(reaction rate) due to both weak and strong2 reac-
tions. These equations should be linearized with
respect to δnj and u. To calculate ζ, one can neglect
spatial variations of unperturbed nj (the result is
applicable to both uniform and nonuniform matter,
e.g., Ref. [32]).

Density variations δnj are linearly dependent because
they are related by the electric neutrality condition

X
j

ejδnj ¼ 0 ð7Þ

(ej is the electric charge of the particle species j) and
equilibrium conditions with respect to strong reactions
[e.g., the reactions in Eqs. (3)],

δμΞ− þ δμp ¼ 2δμΛ; ð8aÞ

δμΣ− þ δμp ¼ δμΛ þ δμn; ð8bÞ

δμΞ0 þ δμn ¼ 2δμΛ; ð8cÞ

etc., supplemented with Eq. (4) for δμj. Therefore, for any
number of particle species, only four of density perturba-
tions δnj are independent.
Another important consequence of Eqs. (8) is that for all

nonleptonic weak processes we have

Δμα ¼ ΔμðaÞ ¼ δμn − δμΛ ¼ Δμ: ð9Þ

This is, in particular, true for reactions that are listed
in Eqs. (1).
The most convenient choice of four independent thermo-

dynamic parameters is the baryon number density nb
(conserved in all reactions), the electron and muon fractions
ye;μ ¼ ne;μ=nb (conserved since we restrict ourselves to
nonleptonic reactions), and the strangeness fraction ys ¼P

j Sjnj=nb, where Sj is the strangeness of the species j.
Only weak processes contribute to the strangeness pro-
duction since it is conserved in strong reactions. As we
consider weak nonleptonic reactions with ΔS ¼ 1 only, the
total strangeness production rate ΔΓS is just the sum of all
partial rates ΔΓα. Employing Eq. (9) and bearing in mind
that Sj < 0, we have

ΔΓS ¼ −λΔμ; λ ¼
X
α

λα; ð10Þ

where λ is the total reaction rate of all nonleptonic weak
processes.
The continuity Eqs. (6) leads to

δnb ¼
i
ω
nbdivu; ð11aÞ

δye ¼ δyμ ¼ 0; ð11bÞ

δys ¼ −
iΔΓS

ωnb
¼ iλ

ωnb
Δμ: ð11cÞ

Considering all thermodynamic quantities as functions of
nb and ye;μ;s and accounting for Eq. (11b), we get

δP ¼ ∂P
∂nb δnb þ

∂P
∂ys δys; ð12aÞ

Δμ ¼ ∂Δμ
∂nb δnb þ

∂Δμ
∂ys δys ð12bÞ

1See Ref. [13] for an alternative approach to the definition of ζ.
The resulting expression for the coefficient ReðζÞ, which is
responsible for dissipation, is the same in both approaches (as it
should be).

2While chemical disturbance with respect to strong reactions is
negligible, rates of these reactions are comparable to the rates of
weak reactions (1). See Refs. [17,31] for more details.
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with ∂Δμ=∂X ¼ ∂μn=∂X − ∂μΛ=∂X stemming from
Eq. (9). Near-equilibrium derivatives with respect to nb
and ys can be derived from Eqs. (4), (7), and (8). The
quantity δPeq should be calculated with Eq. (12a) assuming
that all reactions are switched off, i.e., δys ¼ 0 as well as
δye ¼ 0 and δyμ ¼ 0.
Combining Eqs. (5), (11), and (12), we have (cf. the

formulas (22) in Ref. [17] and (17) in Ref. [14])

Reζ ¼ ζmax
2λ=λmax

1þ ðλ=λmaxÞ2
; ð13Þ

where

ζmax ¼
nb
2ω

∂P
∂ys

∂Δμ
∂nb

�∂Δμ
∂ys

�
−1
; ð14aÞ

λmax ¼ nbω

�∂Δμ
∂ys

�
−1
: ð14bÞ

Equation (13) shows a well-known feature of the
hyperon bulk viscosity [3,13–16]: it has a maximum
with respect to the rate of nonequilibrium processes
λ. Consequently, it has a maximum with respect to
temperature since λ grows with it. Apart from λ, the
bulk viscosity depends on two parameters, i.e., ζmax,
which is the maximum possible bulk viscosity, and λmax,
which is the optimal total reaction rate for a given
oscillation frequency ω. They are determined by the
thermodynamic properties of the EoS only, and not by
reactions operating in the matter.
Figure 5 shows ζmax and λmax as functions of energy

density ρ. All the curves start from zero at the points
of Λ onset. The appearance of a new hyperon causes a
rapid increment of the optimum rate λmax, however,
without discontinuity. The maximum viscosity ζmax
increases when each of cascade hyperons appears and
decreases when Σ− appears. But the main feature of plots
in Fig. 5 is that both ζmax and λmax are strongly sensitive to
the EoS model. However, at not too high densities,
ρ≲ 3ρ0, for all EoS considered, λmaxðρÞ has similar
behavior and values.
When only Λ and Ξ− hyperons are present in the core,

the averaged behavior of the curves in Fig. 5 is roughly
reproduced by the formula

�
ζapprmax

λapprmax

�
¼
�
ζ0=ω4

λ0ω4

��
x

1þ sx

�
t
; x ¼ ρ − ρΛ

ρ0
; ð15Þ

where ω4 ¼ ω=ð104 s−1Þ and ρΛ is the density of Λ
hyperon onset (see Table I). The fitting parameters are
ζ0¼6.5×1030gcm−1 s−1, λ0 ¼ 8.0 × 1045 erg−1 cm−3 s−1,

t ¼ 0.34, and s ¼ 1.0 for ζmax (maximum error approx-
imately 60%) and s ¼ 1.5 for λmax (maximum error
approximately 20%), respectively. We emphasize that the
power t describing the behavior at ρ → ρΛ is the same for
both these quantities. The thicker gray curves in Fig. 5
show how this fit works, and the thinner ones visualize 60%
and 20% uncertainties for ζmax and λmax, correspondingly.
Of course, Eq. (15) does not reproduce kinks at the Ξ−

onset points, and it does not describe behavior of the curves
after appearance of Σ− or Ξ0 hyperon. However, the four
EoS we use here are significantly different, and we can
hope that, for the npeμΛΞ− matter, any other RMF model
would give ζmax and λmax within the range of uncertainties
predicted by our fit (15).
When plotting r-mode instability windows, the aver-

aged fit for λapprmax appears to be rather accurate, but the fit
for ζapprmax, without additional corrections, fails to reproduce
the r-mode instability window for some specific EoS.
See the end of Sec. V and the caption to Fig. 13 for a
description of how one should use Eq. (15) to solve this
problem.
Now, the question is how close the “real” reaction

rate of weak nonleptonic reactions λ can be to the
optimum rate.

FIG. 5. The maximum bulk viscosity ζmax 30 ¼ ζmax=
ð1030 g cm−1 s−1Þ and the optimum total reaction rate λmax 45 ¼
λmax=ð1045 erg−1 cm−3 s−1Þ at ω ¼ 104 s−1 as functions of den-
sity ρ14 ¼ ρ=ð1014 g cm−3Þ for different EoS models. Squares,
diamonds, and circles mark the points of Ξ−, Σ−, and Ξ0 onsets.
Crosses show the state in the center of the maximum mass NS.
The thicker gray lines are for the fit by Eq. (15). The thinner gray
lines show 60% (ζmax) and 20% (λmax) deviations from the fit
[i.e., ζapprmax × ð1� 0.6Þ and λapprmax × ð1� 0.2Þ].
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IV. NONLEPTONIC WEAK PROCESSES

A. General formalism

The formalism of reaction rate calculation that we use
follows Refs. [14,15]. In general, we consider a process in
which a pair of baryons3 transforms into another one,

1þ 2 ↔ 3þ 4; ð16Þ

where for baryon strangenesses the rule jS1 þ S2 − S3 −
S4j ¼ 1 holds. If the baryon composition is npΛΞ−, then
we are left with only the five processes listed in Eq. (1).
An inelastic collision 1þ 2 → 3þ 4 is described by a

matrix element M12→34. Hereafter, we assume that during
its calculation the particle wave functions are normalized to
one particle per unit volume. Then, setting ℏ ¼ c ¼ 1 and
treating particles as nonpolarized, the expression for the
rate of a direct reaction 1þ 2 → 3þ 4 is

Γ→ ¼
Z Y4

j¼1

d3pj
ð2πÞ32m�

Lj
ð2πÞ4δðp1 þ p2 − p3 − p4Þ

×
1

s

X
spins

jM12→34j2f1f2ð1 − f3Þð1 − f4Þ; ð17Þ

where pj ¼ ðϵj; pjÞ is a jth quasiparticle 4-momentum, s is
the symmetry factor, which is equal to 2 for the reactions
(1b) and (1c), otherwise s ¼ 1, and

fj ¼ fðzjÞ; zj ¼
ϵj − μj
kT

; fðzÞ ¼ 1

1þ ez
ð18Þ

is the Fermi distribution function.
Since the fermions in the NS core matter are strongly

degenerate, one can perform the phase space decomposi-
tion [33] in (17),

Γ→ ¼
Q

jpFj

4ð2πÞ8s ðkTÞ
3I
�
Δμ
kT

�
AJ ; ð19Þ

where Δμ ¼ μ1 þ μ2 − μ3 − μ4 [recall that Eq. (9) states
that all Δμα are equal in our problem]. For the factors I ,A,
and J , we have [14]

IðξÞ ¼
Z Y

j

½dzjfðzjÞ�δ
�X

j

zj − ξ

�
¼ 4π2ξþ ξ3

6ð1 − e−ξÞ ;

ð20aÞ

A ¼
Z Y

j

dΩjδðp1 þ p2 − p3 − p4Þ

¼ 2ð2πÞ3Q
jpFj

ðqmax − qminÞΘðqmax − qminÞ; ð20bÞ

J ¼ 1

A

Z Y
j

dΩjδðp1 þ p2 − p3 − p4ÞhjM12→34j2i;

ð20cÞ

where hi means summation over the final spin states and
averaging over the initial ones, ΘðxÞ is the Heaviside
function, and

qmin ¼ max fjpF1 − pF3j; jpF2 − pF4jg; ð21aÞ

qmax ¼ min fpF1 þ pF3; pF2 þ pF4g ð21bÞ

are the minimum and maximum momentum transfers.
An inverse reaction 3þ 4 → 1þ 2 has the rate

Γ← ¼ Γ→ðΔμ → −ΔμÞ, so the total process rate is

ΔΓ12↔34 ¼
Q

jpFj

4ð2πÞ8s ðkTÞ
3ΔI

�
Δμ
kT

�
AJ ; ð22Þ

where

ΔIðξÞ ¼ IðξÞ − Ið−ξÞ ¼ 2π2

3
ξ

�
1þ ξ2

4π2

�
: ð23Þ

In the subthermal limit, Δμ ≪ kT, Eq. (22) takes the
already mentioned form of Eq. (2).
The next tasks consist in (i) deriving an expression for

hjMj2i and then (ii) averaging it via the angular integra-
tions, yielding in this way the formula for J , Eq. (20c).

B. Matrix element

A nonleptonic weak reaction can go via two channels.
The first one is a direct W-boson exchange between two
baryons, the weak contact interaction. The second channel
is a virtual meson exchange, when a W-boson, emitted by
one of the quarks confined in a baryon, decays into a pair of
quark and antiquark that participate in further formation of
an intermediate meson and an outgoing baryon.
The W exchange in the weak nonleptonic reactions is

well studied in context of the bulk viscosity in NS cores,
e.g., [13–16].
The meson-exchange channel is commonly used in

studies of nonleptonic hyperon decays in the laboratory;
see, e.g., Ref. [23] for a review. In particular, the nucleon-
induced Λ decay and formation, np ↔ Λp and nn ↔ Λn,
are explored in hypernuclear physics [34–36] and in
nucleon-nucleon scatterings [37]. These processes are stud-
ied, e.g., within the one-meson-exchange (OME) approach,

3Stricly speaking, in the dense nucleon-hyperon matter of NS
cores, we have to consider “the baryon quasiparticles” instead of
“baryons,” the latter being appropriate in vacuum or in a few
baryon systems. Hereafter, by “baryon” or “particle,” we will
mean the baryon quasiparticle.
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including the full pseudoscalar and vector meson octets [34],
as well as with one-loop corrections [38] and account for
decay of the virtual meson into a couple of others [35]. The
process nΛ ↔ ΛΛ is studied in the hyperon-induced Λ
decay in double-strange hypernuclei [39,40] within the
OME approach. To the best of our knowledge, weak
processes with Ξ−, like nΞ− ↔ ΛΞ− and Λn ↔ Ξ−p, are
studied neither experimentally nor theoretically, since the
strong reactions Ξ−p → ΛΛ and Ξ−n → ΛΣ− operate much
more effectively.
In general, the W-exchange channel for the nonleptonic

hyperon decay is less effective than the meson-exchange
channel. Moreover, some of the processes have no W-
exchange contribution due to the absence of a weak sd
quark current [41]. For instance, in the set of processes (1),
only np ↔ Λp and Λn ↔ Ξ−p can operate with the W
exchange.4 However, only once [15], the OME channel
was used for calculating the bulk viscosity in the NS core.
Three reactions were considered in that work, nn ↔ Σ−p,
np ↔ Λp, and nn ↔ Λn, using both OME and W
exchanges. In particular, it was inferred that OME is
approximately ten times more intensive for np ↔ Λp.
But no handy formulas were given to make results of
Ref. [15] convenient for applying to further calculations
involving the bulk viscosity. In the present work, we try to
reproduce the results of Ref. [15] and adopt them to the
modern hyperon compositions of the NS core.
Considering OME, we take into account the lightest

meson exchange only, the K0=K̄0 mesons for nΛ ↔ ΛΛ,
and the π mesons for the other reactions. All these mesons
are pseudoscalar. Corresponding diagrams are shown in
Fig. 6 for each of five processes considered. An important
deficiency of our approach is that we do not account for any
other mesons, e.g., the ρ one. Commonly, their effect is to
decrease the reaction rate up to three to four times, which is
not crucial for our purposes; see the discussion in Sec. VI.
There is one weak (marked by ∘) and one strong (marked

by •) vertex for the baryon-meson interaction in each
diagram. Both weak and strong vertices are phenomeno-
logical. For the pseudoscalar meson exchange, they cor-
respond to, respectively,

∘ ¼ GFm2
πðAþ Bγ5Þ; • ¼ gγ5; ð24Þ

where GF ¼ 1.436 × 10−49 erg cm3 is the Fermi coupling
constant, mπ is the charged pion mass, and γ5 ¼
−iγ0γ1γ2γ3. The phenomenological constants g, A, and B
for the vertices in the diagrams in Fig. 6 are listed in
Table II. Some of these constants are measured in the
laboratory, while some are evaluated theoretically.
The meson propagator DMðqÞ, where q is the 4-

momentum transfer, is discussed in Sec. IV C.

Wave functions of the ingoing and outgoing quasipar-
ticles are considered within the RMF approach; i.e., they
have the form of relativistic bispinors,

ψ j ¼ Cjuje
ipμ

j xjμ : ð25Þ

For strongly degenerate baryons in the NS core, one
can use the approximation jpjj ¼ pFj. Further, for the
bispinor uj, one should use m�

Lj instead of ϵj and the
Dirac effective mass m�

Dj instead of the rest mass mj.
The Landau and Dirac effective masses are related by the
formula [12]

m�2
Lj ¼ p2

Fj þm�2
Dj: ð26Þ

(a) (b)

(c) (d) (e)

FIG. 6. The lightest-meson-exchange Feynman diagrams for
the inelastic scatterings in Eqs. (1). Open and filled circles mark
weak and strong vertices, respectively.

TABLE II. Phenomenological interaction constants in vertices
in Fig. 6.

Vertex Strong g Weak A Weak B Reference

ppπ 13.3 � � � � � � [34], Table III
npπ 13.3

ffiffiffi
2

p � � � � � � [34], Table III
nnπ −13.3 � � � � � � [34], Table III
Λnπ � � � −1.07 −7.19 [15], Sec. V
Λpπ � � � 1.46 9.95 [15], Sec. V
ΛnK −14.1 � � � � � � [34], Table III
ΛΛK � � � 0.67 −12.72 [39]a, Table IV
Ξ−Λπ � � � 2.04 −7.5 [42], Chap. 30.3.1
Ξ−Ξ−π −5.4 � � � � � � [43]b, Eq. (2.14)

aThey use the opposite sign for γ5.
bTheir strong f couplings are related to g couplings as

g ¼ fðm2 þm4Þ=mπ .

4This limitation was not so pronounced when the Σ−Λ hyperon
composition of the core was considered [13–16].
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Then, for the normalization constants Cj (one particle per
unit volume) and the bispinor uj, one obtains

Cj ¼
1ffiffiffiffiffiffiffiffiffiffi
2m�

Lj

p ; ð27aÞ

ūjuj ¼ 2m�
Dj; ð27bÞ

X
spins

ujūj ¼ γ0m�
Lj − γ · pj þm�

Dj: ð27cÞ

Let us notice that a quasiparticle dispersion relation p0
j ¼

ϵjðpjÞ is more complex than the free particle one, in
particular ϵjðpFjÞ ¼ μj ≠ m�

Lj.
The np ↔ Λp, nn ↔ Λn, and nΛ ↔ ΛΛ processes

involve direct and exchange diagrams. However, the
nΞ− ↔ ΛΞ− and Λn ↔ Ξ−p processes do not involve
exchange diagrams due to, for example, the rule jΔSj ¼ 1,
which holds in each weak vertex.5 In what follows, for a
process in the general form (16), we consider the direct and
exchange diagrams that differ by 1 ↔ 2 permutation, with
weak vertices 1,3 and 2,3.
For the direct diagram, one has

Mdir
12→34 ¼ GFm2

πū3ðA13 þ B13γ
5Þu1DMðqÞū4g24γ5u2:

ð28Þ

The exchange diagram corresponds to Mexch
12→34 ¼

Mdir
12→34j1↔2, and the total matrix element is M12→34 ¼

Mdir
12→34 −Mexch

12→34. If there is no exchange diagram for
the process considered, one should (artificially) set
A23 ¼ B23 ¼ g14 ¼ 0.
After averaging over the initial and summing over the

final spin states of the squared M12→34, we get

hjM12→34j2i ¼ G2
Fm

4
π½XðqÞD2

MðqÞ þ X0ðq0ÞD2
Mðq0Þ

þ Yðq; q0ÞDMðqÞDMðq0Þ�; ð29Þ

where

q ¼ p3 − p1; q0 ¼ p3 − p2; ð30Þ

and

XðqÞ ¼ Xðjqj2Þ ¼ m4
MX0 þm2

MX1jqj2 þ X2jqj4; ð31aÞ

Yðq; q0Þ ¼ Yðjqj2; jq0j2Þ ¼ m4
MY0 þm2

MY1jqj2
þm2

MY2jq0j2 þ Y3jqj2jq0j2;
ð31bÞ

X0ðqÞ ¼ X0ðjqj2Þ ¼ m4
MX

0
0 þm2

MX
0
1jq0j2 þ X0

2jq0j4; ð31cÞ

with dimensionless Xk, X0
k, and Yk being functions of pF1.::4

listed in Appendix A.
The last issue to be resolved before we can evaluate

Eq. (20c) is to define meson propagators DM.

C. Meson propagators

In general, the meson propagator is

D−1
M ðω; qÞ ¼ ω2 − q2 −m2

M − ΠMðω; qÞ; ð32Þ

where ω and q are the energy and momentum transferred
by the virtual meson, mM is the bare (vacuum) meson mass
(mπ ¼ 139 MeV and mK ¼ 494 MeV),6 and ΠM is the
meson polarization operator.
Within a widely used free meson approach [15,44,45],

the polarization operator is ΠM ¼ 0, and ω2 is omitted due
to some reasons. In the almost beta-equilibrated matter of
the NS core, we indeed have ω ¼ 0 for neutral mesons, but
for the charged pions in the diagrams for the processes
np ↔ Λp [Fig. 6(a)] and Λn ↔ Ξ−p [Fig. 6(e)], we have
ω ¼ μe ≠ 0. Thus, the approach by Ref. [15] to the meson
propagator has to be revisited.
If we substitute ω ¼ μe into the free pion propagator, we

get into trouble as soon as μe > mπ at nb ≳ 0.2 fm−3, and
the pion propagator can be positive at some real values of
momentum transfer. This means that the real pions appear
in the matter, but it is inconsistent with our EoS models,
which (artificially) prohibit pionization. This troubling
feature appears not only for all four EoS that we are using
(see Sec. II) but also for a number of other realistic nucleon
EoS models like APR [46] and BSk21 [47]. Therefore, we
are forced to account for the polarization operator Ππ− of
negative pions, hoping that at ω ¼ μe it is large enough to
make Dπ− < 0 for all densities.
We find it convenient to introduce the “effective” virtual

pion mass,

m̃π− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π − μ2e þ Ππ−ðμe; qÞ
q

: ð33Þ

Then, the propagator takes a simple form

D−1
π− ¼ −q2 − m̃2

π−ðqÞ: ð34Þ

Notice that μe varies with density, so m̃π− technically
depends not only on the momentum transfer q but also
on nb. Obviously, m̃π− should be strictly real when the
appearance of real pions (pionization) is prohibited.
In nuclear matter characteristic of atomic nuclei, we have

[48] Ππ− ¼ ΠS þ ΔΠS þ ΠP, where ΠS comes from the

5Strictly speaking, diagrams with permuted particles 1 and 2
would appear if we included the next-to-the-lightest meson.

6We do not discriminate between masses of different members
of isomultiplets and use values as in Ref. [12].
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s-wave nπ scattering, ΔΠS comes from the s-wave absorp-
tion, and ΠP is the p-wave contribution. Only ΠS is
positive, so we focus on it in order to get an upper estimate
of Ππ− . The leading-order contribution to ΠS in the
nucleon-hyperon NS core comes from the terms [49]

ΠSðωÞ ¼
ω

f2π

X
j

ð−I3jÞnj þ
σN
f2π

�
ω2

m2
π
− 1

�
nb; ð35Þ

where j is the baryon index, I3j is the isospin projection
of the jth baryon, fπ ¼ 92.4 MeV, and σN ≈ 45 MeV.
In the nucleonic matter, Eq. (35) coincides with Eq. (11)
of Ref. [48].
Thick curves in Fig. 7 show the ratio m̃π−=mπ with

Ππ− ¼ ΠS for the EoS models we use in this work. Notice
that in this case, according to Eq. (33), m̃π− technically
depends on nb only. Thin curves are for m̃π− with Ππ− ¼ 0.
They prove what was claimed in the beginning of this
section: μe exceeds the bare pion mass at nb ∼ 0.2 fm−3, so
we have to account for the polarization operator to avoid a
pionization instability.
The s-wave part is only an upper estimate of Ππ− , so

actual values of m̃π−=mπ are located below the thick lines in
Fig. 7. For densities between the hyperon onset point and
the maximum mass point, the upper limit for m̃π− varies in
the range ð0.7…1.6Þmπ . Thus, mπ is a rough upper limit
for m̃π−. Consequently, 1=Dπ− ¼ −q2 −m2

π is a rough
lower estimate for the propagator modulus. It can be
used for making a lower estimate of the reaction rates.

An account for the variation of the m̃π− upper limit
mentioned above can affect a rate value not more than
by a factor of order 2, which is acceptable for our purposes.
Of course, accounting for other terms in Ππ− may

dramatically change Dπ− compared to the prediction from
simple expression (34) with m̃π− ¼ mπ. Then, the “effective
pion mass” should be replaced by the effective pion gap
[50], which can be much less than mπ . Correspondingly,
the pion propagator would increase. However, these effects
are model dependent, so we prefer to use Eq. (34) with
m̃π− ¼ mπ in what follows, similarly to how it was done in
Refs. [15,44,45].
What should we do with propagators of neutral mesons,

K̄0 and π0? The former one is a quite heavy meson, and it is
harder to affect its propagator essentially. Thus, K̄0 can be
safely described by a free-particle propagator. The latter
meson, π0, requires more careful discussion, but one can
artificially set the free-particle propagator for it within the
same range of reliability as for π−.
All in all, for each meson propagator, we use

D−1
M ¼ −q2 −m2

M: ð36Þ

This can lead to underestimating the reaction rates. But this
effect will be (partially) compensated by neglecting the
contribution due to the vector mesons; see Sec. VI for a
more detailed discussion.

D. Reaction rates

Taking hjM12→34j2i from Eq. (29), DM from Eq. (36),
and substituting them into Eq. (20c), we can calculate J
(see Appendix B for details) and, consequently, get the
reaction rate ΔΓ12↔34 from Eq. (22). In the subthermal
regime, Δμ ≪ kT, it can be expressed in terms of λ12↔34

[see Eq. (2)]

λ12↔34 ¼ λ12↔34
0 W12↔34; ð37Þ

where, restoring natural units,

λ12↔34
0 ¼ G2

Fm
4
N

6π3ℏ10
ðqmax − qminÞðkTÞ2Θ12↔34

≈
1.7 × 1045

erg cm3 s
×

qmax − qmin

ℏð3π2n0Þ1=3
T2
8Θ12↔34; ð38aÞ

with the nucleon mass7 mN ¼ 939 MeV, T8 ¼ T=ð108 KÞ,
Θ12↔34 ¼ Θðqmax − qminÞ, andFIG. 7. Thick lines show the upper estimate of the effective

pion mass for the EoS models employed. Thin lines show
what happens if we do not account for the polarization
operator in Eq. (33). 7It is introduced here just to make W ≲ 1.
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W12↔34 ¼
1

s

�
mπ

2mN

�
4

ðX0J0 þ X1J1 þ X2J2

þ X0
0J

0
0 þ X0

1J
0
1 þ X0

2J
0
2

þ Y0J3 þ Y1J4 þ Y2J04 þ Y3J5; Þ ð38bÞ

is a dimensionless function of pF1; pF2; pF3; pF4, with Xk,
X0
k, and Yk defined in Appendix A and Jk and J0k defined in

Appendix B. Actually, W is related to J in a simple way:

J ¼ 16sG2
Fm

4
NW: ð39Þ

In the suprathermal regime, Δμ≳ kT, one has to use

ΔΓ12↔34 ¼ λ12↔34Δμ
�
1þ

�
Δμ
2πkT

�
2
�
: ð40Þ

The W function incorporates all specific properties of
the process 12 ↔ 34 (recall that Xk, Yk, etc., depend on
weak and strong coupling constants that are different for
different processes). Figure 8 shows how it depends on the
(energy) density ρ for each kind of processes in Eq. (1) for
all EoS we use. It appears to be strongly model dependent;
W varies up to a factor of 3 from one EoS to another.
Fortunately, it appears to be a slow function of ρ. Since the
main aim of our calculations is application in the r-mode
physics, it is enough to provide a simple (even if not too

precise) approximation of the reaction rate. For np ↔ Λp,
nn ↔ Λn, Λn ↔ Ξ−p, and nΞ− ↔ ΛΞ− processes, we
can reliably treatW as a constant, while for nΛ ↔ ΛΛ it is
safer to account that it grows with ρ. The approximation
that we recommend is

Wappr ¼ W0

�
xþ a
xþ b

�
p
; x ¼ ρ − ρstart

ρ0
; ð41Þ

where ρstart is the density where the process 12 ↔ 34

switches on and ρ0 ¼ 2.8 × 1014 g cm−3 is the nuclear
matter saturation density. Note that ρstart may not coincide
with the density ofΛ or Ξ− onset and should be derived as a
lowest density whereΘ12↔34 > 0. ParametersW0, a, b, and
p represent a very rough fit of what we have in Fig. 8. The
latter three are required for nΛ ↔ ΛΛ only; other processes
can be described with a single constantW0. In Table III, we
give the parameters of this fit for each process. The thicker
gray lines in Fig. 8 show how these fits work. The “error”
column in Table III represents “ranges of deviations,”
jW −Wapprj=Wappr. Most of the W curves lie within these
ranges (we stress that it is more important to reproduce W
behavior far from ρstart than close to it). In Fig. 8, the thinner
gray lines display boundaries of these error ranges.
Thus, in order to quickly estimate reaction rates for an

arbitrary EoS, one can takeW from Eq. (41) and substitute
it into Eq. (37) to obtain λ for the process considered.

FIG. 8. TheW functions for the nonleptonic weak processes from Eq. (1), for the EoS models used. The thicker gray lines showWappr
from (41) with parameters from Table III, and the thiner ones show deviations from Wappr that cover most of the curves.
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The quantity λ0 can be easily calculated for each process
when the number density nj of each particle species is
known. However, one may desire an approximate formula
that does not require knowledge of particle fractions, e.g.,
to explore some phenomenological PðρÞ models, supple-
mented with an arbitrarily chosen ρstart. For that purpose,
we provide an approximate expression for λ0 that depends
on ρ and ρstart only,

λ0 appr ¼ l0

�
x

1þ cx

�
q
T2
8; λappr ¼ λ0 apprWappr; ð42Þ

with the same x as in Eq. (41). Recommended values of c,
q, and l0 and maximum relative deviations for each process
are given in Table IV.
Figure 9 shows the density dependence λðρÞ for all

five processes that we consider for EoS models from
Sec. II at T ¼ 108 K. Gray lines show λappr (thicker
lines) and boundaries of its uncertainty (thinner lines)
due to both W and λ0 approximation errors. For instance,
for np ↔ Λp, the thinner lines correspond to
λnp↔Λp
0 appr × ð1� 0.3Þ ×Wnp↔Λp

appr × ð1� 0.2Þ. The reaction
rates are also model dependent, similarly to the W
functions. There is an explicit hierarchy8 of λ typical
values. The processes np ↔ Λp and Λn ↔ Ξ−p turn
out to be the most effective. The next are nn ↔ Λn and
nΛ ↔ ΛΛ. The latter one has stronger ρ dependence since
it is more sensitive to the Λ fraction. The least intensive is
the nΞ− ↔ ΛΞ− process. There are two reasons for this.
First, it is most sensitive to low Ξ− density. Second, it has

the lowest B and g coupling constants (see Table II), and it
has no exchange term contribution in our approximation.
The same hierarchy of reaction rates can be seen in Fig. 8
for the W functions. Notice that ρstart points (where λ’s rise
up from zero in Fig. 9) differ from Λ onset densities for
nΛ ↔ ΛΛ and from Ξ− onset densities for nΞ− ↔ ΛΞ−,
since the conditions ΘnΛ↔ΛΛ > 0 and ΘnΞ↔ΛΞ > 0 can be
satisfied only for high enough nΛ and nΞ.

E. OME vs W exchange

Let us compare the reaction rates derived using the OME
interaction to what one has for the contact W-exchange
interaction. Only two processes among the considered ones
go via W exchange, np ↔ Λp and Λn ↔ Ξ−p. Here, we
focus on the former one. For simplicity, we use the
nonrelativistic matrix element [13,15,16]

hjMW
np↔Λpj2i ¼ 2G2

Fsin
22θCmnm2

pmΛχnp↔Λp; ð43Þ

where sin θC ¼ 0.231, θC is the Cabibbo angle, and

χnp↔Λp ¼ 1þ 3jcnpA j2jcpΛA j2 ≈ 3.47 with the axial coupling

constants cnpA ¼ −1.26 and cpΛA ¼ −0.72 [13,15].9 We use
here the bare baryon masses, as in Refs. [13,15,16]. The
matrix element in Eq. (43) does not depend on angles
between the reacting particles momenta, so Eq. (20c) yields
J ¼ hjMnp↔Λpj2i. The reaction rate in the case of W
exchange can be expressed in the same form as for
the OME interaction [Eq. (37)]. Using Eq. (39), one finds
that λnp↔Λp obtained via the W exchange is given by
Eq. (37) with

WW
np↔Λp ¼ sin22θC

8snp↔Λp

mn

mN

mΛ

mN

�
mp

mN

�
2

χnp↔Λp ≈ 0.10:

ð44Þ

This is 7–15 times less than for np ↔ Λp using the OME
interaction, in accordance with the results obtained
in Ref. [15].
To compare our results with Ref. [15], we calculate the

equilibrium rate of reactions for the np ↔ Λp process,
Γnp↔Λp
ð0Þ , which is related to the subthermal reaction rate

λnp↔Λp according to

Γ12↔34
ð0Þ ¼ 3kT

2π2
λ12↔34: ð45Þ

We plot these rates for each EoS model from Sec. II
in Fig. 10. This figure is similar to Fig. 7 from Ref. [15];

TABLE III. Fitting parameters in Eq. (41) we recommend for
using in practice.

Process W0 a b p Error

np ↔ Λp 1.1 � � � � � � � � � 30%
Λn ↔ Ξ−p 0.9 � � � � � � � � � 50%
nn ↔ Λn 0.48 � � � � � � � � � 20%
nΛ ↔ ΛΛ 0.38 0.37 0.87 2 30%
nΞ− ↔ ΛΞ− 0.068 � � � � � � � � � 30%

TABLE IV. Fitting parameters in Eq. (42) we recommend
using.

Process l0 c q Error

np ↔ Λp 1.7 0.06 0.36 20%
Λn ↔ Ξ−p 1.5 0.00 0.36 30%
nn ↔ Λn 2.9 0.3 0.4 20%
nΛ ↔ ΛΛ 3.5 0.8 1.0 30%
nΞ− ↔ ΛΞ− 1.6 0.5 1.0 40%

8We emphasize that in the superfluid matter the hierarchy is
different.

9We emphasize that here hjM12→34j2i is the matrix element,
squared, summed over the final spin states, and averaged over the
initial spines. Our notation should not be confused with notations
used in Refs. [13,15].
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our thick lines correspond to their solid line (Γnp↔Λp
ð0Þ using

OME), and our thin lines correspond to their dotted line
(10 × Γnp↔Λp

ð0Þ using contactW exchange). As expected, the

OME interaction yields the equilibrium rate approximately
ten times greater than the W exchange. But, surprisingly,
our calculations give Γð0Þ systematically about four times
lower than in Ref. [15], both for the OME and the W-
exchange channels.

F. Comparison of the reaction rates and λmax

Now, we are able to answer the question from the end
of the previous section, namely, how close the total rate λ
[the sum of all λ12↔34; see Eq. (10)] can be to the optimum
rate λmax. To answer it, we need to calculate the “optimum
temperature,” at which the bulk viscosity reaches its
maximum,

TðtotÞ
opt ¼ 108 K ×

ffiffiffiffiffiffi
ω4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxjω4¼1

λjT8¼1

s
; ð46Þ

and check whether such a temperature can exist in the NSs

we are interested in. The upper panel in Fig. 11 shows TðtotÞ
opt

at ω ¼ 2π × ð400 HzÞ as a function of density. The chosen

FIG. 9. The reaction rates λ45 ¼ λ=ð1045 erg−1 cm−3 s−1Þ for different EoS models at T ¼ 108 K. The thicker gray lines show λappr
from Eq. (42) with best-fit parameters from Tables III and IV. The thinner ones show the deviations within errors from these Tables taken
together, which allow to cover the whole domains occupied by λðρÞ curves for EoS models.

FIG. 10. Equilibrium reaction rates Γ0 for the np ↔ Λp
process. Thick lines are for the OME channel, and thin lines
are for the contact W-exchange channel multiplied by 10.
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frequency is typical for those NSs in LMXBs, which
could be subject to the r-mode instability [3]. We plot
the curves up to the points of Σ− or Ξ0 onset, where the
set of considered reactions becomes incomplete. A typical
optimum temperature value is within the range of
ð0.5 − 1Þ × 108 K, that might be close to the typical
internal temperature of NSs in LMXBs. Thus, application
of our hyperon bulk viscosity to the problem of r-mode
stability has some chances for success.
Up to this point, we were considering only a non-

superfluid (nonpaired) nucleon-hyperon matter. Baryon
pairing is known to suppress reaction rates dramatically
[14] and affects substantially hydrodynamics of NS matter,
in particular, the relation between the bulk viscosity(ies)
and the reaction rates [17]. Anyway, here we do not account
for the latter effect and use nonsuperfluid λmax to compare it
with suppressed reaction rates. As is widely accepted
[51,52], neutral baryons in the NS cores have lower pairing
critical temperatures than the charged ones. Thus, the first
step will be to suppress processes involving p, Ξ−, etc.

A conservative way to do that is to switch off completely
all the processes involving charged baryons (in our case
np ↔ Λp, Λn ↔ Ξ−p, and nΞ− ↔ ΛΞ−). Then, one can
introduce the optimum temperature for only reactions with
neutral particles:

TðntrlÞ
opt ¼ 108 K ×

ffiffiffiffiffiffi
ω4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λmaxjω4¼1

ðλnn↔Λn þ λnΛ↔ΛΛÞjT8¼1

s
: ð47Þ

It is plotted in the middle panel of Fig. 11. It appears to be

about 1.5 times higher than in the unpaired case, TðntrlÞ
opt ∼

ð0.8–1.5Þ × 108 K. One can go further and suggest that the
critical temperature of Λ’s is significantly lower than the
neutron critical temperature [53] since the ΛΛ interaction is
known to be weak [54]. A way to partially account for
pairing of neutral baryons is to switch off the nn ↔ Λn
process, since it is more sensitive to the neutron super-
fluidity (since more neutrons are involved in the process),
and consider nΛ ↔ ΛΛ only. Introducing the optimum
temperature for this case,

TnΛ↔ΛΛ
opt ¼ 108 K ×

ffiffiffiffiffiffi
ω4

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxjω4¼1

λnΛ↔ΛΛjT8¼1

s
; ð48Þ

we get the bottom panel of Fig. 11. The optimum temper-
ature is significantly higher in this case, especially at
densities close to the threshold of the nΛ ↔ ΛΛ process.10

A typical hyperon NS core with the central density
approximately 3ρ0 should be rather hot, approximately
ð2–5Þ × 108 K, to achieve the most effective viscous
damping in its interiors.
However, even if the regime ζ ¼ ζmax is not reached in

the NS core, the calculated bulk viscosity can significantly
affect the r-mode stability, as is demonstrated in the next
section.

V. R-MODE INSTABILITY WINDOWS

Considering the r-mode instability windows, we follow
the approach of Ref. [16]. Namely, we focus on the
quadruple l ¼ m ¼ 2 r-mode, which is treated within the
nonsuperfluid nonrelativistic hydrodynamics (cf. Sec. III),
but with radial density profiles ρðrÞ, njðrÞ, etc., taken from
the numerical solution to the Tolman-Oppenheimer-Volkoff
equations [55,56]. The stability criterion for the r-mode is

1

τGWðνÞ
þ 1

τζðν; T̃Þ
þ 1

τηðT̃Þ
> 0; ð49Þ

FIG. 11. Optimum temperatures for the bulk viscosity at ω ¼
2π × ð400 HzÞ assuming nonsuperfluid and nonsuperconducting
matter [top; see Eq. (46)], strong superfluidity of charged baryons
and nonsuperfluid neutral ones [middle; see Eq. (47)], and
optimum temperature for the case when only the reaction nΛ ↔
ΛΛ operates [bottom; see Eq. (48)]. In the top panel, diamonds
and circles mark the Σ− and Ξ0 onsets, correspondingly, where
the set of reactions included in the total λ becomes incomplete. In
each case, the curves are plotted at ρ ≥ 1.01ρstart to avoid
discontinuities.

10In all these three cases, Topt tends to infinity in the vicinity of
the corresponding ρstart, but in the former two cases, this
divergence is insensible at ρ ≥ 1.01ρstart, where the curves in
Fig. 11 are plotted.
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where τGW < 0 is the driving timescale of the instability
due to the gravitational wave emission (Chandrasekhar-
Friedman-Schutz instability [4,5]), τζ > 0 is the damping
timescale due to the bulk viscosity, and τη > 0 describes
damping due to the shear viscosity. These timescales
depend on the rotation frequency ν and the redshifted
internal temperature T̃ (assumed to be constant over
the NS core). The νðT̃Þ dependence, for which the
inequality (49) becomes an equality, corresponds to the
critical frequency curve in the ν-T̃ plane. The region of ν
and T̃, where the condition (49) is violated (above the
critical ν curve) is the r-mode instability window for a NS.
Observing NSs with frequency and temperature in this
domain is highly unlikely [3].
The necessary formulas for τGW and τζ can be found in

Ref. [16]. For the latter timescale, we use ζ obtained in the
two previous sections [Eqs. (13) and (14), supplemented
with Eqs. (37) and (38) for required processes]. The
derivation of τη is given in Ref. [57]. The main contribution
to the shear viscosity η comes from leptons, e and μ,
independently of whether baryons are in the normal or in
the superfluid state [58]. Moreover, if protons are super-
conducting, lepton shear viscosity η is enhanced [58,59].
Since the shear viscous damping is mostly important at
low temperatures, where protons are paired, we have to
use the “superconducting” expression for η. Luckily, there
is an upper estimate for η which is independent of pairing
properties (the “London limit,” Tcp ≫ 109 K; see Ref. [59]
for details and the analytic expression).
Figure 12 shows the instability windows for various NS

models. The top two panels are for the bulk viscosity
unaffected by baryon pairing [all five processes in Eq. (1)
operate]. We restrict ourselves to NS with M ≤ 1.9 M⊙
to avoid the appearance of Σ− hyperons. Similarly to
Sec. IV F, we consider the p and Ξ− pairing effects
excluding all reactions involving these particles (two
middle panels in Fig. 12) and simulating n pairing effects
by excluding the reaction nn ↔ Λn (bottom panels in
Fig. 12). However, in all plots, we use the expressions (13)
and (14) for a relation between the reaction rates and the
bulk viscosity; i.e., we ignore the influence of pairing
effects on hydrodynamics of the core matter (similar to
Sec. IV F). Figure 12 presents the instability windows for
FSU2H and TM1C EoS only. Plots for GM1A EoS are
similar to those for FSU2H EoS. In turn, NL3ωρ critical
frequency curves resemble the ones for TM1C, except for
the substantially greater Λ onset mass (see Table I) and a
slower growth with increasingM. For instance, the NL3ωρ
NS with M ¼ 2.55 M⊙ and the TM1C one with M ¼ 1.9
M⊙ have almost the same stable ν; T̃-regions. The latter
difference is due to the fact that NL3ωρ has a smaller
hyperon fraction than the other three EoS that we use.
Three main conclusions can be made from inspecting

Fig. 12. First (obvious) is that different EoS models yield

different instability windows for the sameM. However, the
shape of the critical frequency curve is similar in all cases.
Second, the top of the critical curve is reached at a

temperature of the order of the corresponding optimum
temperature Topt: T̃ ∼ Topt (see Sec. IV F). Thus, Topt

appears to be a good estimate of a NS internal temperature
at which r-modes are the most stable.
Finally, the third conclusion is that for all EoS considered

above, a high enough mass can close the instability window
in most of the area shown in the figure (except for the right
bottom plot). This area is important since it contains the
observed sources (LMXBs) that are difficult to reconcile
with current models of r-mode oscillations of NSs (see,
e.g., Refs. [3,60]). They are shown in Fig. 12 by blue data
points.11 All these sources appear to be inside the stability
regions for high enough NS masses even if p and Ξ− are
“frozen” due to the superfluid gaps. In particular, for the
FSU2H EoS, almost all data points lie within the contour
defined by NSs with a mass of 1.7 M⊙ and below with
strongly paired charged particles. This is in contrast to
Ref. [16], the approach to the weak nonleptonic reactions of
which requires at least partially nonsuppressed processes
with charged particles. At variance with Ref. [16], we,
however, account for the nn ↔ Λn process, not considered
by Ref. [16], which appears to be the main contributor to
the bulk viscosity in the case of frozen charged particles.
Another difference with respect to Ref. [16] is that in that
paper the maximum of the stability curves occurs at
T ≳ 109 K, while we have the maximum of the critical
frequency at T ∼ 108 K (except, maybe, in the case when
only nΛ ↔ ΛΛ is operating). This is a consequence of the
fact that we use the OME interaction to calculate the
reaction rates, while Ref. [16] used the contact one.
Of course, leaving nΛ ↔ ΛΛ as the only operating

process is not a good way to study effects of n pairing.
When the neutron superfluidity gap rises, both nn ↔ Λn
and nΛ ↔ ΛΛ reaction rates decrease dramatically (the
latter one does it more slowly than the former one), and
none of them is affected in the regions of the NS core where
neutrons are not paired yet. A careful consideration of this
phenomenon is beyond the scope of the present paper.
In Secs. III and IV, we provided the simple approximate

expressions for the bulk viscosity. One should substitute
ζmax and λmax from Eq. (15) and the reaction rates from
combining Eqs. (37), (41), and (42) into Eq. (13) for
the bulk viscosity. The resulting approximation depends
on T, ρ, ρΛ (the density of the hyperons onset), and
various ρstart—the densities of the reaction thresholds
(for np ↔ Λp and nn ↔ Λn, ρstart ≈ ρΛ).

11These sources are the same as in Ref. [60] but with SAX
J1810.8–2609 added (ν from Ref. [61] and T̃ derived using
Ref. [62]). For all the sources, T̃ was derived from the effective
surface temperature, inferred from observations, assuming M ¼
1.4 M⊙ and R ¼ 10 km. See Ref. [60] for details.
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The value of ρΛ is fixed for a given EoS, but ρstart should
be accurately adjusted for each EoS model in order
to obtain a fit that reproduces the instability windows
for this EoS. Strictly speaking, the parameter ζ0 in the
fitting expression (15) for the maximum bulk viscosity
is also very important. While we provided the value

ζ0 ¼ 6.5 × 1030 g cm−1 s−1 averaged over the four EoS
we use here, its actual value should be adjusted for a given
EoS. For instance, FSU2H requires ζ0 ≈ 1.4× the averaged
value, and for GM1A, TM1C, and NL3ωρ, one needs,
respectively, correcting factors 1.45, 0.8, and 0.55. With
these comments taken into account, the described fit of the

FIG. 12. Example of r-mode critical frequency curves for FSU2H (left) and TM1C (right) EoS for different neutron-star masses
(shown near the curves). For each mass, the unstable region of the rotation frequency ν and the redshifted internal temperature T̃ (the
instability window) is above the curve. On each plot, the lowest curve effectively represents the critical curve in the absence of hyperons.
The upper plots show the instability windows when all the processes in the set (1) operate (no account for baryon pairing). The middle
plots illustrate what happens if one switches off all reactions involving charged baryons (conservative treatment of p and Ξ− pairing).
Finally, the bottom plots are for models that partially account for n pairing (nn ↔ Λn is switched off, while nΛ ↔ ΛΛ is not affected).
The blue data points show the observed LMXBs with measured ν and estimated T̃; see Ref. [60] and footnote 11 for details.
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bulk viscosity reproduces the critical frequency curves
from Fig. 12 rather accurately, as shown in Fig. 13.
Higher accuracy can be achieved if one also adjusts the
parameter s in Eq. (15).

VI. CONCLUSION

Let us summarize the scope of the present article. First,
we calculated the bulk viscosity ζ for a set of hyperonic
EoS. We considered models for which the core is composed
of npeμΛΞ− matter, in contrast to most of the previous
works [13–16] (see, however, Ref. [63]). We consider the
full set of weak nonleptonic processes [Eq. (1)], operating
in such NS cores and generating ζ. Three of them,
nΛ ↔ ΛΛ, nΞ− ↔ ΛΞ−, and Λn ↔ Ξ−p, are considered
for the first time. The rates λ12↔34 for these processes are
calculated using the relativistic OME interaction, as in
Ref. [15] [see Eqs. (37), (38), and Appendixes A and B].
Expressions for ζ and λ’s are derived within the non-
superfluid hydrodynamics [Eqs. (13) and (14), which are
appropriate for an arbitrary hyperon composition].
Second, we calculated the r-mode instability windows,

following the approach of Ref. [16]. We show that the
positions of the critical frequency curve maxima are shifted
to lower temperatures compared to previous calculations
(cf. Fig. 12 and, e.g., Ref. [16]), even if we assume strong
pairing of charged baryons and moderate pairing of neutral

particles in the core. This is due to the fact that we
calculated the reaction rates using OME interaction instead
of the contact W exchange, as Ref. [16] did.
Third, we derived simple approximations for ζ and λ’s as

a function of ρ. Namely, for each λ12↔34, one may use
Eqs. (37), (41), and (42) together with the parameters from
Tables III and IV [or Eqs. (37), (38a), and (41) if one wants
to specify all particle fractions]. In turn, to calculate ζ, one
may use Eqs. (13) and (15) together with the approxima-
tions for λ’s. However, this approximation should be used
with caution; if one wants to reproduce the r-mode critical
curve for some specific hyperonic EoS, one has to adjust
the parameters ζ0 and ρΛ to this EoS accurately; see the end
of Sec. V and the caption to Fig. 13 for an illustration. The
value of ζ0 given in Sec. III is just a rough averaging,
appropriate for phenomenological NS models without the
detailed hyperon microphysics.
We would like to point out four limitations of the work

presented here [(i) simplified calculation of the reaction
rates, (ii) restricted hyperonic composition, (iii) almost no
account for baryon pairing, and (iv) simplified calculation
of r-mode instability windows]:

(i) The first deficiency in the λ12↔34 calculation is that
we consider only the lightest meson exchange. In
our cases, the lightest meson is π (139 MeV) for
np ↔ Λp, nn ↔ Λn, nΞ− ↔ ΛΞ−, andΛn ↔ Ξ−p
and K (494 MeV) for nΛ ↔ ΛΛ. Both of them are
pseudoscalar mesons responsible for the long-range
interaction. On the one hand, the long-range interac-
tion is typically themost important in rough, first-order
approximations, and the up-to-date NS physics does
not necessitate very precise calculations of λ’s. On the
other hand, typical distance between the baryons in the
NS core is less or about 1 fm, while at such distances
the transition potential for weak nonleptonic proc-
esses strongly deviates from the OMEmodel (at least
in atomic hypernuclei [35,38]). So, it is unclear
whether the OME interaction model is sufficient
for the astrophysical purposes or not.

Typically, accounting for the heavier mesons (first
of all, ρwith the mass 770 MeV) yields an effect of a
factor of a few. For decay rates of the hypernuclei, the
rates calculated using the π exchange only (disre-
garding the short-range correlations, form factors,
and final state interactions) are two to three times
lower than what is obtained using many meson
approaches [34,39]. In the context of NSs, a com-
parison of π and π þ ρ exchanges was performed by
Friman and Maxwell [44] for the neutrino pair
bremsstrahlung from nn scattering, nþ n → nþ
nþ νþ ν̃. Their result is that π exchange yields
the rate two to five times greater than in case of π þ ρ
exchange. A similar effect was obtained using the
realistic T-matrix instead of one π exchange (see the
review [58] for details).

FIG. 13. Comparison of the critical frequency curves calculated
using the exact bulk viscosity (solid lines) and fitting Eqs. (15),
(41), and (42) (dashed lines). The hyperon onset density ρΛ is
adjusted for each EoS. Using Eq. (15), ζmax is multiplied by 1.4
for FSU2H and by 0.8 for TM1C. All processes in the set (1) are
switched on.
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Another deficiency is our simplistic treatment of
the in-medium effects on the meson propagator DM,
mainly the pion one (M ¼ π). As described in
Sec. IV C, the expression (36) we adopt for the
propagators allows us to account for the s-wave part
of the polarization operator Π (in a rather simplistic
way), but it provides no account for the p-wave part of
Π. This means that we underestimate DM and,
consequently, also λ’s. Different calculations of
the in-medium modified propagators are divergent
[58], and the most impressive result is that it can
increase the reaction rate up to several orders of
magnitude [50,64].
All in all, are our reaction rates under or overesti-

mated? If the in-medium effects on DM are close to
results obtained in Ref. [64], our λ’s are surely
underestimated. If the in-medium effects are not so
dramatic, the situation is unclear. However, it seems
more likely that the effects of DM in-medium re-
normalization are stronger than the influence of
heavy mesons, so one can expect that the reaction
rates are higher than the ones we obtain.

(ii) Throughout our work, we have focused on a ΛΞ−

hyperon composition. For a number of EoS models,
Σ− appears in the core (for instance, in deep layers of
massive NL3ωρ and FSU2H stars; see also
Refs. [20–22]). The relation between ζ and λ
inferred in Sec. III is still true in this case, but the
total rate λ should include the rates of weak non-
leptonic processes involving Σ− and may deviate
from the ΛΞ− case. The expressions for the rate
λ12↔34, given in Sec. IV, are applicable for an
arbitrary weak nonleptonic process 12 ↔ 34 oper-
ating via the pseudoscalar meson exchange. How-
ever, finding the necessary coupling constants in the
literature is not an easy task.

(iii) The main limitation of our work is that we do not
account for baryon pairing. First of all, it affects
the reaction rates. It can be accounted for by
introducing reduction factors R [14]. Some of
them are already calculated and analytically ap-
proximated, some of them (in particular, R for
nn ↔ Λn in the case of n pairing) are available, but
still not published. We emphasize that a rough
account for R’s via excluding processes involving
paired baryons is too simplistic and may be
misleading. Second, baryon superfluidity affects
the relation between the bulk viscosity and the
reaction rates. Moreover, the number of kinetic
coefficients named “the bulk viscosity” increases.
These effects were studied in detail by
Refs. [17,65]. Third, superfluidity affects the r-
mode hydrodynamics. Several attempts to explore
this effect were made [66–69], but it is currently an
unsolved problem.

(iv) The previous paragraph partially overlaps with the
last limitation we would like to address, that is, the
simplistic calculation of the r-mode critical frequency
curves. Besides the fact that the damping and driving
timescales [see Eq. (49)] differ in the presence of
pairing, the “τ-approach” to the critical ν curve itself
is just an estimate. It is widely accepted as it is rather
accurate in the nonpaired case, but in the presence
of pairing, this approach should be revisited [69].
Next, we calculate the damping timescale τζ due to
the bulk viscosity, employing the same approach as in
Ref. [16]. In particular, we used the authors’ fitting
formula for the angle averaged ðdivuÞ2, which was
fitted to NS models obtained using their specific
collection of EoS. It can be less accurate for our
choice of EoS. Finally, we use nonrelativistic hydro-
dynamics, which is also inaccurate in NSs.

Improving the model presented in this work and over-
coming, in particular, the limitations (ii) and (iii), i.e.,
including more hyperon species and calculating the R-
factors that are currently unavailable, will be the subject of
our future work.
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APPENDIX A: COEFFICIENTS IN EQS. (31)

Let us introduce dimensionless variables

αj ¼
m�

Lj

mM
; βj ¼

m�
Dj

mM
; xj ¼

pFj

mM
: ðA1Þ

In these notations, the coefficients in Eq. (31a) take the
form

X0 ¼ g24ð2α2α4 − 2β2β4 − x22 − x24Þ
× ½ðA2

13 þ B2
13Þð2α1α3 − x21 − x23Þ

þ 2β1β3ðA2
13 − B2

13Þ�; ðA2Þ

X1 ¼ g224ðA2
13 þ B2

13Þð2α1α3 þ 2α2α4

− x21 − x22 − x23 − x24 − 2β2β4Þ
þ 2g224ðA2

13 − B2
13Þβ1β3; ðA3Þ
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X2 ¼ g224ðA2
13 þ B2

13Þ: ðA4Þ

In Eq. (31b), we have

Y0 ¼ g14g24ðA13A23 − B13B23Þ½β2β3x21þβ1β3x22 þ β1β3x24 þ β2β3x24 − β3β4x23−β3β4x24 þ 2α1α2β3β4 − 2α1α4β2β3

−2α2α4β1β3 þ 2β1β2β3β4� þ g14g24ðA13A23 þ B13B23Þ½−x22x21 − x23x
2
4−α1α2x21 þ α2α3x21 þ α2α4x21 − α1α2x22

þα1α3x22 þ α1α3x24 þ α2α3x24 þ α1α4x22þα1α4x23 þ α2α4x23 − α3α4x23 − α3α4x24þβ1β2x21 − β2β4x21 þ β1β2x22 − β1β4x22

−β1β4x23 − β2β4x23 þ 2α1α3β2β4þ2α2α3β1β4 − 2α3α4β1β2 − 2α1α2α3α4�; ðA5Þ

Y1 ¼ g14g24A13A23½ðα2 − α3Þðα1 − α4Þ
þ ðβ2 þ β3Þðβ4 − β1Þ�
þ g14g24B13B23½ðα2 − α3Þðα1 − α4Þ
− ðβ2 − β3Þðβ1 − β4Þ�; ðA6Þ

Y2 ¼ Y1j1↔2; ðA7Þ

Y3 ¼ g14g24ðA13A23 þ B13B23Þ: ðA8Þ

In Eq. (31c),

X0
0;1;2 ¼ X0;1;2j1↔2: ðA9Þ

APPENDIX B: TRANSFORMING EQ. (20c)

It is convenient to introduce the dimensionless variables

xj ¼
pj
mM

; x ¼ q
mM

¼ x3 − x1; x0 ¼ q0

mM
¼ x3 − x2:

ðB1Þ

Similarly, we introduce xmin;max ¼ qmin;max=mM that can be
expressed in terms of xj ¼ jxjj ¼ pFj=mM. The non-
weighted angular integral Eq. (20b) can be written in a
dimensionless form A ¼ A=m3

M with

A ¼ 2ð2πÞ3Q
jxj

ðxmax − xminÞΘðxmax − xminÞ: ðB2Þ

Substituting hjM12→34j2i from Eq. (29) and DM from
Eq. (36) into Eq. (20c), we find

J ¼ G2
Fm

4
πðX0J0 þ X1J1 þ X2J2

þ X0
0J

0
0 þ X0

1J
0
1 þ X0

2J
0
2

þ Y0J3 þ Y1J4 þ Y2J04 þ Y3J5Þ: ðB3Þ

The dimensionless functions Jkðx1; x2; x3; x4Þ, k ¼ 1…5,
are the following,

Jk ¼
1

A

Z Y
j

dΩj
x2k

ðx2 þ 1Þ2 δðx1 þ x2 − x3 − x4Þ

¼ Θðxmax − xminÞ
xmax − xmin

Z
xmax

xmin

dx
x2k

ðx2 þ 1Þ2 ; ðB4Þ

for k ¼ 0, 1, 2,

J3 ¼
1

A

Z Y
j

dΩj
δðx1 þ x2 − x3 − x4Þ
ðx2 þ 1Þðx02 þ 1Þ

¼ Θðxmax − xminÞ
xmax − xmin

Z
xmax

xmin

dx

ðx2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21ðxÞ − t22ðxÞ

p
ðB5Þ

J4 ¼
1

A

Z Y
j

dΩj
x2δðx1 þ x2 − x3 − x4Þ

ðx2 þ 1Þðx02 þ 1Þ

¼ Θðxmax − xminÞ
xmax − xmin

Z
xmax

xmin

x2dx

ðx2 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21ðxÞ − t22ðxÞ

p ;

ðB6Þ

J5 ¼
1

A

Z Y
j

dΩj
x2x02δðx1 þ x2 − x3 − x4Þ

ðx2 þ 1Þðx02 þ 1Þ

¼ J3 þ
Θðxmax − xminÞ
xmax − xmin

Z
xmax

xmin

dx

 
x2

x2 þ 1

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t21ðxÞ − t22ðxÞ
p

!
; ðB7Þ

where we use notation of Ref. [45],

t1 ¼ x21 þ x22 − x2 þ 1 − 2x3x4 cos θ1 cos θ2; ðB8Þ

t2 ¼ 2x3x4 sin θ1 sin θ2; ðB9Þ

with

cos θ1 ¼
x23 − x21 þ x2

2x3x
; ðB10Þ
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cos θ2 ¼
x22 − x24 − x2

2x4x
: ðB11Þ

For the “exchange” integrals, we have

J0k ¼ Jkjx1↔x2 ðB12Þ

for k ¼ 0, 1, 2, 4, that corresponds to x → x0 within the
integrals (J0k ¼ Jk for k ¼ 3, 5). Substituting Eq. (B3) into
Eq. (22), we immediately obtain Eq. (37).

Reduction of multidimensional integrals to their one-
dimensional forms is performed according to the standard
technique; see, e.g., Refs. [33,44,45]. The identities

1 ¼
Z

d3xδðxþ x3 − x1Þ; x0 ¼ xþ x1 − x2 ðB13Þ

are helpful [45]. The one-dimensional integrals in the right-
hand sides of Eqs. (B4)–(B7) could be simply evaluated,
both numerically and analytically. One can find analytic
results in Refs. [44,45].
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