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A deep exploration of the parameter space that relates the interacting equation of state with the bag
constant B, and the interaction parameter a, is fundamental for the construction of diverse models of quark
stars. In particular, the anisotropy of quark stars with a well-motivated quantum chromodynamics (QCD)
equation of state is presented here. The contribution of the fourth order corrections parameter (a4) of the
QCD perturbation on the radial and tangential pressure generate significant effects on the mass-radius
relation and the stability of the quark star. An adequate set of solutions for several values of the bag factor
and the interaction parameter are used in order to calculate the relation between the mass, radius, density,
compactness, and consequently the maximum masses and the stability. Therefore, while the more
interactive quark solution leads to higher masses, the weak interaction among quarks gives solutions similar
to the widely known MIT bag model.
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I. INTRODUCTION

Anisotropy of compact objects [1,2] is one of the main
topics that have been studied in several astrophysical
systems like boson stars [3], gravastars [4] and neutron
stars [5]. Essentially, the anisotropy is presented as the
difference between the radial and the tangential pressure
ðP − P⊥Þ in the hydrostatic equilibrium equation which is
obtained solving the Einstein field equations for the interior
of the star.
The ongoing knowledge about anisotropy could not have

been possible without the statements settled by previous
studies. For example, Ruderman [6] theoretically showed
that anisotropic effects could arise in stellar models, where
nuclear matter reaches densities larger than 1015 g=cm3 due
to the interactions that at this level are relativistic. Likewise,
phase transitions [7,8] between the inner core and the outer
crust occur when the matter goes to a superfluid and
superconductive state, generating significant changes in the
interior of a star. Also, the pion phase configuration [1,9],
and solid state configurations at densities of 1014–1015

orders of magnitude [10,11], and in other cases strong
magnetic fields [12,13] may produce anisotropies with

observable consequences. These and other mechanisms
producing anisotropies can be found in [14], and in the
recent publication [1].
In order to measure the possible anisotropic effects,

compact objects like neutron stars are taken as astrophysi-
cal laboratories to check how they are affected by this
phenomenon. In a pioneering work by Bowers and Liang
[15], the Einstein field equations for anisotropic spheres
and incompressible matter were solved, and the effects of
the anisotropy in the resulting maximum mass and red shift
were discussed. Afterwards, Cosenza et al. [16] presented a
set of solutions with anisotropic sources based on known
solutions for an isotropic matter. Later, numerical solutions
[2] exhibited a good agreement with the mass-radius
relations, but also calculated the upper limit mass of a
stable neutron star by taking an arbitrarily high value of the
anisotropy [5].
Motivated by the current achievements in order to

understand the processes that produce anisotropies, and
the advances in nuclear physics that have shown the
behavior of matter in the outer layers of a neutron star
interior at certain densities, and in spite of the lack of
knowledge about matter interactions at higher densities
than the saturation nuclear matter density value, many
theories have suggested that the neutron star core has exotic
[17] constituents like hyperons, kaon condensates, or a
deconfined phase of strange matter. Other theories suggest
[18] the existence of hybrid stars made of hadronic matter
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mixed with quarks and a core purely made of quarks.
However, quark stars (QS) can be generated by different
processes, for instance, a core collapse after a supernova
explosion [19], where the conversion of ordinary matter to
quark matter in a deconfined core [20,21] takes place.
Other theories advocate for phase transitions that occur as
consequence of the mass accretion in a low mass x-ray
binary system [22]. Therefore, there is no reason to ignore
the existence of another type of compact objects apart from
neutron stars.
The usual equation of state (EOS) utilized to obtain

solutions for quark stars is the well-known MIT bag model
[23,24] since it seems to be adequate to describe the
behavior of matter that is not governed by gravity but
instead by the strong nuclear force. However, this EOS is
not sufficiently powerful to characterize a system with
interacting quarks or more complex structures. It is to
expect that interactions among quarks must generate
changes at the interior of the shell generating anisotropies
that change the mass-radius relation and the gravitational
redshift. Therefore, this also suggests that the equation of
state can be constrained by considering the anisotropies
at its interior produced by the mechanisms previously
mentioned. So, in order to model anisotropic quark stars,
several methods have been proposed. In [25], the
anisotropy is modeled by taking two different expressions
for the pressure; while the radial pressure is written as a
lineal EOS, the tangential pressure is taken as a complex
expression dependent on the radial coordinate. As a result
this model yields to a mass-radius relation that exhibits
values up to 3 M⊙. On the other hand, a different approach
given by a deterministic model [20] used the MIT bag EOS;
for this case observational evidence that contemplates the
existence of strange stars is considered in order to make an
interpolation function of the massmðrÞ, where the obtained
solutions are in agreement with Buchdahl model, which is
explained with more detail in [26]. Another complementary
work for the anisotropy of nonrotating strange stars and its
effect in the usual physical observables is calculated in
[27]; its aim is to test the stability of the model with a
generalization of the Tolman-Oppenheimer-Volkoff (TOV)
equation using the Herrera’s cracking concept [28].
Meanwhile, other models are focused on the attempt to
find a singularity-free solution of the Einstein equations
[29,30] through the MIT bag model to obtain the mass-
radius relation for different values of the bag constant.
Additionally, in [29] the authors took the density profile
given in [25] and addressed their computations to obtain
the total mass of the quark star. In this case, a general
expression for the TOV equation was calculated; the
stability of the system was evaluated with the Herrera’s
cracking concept, while the energy condition was satisfied.
Another method [30] suggested a new model that uses the

homotopy perturbation method, in order to find a solution
for spherically symmetric quark stars whose results were
compared with quark star candidates like CenX-3, VelaX-1
[31], 4U1820 − 30 [32], J1903þ 0327 [33], 4U1820 − 30

[34], and PSRJ1614 − 2230 [35].
It is clear that following the current knowledge on the

neutron stars and their layers, one should not discard the
existence of more exotic objects, and although compact
objects appear to be isotropic and homogeneous from the
observations, it is impossible to think that their interiors
are perfectly arranged to be considered as isotropic, since
the nuclear phenomena that occur in the crust and the core
are highly intense, generating anisotropies and conse-
quently producing changes on the mass-radius relation,
as we see henceforth. In Sec. II a QCD motivated EOS is
introduced and the Tolman-Oppenheimer-Volkoff equations
are obtained. In Sec. III the numerical details to obtain the
mass-radius relation and the full set of solutions presented in
Secs. IVandVare explained.Finally, thehighlight results and
further research are proposed in Sec. VI.

II. THE MODEL

A. Quark matter equation of state

In spite of the fact that strange stars have not been directly
observed yet, there are some candidates [17,36,37] that
could fit the EOS associated with this type of object. Those
candidates seem not to adjust their masses and radius to
the neutron stars models, but by means of a semiempi-
rical relation that calculates the strength of the mag-
netic field of a pulsar [37], a range for the mass-radius
relation is obtained giving a good description of strange star
composers. Awidely accepted quark star model is the MIT
bag model that characterizes a degenerated Fermi gas of
quarks up, down and strange [23,24,38,39]. This is the
simplest and more frequently used form to illustrate the
interior as a quark star [23]. Nevertheless, quark stars are not
such simple objects that only depend on the bag constant B;
indeed, this led to the construction of several models based
on quantum chromodynamics (QCD) corrections of second
and fourth order with the aim of giving an approximate
characterization of confined quarks, like that presented in
[40]. This model not only includes the interactions among
quarks, but also suggests the possibility of the existence of
new matter states analogous to the superconductivity state
Bardeen, Cooper, and Schrieffer (BCS), that is, a phase
known as the colour flavor locked phase (CFL).
Following the EOS mentioned above [40], we consider

homogeneously confined matter inside the star with three-
flavor neutral charge and a fixed strange quark mass ms.
But for simplicity, the superconductivity generated in the
CFL phase is not taken into account; thus the EOS reduces
to the expression [41]
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where ϵ is the energy density of the homogeneously
distributed quark matter, the quark strange mass is ms ¼
100 MeV [42], and B is the bag constant whose values run
between B > 57 MeV=fm3 and B < 92 MeV=fm3, which
are determined by the stability condition with respect to
iron nuclei for two-flavor and the three-flavor quark matter
respectively. This implies that strange quark matter is
absolutely stable for a range of energy densities of
57 < B < 92 MeV=fm3 [38]. Finally, a4 is the parameter
that comes from the QCD corrections on the pressure of
the quark-free Fermi sea; this parameter is related to the
maximum mass of the star with values of ≈2 M⊙ for
a4 ≈ 0.7 [43].

B. Tolman-Oppenheimer-Volkoff equations

Let us consider an anisotropic fluid and a spherically
symmetric spacetime, whose line element is given in terms
of the components of the metric gαβ by

ds2 ¼ −c2α2dt2 þ
�

1 −
2Gm
c2r

�

−1
dr2 þ r2dΩ; ð2Þ

where α ¼ αðrÞ, m ¼ mðrÞ, dΩ ¼ dθ2 þ sin2 θdϕ2, G is
the gravitational constant and c is the speed of light. The
energy momentum tensor can be written as [44,45]

Tαβ ¼ ðϵþ P⊥Þuαuβ þ P⊥gαβ þ ðP − P⊥Þnαnβ; ð3Þ

where P is the radial pressure and P⊥ is the tangential
pressure. We propose a new generalized EOS for the
tangential pressure
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with Pc and ϵc being the radial pressure (1) and the energy
density, respectively, at the center of the star. From this
expression it can be seen that the radial and tangential

pressures are the same at r ¼ 0, i.e., when B⊥ ¼ B and
a⊥4 ¼ a this yields to P⊥ ¼ Pc, which represents the case of
an isotropic fluid. This also is a condition satisfied by the
central energy density and the energy density at the center.
Meanwhile for the rest of the star, as it can be inferred from
the Tolman-Oppenheimer-Volkoff equation, if the tangen-
tial and the radial pressure are equal, the expression
corresponding to the pressure will have contributions only
from the first term. It is worth mentioning that B⊥ and a⊥4
parameters are the contributions on the tangential compo-
nent of the pressure, and run in the same range of values
as B and a4.
On the other hand, uαuα ¼ −1 and nαnα ¼ 1 such that

uα ¼
�

1

cα
; 0; 0; 0

�

; ð5Þ

nα ¼
�

0;

�
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2Gm
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�

1=2
; 0; 0

�

: ð6Þ

By solving the Einstein field equations and matter equa-
tions, a general expression for an anisotropic spherically
symmetric compact star is obtained,
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¼ 4πr2ϵ; ð7Þ
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Notice that the Eq. (8) is the only one that contains the
contribution of the radial and tangential pressure by the
difference P − P⊥.

III. NUMERICAL DETAILS

The numerical calculations presented in this paper were
carried out by using the CAFE astrophysical code [46]. All
the simulations are computed using a fourth order Runge-
Kutta integrator in a one-dimensional spherical grid, which
extends from r ¼ 0 to the outer domain boundary,
rmax ¼ 100. It is worth mentioning that for all the models
here considered the radii of the stars are inside rmax. In all
the simulations presented, we use a uniform spatial grid
with spatial resolution Δr ¼ 0.01. In order to avoid the
singular behavior at r ¼ 0, we follow the procedure shown
in [47], in which a Taylor expansion is made around this
point. The resulting approximate regular equations are
programmed for at least the first mesh point located at
r ¼ Δr, being Δr the uniform spatial resolution of the grid.
On the other hand, the radius R of the surface of the star is
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defined as the radius r ¼ R, where the pressure PðRÞ ¼
1 × 10−30 which is an adimensional value.
Finally, for calculating the maximum masses and their

corresponding radii, we have solved the TOVequations for
several values of a⊥4 and B⊥. Specifically the values of a⊥4
range from a⊥4 ¼ 0.07 to a⊥4 ¼ 1with an interval of 0.0092,
while the values of B⊥ from B ¼ B⊥ ¼ 57 MeV=fm3 to
B ¼ B⊥ ¼ 92 MeV=fm3 with an interval of 0.35. For each
couple of fixed a⊥4 and B⊥ we vary the central energy
density from 1.7ϵn to 3.3ϵn with an interval of 0.003ϵn,
being ϵn ¼ 2.4 × 1014 g=cm3. These density values guar-
antee the typical central pressures of quark star candidates;
for example, if the central pressure is calculated for B ¼
57 MeV=fm3 and a4 ¼ 0.7 with 1.7ϵn, then ϵc ¼ 4.56 ×
1014 g=cm3 and therefore Pc ¼ 6.369 × 1033 din=cm2. On
the other hand, if the central density is 3.3ϵn then
Pc ¼ 1.03114 × 1035 din=cm2. This shows that, as the
central density is increased, the results obtained here are
in agreement with the typical values of central pressures
(≈1035 din=cm2) obtained for the strange star candidates
presented in [48].
In summary, we have 100 values for the parameters a⊥4

and B⊥ and 1000 values for the central energy density, so in
total, we have performed to the order of 107 numerical
simulations. The numerical simulations were carried out by
using geometrized units; see Appendix.

IV. MASS-RADIUS RELATION OF
AN ANISOTROPIC QUARK STAR

The mass-radius relation for spherically symmetric
anisotropic quark star solutions was calculated for the case
where the difference in the hydrostatic equation between
the tangential and the radial pressure is nonzero. From
Eqs. (1) and (4) the anisotropy occurs at the level of the
tangential component of the pressure due to the spherical
symmetry, so the radial composers a4 and B are being fixed,
while the tangential a⊥4 and B⊥ are varied.
The first solution for the anisotropic quark star is

displayed in Fig. 1 presenting the mass-radius relation
where the bag constant is set to B ¼ 92 MeV=fm3. The
parameters a4 ¼ a⊥4 ¼ 0.7 and B⊥ take several values that
cover a range among the isotropic solution [by taking the
solutions of the Tolman-Oppenheimer-Volkoff equations
given in Sec. II this reduces to the isotropic case when
ðP − P⊥Þ ¼ 0 in Eq. (8)], i.e., B⊥ ¼ 92 MeV=fm3, and the
smallest value that the bag parameter can take,
B⊥ ¼ 57 MeV=fm3. As it is expected, B⊥ do not produce
any significant effect with respect to the isotropic case and
all the solutions are overlapped in a unique curve.
Furthermore, these solutions fall in the gravitational
waves observation range 1.17 M⊙ < M < 1.6 M⊙ [49]
(green-blue region), and also in the upper limit mass
2.01 M⊙ < M < 2.16 M⊙ (beige region) recently found
in [50].

In Fig. 2(a) the domain of solutions is around the static
observational limit for neutron stars (beige region);
although the solutions do not exhibit a monotonic behavior,
the maximum mass of the solution with anisotropic factor
a⊥4 ¼ 0.2 fits with the observational restriction on the static
neutron star mass. One of the observational constraints on
this matter was found in [51]. In this case, the mass of
ð1.97� 0.04Þ M⊙ for the pulsar J1614 − 2230 was deter-
mined through the Shapiro delay. On the other hand, the
binary system composed by a white dwarf and the second
pulsar J0348þ 0432 provided the most precise calculated
mass of ð2.01� 0.04Þ M⊙ [52]. Thus, this pulsar with a
period of only 39.1226569017806ð5Þ ms (or f ≈ 26 Hz)
has given one more 2 M⊙ restriction, but also, the lower
bound of the mass value for the static limit. As a result, it is
possible to compare these pulsars and our results because
their rotation frequencies are below the 300 Hz, which
corresponds to the region where neutron stars are consid-
ered in the static limit regime [53].
By varying a⊥4 it is evident that the maximum mass and

radius increase their values up to approximately 15% and
4.5%, respectively. This is a crucial result because it is
possible to restrict the EOS for a fixed value of the bag
parameter. Notice that similar results are achieved for the
intermediate [see Fig. 2(b)] and upper limit [see Fig. 2(c)]
of B. On the other hand, for B ¼ B⊥ ¼ 77 MeV=fm3 the
anisotropic parameter a⊥4 ¼ 0.3 (green solid line) fits with
the observational mass for the pulsar J1903þ 0327;
moreover, the increment of the mass is approximate to
12% and the radius is around a 4.2%. Meanwhile, for
B ¼ B⊥ ¼ 92 MeV=fm3, most of the solutions are found
in the region corresponding to pulsars J1903þ 0327 and
J11441 − 6545. Such masses are in agreement with esti-
mations of gravitational waves from binary neutron star
observations [49].
Likewise, the mass-central density relation is plotted

in Fig. 3. It is evident that lowering the parameter a⊥4 ,

FIG. 1. Mass-radius relation for anisotropic quark stars with
a4 ¼ a⊥4 ¼ 0.7.
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the solutions tend to be more stable, even though they are
not monotonically growing. In the same way, as the
anisotropic factor is decreasing (i.e., the interactions
between quarks become stronger) the system is more

stable. Notice that the stability is also influenced by the
bag constant, in particular, for B ¼ B⊥ ¼ 57 MeV=fm3 a
saddle point seems to appear, although it does not happen
for B ¼ B⊥ ¼ 77 MeV=fm3 and B ¼ B⊥ ¼ 92 MeV=fm3.
In a word, the anisotropy stabilizes the quark star.
On the other hand, a profile of solutions that covers the

full range of values for a⊥4 and B⊥ is presented in Fig. 4.
Although it is clear that B do not generate anisotropies, it
has a significant influence on the maximum masses and
radius, since the increment of B ¼ B⊥ contributes to the
diminution of these two observables, similar to the out-
comes obtained for the isotropic case (cyan dashed line). It
is evident that for less interacting quarks the maximum
masses and their corresponding maximum radius have
larger values, but note that for highly interacting quarks
the maximum masses do not even reach the 2 M⊙ con-
straint. Equally important, there is a sector where the
solutions never reach solutions with a⊥4 ¼ 1.0; in fact,
for B⊥ below 72 MeV=fm3 there are no maximum masses
that reach the noninteracting quark limit. Certainly, this
may be considered a strong restriction for the EOS.
Another key point is the results obtained to roughly

describe the interior of quark stars candidates taking into
account the maximum mass and maximum radius obser-
vations (white solid lines). Due to this, it is possible to
determine how much the quarks interact by restricting B⊥,
a⊥4 , and a4 for a given maximummass and its corresponding
radius. Nevertheless, it is not clear how the anisotropy
mechanism is produced by a⊥4 .
Finally, in Table I, we present some of the values of

the maximum masses, the maximum energy densities,
and their corresponding radii for some values of the
parameters B, B⊥, a⊥4 and a4. Specifically, the presented
values correspond to the case when the parameters B and
B⊥ are equal and the anisotropy is determined by the
parameters a⊥4 and a4.

FIG. 3. Mass-density relation for the anisotropic quark star
where ρn ¼ 2.4 × 1014 g=cm3.

(a)

(b)

(c)

FIG. 2. Mass-radius curve for anisotropic quark stars for
(a) B⊥ ¼ 57, (b) B⊥ ¼ 77, and (c) B⊥ ¼ 92 MeV=fm3: The
mass constriction (beige region) [50] and the estimated mass from
gravitational waves (green-blue region) [49], respectively.
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V. BINDING ENERGY AND COMPACTNESS

At the quark star surface, the emission produced by the
photons is calculated through the gravitational redshift [54]

Zsurf ¼ ð1 − rg=RÞ−1=2 − 1; ð10Þ

where rg ¼ 2MG=c2, and R is the radius of the star.
A computation of the compactness leads to the redshift

value for the isotropic case which is compared with the
anisotropic solutions. Notice that the values of the gravi-
tational redshift for the EOS [Eq. (4)] can be predicted.

First, the isotropic and anisotropic maximum masses, and
their corresponding radius, are used to calculate the redshift
[Eq. (10)]. Since the compactness of a4 ¼ 1.0 and a4 ¼ 0.7
are similar, the redshift obtained for both cases is Za4¼1.0

surf ¼
0.462 and Za4¼0.7

surf ¼ 0.4643, respectively. In contrast,
Za4¼0.07
surf ¼ 0.5641 corresponds to the most interacting

quark matter and consequently the most compact quark
star modeled here. Then, this quantity is sketched for a
particular value of the bag parameter and a fixed a4 in
Fig. 5, while the perpendicular contribution of the
interacting term a⊥4 runs from 1.0 (blue solid line) to

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Maximum masses and their corresponding radii for the full range of values of a⊥4 and B⊥. The white lines are all QS in which
the maximum mass and radius has the same value, and the cyan colored lines are the isotropic cases (a4 ¼ a⊥4 ).
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0.07 (pink solid line). The comparison with respect to the
isotropic case a⊥4 ¼ 0.7 (brown solid line) shows that the
largest deviation of the compactness reaches up to a 14%.
Additionally, we checked that the behavior of the compact-
ness is essentially the same for all the allowed values
of B ¼ B⊥; i.e., this decreases as long as the quarks are
less confined.
On the other hand, the binding energy is explored for all

the permitted values of the bag constant and the interacting
parameter. It is evident from Fig. 6 that the binding energy
is larger for the lowest bag parameter B and small values of
anisotropic factor a⊥4 . We have observed that the binding
energy decreases monotonically, but also it is not linear
from a4 ¼ 0.9 to a4 ¼ 0.1. Although the difference is not
significantly large, the less interacting quarks have larger
binding energy.

VI. DISCUSSIONS AND CONCLUSIONS

From the EOS (1), it is clear that if the quark mass is 0,
this reduces to the MIT bag model. On the other hand, the

TABLE I. Physical values of the maximum masses, the
maximum energy densities, and their corresponding radii as a
function of B ¼ B⊥, and different configurations of a⊥4 with fixed
values of a4 ¼ 0.1, 0.5 and 0.9.

B ¼ B⊥
ðMeV=fm3Þ a4 a⊥4

Mmax
ðM⊙Þ

Rmax
(Km)

ϵmax

ðg=cm3Þ
57 0.1 0.08 1.75 9.68 2.61 × 1015

0.20 1.64 9.49 2.46 × 1015

0.50 1.57 9.34 2.45 × 1015

1.00 1.54 9.28 2.41 × 1015

77 0.5 0.08 1.80 9.24 3.26 × 1015

0.20 1.70 9.12 2.98 × 1015

0.50 1.64 9.04 2.86 × 1015

1.00 1.61 8.98 2.84 × 1015

92 0.9 0.08 1.69 8.60 3.94 × 1015

0.20 1.60 8.51 3.53 × 1015

0.50 1.55 8.42 3.45 × 1015

1.00 1.53 8.42 3.24 × 1015

FIG. 5. Compactness C of anisotropic QS with B ¼ 57.

(a)

(b)

(c)

FIG. 6. Binding energy profile for the full set of solutions of the
perpendicular component of the interacting parameter and the bag
parameter.
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corrections introduced by the coefficient a4 produce similar
results when there is no interaction among quark matter, but
this is not clear at first sight due to the fact that a4 [55] has a
parametrization that depends on the corrections of the
pressure of the free-quark Fermi sea. In consequence, this
leads to the condition that if a4 ¼ 1, then matter is made of
free noninteracting quarks. For values between 0 < a4 < 1
the quark interactions play a significant role because they
can increase the neutron star mass up to three times and this
can explain the importance of considering a strange or
exotic matter EOS in the neutron stars cores, supporting the
idea that quark stars may have masses (0.7 M⊙) smaller
than those currently calculated for neutron stars [38].
Furthermore, the values of the interaction parameter that
generate the observational constraint of 2 M⊙ are over
a4 ¼ 0.5, as it can be seen in the green-yellow region of
Figs. 6(a) and 6(b).
Considering only the simple MIT bag model to study the

anisotropy may be a naive approximation, since many
models agree with the idea of the existence of the
interacting matter in the strange and quark star interiors.
Generally speaking, the value of a⊥4 is a parameter
associated to the QCD of quark stars, but also is a cutoff
of for their maximum and minimum masses. Therefore,
these values can automatically restrict the quark star EOS
through the anisotropy for a given B constrained by the
range of energies at which it runs (57–92 MeV=fm3). In
particular, Fig. 6(c) represents the changes that occur when
a4 ¼ 0.1 is considered. Starting from the bottom of the plot,
the binding energy along the isotropic line (dashed brown)
that covers the values of the bag parameter from 57 to
92 MeV=fm3 is negligible. However, the anisotropy pro-
duced by the variation of a⊥4 generates small changes in the
binding energy which are represented by the right-hand
side column and whose values are shown explicitly on the
plot (solid white lines) as isobinding energies. On the other
hand, the binding energy associated to the bag parameter
B ¼ 92 MeV=fm3 has some significant changes. In this
case, the Ebin represented by the binding-energy isolines
variate from ≈0.17 to ≈0.20 throughout the several
solutions obtained for a4 ¼ 0.1, a4 ¼ 0.5 and a4 ¼ 0.9.
The results obtained above show that the effect of the bag

parameter on the anisotropy is negligible; this may be due
to the geometry of the stellar structure itself, because it is
restricted to be spherically symmetric and any change on B
does not affect this configuration. However, due to the
interactions of the interior components of the quark stars
being governed by the strong nuclear force, hence by the
value of the interaction parameter, the major contribution to
the anisotropy must come from a⊥4 . As a⊥4 becomes larger

the anisotropy produces less effect on the physical observ-
ables, since the quarks are almost free of interactions.
However, for smaller values of a⊥4 , the interaction among
quarks becomes larger; in consequence, the anisotropy
generates significant changes of up to 15% in the mass-
radius relation.
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APPENDIX

In order to use the adequate units for the calculations
presented here, we utilize geometrized units (G ¼ c ¼ 1)
[56] for the parameters of the equation of the state. Starting
with the expression that relates the geometrized pressure
and the c.g.s. units

Pcgs ¼ 5.55173 × 1038
�

M⊙

M

�

2

Pgeo;

and

1
MeV
fm3

¼ 1.602176565 × 1033
ergios
cm3

½¼� din
cm2

;

the conversion factor for the bag constant is given by

Bgeo ¼
�

1.60218 × 1033

5.55173 × 1038

�

B½MeV=fm3�:

Notice that the energy density ϵ has the same units as
the bag constant. Additionally the mass of the quark
strange is

msgeo ¼
�

1

5.55173 × 1038

�

mscgs :
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