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It is demonstrated that the generic four-dimensional Taub-Newman-Unti-Tamburino (Taub-NUT)
spacetimes can be perfectly described in terms of three or four different kinds of thermodynamic hairs:
the Komar mass (M ¼ m), the “angular momentum” (Jn ¼ mn), the gravitomagnetic charge (N ¼ n),
and/or the dual (magnetic) mass (M̃ ¼ n). In other words, the NUT charge is a thermodynamic multihair
which means that it simultaneously has both rotation-like and electromagnetic charge-like characteristics;
this is in sharp contrast with the previous knowledge that it has only one physical feature, or that it is purely
a single solution parameter. To arrive at this novel result, we put forward a simple, systematic way to
investigate the consistent thermodynamic first law and Bekenstein-Smarr mass formulas of all four-
dimensional spacetimes that contain a nonzero NUT charge, facilitated by first deriving a meaningful
Christodoulou-Ruffini-type squared-mass formula. In this way, not only can the elegant Bekenstein-
Hawking one-quarter area-entropy relation be naturally restored in the Lorentzian and Euclidian sectors of
generic Taub-NUT-type spacetimes without imposing any constraint condition, but also the physical
meaning of the NUT parameter as a poly-facet can be completely clarified in the thermodynamic sense for
the first time.
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I. INTRODUCTION

Ever since the seminal work of Bekenstein [1] and
Hawking [2], it has been well known that the (Bekenstein-
Hawking) entropy of a black hole is proportional to the area
of the horizon and its Hawking temperature to the surface
gravity at the horizon. In terms of the natural unit system,
the relations between them are simply given by

S ¼ A=4; T ¼ κ=ð2πÞ: ð1Þ

The four laws of black hole thermodynamics were also
found for asymptotically flat and anti–de Sitter (AdS) black
holes. In particular, the differential first law and the integral
Bekenstein-Smarr mass formula in the D ¼ 4 asymptoti-
cally flat case read [3,4]

dM ¼ TdSþΩdJ þΦdQþ � � � ;
M ¼ 2TSþ 2ΩJ þΦQþ � � � : ð2Þ

It is remarkable that these mass formulas provide the
more elaborate relationship between the global conserved
charges (M, J,Q, etc.) measured at infinity and the horizon
temperature, entropy, and other quantities (Ω, Φ) which are
evaluated at the horizon but relative to infinity. When a
negative cosmological constant is included for the anti–
de Sitter case, the above mass formulas (2) should include
a modified term ðþVdP;−2VPÞ, respectively, where V is
the thermodynamic volume conjugate to the pressure P ¼
3g2=ð8πÞ with g being the inverse of the cosmological
radius.
What is more, a Christodoulou-Ruffini-type squared-

mass formula was found to be [5,6]

M2 ¼ π

4S

�
S
π
þQ2

�
2

þ πJ2

S
ð3Þ

for the Kerr-Newman black hole, and was later generalized
to the Kerr-Newman-AdS4 case [7]. It should be mentioned
that the first law in Eq. (2) can be simply deduced [8] via
differentiating the squared-mass formula (3) with respect
to all of its thermodynamic variables, and then the
Bekenstein-Smarr mass formula can be easily verified.
Recently, the thermodynamics of accelerating (charged

and rotating) AdS4 black holes [9] was discussed in
Refs. [10–13] where all of the above formulas (1)–(3)
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were extended to this kind of spacetimes which belong to
the class of double-black-hole solutions with one black
hole’s event horizon becoming the Rindler horizon.
However, it still seems to be a great exception to

asymptotically locally flat spacetimes that are endowed
with a nonzero NUT charge in general relativity. Until
now, no consistent thermodynamic formula similar to the
above-mentioned relations (1)–(3) has been fully and
satisfactorily found for this class of spacetimes in both
the Lorentzian and Euclidian sectors, even for the simplest
Taub-NUT spacetime [14,15]. As far as the first law (2) is
concerned, to the authors’ best knowledge, the differential
mass formulas for the NUT-charged spacetimes that
appeared in Refs. [16–24] are either inconsistent (here
“inconsistent” means that the thermodynamic quantities
cannot constitute the ordinary conjugate pairs) or even are
false. (Nevertheless, it should be noted that consistent mass
formulas for the Demianski-Newman “black hole” were
already conjectured in Ref. [25] without any “derivation”
almost two decades ago!)
In some recent attempts [26–30], the so-called “consis-

tent thermodynamical first law” was pursued for the
Lorentzian Taub-NUT-type spacetimes. However, these
formulas could not really represent the actual first law
from our viewpoint, since the imported ψ̄-N pair (which
was later called the “Misner gravitational charge”) does not
possess the conventional characteristics of global charges
that are measured at infinity; rather, it combines the
contributions of the Misner strings at the horizon, contrary
to common wisdom. Recently, this thermodynamic pair
were alternatively explained in Ref. [31] as the angular
velocity and angular momentum of the Misner strings,
rather than being interpreted as the temperature and entropy
as in Ref. [27], since this will seriously challenge the zeroth
law of black hole thermodynamics. According to common
sense, it is hardly believable that for a static axisymmetric
Taub-NUT-type spacetime, the temperatures (or surface
gravities) at the north and south poles are different from
those at the remaining part of the event horizon. If such an
interpretation [27] is true, then the horizon must be a
nonequilibrium system for a stationary black hole, thus
violating the well-established zeroth law.
In this paper, based upon a previously unpublished talk

[32], we put forward a simple, systematic routine to
investigate the thermodynamics of the four-dimensional
spacetimes with a nonzero NUT charge by first deriving
a meaningful Christodoulou-Ruffini-type squared-mass
formula, where a new “angular momentum” Jn ¼ mn is
additionally introduced as an extra conserved charge.
Starting from this squared-mass formula, we derive a
consistent first law and Bekenstein-Smarr mass formula
for the NUT-charged spacetimes just like the usual black
holes, without assuming that the famous one-quarter area-
entropy relation should hold true in order to get a consistent
thermodynamic first law. In this way, we show that the

NUT charge is a thermodynamic multihair, which means
that it simultaneously has both rotation-like and electro-
magnetic charge-like characteristics. The novelty of this
new viewpoint is that it can plausibly explain many of the
peculiar properties of the NUT-charged spacetime, such as
why the NUT parameter has so many different names and
why there are different interpretations of the physical
source of Taub-NUT-type spacetimes.

II. THE LORENTZIAN TAUB-NUT GEOMETRY

To begin with, let us first recapitulate some known basic
facts of the four-dimensional Taub-NUT metric in the
Lorentzian sector [15]. We adopt the following line element
in which the Misner strings [33] are symmetrically dis-
tributed along the polar axis:

ds2 ¼ −
fðrÞ

r2 þ n2
ðdtþ 2n cos θdϕÞ2 þ r2 þ n2

fðrÞ dr2

þ ðr2 þ n2Þðdθ2 þ sin2θdϕ2Þ; ð4Þ

where fðrÞ ¼ r2 − 2mr − n2.
The spacetime (4) has many peculiar properties that are

mainly due to the presence of wire/line singularities at the
polar axis (θ ¼ 0; π), which are often called Misner strings.
Misner [33] proposed removing these singularities (so as
to ensure the metric’s regularity) by introducing a time-
periodical identification condition: β ¼ 8πn. Then, the
unavoidable presence of closed timelike curves led him
[34] to declare that the NUT parameter is unphysical and
the Taub-NUT spacetime is “a counter example to almost
anything” in general relativity. The evil consequence is that
the dominant community does not usually consider Taub-
NUT-type spacetimes to be black holes (although some-
times they were called “black holes” in some low-level
articles).
In the following, we will derive various mass formulas

of four-dimensional Taub-NUT-type spacetimes without
imposing the time-periodicity condition, as was done in
Refs. [26,28,30,31,35–38]. We will also keep the Misner
strings symmetrically present at the polar axis and only care
about the conical singularities where fðrÞ ¼ 0, correspond-
ing to the outer and inner horizons located at rh ¼ r� ¼
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
. Below, we will focus on the (exterior)

event horizon; however, the discussions are also true for the
interior (Cauchy) horizon.
The area and surface gravity at the horizon are easily

computed via the standard method as

Ah ¼ 4πðr2h þ n2Þ; κ ¼ f0ðrhÞ
2ðr2h þ n2Þ ¼

rh −m
r2h þ n2

¼ 1

2rh
:

ð5Þ
As for the global conserved charges, the well-known

Komar mass at infinity related to the timelike Killing
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vector ∂t and the NUT charge or gravitational magnetic
(gravitomagnetic) charge [39] can be computed, respec-
tively, as M ¼ m and N ¼ n [40,41]. Its horizon mass
[41,42] reads Mh ¼ rh −m. On the other hand, one can
also determine the dual or magnetic-type mass [43–46] as
M̃ ¼ n≡ N. It is clear that one cannot distinguish the
dual or magnetic-type mass from the gravitomagnetic
charge in the present case; however, they will be signifi-
cantly different from each other in the case where a nonzero
cosmological constant is included.

III. NEW CHARGE Jn =mn AND
SQUARED-MASS FORMULA

In order to derive a reasonable first law, we follow
the method used in Ref. [8] to deduce a meaningful
Christodoulou-Ruffini-type squared-mass formula which
is the starting point of our work. Introducing the “reduced
horizon area” Ah ¼ Ah=ð4πÞ as in Ref. [8] just for the sake
of simplicity,

Ah ¼ r2h þ n2 ¼ 2mrh þ 2n2; ð6Þ

and shifting the 2n2 term to the left-hand side and squaring
the obtained formula, we get the identity

ðAh − 2n2Þ2 ¼ 4m2r2h ¼ 4m2Ah − 4m2n2: ð7Þ

Using only M ¼ m and N ¼ n as the conserved charges
would lead to the squared-mass formula that appeared in
Ref. [47], 4M2 ¼ ðAh − 2N2Þ2=ðAh − N2Þ, which will
give rise to inconsistent versions [16–24] of the first law
and integral mass formula. Then, nothing new would take
place and the story would end.
On the contrary, suppose we introduce a new quantity

that is closely analogous to the angular momentum J ¼ ma
of the Kerr(-Newman) black hole and is given by

Jn ¼ mn: ð8Þ

Then, we obtain a new squared-mass formula that is almost
completely analogous to that of a Kerr-type black hole
presented in Ref. [6],

M2 ¼ 1

4Ah
ðAh − 2N2Þ2 þ J2n

Ah
¼ Ah

4
þ J2n þ N4

Ah
− N2;

ð9Þ

which forms the basis of our work.
As shown in Ref. [48], the fact that Jn ¼ mn≡M5

corresponds to the mass of a five-dimensional gravitational
magnetic monopole means that it is very natural to consider
it as a conserved charge, at least from the viewpoint of five
dimensions. There are also a lot of reasons to support such
an idea. For example, it explains the gyromagnetic ratio

[49,50] of Kerr-Taub-NUT-type spacetimes. Furthermore,
not only is it related to the gravitational action [51,52] of
the four-dimensional Taub-NUT-type spacetimes, but it
also possesses the general feature of angular momentum
[37,38,53]. Recently, it was included in Ref. [30] to
get a consistent first law for the Lorentzian Taub-NUT
spacetimes.
It should be pointed out that our identification of

Jn ¼ mn as a new “conserved charge” is the only input
of our procedure. In the following, the complete set of
conserved charges for the Taub-NUT spacetime that we
will work with is M ¼ m, N ¼ n, and Jn ¼ mn.

IV. DERIVATION OF DIFFERENTIAL AND
INTEGRAL MASS FORMULAS

Now, as in Ref. [8], we can view the mass as an implicit
function M ¼ MðAh; Jn; NÞ, and after differentiating the
squared-mass formula (9) (multiplied by 4Ah) with respect
to its variables we get a new reasonable differential mass
formula,

dM ¼ ðκ=2ÞdAh þ ωhdJn þ ψhdN; ð10Þ

where

κ ¼ 2
∂M
∂Ah

����
Jn;N

¼ Ah − 2N2 − 2M2

2MAh
¼ rh −m

r2h þ n2
;

ωh ¼
∂M
∂Jn

����
Ah;N

¼ Jn
MAh

¼ n
r2h þ n2

;

ψh ¼
∂M
∂N

����
Ah;Jn

¼ −NðAh − 2N2Þ
MAh

¼ −2nrh
r2h þ n2

:

Then, it is easy to verify directly that the Bekenstein-Smarr
integral mass formula is completely satisfied,

M ¼ κAh þ 2ωhJn þ ψhN; ð11Þ

after using the horizon equation fðrhÞ≡ r2h − 2mrh −
n2 ¼ 0.
Comparing our new mass formulas presented in

Eqs. (9)–(11) with the standard ones (2)–(3), it makes
sense to make the familiar identifications

T ¼ κ=ð2πÞ; S ¼ πAh ¼ A=4; ð12Þ

which restore the famous Bekenstein-Hawking one-quarter
area-entropy relation in a very simple manner. It is quite
remarkable that one should assign a geometric entropy to
the Taub-NUT spacetime, which is just one quarter of its
horizon area. In the above “derivation” we did not require
that the relations (12) should hold true ahead to get a
reasonable first law, rather it is a very natural result via the
above thermodynamic deduction.
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It is remarkable that, unlike some recent attempts
[26–31], our fist law (10) and the Bekenstein-Smarr mass
formula (11) attain their traditional forms which relate the
global conserved charges (M;N; Jn) measured at infinity to
those quantities (T; S;ψh;ωh) evaluated at the horizon. At
this step, it is quite reasonable to infer that all four laws of
the usual black hole thermodynamics are applicable to the
Taub-NUT spacetime, which should no longer bear the bad
reputation of being “a counter example to almost anything.”
It is now time to formally call it a genuine black hole, at
least as far as its thermodynamics are considered.

V. IMPACT OF MISNER STRINGS

Without attempting to endow each of the Misner strings
with an entropy (and thus also a temperature), we can see
that each string attached at the south and north poles carries
the same amount of rotation-like and electromagnetic-like
energies. The total contribution of both strings to the
differential and integral mass formulas (10)–(11) is a
cumulative effect that consists of two terms that can be
rewritten, respectively, as follows:

ωhdJnþψhdN¼n2dmþnðm−2rhÞdn
r2hþn2

≡−
1

2n
d

�
n3

rh

�
≡1

n
dJn−

1

2n
dðnrhÞ; ð13Þ

2ωhJn þ ψhN ¼ 2n2ðm − rhÞ
r2h þ n2

¼ −n2

rh
¼ 2m − rh

≡ −2
1

2n

�
n3

rh

�
≡ 2

Jn
n
− 2

nrh
2n

: ð14Þ

This explains why recent efforts to formulate a “consistent
thermodynamic first law” that is mathematically consistent
were only partially successful [26,30]. Clearly, neither
the potential ψ̄ ¼ 1=ð4nÞ introduced in Ref. [26] nor the
angular velocity (1=n or 1=ð2nÞ) proposed in Refs. [30,31]
has a well-defined limit when the NUT charge vanishes.
Furthermore, the charges n3=rh and nrh in Refs. [26,30] do
not really have the general characteristics of a globally
conserved charge; rather, they must be some quantities
related to the horizon. On the contrary, no such fatal defect
exists in the present work, which smoothly reduces to the
Schwarzschild case.

VI. ANALYTICAL CONTINUATION TO THE
EUCLIDEAN SECTOR

The Euclidean sector [40,54,55] is obtained via the Wick
rotation t ¼ iτ and n ¼ iN. Now fðrÞ ¼ r2 − 2Mrþ N2,
with M ¼ m. We will work with the generic values of the
solution parameters (M, N), neither introducing the time-
periodic identification condition β ¼ 8πN nor imposing
any constraint condition on the solution parameters.

The horizons are located at rH ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − N2

p
,

which are determined by fðrHÞ ¼ 0. The event horizon
area is AH ¼ 4πAH, where AH ¼ r2H −N2 ¼ 2MrH − 2N2,
and its surface gravity is easily evaluated as

κ ¼ f0ðrhÞ
2AH

¼ rH −M
r2H − N2

¼ 1

2rH
: ð15Þ

After introducing a conserved quantity JN ¼ MN as
before, we arrive at a squared-mass formula

M2 ¼ ðAH þ 2N2Þ2 − 4J2N
4AH

: ð16Þ

Similar to the Lorentzian case, one can deduce the
following differential and integral mass formulas:

dM ¼ ðκ=2ÞdAH þ ωHdJN þ ψHdN;

M ¼ κAH þ 2ωHJN þ ψHN; ð17Þ

where κ ¼ ðrH −MÞ=AH, ψH ¼ 2NrH=AH, and ωH ¼
−N=AH.
It is natural to suggest that one should identify a

geometric entropy with S ¼ AH=4 ¼ πAH and the
Hawking temperature via T ¼ κ=ð2πÞ, so that a fairly
satisfactory relation also holds true for the thermodynamics
of the Euclidean Taub-NUT solution with the generic
parameters (M;N), which can be roughly interpreted
as a spinning Misner string with angular momentum
JN ¼ MN and gravitomagnetic charge N.
Now, let us impose the periodic condition β ¼ 8πN ¼

2π=κ and discuss the nut and bolt cases, separately. A self-
dual Taub-NUT solution is the special case when M ¼ N,
with a nut at rH ¼ N with zero horizon area (AH ¼ 0) and
surface gravity κ ¼ ∂r½ðr − NÞ=ðrþ NÞ�jr¼N=2 ¼ 1=ð4NÞ.
In this case, both ωH and ψH become infinite; however, the
compositions

ωHdJN þ ψHdN ¼ dN ≡ dM;

2ωHJN þ ψHN ¼ N ≡M ð18Þ

remain finite. [For example, one can let rH ¼ N þ ε and
then take the ε → 0 limit. Note that when this limit is
applied to Eq. (15), an additional factor of 1=2 should be
multiplied to get the correct value κ ¼ 1=ð4NÞ for the
surface gravity.] The contribution of the Misner strings to
the nut solution is N2=rH ¼ N.
In contrast, the regular bolt solution is obtained when

M ¼ 5N=4. In this case, the horizon is located at rH ¼ 2N,
and the other quantities are κ ¼ 1=ð4NÞ, AH ¼ 3N2,
ωH ¼ −1=ð3NÞ, JN ¼ 5N2=4, and ψH ¼ 4=3, so it is easy
to show that
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ωHdJN þ ψHdN ¼ dN=2≡M − ðκ=2ÞdAH;

2ωHJN þ ψHN ¼ N=2≡M − κAH; ð19Þ

which shows that the contribution of the Misner strings to
the bolt solution is N2=rH ¼ N=2.
Since the bolt and nut solutions are matched with the

identical surface gravity κ ¼ 1=ð4NÞ, their mass difference
is ΔM ¼ 5N=4 − N ¼ N=4, while their reduced area
difference is ΔAH ¼ 3πN2. Thus, the contribution of the
Misner strings is ΔM − κΔAH ¼ N=4 − 3N=4 ¼ −N=2,
which coincides with the total contribution of the Misner
strings N=2 − N ¼ −N=2.
One can understand that the entropy obtained by

Hawking et al. [40,54,55] and Mann [56] is a (generalized)
relative entropy, which is computed for the bolt solution
with respect to the reference background, namely, the
self-dual nut solution.

VII. ADDING A NONZERO NEGATIVE
COSMOLOGICAL CONSTANT AND

ELECTRIC CHARGE

Now we can extend the above work to the Lorentzian
Reissner-Nordström-Taub-NUT-AdS4 spacetime with a
nonzero cosmological constant and a pure electric charge.
The metric is still given by Eq. (4) with the parameters
(m; n) replaced by (M;N), and now fðrÞ ¼ r2 − 2Mr−
N2 þQ2 þ g2ðr4 þ 6N2r2 − 3N4Þ. In addition, the electro-
magnetic gauge potential one-form is

A ¼ Qr
r2 þ N2

ðdtþ 2N cos θdϕÞ: ð20Þ

It is easy to compute the electric charge Q and gravito-
magnetic charge N of the spacetime, while its electric mass
M and dual (magnetic) mass [57] M̃ ¼ Nð1þ 4g2N2Þ,
which is different from the NUT charge now, can be
calculated using the conformal completion method.
The solution admits Killing horizons which are deter-

mined by fðrhÞ ¼ 0, where the electrostatic potential is
Φ ¼ Qrh=ðr2h þ N2Þ. The horizon area is Ah ¼ 4πAh and
the surface gravity is given by

κ ¼ f0ðrhÞ
2Ah

¼ rh −M þ 2g2ðr2h þ 3N2Þrh
Ah

; ð21Þ

where Ah¼ r2hþN2¼2Mrhþ2N2−Q2−g2ðr4hþ6N2r2h−
3N4Þ¼2Mrhþ2N2−Q2−g2ðA2

hþ4N2Ah−8N4Þ.
Now, after introducing JN ¼ MN, squaring the identity

2Mrh ¼ ð1þ 4g2N2ÞðAh − 2N2Þ þQ2 þ g2A2
h, and add-

ing a term 4M2N2 to it, we get

M2Ah ¼ J2N þ 1

4
½ð1þ 4g2N2ÞðAh − 2N2Þ þ g2A2

h þQ2�2;

which is nothing but the squared-mass formula

M2 ¼ 1

Ah

��
1þ 32π

3
PN2

�
ðAh − 2N2Þ þQ2 þ 8π

3
PA2

h

�
2

þ J2N
Ah

; ð22Þ

where P ¼ 3g2=ð8πÞ is the generalized pressure.
The differentiation of the mass formula (22) leads to the

first law

dM ¼ ðκ=2ÞdAh þ ωhdJN þ ψhdN þΦdQþ VdP;

ð23Þ

where

κ ¼ rh −M þ 2g2ðrh þ 3N2Þrh
Ah

; Φ ¼ Qrh
Ah

;

ψh ¼ 2Nrh
−1þ 2g2ðr2h − 3N2Þ

Ah
; ωh ¼

N
Ah

;

V ¼ 4πðr4h þ 6N2r2h − 3N4Þrh
3Ah

:

Then, we can directly verify that the Bekenstein-Smarr
mass formula

κAh þ 2ωhJn þ ψhN þΦQ − 2VP ¼ M ð24Þ

is completely satisfied. It is natural to recognize S ¼
Ah=4 ¼ πAh and T ¼ κ=ð2πÞ, so that the solution behaves
like a genuine black hole without violating the beautiful
one-quarter area/entropy law. In sharp contrast with
Refs. [26–30], here we neither insist that this law be
obeyed nor require that the first law and the integral mass
formula be consistent. This is a very natural product of the
pure thermodynamic deduction.
In the above, the derived conjugate thermodynamic

volume V is not equal to Ṽ ¼ 4πðr2h þ 3N2Þ=3 as
given in Refs. [26–29]. If one prefers to use such a
thermodynamic volume, then the dual (magnetic) mass
M̃ ¼ Nð1þ 4g2N2Þ can be further introduced as an addi-
tional conserved charge into the differential and integral
mass formulas:

dM ¼ ðκ=2ÞdAh þ ωhdJN þ fψhdN þ ζdM̃

þΦdQþ ṼdP;

M ¼ κAh þ 2ωhJn þ fψhN þ ζM̃ þΦQ − 2ṼP;

where

fψh ¼ −
2Nrh
Ah

− ð1 − 4g2N2Þζ; ζ ¼ rhðr2h − 3N2Þ
4NAh

;
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suggesting that the NUT charge is a thermodynamic trihair
rather than a bihair. We will not attempt to discuss the
thermodynamics of its Euclidean sector further [58,59].

VIII. EXTENSION TO THE KERR-NEWMAN-
TAUB-NUT SPACETIME

Finally, let us discuss the general case including a
nonzero rotation parameter but without a cosmological
constant. The line element of the Kerr-Newman-Taub-NUT
[60] or Demianski-Newman [45] spacetime with the
Misner strings symmetrically distributed along the rotation
axis and the electromagnetic one-form are

ds2 ¼ −
ΔðrÞ
Σ

½dtþ ð2N cos θ − asin2θÞdϕ�2 þ Σ
ΔðrÞ dr

2

þ Σdθ2 þ sin2θ
Σ

½adt − ðr2 þ a2 þ N2Þdϕ�2; ð25Þ

A ¼ Qr
Σ

½dtþ ð2N cos θ − asin2θÞdϕ�; ð26Þ

where Σ ¼ r2 þ ðN þ a cos θÞ2 and ΔðrÞ ¼ r2 þ a2 −
2Mr − N2 þQ2.
The global conserved charges for this spacetime are the

Komar mass M, angular momentum J ¼ Ma, electric
charge Q, and gravitomagnetic charge or dual (magnetic)
mass (both of which are identical to the NUT charge N).
The horizons are determined by ΔðrhÞ ¼ 0, which gives

rh ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2 −Q2 − a2

p
. The event horizon area

is Ah ¼ 4πAh, where Ah ¼ r2h þ a2 þ N2 ¼ 2Mrh þ
2N2 −Q2. At the horizon, the surface gravity, angular
velocity, and electrostatic potential can be evaluated via the
standard method as

κ ¼ Δ0ðrhÞ
2Ah

¼ rh −M
Ah

; Ω ¼ a
Ah

; Φ ¼ Qrh
Ah

: ð27Þ

Following the above procedure, we square the
identity 2Mrh ¼ Ah − 2N2 þQ2, and then after adding
4M2ða2 þ N2Þ to it, we can obtain the useful identity

4M2Ah ¼ 4J2 þ 4M2N2 þ ðAh − 2N2 þQ2Þ2;
which is exactly our squared-mass formula

M2 ¼ ðAh − 2N2 þQ2Þ2 þ 4J2N þ 4J2

4Ah
ð28Þ

if we introduce JN ¼ MN as a new conserved charge, as
before.
Differentiation of the above squared-mass formula (28)

yields the first law

dM ¼ ðκ=2ÞdAh þ ΩdJ þ ωhdJN þ ψhdN þΦdQ; ð29Þ
where ðκ;Ω;ΦÞ are given by Eq. (27) and

ωh ¼
N
Ah

; ψh ¼ −
2Nrh
Ah

: ð30Þ

One can verify that the integral mass formula

κAh þ 2ΩJ þ 2ωhJn þ ψhN þΦQ ¼ M ð31Þ

is completely satisfied. This completes the simple algebraic
derivation of the mass formulas conjectured in Ref. [25] for
the Demianski-Newman “black hole.”
The consistency of the above thermodynamic for-

malism suggests that one should restore the well-known
Bekenstein-Hawking area/entropy relation S ¼ Ah=4 ¼
πAh and Hawking temperature T ¼ κ=ð2πÞ, which means
that the whole class of NUT-charged spacetimes should be
viewed as generic black holes.

IX. CONCLUDING REMARKS

In this work we have presented a simple, systematic
way to naturally derive the thermodynamical first law and
Bekenstein-Smarr mass formula of four-dimensional Taub-
NUT-type spacetimes. This might be the most appropriate
candidate framework to address the longstanding problem
of the thermodynamics of both Lorentzian and Euclidean
Taub-NUT-type spacetimes with the generic parameters.
Not only can the beautiful Bekenstein-Hawking one-
quarter area-entropy relation be naturally restored, but also
all four laws of the usual black hole thermodynamics are
shown to be completely applicable to the Taub-NUT-type
spacetimes, without imposing any constraint condition.
Furthermore, the physical meaning of the NUT parameter
as a multihair has been clarified via its thermodynamics,
namely, it can explain for the first time why the NUT
parameter has so many different names and why there are
different interpretations of the physical source of Taub-
NUT-type spacetimes.
It would be suitable to think that our mass formulas

properly describe a thermodynamic system made up of the
horizon and two turning points (soliton and antisoliton pair
sitting at two south and north poles) rather than all of the
Misner strings, whose impacts can be coherently decom-
posed into two parts: rotation-like and electromagnetic
charge-like effects.
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