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Recently, it has been shown that in gauge theories amplitudes to any perturbation order can be obtained
by gluing together simple three-point on-shell amplitudes. These three-point amplitudes, in turn, are fixed
by locality and Lorentz invariance. This factorization into three-point on-shell amplitudes follows from the
Britto-Cachazo-Feng-Witten recursion relations and the Feynman-tree theorem. In an explicit example, that
is, the four-gluon amplitude with all plus helicities, we illustrate the method. In a conventional calculation,
this amplitude corresponds to one-loop box diagrams.
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I. INTRODUCTION

A milestone in the understanding of scattering ampli-
tudes are the Britto-Cachazo-Feng-Witten (BCFW) recur-
sion relations [1,2]: By an analytic continuation of the
external momenta, tree amplitudes factorize into elemen-
tary building blocks of three-point amplitudes in any gauge
theory or in gravity. All external particles as well as inner
lines are kept on shell, and gauge invariance is respected by
all subdiagrams. An impressive example are the n-gluon
scattering tree amplitudes, which require in calculations in
conventional Feynman diagrams, for instance, for n ¼ 5
the computation of 25 diagrams; for n ¼ 6, the number of
diagrams increases to 220. In the maximal helicity violation
(MHV) case, that is, with two external gluons i and j
carrying minus helicity and all others plus helicity, the
amplitude is notably simple:

Anð1þ;…; i−;…; j−;…; nþÞ ¼ hiji
h12ih23i…hn1i ; ð1:1Þ

as first conjectured by Parke and Taylor [3]. With the help
of the BCFW recursion relations, the amplitude (1.1) for
arbitrary n can be easily proven by complete induction; see,
for instance, Ref. [4]. However, even though the BCFW
recursion relations are very powerful, they are limited to
tree diagrams which, of course, form an unphysical subset
of diagrams to a certain perturbation order.

A lot of effort has been spent to extend the recursion
relations beyond the tree level, especially to the one-loop
order: It has been shown that any amplitude at the one-loop
order of a gauge theory can be written as a sum over a finite
basis of scalar integrals IðiÞm with rational coefficients cðiÞm
depending only on the outer momenta, withm ¼ 2; 3;…; D,
and D denoting the number of dimensions [5–9]:

A1-loop¼
X
i

cðiÞD IðiÞD þ
X
j

cðjÞD−1I
ðjÞ
D−1þ�� �þ

X
k

cðkÞ2 IðkÞ2 þR;

ð1:2Þ

and R denoting a rational term of the kinematic variables.
Obviously, the rational term does not have any branch cuts.
In the one-loop case, a basis of scalar integrals is known.
Applying cuts on both sides of Eq. (1.2), the left-hand side
represents products of tree amplitudes and can be calcu-
lated. On the right-hand side, the cut contributions can be
determined from the known expressions for the scalar
integrals. In particular, only those scalar integrals contrib-
ute which have the appropriate propagators. In this way, the

coefficients cðiÞm can be determined, that is, together with the
known scalar integrals, the amplitude. The cuts considered
are a generalization of the unitary Cutkosky cuts [10],
which correspond to Feynman diagrams cut into two
separate parts. Generalized cuts denote diagrams where
all possible propagator lines are cut, not necessarily
splitting the diagram into two parts. Unitary cuts provide
the discontinuities of a diagram, but, since the rational part
in Eq. (1.2) of the amplitude has no discontinuities in four
space-time dimensions, this part is not accessible by unitary
cuts. However, in N ¼ 1 and N ¼ 4 super Yang Mills
(SYM) models, it has been shown that also the rational
parts can be deduced by unitary cuts [5,7,11,12]. This
comes from the fact that in these supersymmetric theories
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the rational parts appear always together with logarithms
and polylogarithms carrying discontinuities. Another inter-
esting observation is that also in nonsupersymmetric theo-
ries the rational part can be determined by treating the
momenta not in 4 but, in general, D dimensions [13–15].
The generalized cut methods have been applied, for

instance, to the one-loop multigluon amplitudes [16–18].
Let us mention in this context the application of single
cuts in D dimensions, calculating the all plus helicity four-
and five-gluon amplitudes at one-loop order [19]. New
approaches to perform the double cuts have been revealed
in Ref. [20] based on Stokes’ theorem. In Ref. [21], it has
been shown that in SYM theories one-loop amplitudes
with arbitrary helicities of the external particles can be
derived from the corresponding maximally helicity-
violating amplitudes. With respect to single cuts, new
techniques have been developed in Ref. [22].
Let us mention the study [23] of the context of the

BCFW recursion relations with Veltman’s largest time
equation [24]. In Ref. [25], it has been shown that the
methods of the BCFW recursion relations can be applied to
one-loop amplitudes of special helicity configurations.
Feynman has shown decades ago that loops may be

opened recursively by the application of generalized cuts
[26,27]. Opening the loops means that propagators are
replaced by on-shell pairs of particles and antiparticles in
the forward limit. The loop integrations are turned into
phase-space integrations. The Feynman-tree theorem recur-
sively opens all loops: Any loop is expressed in terms of
generalized cut diagrams which reduce the loop order about
at least one unit. Iterative application opens all loops and
expresses the original Feynman diagram as a sum of tree
diagrams.
Many new aspects of the Feynman-tree theorem in

multiloop diagrams have been revealed [28–31]. In par-
ticular, it has been shown that only a subset of possible
generalized cuts contribute in multiloop diagrams.
Recently, it has been shown [32–34] that the application

of the Feynman-tree theorem followed by the BCFW
recursion allows one to factorize amplitudes at any loop
order in terms of elementary three-point amplitudes in
gauge theories. In general, an n-loop Feynman diagram is
turned into a set of tree diagrams after n iteration steps of
the Feynman-tree theorem. Eventually, arriving at a form
with all loops opened, the tree amplitudes can be factorized
by the BCFW recursion relations. In particular, the method
is not limited to a certain perturbation order, and gauge
invariance is respected by all subamplitudes.
The application of the Feynman-tree theorem followed

by the BCFW recursion relations can be reversed, and the
amplitudes be constructed by gluing together elementary
on-shell three-point amplitudes. Following the BCFW
recursion relations, the outer momenta have to be deformed,
that is, analytically continued, in order to keep internal
lines on shell without violating momentum conservation.

To a certain perturbation order, all possible tree diagrams
have to be considered. Following the Feynman-tree theo-
rem, in this process particle-antiparticle pairs in the forward
limit have to be taken into account. These pairs are
unobservable but contribute, in general, to the correspond-
ing perturbation order. Over the phase space of the unob-
servable particle pairs in the forward limit has to be
integrated. The singularities originating from the particles
in the forward limit can be regularized dimensionally.
Since the three-point scattering amplitudes follow, apart

from a coupling constant, from locality and little-group
scaling, this means that scattering amplitudes eventually
result from these first principles along with unitarity.
Moreover, every single contributing amplitude is mani-
festly gauge invariant. Let us note that in a gauge theory
like QCD the four-gluon vertex is redundant, since it
follows automatically from gluing together three-point
on-shell amplitudes.
We shall illustrate the method in an explicit example, the

one-loop four-gluon all plus helicity amplitude. We show
how we can express this loop amplitude in terms of three-
point on-shell amplitudes glued together. This amplitude
provides an excellent framework to study the methods, since
it is rather simple but reveals themain steps of the calculation.

II. GLUING TOGETHER ON-SHELL
SUBAMPLITUDES

We want to consider the all plus helicity four-gluon
amplitude A4ð1þ; 2þ; 3þ; 4þÞ. In a conventional Feynman
diagram calculation to lowest order, this amplitude follows
from a one-loop diagram. For a complex scalar (s)
circulating in the loop, this amplitude reads [13,35]

As;1-loop
4 ð1þ; 2þ; 3þ; 4þÞ ¼ i

ð4πÞ2−ϵ
½12�½34�
h12ih34i I4 ð2:1Þ

with

I4 ¼ −ið4πÞ2−ϵ
Z

d−2ϵμ
ð2πÞ−2ϵ μ

4

×
Z

d4l
ð2πÞ4

1

ðl21 − μ2Þðl22 − μ2Þðl23 − μ2Þðl24 − μ2Þ
¼ −

1

6
þOðϵÞ: ð2:2Þ

The propagator momenta in the loop are given by

l1 ¼ l; l2 ¼ l − p1; l3 ¼ l − p1 − p2;

l4 ¼ l − p1 − p2 − p3 ¼ lþ p4: ð2:3Þ

With respect to the Weyl spinors, we follow the notation
of the review in Ref. [4]. We shall now show how to
decompose this one-loop four-point Feynman diagram into
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basic building blocks of A3 on-shell subamplitudes. The
inversion of this procedure is then exactly the process of
gluing together elementary A3 on-shell amplitudes.
First, let us note that the all plus helicity tree amplitude

for n gluons vanishes:

Anð1þ; 2þ;…; nþÞ ¼ 0: ð2:4Þ

This can be seen, for instance, from the factorization via the
BCFW recursion relations eventually into three-point
amplitudes of the kind A3ð1þ; 2þ; 3þÞ which vanish, since
all gluons carry plus helicities. Because of momentum
conservation, the only nonvanishing three-point on-shell
amplitudes are the MHV or anti-MHV amplitudes with
complex momenta.
Therefore, nonvanishing four-gluon amplitudes can arise

only beyond the tree level. Furthermore, since there is no
counterterm available, which would be proportional to the
tree amplitude, there cannot appear divergences at the one-
loop order. The logarithms (respectively, polylogarithms)
appear with the singularities. Therefore, we expect the one-
loop amplitude to be a rational expression in the kinematic
variables.
Applying supersymmetric Ward identities, it has been

shown [14] that, in N ¼ 4 and N ¼ 1 SYM, the relation
(2.4) holds not only at the tree level, but to all orders in
perturbation theory. For instance, in N ¼ 4 SYM, the one-
loop gluon amplitude consists in one contribution with a
gluon (g, spin 1) in the loop, besides four Weyl fermions
(f, spin 1=2), as well as three complex scalars (s, spin 0):

AN¼4;1-loop
n ¼ Ag;1-loop

n þ 4Af;1-loop
n þ 3As;1-loop

n : ð2:5Þ

In contrast, inN ¼ 1 SYM, we have in the loop to consider
one gluon paired with one Weyl fermion:

AN¼1;1-loop
n ¼ Ag;1-loop

n þ Af;1-loop
n : ð2:6Þ

Since the four-gluon amplitudes vanish in N ¼ 4 and

N ¼1 SYM, that is, AN¼4;1-loop
4 ð1þ;2þ;3þ;4þÞ¼0 and

AN¼1;1-loop
4 ð1þ;2þ;3þ;4þÞ¼0, we arrive at the relations [14]

Ag;1-loop
4 ð1þ;2þ;3þ;4þÞ¼−Af;1-loop

4 ð1þ;2þ;3þ;4þÞ
¼As;1-loop

4 ð1þ;2þ;3þ;4þÞ: ð2:7Þ

Therefore, it suffices to focus on the calculation of the
amplitude corresponding to a complex scalar (s) in the loop.
Considering this loop diagram, we will encounter as
elementary building blocks the gluon-scalar-scalar on-shell
three-point amplitude. This amplitude is, apart from a
coupling constant, fixed by little group scaling and from
locality. For simplicity, we set the coupling constant to one.
Depending on the helicity of the gluon, these elementary
three-point amplitudes read (see, for instance, Refs. [36,37])

A3ð1;2þ;3Þ¼
hqj1j2�
hq2i ; A3ð1;2−;3Þ¼−

h2j1jq�
½q2� ð2:8Þ

with complex momenta 1 and 3 for the scalars and the
gluon with momentum 2 and q an arbitrary linearly
independent null vector. As we will see later with respect
to the BCFW recursion relations, it is convenient to choose
this vector q to be the shifted momentum of the opposite
side of the factorized amplitude.
We shall now show how the conventional Feynman

diagram can be factorized into the elementary three-point
amplitudes (2.8). We start considering the one-loop box
integral as a conventional Feynman diagram, and in a first
step we apply the Feynman-tree theorem [26,27]. The
Feynman-tree theorem, valid at any loop order and for
arbitrary dimensions D, reads, considering a loop of a
Feynman diagram with loop momentum l,

0 ¼
Z

dDl
ð2πÞD NðlÞ

Y
i

fGðiÞ
F ðl − p1 − � � � − pi−1Þ

− 2πδðþÞððl − p1 − � � � − pi−1Þ2 − μ2i Þg; ð2:9Þ

where GðiÞ
F ðpÞ ¼ i

p2−μ2iþiϵ is the ith propagator in the loop

and NðlÞ is the numerator depending on the details of
the model. From the expansion of the product on the
right-hand side of Eq. (2.9), we see that we can express
the original amplitude in terms of all different general-
ized cut diagrams. The generalized cuts are given by the
replacements of the propagators by −2π times the δðþÞ
distributions:

i
p2 − μ2 þ iϵ

→ −2πδðþÞðp2 − μ2Þ. ð2:10Þ

The cut, that is, the δðþÞ distribution, puts the momentum
originating from the propagator on shell. Iteratively, we
can open all the loops and archive a set of cut diagrams
which are all tree diagrams. Applying the Feynman-tree
theorem (2.9) to the one-loop four-gluon amplitude (2.1),
we get by one iteration step four single-cut diagrams, six
double-cut diagrams, four triple-cut diagrams, and one
quadruple-cut diagram. However, since the outer particles
are on shell, the quadruple cut and all triple cuts vanish
immediately, since they isolate at least one three-point
amplitude with real momenta. From the six double-cut
diagrams, only two survive as well as all four single-cut
diagrams. The double-cut diagrams which do not leave any
isolated on shell A3 amplitude are the horizontal and the
vertical cuts of the diagram. All not immediately vanishing
single and double cuts which arise from the Feynman-tree
theorem are shown in Fig. 1.
Since we are applying the Feynman tree theorem to a

one-loop Feynman diagram, there is only one recursion
step needed in order to get tree diagrams. In general, an
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n-loop Feynman diagram requires n recursion steps in
order to open all loops. The number of cut diagrams for a
loop with i propagators is 2i − 1. In general, only a subset
of these diagrams contributes; respectively, there are simple
relations among these diagrams, as we will explicitly see in
the amplitude considered here. Note that the double cuts
appearing on the right-hand side in Fig. 1 correspond to the
usual unitarity cuts, where the whole diagram is split into
two parts.
We see that all four single-cut diagrams are related by

changing cyclically 1 → 2 → 3 → 4 → 1. Similarly, the two
double-cut diagrams, that is, unitary cut diagrams, are related
by exchanging 2 ↔ 4. This, in terms of the Mandelstam
invariants s ¼ ðp1 þ p2Þ2 and t ¼ ðp2 þ p3Þ2, corresponds
to s ↔ t.
We work in the four-dimensional helicity scheme [35];

that is, the external momenta are kept four dimensional,
while the loop momenta are treated inD dimensions. As has
been shown, theD-dimensional momentum can be split into
its four l and ð−2ϵÞ μ components, that is, l → lþ μ. The
integration measure can, therefore, be replaced by dDl →
d−2ϵμd4l and the propagators in the amplitudes transform
as ðl − pÞ2 → ðl − pÞ2 − μ2. We get a four-dimensional
loop integration with an artificial mass parameter μ.
Let us start considering the two double-cut diagrams. As

we have argued above, from the six double-cut diagrams
we have four which vanish immediately, since they isolate
an on-shell three-point amplitude A3, vanishing for real
momenta. The remaining two are shown in Fig. 1 on the
right-hand side with the indicated unitary cuts, that is, in
our case, double cuts. As mentioned before, the two
double-cut diagrams are related by exchanges of outer
momenta. We therefore calculate only one of them, that is,
the diagram with the momenta l1 and l3 cut as shown in the
next-to-last diagram in Fig. 1, and get

A1-loop
4;cut13ð1þ; 2þ; 3þ; 4þÞ

¼
Z

d−2ϵμ
ð2πÞ−2ϵ

Z
d4l
ð2πÞ4 ð−2πÞδ

ðþÞðl21 − μ2Þð−2πÞ

× δðþÞðl23 − μ2ÞA4ð−l1; 1þ; 2þ; l3ÞA4ð−l3; 3þ; 4þ; l1Þ:
ð2:11Þ

Since we want to decompose the amplitude into its
elementary A3 building blocks, it remains to factorize
the four-point amplitudes which appear in the integrand.
In fact, these amplitudes are tree amplitudes, and, therefore,
we can apply the BCFW recursion relations. We consider a
general four-point amplitude of two gluons and two scalars,
where the two gluons carry plus helicities, that is,
A4ð1; 2þ; 3þ; 4Þ. We apply a ½2; 3i shift yielding with the
propagator momentum P ¼ p1 þ p2:

A4ð1; 2þ; 3þ; 4Þ ¼ A3ð2̂þ; 1;−P̂Þ
1

P2 − μ2
A3ðP̂; 3̂þ; 4Þ

¼ −
h3̂jP̂j2̂�
h3̂ 2̂i

1

P2 − μ2
h2̂j4j3̂�
h2̂ 3̂i

¼ μ2½23�
h23iðP2 − μ2Þ ; ð2:12Þ

where we used cyclicity of the amplitudes and have
plugged in the elementary three-point amplitude (2.8) with
convenient reference vectors.
We insert the factorization (2.12) into Eq. (2.11) and get

A1-loop
4;cut13ð1þ; 2þ; 3þ; 4þÞ

¼ ½12�½34�
h12ih34i

Z
d−2ϵμ
ð2πÞ−2ϵ μ

4

×
Z

d4l
ð2πÞ4

ð−2πÞδðþÞðl21 − μ2Þð−2πÞδðþÞðl23 − μ2Þ
ðl22 − μ2Þðl24 − μ2Þ :

ð2:13Þ

Writing the loop integral in terms of a double integral with a
four-dimensional delta distribution,

Z
d4l
ð2πÞ4 ¼

Z
d4l1
ð2πÞ4

d4l3
ð2πÞ4 ð2πÞ

4

× δð4Þðp1 þ p2 − l1 − l3Þ; ð2:14Þ

and performing the integrations over the energy compo-
nents of l1 and l3 with the help of the δðþÞ distributions, this
amplitude corresponds to a phase-space integral over two

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. The Feynman box diagram and its decomposition in terms of generalized cut diagrams. All other cut diagrams vanish, because
they isolate a vanishing on-shell subamplitude A3 with real momenta.
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unobservable pairs of particles. On the other hand, from the
Cutkosky cutting rules, this phase-space integral equals
twice the imaginary part of the corresponding box integral.
However, we know that the imaginary parts can originate
only from discontinuities of logarithms and polylogar-
ithms. Since the scalar box integral has to be a rational
function, we conclude that this integral vanishes.
The t channel double cut follows from exchanging

momenta 2 ↔ 4. Considering the kinematic factor, we
find frommomentum conservation ½12� ¼ h41i½12�=h41i ¼
−h4j1j2�=h41i ¼ h4j3j2�=h41i ¼ −h43i½32�=h41i, and sim-
ilarly we have ½34� ¼ −h21i½14�=h23i; that is, we have
cyclic invariance of the kinematic factor:

½12�½34�
h12ih34i ¼

½23�½41�
h23ih41i : ð2:15Þ

From this symmetry, we find that the two double-cut
integrals are equal; that is, both vanish.
We now want to compute the single-cut diagram with the

cut applied to the propagator l1 between the gluons 1 and 4
as shown in the first term on the right-hand side of the
equation in Fig. 1. All other single-cut diagrams follow
from cyclic permutations of the outer momenta. The
diagram with a single cut of the l1 propagator reads

A1-loop
4;cut1 ð1þ; 2þ; 3þ; 4þÞ

¼
Z

d−2ϵμ
ð2πÞ−2ϵ

Z
d4l
ð2πÞ4 ð−2πÞδ

ðþÞðl21 − μ2Þ

× A6ð−l1; 1þ; 2þ; 3þ; 4þ; l1Þ: ð2:16Þ

The tree amplitude in the integrand is a six-point amplitude
with one unobservable particle-antiparticle pair of complex
scalars besides four-gluons. The two complex scalars are in
the forward limit. We proceed decomposing this six-point
amplitude applying the BCFW recursion relations. Since
the propagators appear with the mass parameter μ, we have
to apply the recursion relations adopted to the massive case
[36]. We follow the calculation performed in Ref. [36],
where we here have the case of the two complex scalars in
the forward limit. Applying the BCFW recursion relations,
we have to sum over all possible factorizations, corre-
sponding to each propagator in turn on shell. We choose a

½1; 2i shift with only one nonvanishing contribution as
shown in Fig. 2. All other single cuts leave both shifted
momenta on one side of the BCFW factorization and,
therefore, vanish. We get

A6ð−l1;1þ;2þ;3þ;4þ; l1Þ

¼A3ð−l1; 1̂þ; l̂2Þ
1

l22−μ2
A5ð−l̂2; 2̂þ;3þ;4þ; l1Þ: ð2:17Þ

The ½1; 2i shift reads explicitly

j1̂� ¼ j1� þ zj2�; j2̂� ¼ j2�;
j2̂i ¼ j2i − zj1i; j1̂i ¼ j1i; ð2:18Þ

where the complex number z is given by

z ¼ l22 − μ2

h2jl2j1�
: ð2:19Þ

One of the amplitudes coming from the BCFW recursion
(2.17) is already an elementary three-point amplitude A3.
In a second recursion step, we factorize the five-point
amplitude A5ð1; 2þ; 3þ; 4þ; 5Þ, where we choose conven-
iently again a shift of the two neighboring gluons, that is,
a j2; 3i shift:

A5ð1; 2þ; 3þ; 4þ; 5Þ

¼ A3ð1; 2̂þ; P̂Þ
1

P2 − μ2
A4ð−P̂; 3̂þ; 4þ; 5Þ: ð2:20Þ

With another BCFW iteration step to factorize the four-
point amplitude with two complex scalars (2.12) into three-
point amplitudes, we get

A5ð1;2þ;3þ;4þ;5Þ¼μ2
h3̂j1j2̂�
h3̂ 2̂i

1

P2−μ2
1

ðp4þp5Þ2−μ2
½3̂4�
h3̂4i

¼ μ2

½ðp1þp2Þ2−μ2�½ðp5þp4Þ2−μ2�

×
½42�h21i½12�þ½43�h31i½12�

h23ih34i ð2:21Þ

1+ 2+ 4+3+

−l1 l1

l2 l3 l4 =

1̂+ 2̂+ 4+3+

−l1 l1

(a) (b)

FIG. 2. The single cut of the box diagram and its factorization. For a ½1; 2i shift, all other cut diagrams vanish, because they leave both
shifted momenta on one side of the propagator.
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and, in turn (see also Ref. [36]),

A6ð−l1; 1þ; 2þ; 3þ; 4þ; l1Þ

¼ μ4

ðl21 − μ2Þðl22 − μ2Þðl23 − μ2Þ
½12�½34�
h12ih34i : ð2:22Þ

We now plug this result into Eq. (2.16) and eventually get

A1-loop
4;cut1 ð1þ; 2þ; 3þ; 4þÞ

¼ ½12�½34�
h12ih34i

Z
d−2ϵμ
ð2πÞ−2ϵ μ

4

×
Z

d4l
ð2πÞ4

ð−2πÞδðþÞðl21 − μ2Þ
ðl22 − μ2Þðl23 − μ2Þðl24 − μ2Þ : ð2:23Þ

It remains to calculate the integral, where we conveniently
go back to D dimensions:

I ¼
Z

dDl
ð2πÞD

−2πδðþÞðl21Þ
ðl22 þ iϵÞðl23 þ iϵÞðl24 þ iϵÞ : ð2:24Þ

We compute this integral with the help of Schwinger
parameters (see also Ref. [31] for a similar computation):

i
xþ iϵ

→
Z

∞

0

daeiax; 2πδðxÞ →
Z

∞

−∞
daeiax; ð2:25Þ

and get, by integrating over the common Schwinger
parameter, over the parameter corresponding to the delta
distribution, and over the momentum l in D dimensions,

I¼−iπD=2

2ð2πÞDΓ
�
2−

D
2

�Z
∞

0

dα2dα3dα4

× ½sα3ðα2þα3þα4−1Þ− tα2α4− iϵ�ðD=2Þ−2 ð2:26Þ

with s ¼ 2p1p2 and t ¼ 2p2p3. With the substitution
α3 → α3α4, integration over α2, followed by α4, expansion
about D ¼ 4 dimensions, and integrating eventually over
α3, we get

I ¼ −i
32π2

1

6

�
s

sþ t
þ st
ðsþ tÞ2 log

�
s
−t

��
þOðD − 4Þ:

ð2:27Þ

The other single-cut diagrams follow from cyclic permu-
tations 1 → 2 → 3 → 4 → 1, and we see that we get two
equal contributions (2.27) and two contributions exchang-
ing s ↔ t. Hence, the kinematic factor exactly cancels in
the sum, and the final result we find for the amplitude is

As
4ð1þ; 2þ; 3þ; 4þÞ ¼

−i
16π2

1

6

½12�½34�
h12ih34i þOðϵÞ: ð2:28Þ

Applying the Feynman-tree theorem followed by the
BCFW recursion relations, we see that we can reproduce
the known result (2.1).

III. DISCUSSION

We have seen explicitly that the one-loop box diagram in
a conventional Feynman diagram calculation can be rep-
resented in terms of generalized cut diagrams. All triple and
quadruple cuts vanish immediately, since they isolate at
least one on-shell three-point amplitude with real momenta.
Subsequently applying the BCFW recursion relations, the
tree amplitudes factorize into elementary building blocks of
three-point amplitudes A3.
Reversing the order of the calculation, we can construct

the amplitude by gluing together three-point amplitudes.
The momenta can kept on shell by their analytic continu-
ation; that is, following the BCFW recursion relations,
whenever we glue together two on-shell subamplitudes,
we have to deform the outer momenta accordingly.
Conveniently, this can be done by the application of a
two-particle shift of two of the external momenta—one out
of each subamplitude. To a certain perturbation order, we
have to collect all possible constructions of glued on-shell
amplitudes. As we have seen in the decomposition, in many
cases we encounter vanishing contributions, for instance,
when we isolate three-point amplitudes with all gluons
carrying minus or plus helicities. To a certain perturbation
order, we also have to consider amplitudes with pairs of
outer particles in the forward limit, that is, particle-
antiparticle pairs with opposite momenta and opposite
quantum numbers. These pairs are unobservable, since
they represent vacuum states. Therefore, these contribu-
tions appear in a quite natural way. In the conventional
Feynman-diagram approach, these amplitudes correspond
to loop diagrams. Let us emphasize that the Feynman-tree
theorem is not limited to the one-loop order but holds to any
loop order. Therefore, we can apply the method of gluing
together elementary building blocks to any perturbation
order.
Let us note that, in general, the pairs of particles in the

forward limit give rise to singularities. However, perform-
ing the calculation of the amplitudes in general D dimen-
sions, we can regularize these singularities.
Some remarks to the gluing process are in order: To a

certain perturbation order, we consider all contributions
taking unobservable pairs of particles in the forward limit
into account. In principle, we may encounter contributions,
where we glue together subamplitudes which result in a
loop. However, this kind of loop is quite different from a
loop in the conventional Feynman-diagram approach. In the
amplitude approach, all outer and inner lines are on shell
in contrast to Feynman diagrams. As we can see, gluing
together tree diagrams to an on-shell loop diagram, we
cannot satisfy momentum conservation and on-shellness
simultaneously, and, therefore, these contributions vanish

M. MANIATIS PHYS. REV. D 100, 096022 (2019)

096022-6



naturally. We conclude that by gluing together elementary
amplitudes we can disregard any loops.

IV. CONCLUSION

The BCFW recursion relations factorize the tree ampli-
tude of gauge theories into elementary three-point on-shell
amplitudes which form the elementary building blocks.
These elementary building blocks, in turn, are, apart from a
coupling constant, fixed by little group scaling and locality.
Since we are considering color-ordered amplitudes, the
complete amplitudes, therefore, will depend also on the
gauge symmetry of the model.
If we first open the loops by iterative application of the

Feynman-tree theorem and then recursively apply the
BCFW recursion relations, we can factorize any amplitude
to any perturbation order into elementary three-point
amplitudes. Reversing the recursion relations, we can
construct amplitudes by gluing together on-shell three-
point amplitudes. To a certain perturbation order, we have
to consider amplitudes with additional pairs of particles and
antiparticles with opposite momenta and opposite quantum
numbers, that is, particle pairs in the forward limit
corresponding to unobservable vacuum states.
We have applied this method to the four-gluon amplitude

with all gluons carrying plus helicities to leading order.

This amplitude corresponds in a conventional calculation to
one-loop Feynman diagrams with scalars, fermions, and
gluons in the loop. By a hidden supersymmetry, all loop
contributions can be related to the contribution with a
complex scalar running in the loop. Gluing together three-
point amplitudes A3 to the fourth order in the coupling, we
have to consider up to four additional particle-antiparticle
pairs. However, all contributions with three or four particle-
antiparticle pairs vanish, because they isolate at least one
on-shell three-point amplitude with real momenta. We have
seen that, in the case of all plus amplitudes, also the
diagrams with two pairs in the forward limit vanish.
Eventually, we have computed the contributions with
one particle pair in the forward limit. In an explicit
calculation of these contributions, we have reproduced
the known result for the amplitude. Eventually, let us
emphasize that this calculation of a color-ordered ampli-
tude is based only on locality, little group scaling (that is,
Lorentz invariance), and unitarity.
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