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We estimate the beam-normal single-spin asymmetry in elastic lepton-proton scattering without
employing the ultrarelativistic approximation. Our calculation is relevant for analyses of muon scattering
at energies of a few hundred mega-electron-volts and below—when effects of the muon mass become
essential. At such energies, the transverse polarization of the muon beam is expected to contribute
significantly to the systematic uncertainty of precision measurements of elastic muon-proton scattering. We
evaluate such systematics using an example of the MUSE experiment at PSI. The muon asymmetry is
estimated at about 0.1% in kinematics of MUSE, and it is the largest for scattering into a backward
hemisphere.
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I. INTRODUCTION

In recent years, the proton form factor [1–3] and proton
radius [4–6] puzzles have brought significant experimental
[7–9] and theoretical interest [10–25] to studies of the two-
photon exchange (TPE) amplitude in elastic lepton-proton
(lp) scattering. As it turns out, the real (dispersive) part of
the TPE amplitude generates a correction to the Born cross
section of unpolarized electron-proton (e−p) scattering that
may be substantial enough to be possibly responsible for
the proton form factor puzzle [10,11,20,26,27]. Detailed
knowledge of the TPE amplitude is also required in order to
ensure an accurate extraction of the proton radius from
unpolarized lp scattering. Finally, TPE and TPE-like
(γZ box) contributions manifest themselves in the extrac-
tion of the proton’s weak charge from parity-violating e−p
scattering [28–31].
The TPE amplitude can be examined in polarized

lepton-nucleon (lN) scattering measurements by studying
either a beam- or target-normal single-spin asymmetry
(SSA) [32–34]. To leading order, a normal SSA arises
from the interference of the absorptive part of the TPE

contribution and that of the one-photon exchange [32,35].
A knowledge of the respective absorptive part, in its turn,
enables one to reconstruct the real part of TPE through the
use of dispersion relations [36–40].
The beam-normal SSA for the elastic scattering process

l↑N → lN, which we denote as Bl
y, is directly proportional

to both the QED coupling constant α and the lepton’s mass-
to-energy ratio (m=ε1). For this reason, one finds the beam-
normal SSA to be of order 10−6–10−5 for scattering of a
polarized electron beam of GeVenergy. An asymmetry of a
similar order can be observed in parity-violating electron-
nucleon scattering experiments [41–49]. Measurements of
the parity violating asymmetry (APV) involve a longitudi-
nally polarized electron beam and have been of significant
interest for decades, as they provide a high-precision test of
the Standard Model and enable one to extract a strange
quarks contribution to electromagnetic form factors of the
nucleon. The experimental apparatus used for measure-
ments of APV can easily be readjusted to perform, addi-
tionally, measurements of Be

y [50–56].
Unlike the beam-normal asymmetry, the target-normal

SSA for the elastic scattering process lN↑ → lN, which we
denote as AN

y , is not suppressed by the lepton helicity factor
m. For this reason, one expects AN

y to be of order 10−3–10−2

for an unpolarized electron beam of GeV energy scattered
by a polarized nucleon. To date, only one experiment
reported a nonzero AN

y : the target-normal SSA on a neutron
(An

y) extracted from quasielastic electron scattering on a
polarized 3He [57].
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The greatest challenge in providing theoretical predic-
tions for both AN

y and Bl
y is, in general, the dependence of

the TPE amplitude on the choice of parametrization for the
intermediate hadronic state in the TPE loop. Briefly, in
order to evaluate the absorptive part of TPE, one usually
employs the unitarity property of the scattering matrix and
relates the absorptive part to the sum of all possible
physical (on-mass-shell) intermediate states. At that point,
it is common to separate intermediate elastic and inelastic
excitations of the target. The elastic contribution can be
evaluated analytically in terms of electromagnetic form
factors of the nucleon. A parametrization of the inelastic
contribution is model dependent, and there is no universal
theoretical framework valid at all kinematics.
The first normal SSA predictions that included the

inelastic excitation of the nucleon were obtained by De
Rujula et al. in Refs. [32,58]. Since then, a number of
models that provide parametrizations of the TPE inelastic
contribution for various kinematical settings have been
developed [12,33,34,59–63]. These models give predic-
tions for AN

y and/or Bl
y and are characterized by a common

feature—an assumption that the incoming lepton is moving
ultrarelativistically (ε1 ≫ m). The assumption is perfectly
justified for a subpercent measurement of electron scatter-
ing at electron energy ε1 ≳ 50 MeV. However, whenever
elastic muon-proton (μ−p) scattering is considered at beam
energy up to a giga-electron-volt, the use of the ultra-
relativistic (UR) approximation cannot be vindicated in
experiments performed with a subpercent accuracy.
In this paper we generalize the existing theoretical

framework for the description of the beam-normal SSA
in elastic lp scattering by not resorting to the UR
approximation. Such a generalization is necessary in light
of rapid development of muon beams, which have recently
found wide use in many areas of science [64], including
nuclear and hadronic physics. Because of the muon-
electron mass difference, one expects Bμ

y to be ∼0.5% at
muon beam energy of 150 MeV. This means that effects
due to transverse polarization of the muon (or antimuon)
beam are substantial enough to be taken into consideration
in respective precision measurements of elastic μ�p
scattering.
Our calculation of both Be

y and B
μ
y accounts for the elastic

intermediate contribution in the TPE loop and can be used
in analyses of elastic ep and μp scattering measurements
that are performed below the pion production threshold. We
study the relevance of the lepton mass on the respective
SSA, and our results are presented in the kinematics of the
future MUon Scattering Experiment (MUSE) [65,66] at
PSI. Muon beams at PSI are produced though weak
decays of charged pions, meaning that muons are spin
polarized along their motion. Because of the precession of
the spin in the beam transport line, muons develop a
transverse polarization component. For this reason, our
results for Bμ

y may be used to estimate additional systematic

corrections to MUSE measurements coming from polari-
zation of muons. Besides this, we provide analytical
expressions that may be employed for a model-dependent
calculation of the inelastic contribution to Bl

y for lepton-
proton scattering above the pion production threshold.

II. ELASTIC LEPTON-PROTON SCATTERING
WITH TRANSVERSELY POLARIZED BEAM

Let us consider an elastic scattering of a transversely
polarized lepton beam from an unpolarized proton target.
The polarization vector S⃗ of the incoming beam is oriented
perpendicular to its three-momentum k⃗1 and is normalized
to 1, jS⃗j ¼ 1. Our choice of a laboratory coordinate system
is shown in Fig. 1, where k⃗2 is the three-momentum of the
outgoing lepton, θ is the scattering angle, and ϕ is the angle
between the scattering plane (xz) and S⃗. The differential
cross section for the respective scattering process turns out
to be dependent on ϕ and can be written as [67]

dσTðϕÞ ¼ dσU þ S⃗ · ðk⃗1 × k⃗2Þ
jk⃗1 × k⃗2j

dσy

¼ dσU þ dσy sinϕ; ð1Þ

where dσU represents the differential cross section of
unpolarized scattering and dσy represents the differential
cross section of polarized scattering with the beam polar-
ized along the normal to the lepton scattering plane (S⃗kŷ).
Because of the ϕ dependence of dσT , one may introduce a
beam-transverse SSA

Bl
TðϕÞ ¼

dσTðϕÞ − dσTðϕþ πÞ
dσTðϕÞ þ dσTðϕþ πÞ ¼ Bl

y sinϕ; ð2Þ

where Bl
y ≡ dσy=dσU is the beam-normal SSA, correspond-

ing to BTðϕ ¼ π
2
Þ. Equation (1) may now be rewritten as

dσTðϕÞ ¼ dσUð1þ Bl
y sinϕÞ: ð3Þ

FIG. 1. Coordinate system used to define the transverse
asymmetry in elastic lp scattering process.
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The importance of the beam-transverse SSA for an
analysis of unpolarized μ�p scattering can be understood
if one considers the way μ� are produced and delivered to
the target. In particle physics, muon and antimuon beams
are usually obtained from decays of charged pions: π− →
μ− þ ν̄μ and πþ → μþ þ νμ. The charged pions, in their
turn, are produced in collisions of protons with a fixed
nuclear target. Because of the pseudoscalar nature of π�
[68] and left-handedness (right-handedness) of νμ (ν̄μ),
conservation of angular momentum prescribes that μ− (μþ),
originated from respective decays of π− (πþ), are 100%
longitudinally polarized. Usually, before the muon (anti-
muon) beam is delivered to the target, it goes through an
intricate system of external magnetic fields, in which the
beam’s polarization vector is subject to a precession by
the angle that is unknown. As a result of the precession, the
spin three-vector of the polarized beam picks up a trans-
verse component as relative to its motion. The transverse
component, as it can be seen from Eq. (3), contributes to the
observed cross section. In order to minimize the uncertainty
due to the respective component of polarization of the beam
in unpolarized μ�p scattering, it is required to register
scattering events with ϕ-symmetric detectors. Practically,
this is not always the case (left-right detectors are not
completely symmetric). As a result, effects due to the
polarization of the incoming muon (antimuon) contribute to
the systematic uncertainty of the measurement. Our cal-
culation of Bl

y provides means for an estimation of the
respective uncertainty in elastic and unpolarized l�p
scattering.

III. BEAM-NORMAL SSA IN ELASTIC
LEPTON-PROTON SCATTERING

Consider the following elastic lp scattering process:

lðk1; SlÞ þ pðp1; SpÞ → lðk2; S0lÞ þ pðp2; S0pÞ; ð4Þ

one- and two-photon exchange diagrams for which are
shown in Fig. 2. In order to provide invariant expressions,
we use the standard set of Mandelstam variables

s ¼ ðk1 þ p1Þ2; t ¼ ðk1 − k2Þ2 ≡ −Q2;

u ¼ ðk1 − p2Þ2: ð5Þ

The absorptive part of the TPE diagram, Fig. 2(b), is
characterized by the intermediate lepton state with the four-
momentum K (K2 ¼ m2) and the intermediate hadronic
state X with the four-momentum P. The invariant mass
squaredW2 of the hadronic state is given by P2 ¼ W2. The
squares of four-momenta of virtual photons in the TPE loop
are given by

q21 ¼ ðk1 − KÞ2 ¼ ðP − p1Þ2 ≡ −Q2
1;

q22 ¼ ðk2 − KÞ2 ¼ ðP − p2Þ2 ≡ −Q2
2: ð6Þ

The beam-normal single-spin asymmetry in elastic lp
scattering is defined as

Bl
y ≡ dσy − dσ−y

dσy þ dσ−y
; ð7Þ

where dσy (dσ−y) denotes the differential cross section for
the unpolarized proton target and for the polarized lepton
with the polarization vector oriented parallel (antiparallel)
to the normal (ŷ) to the lepton scattering plane. The
respective normal four-vector spin of the incoming lepton
is given by

Sμl ¼
1

Ns
εμνρσpν

1k
ρ
1k

σ
2; ð8Þ

where the normalization constantNs is introduced to satisfy
the condition S2l ¼ −1. For scattering of massive leptons

Ns ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2½ðM2 − sÞ2 − sQ2 − 2m2ðM2 þ sÞ þm4�

q
: ð9Þ

Following the derivation of Ref. [32] and applying it to the
case of the beam polarized normally to the lepton scattering
plane, one can find

Bl
y ¼

ImðPS0p;S0l;Sp
T�
1γ · Abs½T2γ�ÞP

S0p;S0l;Sp
jT1γj2

; ð10Þ

where T1γ and T2γ denote the respective one- and two-
photon exchange amplitudes.

IV. ONE- AND TWO-PHOTON EXCHANGE
CONTRIBUTIONS

The one-photon exchange amplitude, shown in Fig. 2(a)
and contributing to the asymmetry in Eq. (10), is given by

T1γ ¼
e2

Q2
ūðk2; S0lÞγμuðk1; SlÞŪðp2; S0pÞΓμUðp1; SpÞ: ð11Þ

The on-shell proton vertex Γμ is defined as

ΓμðQ2Þ ¼ ½F1ðQ2Þ þ F2ðQ2Þ�γμ −
ðp1 þ p2Þμ

2M
F2ðQ2Þ;

ð12Þ

(a) (b)

FIG. 2. One- and two-photon exchange diagrams for elastic
lepton-proton scattering.
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where F1 and F2 are the Dirac and Pauli form factors.
These form factors are related to the electric GE and
magnetic GM Sachs form factors via

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4M2
F2ðQ2Þ;

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð13Þ

In our calculations of the beam-normal SSA we will use
Kelly’s parametrization [69] for GE and GM.
In the one-photon exchange approximation, the differ-

ential cross section for the unpolarized scattering process
(lp → lp) is identical to that with transversely polarized
beam (l↑p → lp). As a result, one may find that the square
of the amplitude in the denominator of Eq. (10), summed
over final and averaged over initial target spins, is given by

1

2

X
S0p;S0l;Sp

jT1γj2 ¼
64π2α2

Q4
Dðs;Q2Þ; ð14Þ

with

Dðs;Q2Þ≡ 1

4
ððs − uÞ2 −Q2ð4M2 þQ2ÞÞ

�
F2
1 þ

Q2

4M2
F2
2

�

þ 1

2
Q2ðQ2 − 2m2ÞðF1 þ F2Þ2

¼ ððs −m2Þ2 þM4 − ðs −m2Þð2M2 þQ2ÞÞ

×

�
F2
1 þ

Q2

4M2
F2
2

�

þ 1

2
Q2ðQ2 − 2m2ÞðF1 þ F2Þ2: ð15Þ

The absorptive part of the TPE amplitude, which
contributes to the numerator in Eq. (10), can be evaluated
by calculating the discontinuity of Fig. 2(b). It is convenient
to perform such an evaluation in the center-of-mass (c.m.)
system, so that

Abs½T2γ� ¼ e4
ZZZ

d3K⃗�

ð2πÞ32ξ�
Wαβðp2; S0p;p1; SpÞ

Q2
1Q

2
2

× ūðk2; S0lÞγαð=K þmÞγβuðk1; SlÞ; ð16Þ

where ξ� and K⃗� are the c.m. energy and three-momentum
of the intermediate lepton, correspondingly.1 In addition,
the TPE hadronic tensor Wαβðp2; S0p;p1; SpÞ is defined as

Wαβðp2;S0p;p1;SpÞ≡
X
X

hp2;S0pjJ†αð0ÞjXihXjJβð0Þjp1;Spi

×ð2πÞ4δ4ðp1þq1−PÞ; ð17Þ

where the sum goes over all possible on-shell intermediate
hadronic states X. It is convenient to relate the TPE
hadronic tensor to an operator Ŵαβ in spin space, defined
as [70]

Wαβðp2; S0p;p1; SpÞ≡ Ūðp2; S0pÞŴαβðp2; p1ÞUðp1; SpÞ:
ð18Þ

The absorptive part of the TPE amplitude in Eq. (17) can
now be written as

Abs½T2γ� ¼ e4
ZZZ

d3K⃗�

ð2πÞ32ξ�
Ūðp2; S0pÞŴαβUðp1; SpÞ

Q2
1Q

2
2

× ūðk2; S0lÞγαð=K þmÞγβuðk1; SlÞ: ð19Þ
We should note here that the tensor Ŵαβ, defined as in
Eq. (18), corresponds to the absorptive part of the doubly
virtual Compton scattering (VVCS) tensor Tαβ,

Ŵαβ ¼ Abs½Tαβ� ¼ 2Im½Tαβ�: ð20Þ

V. BEAM-NORMAL SINGLE-SPIN
ASYMMETRY CALCULATION

The beam-normal SSA, Eq. (10), can be obtained by
combining Eqs. (11), (14), and (19),

Bl
yðs;Q2Þ ¼ αQ2

8π2Dðs;Q2Þ
ZZZ

d3K⃗�

2ξ�
ImðLμαβHμαβÞ

Q2
1Q

2
2

;

ð21Þ
where the leptonic Lμαβ and hadronic Hμαβ tensors are
defined as

Lμαβ ≡X
S0l

ū ðk1; SlÞγμuðk2; S0lÞ

× ūðk2; S0lÞγαð=K þmÞγβuðk1; SlÞ

¼ 1

2
Tr½ð=k1 þmÞð1 − γ5=SlÞγμð=k2 þmÞγαð=K þmÞγβ�;

ð22Þ

Hμαβ ≡ 1

2

X
S0p;Sp

Ū ðp1; SpÞΓμUðp2; S0pÞ

× Ūðp2; S0pÞŴαβUðp1; SpÞ

¼ 1

2
Tr½ð=p1 þMÞΓμð=p2 þMÞŴαβ�: ð23Þ

A Lorentz-invariant form for Eq. (21) can be derived by
employing results of Appendix A and Appendix B. Using

1In our notations, all c.m. frame variables bear an asterisk
symbol and correspond to analogous laboratory frame variables
not bearing this symbol. A detailed description of the c.m. system
that we work in is given in the Appendix A.
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the notations defined there, the intermediate photon phase
space integration variables can be rewritten as

Z jK⃗�
maxj

0

djK⃗�j ¼ −
Z ð ffiffi

s
p

−mÞ2

M2

dW2

2
ffiffiffi
s

p Λsðm2;W2Þ
λsðm2;W2Þ ;ZZ

dΩK� ¼ 2

Z
1

−1
d cos θ�1

Z
π

0

dϕ�
1

¼ 2

J
4s2

λ2sðm2;M2Þλ2sðm2;W2Þ

×
Z

Q2
1max

Q2
1min

dQ2
1

Z
Q2

2max

Q2
2min

dQ2
2; ð24Þ

where

jK⃗�
maxj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþm2 −M2Þ2

4s
−m2

r
; ð25Þ

and Q2
1min; Q

2
1max; Q

2
2min, Q2

2max, and J are given in
Appendix B. In the upper panel of Fig. 3, we display
the kinematical accessible regions for the virtualities Q2

1

and Q2
2 in the phase space integral of Eq. (24) for an

electron beam of energy ε1 ¼ 0.150 GeV (left panel) and
ε1 ¼ 3 GeV (right panel). The phase-space regions are
provided for three different values of the c.m. angle. In the
lower panel of Fig. 3, we show the kinematical accessible
regions for virtualities of a muon beam of energy identical
to the one chosen for the case of electron scattering.
As it can be seen from Fig. 3, the integration limits are
significantly reduced when scattering of a massive lepton is
considered. At ultrarelativistic beam energy, however, the

integration ellipses of muon scattering tend toward the
electron result (UR results can be compared with those
provided in Ref. [62]).
The beam-normal SSA may now be written as

Bl
yðs;Q2Þ ¼ −

αsQ2

8π2Dðs;Q2Þλ2sðm2;M2Þ

×
Z ð ffiffi

s
p

−mÞ2

M2

dW2

λsðm2;W2Þ
Z

Q2
1max

Q2
1min

dQ2
1

Q2
1

×
Z

Q2
2max

Q2
2min

dQ2
2

Q2
2

ImðLμαβHμαβÞ
JðQ2

1; Q
2
2;W

2Þ : ð26Þ

Here we note that it is common to split the integral over the
variable W2 into two pieces

Z ð ffiffi
s

p
−mÞ2

M2

ð� � �ÞdW2 ¼
Z ðMþmπÞ2

M2

ð� � �ÞdW2

þ
Z ð ffiffi

s
p

−mÞ2

ðMþmπÞ2
ð� � �ÞdW2; ð27Þ

where mπ denotes the mass of a pion. The first term on the
right-hand side of Eq. (27) describes the elastic TPE
excitation [X ¼ proton in Fig. 2(b)], whereas the second
term describes the inelastic TPE excitation [X ≠ proton in
Fig. 2(b)].
The integrations in Eq. (26) can be performed numeri-

cally. The crucial input needed to perform respective
calculations is a parametrization of the tensor Ŵαβ con-
tributing to the hadronic tensorHμαβ. Its inelastic part, Ŵ

in
αβ,

is strongly dependent on the kinematics of a particular
measurement, and its parametrization was beyond the
scope of our analysis. The respective elastic part, Ŵel

αβ,
in its turn, can be exactly parametrized via on-shell
electromagnetic form factors of the proton

Ŵel
αβ ¼ 2πδðW2 −M2ÞΓαðQ2

2Þð=PþMÞΓβðQ2
1Þ; ð28Þ

with

ΓβðQ2
1Þ ¼ ½F1ðQ2

1Þ þ F2ðQ2
1Þ�γβ −

ðPþ p1Þβ
2M

F2ðQ2
1Þ;

ΓαðQ2
2Þ ¼ ½F1ðQ2

2Þ þ F2ðQ2
2Þ�γα −

ðPþ p2Þα
2M

F2ðQ2
2Þ:

ð29Þ

Using the parametrization of Eq. (28), we performed the
calculation of the elastic contribution to the beam-normal
SSA. The only model input required for our calculation is
an appropriate parametrization for electromagnetic form
factors of the proton. The accuracy of our evaluation is
limited by higher-order corrections to Eq. (10). Our
predictions are shown in Fig. 4 and they are mostly given
for the planned MUSE experiment.

FIG. 3. Allowed values of the exchanged photon virtualities for
the elastic intermediate state are restricted to be inside the
ellipses. The upper panels correspond to electron scattering for
ε1 ¼ 0.150 GeV (left) and ε1 ¼ 3 GeV (right), and for three
different values of the c.m. scattering angle. Lower panels display
the allowed range of the photon virtualities for the case of muon
scattering.
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Lepton mass effects in the calculation of the absorp-
tive part of the TPE amplitude can be studied by
analyzing the ratio of the beam-normal asymmetries
in elastic μ−p and e−p scattering. As it can be seen
from the results that are shown in Fig. 5, the respective
ratio turns out to be directly proportional to the ratio of

corresponding lepton masses at UR energies of an
incoming beam. On the other hand, whenever energy
of the incoming muon is comparable to the muon’s
mass, the corresponding SSA is found to be signifi-
cantly smaller than the one expected if the UR approxi-
mation was employed.

FIG. 4. A beam-normal single-spin asymmetry as a function of the c.m. scattering angle at different momenta jk⃗1j of an incoming
beam.

FIG. 5. Ratios of Bμ
y=Be

y and mμ=me functions of the c.m. scattering angle at different energies ε1 of an incoming beam.
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VI. CONCLUSIONS

We calculated the elastic contribution to the beam-
normal single-spin asymmetry in elastic lepton-proton
scattering. To leading order, the beam-normal SSA is
generated by the absorptive part of interference between
one- and two-photon exchange amplitudes. In our der-
ivations, we do not resort to the UR approximation and
thus assure an accurate description of lepton mass effects
in their scattering by the proton target. Our calculation is
directly applicable to analyses of lepton scattering proc-
esses performed below the pion production threshold,
where only the proton intermediate state in the TPE loop
is allowed. The muon polarization asymmetry for MUSE
kinematics is estimated at about 0.1% and it is the largest
for scattering into a backward hemisphere. Our result is
obtained in the first nonvanishing order of α, and
anticipated QED corrections to the asymmetry would
be of the same order as for previously evaluated double-
spin asymmetries in elastic eN scattering [71,72] that
is ∼10−5.
In Sec. V and Appendix B we provide the expressions

that can be used for a calculation of the respective
inelastic contribution in the TPE loop, whenever inelas-
tic channels are open in the scattering of massive
leptons. The approach employed in this paper is based
on unitarity and known values of proton form factors
only and, within the next-to-leading order accuracy in α,
describes the respective asymmetry in the cases when
lepton scattering below one pion production threshold
are considered, e.g., in MUSE. The asymmetries pre-
sented in Fig. 4 can be used to determine systematic
uncertainties due to transverse polarization of the
incoming beam in unpolarized lepton-proton scattering.
An alternative calculation of Bl

y can be performed using
the formalism of invariant amplitudes introduced in
Ref. [59], which has recently been updated [73] to
account for the lepton mass beyond the leading terms in
respective calculations of Bl

y.
In Fig. 5, we demonstrate that the ratio between the

beam-normal SSA in μ−p scattering and that in e−p
scattering does not reproduce the ratio between respective
lepton masses at beam energies comparable to the mass of
the muon. The observed distinction stems from the lepton
mass dependence of the TPE amplitude.
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APPENDIX A: THE CENTER-OF-MASS
SYSTEM ORIENTATION, NOTATIONS,

AND RELATIONS

Let us work in the c.m. system in which the initial proton
moves in the negative z direction, the scattering happens in
the xz plane, and θ� denotes the scattering angle. Moreover,
let us use the following notations for components of four-
vectors introduced in Sec. III:

k1 ¼ ðε�1; k⃗�1Þ; k2 ¼ ðε�2; k⃗�2Þ;
p1 ¼ ðE�

1;−k⃗
�
1Þ; p2 ¼ ðE�

2;−k⃗
�
2Þ;

K ¼ ðξ�; K⃗�Þ; P ¼ ðΣ�;−K⃗�Þ: ðA1Þ

In the c.m. frame, the four-momenta of the incoming and
outgoing leptons are given by

k1 ¼ ðε�; 0; 0; jk⃗�jÞ;
k2 ¼ ðε�; jk⃗�j sin θ�; 0; jk⃗�j cos θ�Þ: ðA2Þ

The invariant form for the components of the inelastic
process

lðk1Þ þ Nðp1Þ → lðKÞ þ XðPÞ ðA3Þ

can be written as

ε�1 ¼
Λsðm2;M2Þ

2
ffiffiffi
s

p ;

E�
1 ¼

ΛsðM2; m2Þ
2

ffiffiffi
s

p ; jk⃗�1j ¼
λsðm2;M2Þ

2
ffiffiffi
s

p ;

ξ� ¼ Λsðm2;W2Þ
2

ffiffiffi
s

p ; jK⃗�j ¼ λsðm2;W2Þ
2

ffiffiffi
s

p ;

Σ� ¼ ΛsðW2; m2Þ
2

ffiffiffi
s

p ; ðA4Þ

where

Λxðy; zÞ≡ xþ y − z;

λxðy; zÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − y − zÞ2 − 4yz

q
: ðA5Þ

The elastic process

lðk1Þ þ Nðp1Þ → lðk2Þ þ Nðp2Þ ðA6Þ

represents a special case (X ¼ p and W2 ¼ M2) of the
inelastic process (A3). As a result, one finds that
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ε�1 ¼ ε�2 ¼
Λsðm2;M2Þ

2
ffiffiffi
s

p ≡ ε�;

E�
1 ¼ E�

2 ¼
ΛsðM2; m2Þ

2
ffiffiffi
s

p ≡ E�;

jk⃗�1j ¼ jk⃗�2j ¼
λsðm2;M2Þ

2
ffiffiffi
s

p ≡ jk⃗�j: ðA7Þ

Let us now define ϕ�
1 to be the azimuthal angle of the

lepton for the process (A3), and θ�1 and θ�2 to be the polar

angles defined as θ�1 ≡∠ðk⃗�1; K⃗�Þ and θ�2 ≡∠ðk⃗�2; K⃗�Þ,
respectively. With these definitions, the four-momentum
of the intermediate lepton can be written as

K ¼ ðξ�; jK⃗�j sin θ�1 cosϕ�
1; jK⃗�j sin θ�1 sinϕ�

1; jK⃗�j cos θ�1Þ:
ðA8Þ

Moreover, one may find that

cos θ�2 ¼ cos θ� cos θ�1 þ sin θ� sin θ�1 cosϕ
�
1: ðA9Þ

The four-momentum transfer Q2 and virtualities Q2
1; Q

2
2

defined in Eqs. (5) and (6), correspondingly, are then
given by

Q2 ¼ −ðk1 − k2Þ2;

¼ −2m2 þ 1

2s
½Λ2

sðm2;M2Þ − λ2sðm2;M2Þ cos θ��;
ðA10Þ

Q2
1 ¼ −q21 ¼ −ðk1 − KÞ2

¼ Λsðm2;M2ÞΛsðm2;W2Þ
2s

−
λsðm2;M2Þλsðm2;W2Þ cos θ�1

2s
− 2m2; ðA11Þ

Q2
2 ¼ −q22 ¼ −ðk2 − KÞ2

¼ Λsðm2;M2ÞΛsðm2;W2Þ
2s

−
λsðm2;M2Þλsðm2;W2Þ cos θ�2

2s
− 2m2: ðA12Þ

APPENDIX B: SOLID ANGLE INTEGRAL

Let us denote z≡ cos θ�, z1 ≡ cos θ�1, and z2 ≡ cos θ�2.
Using the result of Eq. (A9), we find

z2 ¼ zz1 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z21

q
cosϕ�

1; ðB1Þ

where z; z1, and z2 are given by

z ¼ Λ2
sðm2;M2Þ − 2sð2m2 þQ2Þ

λ2sðm2;M2Þ ;

z1 ¼
Λsðm2;M2ÞΛsðm2;W2Þ − 2sð2m2 þQ2

1Þ
λsðm2;M2Þλsðm2;W2Þ ;

z2 ¼
Λsðm2;M2ÞΛsðm2;W2Þ − 2sð2m2 þQ2

2Þ
λsðm2;M2Þλsðm2;W2Þ : ðB2Þ

This means that

d cos θ�1dϕ
�
1 ¼ −

1

J
dz1dz2

¼ −
1

J
4s2

λ2sðm2;M2Þλ2sðm2;W2Þ dQ
2
1dQ

2
2; ðB3Þ

where

J ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2 − z21 − z22 þ 2zz1z2

q
: ðB4Þ

The integration limits in Eq. (25) turn out to be

Q2
1min ¼

Λsðm2;M2ÞΛsðm2;W2Þ
2s

−
λsðm2;M2Þλsðm2;W2Þ

2s
− 2m2;

Q2
1max ¼

Λsðm2;M2ÞΛsðm2;W2Þ
2s

þ λsðm2;M2Þλsðm2;W2Þ
2s

− 2m2;

Q2
2min ¼

Λsðm2;M2ÞΛsðm2;W2Þ
2s

−
z2maxλsðm2;M2Þλsðm2;W2Þ

2s
− 2m2;

Q2
2max ¼

Λsðm2;M2ÞΛsðm2;W2Þ
2s

−
z2minλsðm2;M2Þλsðm2;W2Þ

2s
− 2m2; ðB5Þ

with

z2min ¼ zz1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − z2Þð1 − z21Þ

q
;

z2max ¼ zz1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − z2Þð1 − z21Þ

q
: ðB6Þ
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