
 

Neutrino flavor oscillations in stochastic gravitational waves
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We study neutrino flavor oscillations in a plane gravitational wave (GW) with circular polarization.
For this purpose, we use the solution of the Hamilton-Jacobi equation to get the contribution of GW to the
effective Hamiltonian for the neutrino mass eigenstates. Then, considering stochastic GWs, we derive the
equation for the density matrix for flavor neutrinos and analytically solve it in the two flavors
approximation. The equation for the density matrix for the three neutrino flavors is also derived and
solved numerically. In both cases of two and three neutrino flavors, we predict the ratios of fluxes of
different flavors at a detector for cosmic neutrinos with relatively low energies owing to the interaction with
such a GW background. The obtained results are compared with the recent observation of the flavor content
of the astrophysical neutrino fluxes.

DOI: 10.1103/PhysRevD.100.096014

I. INTRODUCTION

After the recent success in experimental studies of solar
[1], atmospheric [2], and accelerator neutrinos [3], these
particles are believed to be massive and have nonzero
mixing between different flavors. These neutrino properties
result in transformations of the flavor content of a neutrino
beam, called neutrino flavor oscillations [4].
Neutrino flavor oscillations can happen in vacuum.

However, external fields, such as a magnetic field [5] or
the electroweak interaction with background matter [6], can
significantly modify the process of neutrino oscillations.
The neutrino interaction with a gravitational field, in spite
of its weakness, was reported in Refs. [7,8] to contribute the
propagation and oscillations of flavor neutrinos. Recently,
the method to account for the contribution of gravity,
developed in Refs. [7,8], was further used in Refs. [9,10] to
study neutrino flavor oscillations in static gravitational
backgrounds such as Schwarzchild and Kerr metrics.
It is interesting to analyze how neutrino flavor oscil-

lations proceed in a time dependent gravitational field, such
as a gravitational wave (GW). This interest is inspired by
the recent detection of GWemitted by merging binary black
holes (BHs), reported in Ref. [11]. Later on, multiple GW
signals, including that of the neutron stars coalescence,

were observed. The summary of these events is presented in
Ref. [12]. These phenomena are a strong evidence of the
validity of the general relativity. Moreover, presently
significant efforts are made to detect GWand astrophysical
neutrinos, emitted by the same source (see, e.g., Ref. [13]).
It would open a window for the multimessenger astronomy.
The influence of GW on neutrino oscillations was

studied in Ref. [14], where spin oscillations are considered.
In that situation, transitions between left and right polarized
particles, belonging to the same neutrino type, were
discussed. Neutrino spin oscillations driven by GW, studied
in Ref. [14], are analyzed using the formalism for the
description of the neutrino spin evolution in external fields
in curved space-time developed in Refs. [15,16]. Note that
the evolution of a spinning particle in GW was also
considered in Ref. [17].
This paper, where we continue our study of neutrino

oscillations in GW, is organized in the following way. First,
in Sec. II, we adapt the formalism for the description of
neutrino flavor oscillations, developed in Refs. [7–10], to
describe the neutrino interaction with a time dependent
gravitational field, such as GW. Using the solution of the
Hamilton-Jacobi equation for a massive particle in GW,
previously obtained in Ref. [18], we derive the effective
Hamiltonian for neutrino flavor oscillations in GW. Then,
considering a stochastic GW background, we obtain the
equation for the neutrino density matrix and analytically
solve it for the two neutrinos system. The equation for the
density matrix of three flavor neutrinos is derived and
solved numerically. In Sec. III, we consider a possible
astrophysical application consisting in the interaction of
cosmic neutrinos with random GWs emitted by coalescing
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supermassive BHs both in the two flavors approximation
and in the general situation of the three neutrino flavors.
We predict a specific flavor content of astrophysical
neutrinos in a detector owing to the interaction with such
GWs. In Sec. IV, we consider other random factors which
can influence flavor oscillations of cosmic neutrinos on
large distances. Our results are summarized in Sec. V.
In Appendix, we calculate the averaged phase of neutrino
oscillations induced by stochastic GWs.

II. NEUTRINO FLAVOR OSCILLATIONS IN A
GRAVITATIONAL WAVE

In this section, we study flavor oscillations of neutrinos
in a plain GW. Then we assume that there is a stochastic
background of GWs. The equation for the density matrix of
mixed neutrinos, accounting for both the vacuum term and
the interaction with GW, is derived and solved analytically.
Then we also consider the general case of three flavor
neutrinos and present the evolution equation for the density
matrix in this situation.
We start with the discussion of the system of flavor

neutrinos in the two flavors approximation, ðνe; νxÞ, with
x ¼ μ; τ. These neutrino flavor eigenstates participate in the
electroweak interaction with other leptons. However, these
particles do not have definite masses. To diagonalize the
mass matrix, we introduce the neutrino mass eigenstates
ψa, a ¼ 1; 2, which are related to νλ by means of the matrix
transformation νλ ¼ Uλaψa, where Uλa are the components
of the mixing matrix. If we consider two flavor neutrinos,
ðUλaÞ has the form

ðUλaÞ ¼
�

cos θ sin θ

− sin θ cos θ

�
; ð2:1Þ

where θ is the vacuum mixing angle.
The neutrino mass eigenstate with the mass ma was

found in Refs. [7,8] to evolve in a gravitational field as

ψaðx; tÞ ∼ exp ½−iSaðx; tÞ�; ð2:2Þ

where Saðx; tÞ is the action for this particle, which obeys
the Hamilton-Jacobi equation [9,10]

gμν
∂Sa
∂xμ

∂Sa
∂xν ¼ m2

a; ð2:3Þ

where gμν is the metric tensor.
Instead of dealing with the neutrino wave functions in

Eq. (2.2), we can define the contribution to the effective
Hamiltonian Hm for the mass eigenstates as

ðHmÞaa ¼
∂
∂t Saðjxj ≈ t; tÞ; ð2:4Þ

where we take that neutrinos are ultrarelativistic particles.
Equation (2.4) means that ψa obeys the equation, i _ψa ¼
ðHmÞaaψa. One can check that, in case of two neutrino
eigenstates in vacuum, Eq. (2.4) results in the correct
vacuum oscillations phase Φvac ¼ Δm2=4E, where Δm2 ¼
m2

2 −m2
1 > 0 and E is the mean neutrino energy.

As a background gravitational field, we consider a plane
GW with the circular polarization propagating along the
z axis. Choosing the transverse-traceless gauge, we get that
the metric has the form [19]

ds2¼ gμνdxμdxν¼ dt2− ð1−hcosϕÞdx2− ð1þhcosϕÞdy2
þ2hsinϕdxdy−dz2; ð2:5Þ

where h is the dimensionless amplitude of the wave, ϕ ¼
ðωt − kzÞ is the phase of the wave, ω is frequency of the
wave, and k is the wave vector. In Eq. (2.5), we use the
Cartesian coordinates xμ ¼ ðt; x; y; zÞ.
The solution of Eq. (2.3) for a plane GWof the arbitrary

form, not necessarily a monochromatic one as in Eq. (2.5),
was found in Ref. [18]. If we define g⊥μν ¼ gμν, at
μ; ν ¼ 1; 2, and

Gμν ¼
Z

u

0

g⊥μνðuÞdu; u ¼ t − z; ð2:6Þ

this solution takes the form

Sa ¼
1

2E
½m2

au −Gμνp
μ
⊥pν⊥� þ

1

2
Evþ pμ

⊥x⊥μ ; ð2:7Þ

whereE ¼ p0 þ p3 andp
μ
⊥ ¼ ð0; p1; p2; 0Þ are the integrals

of motion of Eq. (2.3), xμ⊥ ¼ ð0; x1; x2; 0Þ, and v ¼ tþ z.
One can see in Eq. (2.7), in case of a neutrino

propagating along GW, i.e., when pμ
⊥ ¼ 0, this background

gravitational field does not affect the neutrino motion. If a
neutrino interacts with a plane electromagnetic wave, there
is an effect on neutrino oscillations in case when particles
move along the wave [20]. The fact that GW cannot induce
a spin flip of a neutrino propagating along the wave, i.e., it
does not directly influence neutrino spin oscillations, was
revealed in Ref. [14].
If we study the neutrino motion along GW and, then,

adiabatically turn off the gravitational field, the action in
Eq. (2.7) takes the form, Sa ¼ p0x0 þ p3x3, where
p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ p2
3

p
. It means that Eq. (2.7) has a correct

vacuum limit.
Since typically h ≪ 1 in Eq. (2.5), we can decompose Sa

in Eq. (2.7) in a series,

Saðh;…Þ ¼ Sð0Þa ð…Þ þ hSð1Þa ð…Þ þOðh2Þ; ð2:8Þ

and keep only the terms linear in h. The symbol “…” in the

arguments of SðiÞa ð…Þ incorporates other parameters except
the contribution of the gravitational interaction. Since the
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amplitude of GW has been explicitly written in Eq. (2.8),
i.e., the effects of a nontrivial geometry have been taken
into account, we can conclude that the additional para-
meters, marked by the “� � �”symbol, obey relations in a flat

space-time. For example, Sð0Þa ð…Þ in Eq. (2.8) is the action
of a free massive particle in Minkowski space.
We suppose that a neutrino propagates arbitrarily with

respect to GW. Hence, the components of the neutrino mo-
mentum have the form, p1¼pcosφsinϑ, p2¼psinφsinϑ,
and p3 ¼ p cos ϑ, where φ and ϑ are the spherical angles.
Using Eqs. (2.4)–(2.7), we get the diagonal entries of Hm,
which contain the linear contribution of GW, in the form

ðHðgÞ
m Þaa ¼ −

p2h
2Ea

sin2ϑ cosð2φ − ϕaÞ; ð2:9Þ

where Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

a þ p2
p

is the neutrino energy, ϕa ¼
ωtð1 − βa cosϑÞ is the phase of GW accounting for the
fact that a neutrino moves on a certain trajectory, which is a
straight line approximately, and βa ¼ p=Ea is the neutrino

velocity. Note that ðHðgÞ
m Þaa in Eq. (2.9) corresponds to

hSð1Þa ð…Þ in Eq. (2.8).
Now we turn to the description of the evolution of the

neutrino flavor eigenstates accounting for the contribution
of GW. Using Eq. (2.1), one has that neutrino flavor eigen-
states obey the Schrödinger equation i_νλ ¼ ðHfÞλκνκ,
where the effective Hamiltonian takes the form
Hf ¼ UHmU†.
We have taken into account the contribution of GW

linear in h to the diagonal elements of Hm. However,
besides GW, there are usual vacuum contributions to these

elements, which have the form ðHðvacÞ
m Þaa ¼ m2

a=2E.

Accounting for ðHðvacÞ
m Þaa, as well as using Eqs. (2.1)

and (2.9), we obtain that Hf has the form

Hf ¼ H0 þH1; H0 ¼ ΦvacM; H1 ¼ −δΦgM;

M ¼ ðσnÞ; n ¼ ðsin 2θ; 0;− cos 2θÞ; ð2:10Þ

where δΦg ¼ ½ðHðgÞ
m Þ11 − ðHðgÞ

m Þ22�=2 is the contribution of

GW to neutrino flavor oscillations, ðHðgÞ
m Þaa is given in

Eq. (2.9), and σ are the Pauli matrices.
We mentioned above that a neutrino, propagating along

GW, is not affected by such GW. Therefore, we consider
the interaction of a neutrino with a stochastic GW back-
ground. In this situation, following Ref. [21], it is more
convenient to deal with the density matrix ρ. Let us define
ρI ¼ U†

0ρU0, where

U0 ¼ exp ð−iH0tÞ ¼ cos ðΦvactÞ − iðσnÞ sin ðΦvactÞ:
ð2:11Þ

We should average ρI over the directions of the GW
propagation and its amplitude. Then we consider the

δ-correlated Gaussian distribution of h: hhðt1Þhðt2Þi ¼
2τδðt1 − t2Þhh2i, where τ is the correlation time. The
evolution equation for hρIi, obtained in Ref. [21], has the
form

d
dt
hρIi ¼ −hδΦ2

giτ½hρIi −MhρIiM�; ð2:12Þ

where

hδΦ2
gi ¼

3

32
hh2iΦ2

vac: ð2:13Þ

In Eq. (2.13), we averaged over the angles φ and ϑ and
accounted for the fact that neutrinos are ultrarelativistic.
Equation (2.13) is obtained in Appendix; see Eq. (A6) there.
First, we should supply Eq. (2.12) with the initial

condition. Taking into account that U0ð0Þ ¼ 1 in
Eq. (2.11), we get that ρIð0Þ ¼ ρð0Þ. Then, we take that
ρIð0Þ11 ¼ Fe is the initial probability (∼flux) of νe,
ρIð0Þ22 ¼ Fx ¼ 1 − Fe is the initial probability (∼flux)
of νx, and ρIð0Þ12 ¼ ρIð0Þ21 ¼ 0, that implies that there
are no correlations between the initial fluxes of different
flavors.
Now, Eq. (2.12) can be solved analytically. The compo-

nents of hρIiðtÞ have the form

hρIi11 ¼ Fe þ
1

2
sin2ð2θÞðFx − FeÞ½1 − expð−ΓtÞ�;

hρIi22 ¼ Fx −
1

2
sin2ð2θÞðFx − FeÞ½1 − expð−ΓtÞ�;

hρIi12 ¼ hρIi21 ¼
1

4
sinð4θÞðFx − FeÞ½1 − expð−ΓtÞ�;

ð2:14Þ

where

Γ ¼ 2hδΦ2
giτ ¼

3

16
hh2iΦ2

vacτ ð2:15Þ

is the parameter describing the relaxation of the density
matrix.
The expression for hρiðtÞ ¼ U0hρIiðtÞU†

0 is quite cum-
bersome in general case. We present its diagonal elements
in the limit Γt ≫ 1,

hρi11 ¼
1

2
½1 − cos2ð2θÞðFx − FeÞ�;

hρi22 ¼
1

2
½1þ cos2ð2θÞðFx − FeÞ�: ð2:16Þ

One can see in Eq. (2.16) that hρi11 þ hρi22 ¼ 1, as it
should be. Of course, this relation holds true for arbitrary t.
Despite the two flavors approximation, adopted above,

allows the analytical solution of Eq. (2.12), it cannot
correspond to a realistic situation because the mixing
between νμ and ντ is close to maximal [22]. That is why
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we should generalize our treatment of neutrino oscillations
in stochastic GWs for three flavors.
We suppose that the condition ωLjβa − βbj ≪ 1, where

a; b ¼ 1;…; 3 and L is the neutrino propagation distance,
established in Appendix, is valid. Then, performing similar
calculations, as above, and using the results of Ref. [21], we
obtain the following equation for the averaged density
matrix hρIi for the three neutrino flavors:

d
dt
hρIi ¼ −

3

64
hh2iτ½M; ½M; hρIi��; ð2:17Þ

where

M ¼ 1

2E
U · diagð0;Δm2

21;Δm2
31Þ · U†: ð2:18Þ

Here Δm2
ab ¼ m2

a −m2
b is the standard definition for the

mass squared differences. Unlike Eq. (2.1), in three flavors
case, the mixing matrixU in Eq. (2.18) can be parametrized
in the form [4,22]

U ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA ·

0
B@

c13 0 s13e−iδCP

0 1 0

−s13eiδCP 0 c13

1
CA

·

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA; ð2:19Þ

where cab ¼ cos θab, sab ¼ sin θab, θab are the correspond-
ing vacuummixing angles, and δCP is theCP violating phase.
Note that Eq. (2.18) cannot be solved analytically. We

present its numerical solutions in Sec. III when we discuss
some possible astrophysical applications.

III. ASTROPHYSICAL APPLICATIONS

In this section, we apply the results of Sec. II for the
description of neutrino flavor oscillations in GWs emitted
by random merging binaries.
To study neutrino flavor oscillations in stochastic GWs,

we should estimate hh2i and τ for this gravitational back-
ground. For this purpose, it is convenient to use the spectral
function [23]

ΩGWðfÞ ¼
πf3

8Gρc
ShðfÞ; ð3:1Þ

where f ¼ ω=2π, G ¼ M−2
Pl is the Newton constant,MPl ¼

1.2 × 1019 GeV is the Planck mass, ρc ¼ 3H2
0=8πG ¼

0.53 × 10−5 GeV · cm−3 is the critical energy density of
the Universe, and ShðfÞ is the spectral density. The root
mean square of the strain h is then

hh2i ¼
Z

∞

0

dfShðfÞ: ð3:2Þ

Instead of Eqs. (3.1) and (3.3), we can roughly estimate
hh2i as

hh2i ∼ 8ρcΩGWðf̃Þ
πM2

Plf̃
2

; ð3:3Þ

where f̃ is the typical frequency of stochastic GWs.
Despite merging BHs with several solar masses or

neutron stars are more abundant sources of GWs, we study
coalescing supermassive BHs, with masses up to 1010 M⊙.
Such sources of stochastic GWs have lower characteristic
frequencies f̃. Thus, hh2i is greater for such sources. In this
situation, we can takeΩGWðf̃Þ ¼ 10−8 at f̃ ¼ 10−6 Hz [24]
to get the upper limit for hh2i. Using Eq. (3.3), we obtain
that hh2i ¼ 1.6 × 10−32. To evaluate the correlation time,
we take that τ ∼ f̃−1 ¼ 106 s.
Using the above estimates, we get the parameter, which

describes the rate of the relaxation of the probabilities in
Eqs. (2.14) and (2.15), while a relativistic neutrino passes
the distance L ¼ t, in the form

ϰ ¼ ΓL ¼ 3

16
hh2iΦ2

vacτL: ð3:4Þ

If ϰ > 1, the probabilities to detect νe;x are given in
Eq. (2.16) since expð−ϰÞ ≈ 0 in Eq. (2.14).
As we mentioned above, we study neutrino flavor

oscillations in stochastic GWs emitted by supermassive
BHs. Basing on Eq. (3.4), we get that, for νe → νμ
oscillations channel with Δm2

⊙ ¼ 7.4 × 10−5 eV2 [22],
the parameter ϰ reads

ϰνe→νμ ¼ 2.4 ×

�
E

102 keV

�
−2
�

L
1 Gpc

�
: ð3:5Þ

For νe → ντ oscillations withΔm2
31 ¼ 2.5 × 10−3 eV2 [22],

using Eq. (3.4), one has

ϰνe→ντ ¼ 27.4 ×

�
E

1 MeV

�
−2
�

L
1 Gpc

�
: ð3:6Þ

One can see in Eqs. (3.5) and (3.6) that, if L≳ 1 Gpc and/
or E≲ 102 keV for νe → νμ oscillations, as well as E≲
several MeV for νe → ντ oscillations, the parameter ϰ > 1.
Let us suppose that the ratios of fluxes at a source are

ðFe∶FμÞS ¼ ð1∶2Þ and ðFe∶FτÞS ¼ ð1∶0Þ. This situation
is consistent with the suggestion of Ref. [25], ðFe∶
Fμ∶FτÞS ¼ ð1∶2∶0Þ. If ϰνe→νx > 1 in Eqs. (3.5) and
(3.6), then, using Eq. (2.16), we predict the ratios of the
fluxes in a terrestrial detector in the form
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�
Fe

Fμ

�
⊕
¼ 3 − cos2ð2θ⊙Þ

3þ cos2ð2θ⊙Þ
¼ 0.9;

�
Fe

Fτ

�
⊕
¼ 1þ cos2ð2θ13Þ

1 − cos2ð2θ13Þ
¼ 21.8; ð3:7Þ

where we take the mixing angles from Ref. [22]. Note that
Eq. (3.7) is based on two flavors approximation νe → νμ
and νe → ντ, i.e., we do not take into account νμ ↔ ντ
transitions. Nevertheless, we can see that ðFe∶FμÞ⊕ ≠
ð1∶1Þ and ðFe∶FτÞ⊕ ≠ ð1∶1Þ.
Now we turn to the discussion of the general three

flavors situation. It is convenient to rewrite Eqs. (2.17) and
(2.18) in the dimensionless form

d
dt0

hρIi ¼ −K½M̃; ½M̃; hρIi��; ð3:8Þ

where M̃ ¼ U · diagð0;Δm2
21=Δm2

31; 1Þ ·U†, t0 ¼ t=L and

K ¼ 3

64
hh2i

�
Δm2

31

2E

�
2

τL

¼ 1.8 × 108
�
Δm2

31

1 eV2

�
2
�

E
1 MeV

�
−2
�

L
1 Gpc

�
: ð3:9Þ

The dimensionless time 0 < t0 < 1 since t < L.
The estimates of the correlation time τ and hh2i are made

in the same manner as in the two flavors case above. Should
one have the numerical solution of Eq. (3.8), the observed
fluxes of flavor neutrinos can be obtained as the diagonal
elements of hρiðtÞ¼U0hρIiðtÞU†

0, where U0¼expð−iH0tÞ
[see Eq. (2.11)] and H0 is the 3 × 3 effective Hamiltonian
for flavor oscillations in vacuum.
Before we proceed with the studies of the three flavors

evolution, it is necessary to repeat the analytical result in

Eq. (3.7) using the direct numerical solution of Eqs. (3.8)
and (3.9), rewritten for two flavors. The reduction to the
two flavors case is straightforward. This numerical solution
is represented in Fig. 1. In Fig. 1(a), we show the fluxes of
νe and νμ versus t0. This solution is based on the fluxes at a
source (the initial condition) in the form, Feð0Þ ¼ 1=3 and
Fμð0Þ ¼ 2=3. The characteristics of neutrinos and GW are
taken as in Eq. (3.5). One can see in Fig. 1(b) that the
asymptotic value of the fluxes ratio is ðFe=FμÞ⊕ ¼ 0.9,
which is in the agreement with Eq. (3.7). Performing
analogous simulations, we show that ðFe=FτÞ⊕ ¼ 21.8
in Eq. (3.7) can be also reproduced.
After reproducing the evolution of the two neutrino

flavors with the numerical code, we can study the most
general situation of three flavor neutrinos. The fluxes of
νe;μ;τ, based on the numerical solution of Eqs. (3.8) and
(3.9), are shown in Fig. 2. To build Fig. 2, we utilize the
values of Δm2

ab, θab, and δCP from Ref. [22]. We consider
both normal and invertedmass hierarchies in our simulations.
In Fig. 2, we take L ¼ 1 Gpc and E ¼ 0.5 MeV for the

fluxes to reach their asymptotic values. This neutrino
energy is between the values used in Eqs. (3.5) and
(3.6). The propagation length, taken in Fig. 2, is compa-
rable with the size of the visible Universe [26]. Figure 2 is
based on the initial condition (at a source) ðFe∶Fμ∶FτÞS ¼
ð1∶2∶0Þ. We can see in Fig. 2(a) that, for the normal
ordering, the asymptotic fluxes (at the Earth) are Fe⊕ ¼
0.3127, Fμ⊕ ¼ 0.3504, and Fτ⊕ ¼ 0.3369. For the inverted
ordering, one hasFe⊕ ¼ 0.3154,Fμ⊕ ¼ 0.3497, andFτ⊕ ¼
0.3349 in Fig. 2(b). It means that, at the Earth, the predicted
fluxes are close to the case ðFe∶Fμ∶FτÞ⊕ ¼ ð1∶1∶1Þ.
However, there is a small deviation from this prediction of
Ref. [25] for both normal and inverted mass orderings.
Moreover, one can see that there is a small dependence of our
results on the hierarchy of the neutrino masses.

(a) (b)

FIG. 1. The numerical solution of Eqs. (3.8) and (3.9), rewritten in the two flavors approximation, for νe ↔ νμ oscillations in
stochastic GWs. The propagation distance L ¼ 1 Gpc,Δm2

21 ¼ Δm2
⊙ ¼ 7.39 × 10−5 eV2, θ12 ¼ θ⊙ ¼ 0.59, and E ¼ 0.5 MeV. (a) The

fluxes of electron neutrinos Fe ¼ hρ11i (red line) and muon neutrinos Fμ ¼ hρ22i (blue line) versus the dimensionless time t0 ¼ t=L.
(b) The ratio of fluxes Fe=Fμ as a function of t0.

NEUTRINO FLAVOR OSCILLATIONS IN STOCHASTIC … PHYS. REV. D 100, 096014 (2019)

096014-5



Eventually, we can see that the deviation of the ratios of
the cosmic neutrino fluxes, caused by the interaction with
stochastic GWs, from the values ðFe∶Fμ∶FτÞ⊕ ¼ ð1∶1∶1Þ,
predicted in Ref. [25], exists in the three flavors case.
However, the magnitude of such a deviation is smaller
than that in the two flavors approximation, studied above.
The difference between the two and three flavors cases is
explained by accounting for θ23, which is close to π=4.
Hence, in the three flavors situation, νμ ↔ ντ oscillations
are more intense and the total neutrino flux becomes more
uniform.
It is important that we study the situation of the fixed

distance between a neutrino source and a neutrino detector.
The only random influence on neutrino oscillations is
caused by the interaction with stochastic GWs. Some other
random factors, which can influence neutrino flavor oscil-
lations, are considered in Sec. IV.
The recent measurement of the flavor content of cosmic

neutrinos in Ref. [27] excludes the following cases:
ðFe∶Fμ∶FτÞ⊕ ¼ ð1∶0∶0Þ and ðFe∶Fμ∶FτÞ⊕ ¼ ð0∶1∶0Þ.
Our prediction of the neutrino fluxes at a source in
Fig. 2 is in the region not excluded in Ref. [27]. Of course,
neutrino energies in Ref. [27], E > 35 TeV, are much
higher than these considered in our work, E ¼
ð102 keV ÷ several MeVÞ; cf. Eqs. (3.5) and (3.6), as well
as Figs. 1 and 2. Nevertheless, there are prospects to detect
cosmic neutrinos even with lower energies (see, e.g.,
Ref. [28]). Perhaps, the proposal for the observation of
the diffused flux of cosmic neutrinos in Ref. [29] would
make it possible to study the influence of GWs on neutrino
oscillations.
At the end of this section, we discuss the approximation

made to obtain Eqs. (2.14) and (2.15). In Appendix, we find
that the expressions for the neutrino fluxes in Eq. (2.16)

are valid in the limit when λ ¼ ωtjβ1 − β2j ≪ 1. If a
neutrino is a relativistic particle, it means that t ¼ L and

L ≪ Lcrit; Lcrit ¼
E

2ωΦvac
¼ 2E2

ωΔm2
: ð3:10Þ

Let us consider νe → νμ oscillations channel with Δm2
⊙ ¼

7.4 × 10−5 eV2. Taking the neutrino energy as in Eq. (3.5),
E ¼ 102 keV, and ω ∼ 10−6 s−1 [24], we get that Lcrit ¼
6.5 × 102 Gpc. One can see in Eq. (3.5) that, if L ∼ 1 Gpc
(the size of the Universe), then this L is much less than Lcrit.
Therefore, the constraint in Eq. (3.10) is satisfied with a
large margin. Analogously one can check that Eq. (3.10) is
fulfilled for νe → ντ oscillations. Hence, the expression for
the fluxes νe and νx, proportional to hρi11 and hρi22 in
Eq. (2.16), are valid.

IV. OTHER RANDOM FACTORS CONTRIBUTING
NEUTRINO FLAVOR OSCILLATIONS

In this section, we study other possible random factors
which, along with stochastic GWs, can contribute flavor
oscillations of cosmic neutrinos.
First, we mention that neutrino interaction with randomly

distributed matter can affect flavor oscillations [21,30].
On the large distances L ∼ Gpc, studied in Sec. III, the
contribution of this factor toHf in Eq. (2.10) does not exceed
the following quantity:

Vm ∼GFnB ¼ GFΩB
ρc
mp

∼ 10−44 eV; ð4:1Þ

whereGF ¼ 1.17 GeV−2 is the Fermi constant,ΩB ¼ 0.042
is the barions contribution to the total energy of theUniverse,
andmp is the proton mass. The contribution of GW toHf is

(a) (b)

FIG. 2. The numerical solution of Eqs. (3.8) and (3.9) for three flavor neutrinos oscillations in stochastic GWs. The flux of electron
neutrinos Fe ¼ hρ11i versus the dimensionless time t0 is shown by the red line, the flux of muon neutrinos Fμ ¼ hρ22i is represented by
the blue line, and the flux of tau neutrinos Fτ ¼ hρ33i is depicted by the green line. The neutrino energy E ¼ 0.5 MeV and the
propagation distance L ¼ 1 Gpc. (a) Normal ordering with Δm2

21 ¼ 7.39 × 10−5 eV2, Δm2
31 ¼ 2.53 × 10−3 eV2, θ12 ¼ 0.59,

θ23 ¼ 0.87, θ13 ¼ 0.15, and δCP ¼ 4.83. (b) Inverted ordering with Δm2
21 ¼ 7.39 × 10−5 eV2, Δm2

31 ¼ −2.51 × 10−3 eV2,
θ12 ¼ 0.59, θ23 ¼ 0.87, θ13 ¼ 0.15, and δCP ¼ 4.87.
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VGW ∼ hΦvac ∼ 10−25 eV, where we take h ¼ 10−16, E ¼
102 keV, and consider νe → νμ channel. We can see that
Vm ≪ VGW, i.e., the random matter contribution is negli-
gible for flavor oscillations of such neutrinos.
A terrestrial detector can record a neutrino flux emitted

by randomly distributed sources. We should analyze this
factor in studying of flavor oscillations of cosmic neutrinos
and compare it with the contribution of stochastic GWs.
For this purpose, we should study neutrino flavor oscil-
lations in vacuum and average the probabilities over the
distance of the neutrino beam propagation. We analyze this
case in the two flavors approximation since it allows the
analytical solution.
Using Eq. (2.10) and omitting H1 there, we get that

probabilities to observe νe;x in a detector at the distance L
from a source are

Pe;xðLÞ ¼ ½cos2ðΦvacLÞ þ cos22θsin2ðΦvacLÞ�Pe;xð0Þ
þ sin22θsin2ðΦvacLÞPx;eð0Þ; ð4:2Þ

where Pe;xð0Þ are the emission probabilities. To obtain
Eq. (4.2), we assume that hνeð0Þjνxð0Þi ¼ 0.
Now, we average Eq. (4.2) over L by setting

cos2ðΦvacLÞ ¼ sin2ðΦvacLÞ ¼ 1=2. Finally, we get the
corresponding probabilities

hPe;xiðLÞ ¼
1

2
f1 ∓ cos22θ½Pxð0Þ − Peð0Þ�g; ð4:3Þ

which formally coincide with these in Eq. (2.16). This fact
is not surprising. It is a consequence of the ergodic
theorem [31].
Nevertheless, Eqs. (2.16) and (4.3) correspond to com-

pletely different physical situations. In Sec. II, we study the
neutrino propagation between a detector and a source
which are at the fixed points. The random influence on
neutrino oscillations by stochastic GWs is between these
points. To derive Eq. (4.3), we consider flavor oscillations
in vacuum of neutrinos emitted by randomly distributed
sources. No other stochastic influence on neutrino system is
assumed now.
To differentiate between these cases, we can consider a

neutrino source with adiabatically changing luminosities of
different neutrino flavors. In this situation, the neutrino
fluxes at the source in Eq. (2.16) are slowly varying
functions of time Fe;xðtÞ. On the contrary, one cannot
expect that Pe;xð0Þ change simultaneously in all sources,
especially when these sources are causally disconnected.

V. CONCLUSION

In this work, we have studied neutrino flavor oscillations
under the influence of a plain GW with the circular
polarization for the first time. In Sec. II, we have analyzed
the evolution of the mass eigenstates in the quasiclassical

approximation. Using the expression for the action for a
massive particle, interacting with GW, obtained in Ref. [18],
we have derived the contribution of GW to the effective
Hamiltonian for the neutrino mass eigenstates. We have
revealed that, in case of the neutrino propagation along
GW, GW does not influence neutrino flavor oscillations.
Then, we have assumed that we deal with stochastic

GWs emitted by randomly distributed sources. In this
situation, we have derived the equation for the density
matrix of neutrinos using the approach in Ref. [21]. This
equation has been solved analytically in the two flavors
system. The asymptotic expressions for the diagonal
elements of the density matrix, which the fluxes of flavor
neutrinos are proportional to, have been presented in
Eq. (2.16). The equation for the density matrix evolution
for the three flavor neutrinos has been also derived in
Sec. II; cf. Eqs. (2.17)–(2.19). However, this equation can
be solved only numerically.
Then, in Sec. III, we have considered an astrophysical

application of the obtained result. We have supposed that
GWs are emitted by merging binary supermassive BHs.
Using the two flavors approximation, we have obtained that
the probabilities to detect relatively low energy neutrinos,
with E ¼ ð102 keV ÷ several MeVÞ, can reach the asymp-
totic values in Eq. (2.16) if the propagation distance is
comparable with the size of the Universe L ∼ Gpc [26].
Recently, we revealed in Ref. [14] that spin oscillations can
be significantly affected by GWonly if the neutrino energy
is low.
Note that the predicted fluxes of different flavors are not

equal at a detector, contrary to the finding of Ref. [25].
In the two flavors approximation, they depend on the fluxes
at a source and the vacuum mixing angle. The fluxes of
flavor neutrinos at the detector in Eq. (3.7) are in a region
not excluded by the observations in Ref. [27].
In Sec. III, we have also studied neutrino flavor

oscillations in stochastic GWs, emitted by merging
BHs, in the most general case of the three flavors. The
deviation of the fluxes of flavor neutrinos at a detector
from the prediction of Ref. [25], ðFe∶Fμ∶FτÞ⊕ ¼
ð1∶1∶1Þ, owing to the neutrino interaction with stochastic
GWs, has been confirmed in the three neutrinos situation
by means of the numerical simulations; see Fig. 2. This
deviation turns out to be smaller than that in the two
flavors approximation.
The prediction of the fluxes at a detector in Sec. III is

based on the assumption that the distance between a source
and a detector is fixed. The stochastic influence of external
fields (GWs in our case) is applied between the emission
and detection points. We have found in Sec. IV that the
same asymptotic fluxes are obtained if one averages
vacuum probabilities over the neutrino propagation dis-
tances. It is the consequence of the ergodic theorem [31]. In
Sec. IV, we have also pointed out how to pick out these
completely different physical situations.
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Finally, we mention that the results obtained in the
present work have some uncertainty since no stochastic
GW background from supermassive BHs has been
observed yet. It is mainly related to the determination of
the correlation time τ. The fact that GWs, emitted by
merging BHs with several solar masses, have been
observed [12], imposes strong constraints on the parame-
ters of such GWs. Nevertheless there are efforts to detect
stochastic GWs with 10−9 Hz < f < 10−6 Hz (see, e.g.,
Ref. [32]).
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APPENDIX: AVERAGING OF THE
OSCILLATIONS PHASE INDUCED
BY A GRAVITATIONAL WAVE

In this appendix, we obtain the expression for hδΦ2
gi.

For this purpose, we should average this quantity over the
angles ϑ and φ,

hδΦ2
gi ¼

hh2ip4

8

Z
π

0

dϑ
π
sin4ϑ

Z
2π

0

dφ
2π

�
cos α1
E1

−
cos α2
E2

�
2

;

ðA1Þ

where α1;2¼2φ−ϕ1;2¼2φ−ωtð1−β1;2cosϑÞ. We take t ¼
t1 ¼ t2 in the definition of α1;2 since hhðt1Þhðt2Þi ¼
2τδðt1 − t2Þ.
The integral over φ reads

Z
2π

0

dφ
2π

�
cos α1
E1

−
cos α2
E2

�
2

¼ 1

2

�
1

E2
1

þ 1

E2
2

− 2
cos½ωtðβ1 − β2Þ cosϑ�

E1E2

�
: ðA2Þ

Therefore, we have

hδΦ2
gi ¼

3hh2ip4

128

�
1

E2
1

þ 1

E2
2

− 2
IðλÞ
E1E2

�
;

IðλÞ ¼ 8

3π

Z
π

0

dϑsin4ϑ cosðλ cos ϑÞ; ðA3Þ

where λ ¼ ωtðβ1 − β2Þ.
Using the fact that

1

π

Z
π

0

dϑ cosðλ cosϑÞ ¼ J0ðλÞ; ðA4Þ

where J0ðλÞ is the Bessel function, we get that

IðλÞ¼8

3
½J0ðλÞþ2J000ðλÞþJðIVÞ0 ðλÞ�¼ 8

λ3
½2J1ðλÞ−λJ0ðλÞ�:

ðA5Þ

Here, J1ðλÞ is the Bessel function.
If jλj ≪ 1, IðλÞ → 1. Thus, hδΦ2

gi in Eq. (A3) takes the
form

hδΦ2
gi ≈

3hh2ip4

128

�
1

E1

−
1

E2

�
2

¼ 3

32
hh2iΦ2

vac: ðA6Þ

Equation (A6) is used in the master Eq. (2.12) for the
density matrix.
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