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We derive a quantum kinetic theory for fermions with arbitrary mass in a background electromagnetic
field using a Wigner-function approach. Since spin of massive fermions is a dynamical degree of freedom
(d.o.f.), kinetic equations with leading-order quantum corrections describe entangled dynamics of not only
vector- and axial-charge distributions but also of the spin polarization. Therefore, we obtain one scalar and
one axial-vector kinetic equations with magnetization currents pertinent to the spin-orbit interaction. We
show that our results smoothly reduce to the massless limit where the spin of massless fermions is no longer
an independent dynamical d.o.f. but is enslaved by the chirality and momentum, and the accordingly
kinetic equations turn into chiral kinetic theory for Weyl fermions. We provide a kinetic theory covering
both massive and massless cases and hence resolving the problem of constructing a bridge between them.
Such a generalization may be crucial for applications to various physical systems. Based on our kinetic
equations, we discuss the anomalous currents transported by massive fermions in thermal equilibrium.

DOI: 10.1103/PhysRevD.100.096011

I. INTRODUCTION

Triggered by predictions of the chiral magnetic effect
(CME)/chiral vortical effect (CVE) [1-3], the transport of
Weyl fermions has been widely studied in recent years.
In light of connections to quantum anomalies, those
transport phenomena have attracted much attention in
systems with quite different energy scales, including
relativistic heavy-ion collisions [4,5], Weyl semimetals
[6], and lepton transport in supernova explosions [7,8].

To investigate such anomalous transport in out-of-
equilibrium systems, chiral kinetic theory (CKT) has been
developed to capture the chiral anomaly effects [9-26].
Particularly, recent progress constructed a robust bridge
between CKT and quantum field theory on the basis of the
7 expansion applied to the Wigner functions, which allows
for systematic derivation of the side-jump effects stemming
from spin-orbit coupling and collisions [15,17,18].

However, the CKT developed for massless fermions
appears to have an issue in its connection to the existing
quantum kinetic theory for massive fermions [27-31]. There
are crucial differences between the massless and massive
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fermions as representations of the Lorentz symmetry.
Whereas spin of Weyl fermion is enslaved by its momentum
and is not an independent dynamical d.o.f., spin of massive
Dirac fermions is subject to dynamical effects. It is thus
necessary to understand how the side jumps and magnetic-
moment coupling in CKT are reduced from the dynamics of
massive fermions to the massless limit.

In the aforementioned systems, mass effects will play
sizable roles. For example, the measurements of global
polarization for A hyperons in heavy-ion collisions [32,33]
motivated by theoretical predictions [34,35] have triggered
increasing studies of spin-polarization formation and angu-
lar momenta of relativistic fluids [36—43]. Since the spin of
A is attributed mainly to the strange-quark component,
one may not treat them as massless fermions compared to
the temperature of the quark-gluon plasma. In addition, the
mass corrections upon the axial currents, generated by
the axial CVE and the chiral separation effect (CSE), has
accordingly received further attention [44—46]. As for the
astrophysical applications of the chiral-plasma instability
[47], a critical question was raised about the relaxation time
of the axial charge due to the effects of electron mass
[48,49]. These remain open questions and will be important
applications of the CKT with the mass correction, which
can simultaneously trace the time evolution of the charge
transport, chiral imbalance, and spin polarization.

In this paper, we apply a Wigner-function approach to
derive a quantum kinetic theory for fermions with arbitrary
mass, which we call axial kinetic theory (AKT). Recently,
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related studies were presented in Refs. [50,51], in which the
kinetic theories are derived in the rest frame of massive
fermions. Although physics is frame invariant (analogous
to gauge invariance), the choice of rest frame—similar to
the choice of a particular gauge—is legitimate only for
fermions with a mass larger than typical electromagnetic
and gradient scales. Physically, one simply cannot define a
rest frame for massless particles. The kinetic theories
derived therein consequently causes divergence and the
breakdown of 7 expansion for smaller masses. In order to
apply a relativistic situation such as heavy-ion collisions,
where the quark mass is smaller than or comparable to the
gradient scale, one needs a theory applicable to an arbitrary
frame (or at least a proper frame). AKT covers both the
massive and massless cases and hence resolves the problem
in constructing a bridge between them and should be
regarded as an underlying theory which embodies the
effective theories obtained in Refs. [50,51] for the large-
mass regime. After formulation, we discuss anomalous
currents transported by massive fermions in a thermal
equilibrium, which are important in heavy-ion collisions
and neutron-star physics.

This paper is organized as follows. In Sec. II, we present
master equations obtained from the Wigner-function
approach. In Sec. III, the perturbative solution of the vector
part of the Wigner functions (WFs) is derived, and a
corresponding scalar kinetic equation in an axial-vector
kinetic equation (AKE) is obtained. In Sec. IV, we further
derive the axial part of the WFs partially with an alternative
approach and generalization, where we also present a
corresponding axial-vector kinetic equation in the AKE.
In Sec. V, we discuss anomalous transport in thermal
equilibrium in our formalism. We then give brief con-
clusions and an outlook in Sec. VI. Details of the
derivations and computations are presented in the
appendixes.

II. WIGNER FUNCTIONS AND
MASTER EQUATIONS

We consider a massive Dirac field y, which is, unlike a
massless Dirac field, no longer decomposed into a pair of
Weyl fermions. The Wigner transformation applied to the
quantum expectation values of the correlation functions
reads

<(>)

s (¢.X) = / FYeFsCry). (1)

where X = (x+y)/2 and Y =x—y. Here, S<(x,y) =
((y)w(x)) and S7(x,y) = (w(x)y(y)) are lesser and
greater propagators, respectively. Hereafter, we focus on
S<(x,y). Note also that the gauge link is implicitly
embedded and ¢* thus represents the kinetic momentum.
We then apply a decomposition based on the Clifford
algebra [29],

< SHv
S =8+ iPr + Wy, + A%y, + 5 .. (2

where ¥, = ily,.7,]/2 and y° = iy%'y*/. The coeffi-
cients V¥ and A* contribute to the vector- and axial-charge
currents, while S and P are related to the quark and chiral
condensates, respectively. The antisymmetric S** is related
to magnetization.

For simplicity, we work in the regime where the collision
effects are sufficiently weak and drop the contribution from
the self-energy. Then the lesser propagator obeys

< h <
(H-m)S —|—7/"i§VﬂS =0, (3)

where m is the mass of the fermion, V, = A, + O(#?),
2

I, = q,+%5(8,F,, )00+ O(h*), and A, = 9, + F,,,0,

with F,, being the background-field strength. Equation (3)

can be written into ten equations with 32 d.o.f. [29]. Three
of them read

n
mS=T-V,  mP=-IV,A
n
mS,, = —€,,, 1P A” + EVI"V”]’ (4)

where A,B, =A,B, — B,A,. Therefore, one can choose
either eight functions S, P, and S as a set of independent
functions or the other half, V¥ and A* [52]. We choose the
latter set and apply an # expansion to the rest of equations,
which results in

A-V=0, (5)
(qz - mz)vu = _hFﬂuAI./ (6)
h c
quu - qﬂVl/ = ie/wpaApA ’ (7)
q-A=0, (8)
2 2\ Ap — h UUPO
(C] —m )-A _56 quszp’ (9)

h
g AA 4 FIA, =207 (0,Fp )00V, (10)

where F# = ¢l F ap/2. We have retained the leading-
order quantum corrections and removed one redundant
equation which can be reproduced from the above set; the
detailed derivations are shown in Appendix A.
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III. VECTOR WIGNER FUNCTIONS/SCALAR
KINETIC EQUATION

We now seek perturbative solutions (V/ AW =
(V/AYs +n(V/A) up to O(h'). The zeroth-order solu-
tions are immediately obtained from Egs. (6)—(9) as

Vo/ Ao = 2n(q/a)'6(q* = m?) fya. (1)

where fy,4(q.X) represent the vector/axial distribution

functions. Here, a*(q,X) satisfies g-a = g*> —m® and

corresponds to the (non-normalized) spin four vector.
As shown below, we have a* = ¢* in the massless limit
because the spin is enslaved by the momentum. However,
a” is a dynamical variable in the massive case which should
be determined by the kinetic theory.

Hence, we anticipate to derive the scalar kinetic equation
(SKE) and axial-vector kinetic equation (AKE) governing
the dynamical d.o.f. fy,4 and a*, Plugging Eq. (11) into
Egs. (5) and (7), one acquires the LO kinetic equations,
8(¢*> —m*)q - Afy =0 and §(¢* — m*)0,,a* = 0, where
@ =da'f,and U, a" = q-Aa, + F,,a". The spin part is
the renown Bargmann-Michel-Telegdi equation [53].

For O(h') solutions, we first focus on the vector part,
which can be derived from Egs. (5)—(7). Similar to the
massless case [17,22], Egs. (6) and (7) determine the
modification of the dispersion relation and the magnetiza-
tion-current (MC) term, respectively. Accordingly, we
find [54]

T

EuSatn) )
0=6(q> —m?) {q-Avarh( . A, +S” (8”F/,l,

h n
+ Eé(qz — m?)etvb [Aﬂ <—ﬁ

q-n

where E, = n’F,,, B =1¢"%n,F 5, and

€;wa/3a ng
gy = r 16
a(n) 2g-n (16)

is the spin tensor. When m = 0 and a* = ¢*, the second
line in Eq. (15) vanishes and the first line reproduces the
CKT in the massless case [17,18,22]. The detailed deriva-
tion of Eq. (15) is shown in Appendix D.

IV. AXTAL WIGNER FUNCTIONS/AXTAL-VECTOR
KINETIC EQUATION

The axial part of Wigner functions is obtained from
Egs. (8)—(10). However, unlike the vector part, Egs. (8) and
(9) lead only to the modified dispersion relation and do not
uniquely fix the magnetization-current (MC) term. We thus
obtain

0+ @S58, )1 -

)[(Ayamnawq’%« F) (@a,) + [(Bya,) -

Vi = 20Fwa,8 (¢ = mP)f + 205(q> — m)Gr, (12)
e"’n,

Gﬂ —
2q-n

[A (aafA) + FpafA} (13)

where §'(q*> — m?) = dé(q* — m?)/dq?, and n*(X) corre-
sponds to a local frame vector specifying the spin basis.
See Appendix B for more details of the derivation. The
presence of MC term implies that fy is frame dependent,
which follows the modified frame transformation between
arbitrary frames n* and n'*,

he*ron,n,
2(q-n)(q-n')

as derived in Appendix F, where the superscripts (n’)/(n)
of fy denote the frame dependence. Note that fy,, are
frame independent at O(#°). When one defines the spin
basis in the massive particle’s rest frame, the explicit form
of the frame vector reads n* = ¢*/m such that ¢ - n = m,
and the above expressions reduce to those obtained in
Ref. [50], whereas this frame choice is only valid at large

A (Apag + Fpo)fas  (14)

< <
mass when mS > |y- AS |. It is necessary to choose a
different frame for smaller mass. See also Appendix E for
further discussions upon this issue.
When m = 0 and a* = ¢", G* reproduces the side-jump
term for massless fermions [15,17]. Inserting Eqgs. (11)—
(13) into Eq. (5) yields the SKE up to O(h!),

&'(q* = m?)

P A

Fpp(agaa)]Aﬂ) fAv (15)

[
Al = 22F" q,8 (¢* = m*) fy + 226(¢* — m*)HF,  (17)

with an undetermined MC term H* up to the constraint
5(q* —m*)q - H = 0 on shell. While Eq. (10) yields the
AKE, we do not find any quantum correction when H* = 0
and F,, = 0.

In order to find the MC term for A%, we will implement
an alternative method by constructing Wigner functions
directly through the second quantization of free Dirac
fields, as examined in the massless case [17]. The quantized
free Dirac field reads [55]

l//(x)=/ 22) \/ﬁz

where E, = /|p|* + m? and where we drop antifermions
for simplicity. We have the annihilation (creation) operators

(f) ( /—p ; Geas, /p N 5§‘Y)T,

ap "’ and the wave function u*(p) =

e, (19)
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with s and &° being the spin indices and the two com-
ponent spinor, respectively [55]. Here, ¢ and 6" are four-
dimensional Pauli matrices which satisfy ¢#6" 4 ¢“6* =
6"o” + 6Yo* = 2, with the Minkowski matrix 7.

The lesser propagator then takes the form

_ B d*p &Ap 1 1
5w = | s | oy o v

X Do ()i (p)ay ag) e Xinet (1)

where pf, = (p + p’)#/2 and p*. = (p — p')*. The density
operator can be written as (als)’faf,) =8, Ny(p,p’) +
Ao (p,p’), where Ay (p,p’) # 0 when s # s'. We para-
metrize the results of the spin sum as >, &l =n-0=1
and ) o SS.A“/;I, = S-0 such that S-n = 0. After the
Wigner transformation, we define

. dp_ P -\ _.
X)= | =N —.q——= )P X,
fv(g, X) /(2;;)3 v(q+ 54— )e

X d’p_ - P\ i,
Sﬂ(q7X)E/(2”)3Sﬂ<q+7,q—7>g p—X’ (20)

where Sﬂ(q,X ) is related to the spin four vector. Further
making the 7 expansion led by the p* expansion for wave
functions analogous to the derivation in Ref. [17] for Weyl
fermions, we find that Eq. (19) yields (V/A)* in terms of

fv /4 with the explicit forms up to O(h'),

etvaby

14
26]” av(aafA) ’ (21)

W =2x8(q* — m?) | ¢"fy + h
At =216(q” —m?)[a fo + 1Sy Dufv]. (22)

Note that we have identified the present parametrizations to
the previous ones as

_ hS’;f(n) )
fv=»rfv- - 9,8, (23)
A S Dai o
a-nfy=3S8-q, aLyfA:m—msﬂ, (24)

0=05(q> —m*)(q - A(a"fa) + F*¥a,fy) + ftq"{é(q2 —m?) {(%S‘Zﬂm)% +

q-B
qg-n+m

- @) | + 3 =)

S —m?) " A}fv+hm{

(mnﬂ + qﬁ)F"ﬁ
qg-n+m

5(q2 _ mZ)e,uua/}

2q-n+m)

Q'A}fv-

where the subscripts “1” denote the components
perpendicular to n*, ie., v, =v* - (v-n)n* for the
vector v¥. We also introduced the following tensor:

SH o — €MDaﬂLI{zn/} _ eﬂyaﬂQan[)’
" 2g n+m)

(25)

2a-n

One may refer to Appendix C for details of the computations.
The V{ in Egs. (21) and (12) agree with each other when

F,, = 0.Note that the previous constraintq - a = g* — m?is

satisfied if wetake S - ¢ = (¢ - n 4 m)f,, which implies that

—S" = ¢\ f4/(q-n) when m = 0. Thus, (a-n)/(2q - n) is

identified with the helicity in the massless limit. From

Eq. (24), one can obtain the second equality in Eq. (25).
In Eq. (22), one can read off the MC term [56]

HY =% A fy. (26)

We generalize the derivative operator to include a back-
ground field analogous to the massless case [17], and we find
that A* has a symmetric form with V¥ under interchanges
q" < a*and fy < f4.InEq.(22),0necould absorb H* by a
redefinition a@*f, = a*f, + hH". The freedom of such a
redefinition reveals itself as the nonuniqueness of the MC
term, as we saw when solving the master equations (8) and
(9) for A#, and it could occur in the massive case since a* is a
dynamical variable to be determined by kinetic theory.
However, it is crucial to explicitly separate the MC term
H" from a* in order to see a smooth reduction to the CKT
where a* is no longer an independent dynamical variable and
is enslaved by ¢*. The H* is also important for including the
spin-orbit interaction. Note that H# = 0 when n* = ¢*/m,
which is thus omitted in Refs. [50,51]. Similar to the case for
fv, a*f4 also obeys the following modified frame trans-
formation,

am ) _ g )

B hetvap ( ng ”,//)’
(

2 q-n+m)_(q.n/+m)>quufv. (27)

Then, plugging Eqgs. (11) and (17) into Eq. (10) and
carrying out straightforward arrangements, we derive the
AKE as

av

Ss* E,A
m(n)~a=v v
L (amea/;]

qg-n—+m
(Eq = 9alq - 1))
qg-n+m

A

12

@), + g+ a5)

(28)
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The detailed derivation is shown in Appendix D. Taking the
massless limit m — 0, one immediately finds that a* = ¢*
from Eq. (28) and that the full equation reduces to the
CKT in Ref. [18] multiplied by ¢#, which manifests the spin
alignment along the momentum. In contrast, when m # 0,
the background field and the derivative of the local frame
vector engender nontrivial spin force.

When solving kinetic equations (15) and (28), we need to
handle the terms proportional to & (¢*> — m?). All of these
terms can be arranged with the leading-order (LO) kinetic
theory shown below Eq. (11): 28(¢*—m?)q"q-Afy =
_5(q2 - m2)82<q : AfV) and 25/(612 - mZ)D;way - _5(q2 -
m?)9((g-n)""'n,0,,a") up to O(h'). Then, all of the delta
functions can be factored out from the CKTs.

From the solutions of the CKTs, one can get the vector/
axial currents and the symmetric/antisymmetric parts of the
canonical energy-momentum tensor [57],

J’\I//s = 4/(V/A)", T’;;A = 2/(V"q” +Wg'), (29)
q q

where [ = [d*q/(27)*. Angular-momentum conserva-
tion arises from Eq. (7) as discussed in the massless case
[39], and 77 is responsible for the angular-momentum
transfer (see Ref. [43] and the references therein). As an
example, we consider the nonrelativistic limit with constant
n* and E*. By approximating ¢" ~ mn*, Eq. (28) yields
n-Aa*fa — hePEngd,,(fy/4)) ~ 0 after dropping the
subleading terms in m and arranging the delta functions
with the aforementioned strategy. Then, we find a spin Hall
current in the stationary state,

Ji ~ —2nhe"PE / 8(¢* —=mH)oufy.  (30)
q

V. ANOMALOUS TRANSPORT IN
THERMAL EQUILIBRIUM

As an application, we discuss the mass effects on the
anomalous transport in global equilibrium with constant
thermal vorticity and chemical potentials, and we compare
our conclusions from the SKE and AKE with those from
the Kubo formula calculations.

While collisionless kinetic equations do not uniquely
determine equilibrium WFs [18], we may construct
equilibrium WFs motivated by the following considera-
tions. For the vector charges, we may naturally take the
Fermi distribution function fyeq = fo(q-u—py) =1/
(exp(f(q-u—puy)) + 1), where p=1/T and puy are the
inverse temperature and vector chemical potential, respec-
tively. On the other hand, the axial charge should be
damped out as t - co when m # 0 because of the scatter-
ing. Thus, fae, may be at most O(A') induced by the
vorticity correction. Referring to the massless case [16,18],
we also expect that A% does not have an explicit

dependence on n*. Thus, we propose an equilibrium
Wigner function in constant magnetic field and thermal
vorticity

Veq = 228(q> — m*)¢" fo, (31)
5 2 _ m2
qu = 2rh [% qyel’”“ﬂﬂaﬂﬁq./;

L g8 (g —mzﬂfo, (32)

where €, = Jy,(,;)/2 corresponds to the thermal vor-
ticity and , = pu,. The equilibrium A%, takes the equiv-
alent form as the one for massless fermions at constant
temperature except for the on-shell condition [18] and
was also proposed for massive fermion [36] (a similar
form to [37]), which satisfies the master equations. See
Refs. [58,59] for WFs beyond weak vorticity and with
acceleration.

The equilibrium Wigner functions (31) and (32) now
lead to the CSE and the axial CVE, J% s = 65/, (B/w)",
where

ho e -
e A XA O NS

with g =1, g, = (2E3 —m?)/ Eq.and £ = fo(Eq —py) £
fo(Eq+puy). Here, the fluid vorticity @ is defined as
' = Tu, e PQ.5/2 = P, (d,u4)/2. The above results
agree with those derived from the Kubo formula with thermal
correlators [45,46]. Similar to the massless case [15,16,18],a
part of the axial CVE comes from the MC term which can be
identified by comparing A%, with the general form (22).

Finally, since f4.q = O(h'), we conclude that the CME
and vector CVE vanish at equilibrium when m # 0. On the
other hand, it was shown by the thermal field theoretical
calculation that the CME at equilibrium receives no mass
correction [60,61]. However, the axial chemical potential
Us 1s not a static quantity in the massive case, and the
thermal field theory with a constant ys does not correctly
capture its dynamics. The thermal field theoretical calcu-
lation may work only under certain caveats on the existence
of us, and there are no equilibrium currents at strict thermal
equilibrium at us = 0. Only when equilibrium statistical
operators breaking charge conjugation, parity, and rotation
symmetry (e.g., with acceleration and chemical potential)
exist would vector currents be allowed.

VI. CONCLUSIONS AND OUTLOOK

In this work, we developed the quantum kinetic theory
for arbitrary-mass fermions, which provides a theoretical
framework for describing the coupled dynamics among the
spin and the vector and axial charges. Moreover, we
constructed a bridge on the long-standing gap between
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the CKT and axial kinetic theory. In the future, we will
include collision effects to investigate their relaxation
dynamics. It is feasible with an extension of the collision
terms developed in the massless limit [17-19], and
with deeper understandings and techniques obtained in
this work.
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APPENDIX A: DERIVATION OF
MASTER EQUATIONS

In this section, we derive the six master equations for the
Wigner functions of Dirac fermions. We shall start with the
Dirac Lagrangian density,

L=y(ib—my, (A1)
where the covariant derivative is D, = 0, + iA,/h with the
U(l) gauge field A,. We define the greater and lesser
propagators as

157 (6, )] = h L Oy (s (0), (A2)

5%, )] = € 4 (7, (Vo (0)).

Here, @ and f denote the spinor indices.
After the Wigner transformation defined as

(A3)

SS(q,X) = / é;l; eMYSS(X+Y/2,X-Y/2), (A4)

the lesser propagator without collision terms obeys
< s h v < _—
(H—m)S~ +y is WS< =0,
h
S<(H—m)—i5VﬂS<y” =0, (AS)

or equivalently,

in
(@ =m). 55} + 57", V,5%] =0,

[m—mxy1+%wmm;ﬂ:m, (A6)

where we introduce
V,, = 6,, + jO(D)FW&Z,

H/l = Qy —|—§]1(D)FW82’
Here, we define 0, =0/0X*, 9)=0/dq,, and F,, =
d0,A,—0,A,. Also, jo(O),j(J) are modified Bessel
functions. We note that d, in [J only acts on F,, when
having spacetime-dependent background fields. Making
the 7 expansion, which corresponds to the gradient
expansion for d, < ¢q,, one finds that

ng@%. (A7)

hz
V,=0,+F,0 - 2 (0,0,F,,) 040004 + O(h*),

fl2
I, =q,+ - (0,F,,) 0504 + O(h*). (A8)
We then apply the decomposition based on the Clifford
algebra,

S
S<=8S+iPr + V' + Ay + TWZW’ (A9)
where 3 = i[y*,y*]/2 and y> = iy’ y?y3.
For simplicity, we consider the collisionless case, in
which Eq. (A6) results in

my, =11,§ - gV"SW, (A10)
2mAt = —e11,S,, + hVFP, (A11)
mS=1II-V, (A12)
mpP = —gV,,A”, (A13)
mS,, = —€,,), 1P A’ + g ViV, (A14)
and
vy, =0, (A15)
n-A=0, (A16)
Iny,-1,v, - éeﬂyﬁ,‘,hVﬂA" =0, (A17)
211*S,, + hV, S = 0, (A18)
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e"’’nV,S,, + 4P = 0. (A19)
By writing S, P, and S, in terms of V, and A, from
Egs. (A12)-(A14), we obtain

V.V=0, (A20)

2

h h
IV —m?V,) = =2 e VAT + - VIV, Yy,

(A21)
m-A=0, (A22)
h P No
LY, =TV, =5 €0 VA (A23)

h n?
(IP = m?) A — IV A” = 2711, 9,0, = - V'V - A,

(A24)

h2
R((TPV,) A7 4 V,TI740) = -7V, V), (A25)
A(I1- vy, + (VﬂH”)Vy) = ZGWM(H”HP).A", (A26)

where Aj,B,) =A,B, - B,A,. Up to O(n), Eqs. (A20)-
(A26) read

A-V=0, (A27)
V= m?V, = —hF A7+ PAYA°, (A28
q.9 -V —m Vv, = —hl' s + Eeyupaq > ( )
q-A=0, (A29)
h o
a V= q,V, = ESMVPUAPA , (A30)
2y e =D g A3l
(C] —-m ) _55 9s vav ( )
A4 Fo A, =" o A
q: + F v — 56 & UV[)
h

=5 (0oFp)V,  (A32)
AVH 4 F _h OFPPYD, 5 A° A33
q- Vi + Vv _Ee/wpa( ) qp ’ ( )

where A, = 0, + F,,0. To obtain the right-hand side of
Eq. (A33), we employ the following equation,

2e P 4 PFr)0, 5 A7

vuUpo ( vuUpo (

1
HVH/))Aﬁ — 66
1
= Eeyﬂlm(af’Fﬂ”)aqﬁA”, (A34)

where we derive the second equality above from the
relation

€upe O’ FPY = 2€,,,, 0P FP, (A35)
led by
€pe P FP = €,,,,0P(PAY — DY AP)
= € (P (FF + O¥AP) — P 0¥ A7)
= €Lpo <aﬂFﬁ” + %8ﬁF/’”> : (A36)

Note that Eq. (A33) is in fact redundant, which can be
derived from Eq. (A30). On the other hand, one can further
rewrite Eq. (A28) by using Eq. (A30) in a manner similar to
Eq. (A31). Accordingly, we shall deal only with the
following six master equations,

AV =0, (A37)
(¢* - mz)Vﬂ = —hFﬂ,J.Af’ (A38)
n ) Ao
quﬂ - q,,V,, = ESMDPGA Al (A39)
qg-A=0, (A40)
(q* —m*)AH = ge’”’”"q{,Ava, (A41)
n
q-AA* F FH A, = Eeﬂypa(agFﬂy)%Vﬂ

n -

= 5 (8QF’”)33VD, (A42)

where F* = e’“’“ﬁFaﬁ/2 and where we employ the
Schouten identity,

”ﬁepvaﬂ - ﬂf)eﬂyaﬁ - 77?/6/);4(1/)’ - ”éeﬂbﬂ/} - 77215'6/)1/(1;4 =0,
(A43)

to derive the last equality in Eq. (A42).

APPENDIX B: PERTURBATIVE SOLUTION FOR
WIGNER FUNCTIONS

We will then seek for the perturbative solution for V¥ and
A from the equations above, for which we take (V/A), =

(V/ A)g, + 1(V/A),, + O(R*). At leading order up to
O(1), from Egs. (A38) and (A39), it is found that

096011-7



HATTORI, HIDAKA, and YANG

PHYS. REV. D 100, 096011 (2019)

VOﬂ = 27”1/45<q2 - m2)fV7 <B1)

which follows the leading-order kinetic theory led by
Eq. (A37),
8(g* —m?)q - Afy = O(h). (B2)

The 27 factor in Eq. (B2) is introduced for convention. For
the axial part, Eqs. (A40) and (A41) yield

Ay = 250 5(q? — m?) . (B3)
where

a-q=q*—m? (B4)

satisfies ¢g-.A4 =0 with the on-shell condition. Now,
plugging Eq. (B4) into Eq. (A42), we find

8(¢> —m*)(q - Ala"f,) + F™a,fa) = O(h),  (BS)

which corresponds to

(BMT) equation.
Subsequently, according to Eqgs. (A37)-(A42), for the

next-to-leading-order solution up to O(#), we then have to

the Bargmann-Michel-Telegdi

(qz - mz)vly = _F/ll/A(U)’ (B7)
1 c
quvly - qulu = EeﬂupoApAm (BS)
g-A=0, (BY)
2 2 H 1 HUPC
(q —m )Al - 56 q{IAIJVOp’ (BIO)
1
q- A.A!]l + F””A],/ = §€Mvpa(aaFﬂ,/)8'gV0p

1 -

- E (&,F"”)@ZVOU. (B] 1)

The vector part V; can be solved from Egs. (B7) and
(B8) in analogy to the massless case. Here, Eq. (BS)
follows the same structure as the massless master equation
to solve for the side-jump term. It is found that

V, = 218(% — m?)q, fy + 2ahF,,a*5 (¢ — m?)f 5

solve + 27h8(q* — m?)G,, (B12)
A-V=0, (B6)  where
|
5(q2 - mz) v o 6/(q2 - m2) T v el
8(q* —m*)G, = Weﬂbpo'n AP(afa) — TFWH q,(a’fa)
5(q2 - mz) v o T v
:W(%m” (APa’fa) + 2F,,n"fy). (B13)
Here, n* corresponds to a frame vector analogous to the H* = gt P g®nP A, fy, (B15)

massless case. We employed the relation (¢* — m?)d'(g* —
m?) = —5(g*> — m?) to obtain the last line of Eq. (B13). We
will later utilize the solution in Eq. (B12) to derive the
scalar kinetic theory from Eq. (B6). Since G, reduces to the
side-jump term when m = 0 and contributes to the mag-
netization currents, we will call G# the MC term.

For the axial part A;,, from Egs. (B9) and (B10), it is
found that

Aﬂ = 2”5(q2 - mz)au A + hFﬂuqyzﬂél(qz - mz)fV

+2zh8(q* — m*)H

- (B14)

where ¢ - H = 0. Based on the side-jump term in the
massless limit, it is expected that the MC term here
will read

where g — 1/(2¢ - n) when m — 0. However, given that
we are unable to fix g by Eqgs. (B9) and (B10), we shall
implement an alternative way to derive g from the free
WFs in the absence of background fields obtained from the
free Dirac fields in the following section. According to
Eq. (C31), we find that 2g =sgn(q-n)/(|g - n| + m),
assuming that it remains unchanged in the presence of
background fields.

APPENDIX C: WIGNER FUNCTIONS FROM
DIRAC WAVE FUNCTIONS

In this section, we employ an alternative method to
derive WFs without background fields up to O(%). In
particular, we will utilize the result to determine the MC
term in A,. We will start with the second quantization of
the free Dirac fields [55],
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w(x) = / 27)° TE Z _’p"‘af,—kvs(p)e"l"xbff),
o= [ ﬁE.Z peTay + 7 (p)e by, c1)

where

e =Y e = (7). ()

/p.o_-s _/p_o—.’,ls

Here, ¢/ and 6* are four-dimensional Pauli matrices which satisfy ¢#6* + ¢*6* = 6*6” + 6”0 = 2n/*, with the Minkowski
matrix #n*¥. For simplicity, we will drop the antifermions,

W a'as)el ' =P X=3p"+p)Y), (C3)

/27[)3\/2—F~/ 27;)3\/2_}?‘2 p p

S<(x,y) = () (x)) =

Here, we make a change of coordinates by taking X = (x + y)/2 and Y = x — y in the second equality. We then carry out
the Wigner transformation, which yields

ig- d3p— d’p —i s P\ -y P- s' s
/d4quYS<(x,y) = W/(zﬂ;_ (2r)*e ir-X54(q - p, )Z <p++7 w\py = <apj_,,7,ap++,,7,>

dp_ e™P-%5(qy = pyo) s P-\ oy P\, st s
- ”/ (27)° ((|a? + 2+ m2) = (p_- g)2)" 2\t g )w P =) Lty )

(C4)
where p. = (p+ p’)/2 and p_ = p — p’. We now define the density operators as
(@S ay) = 8Ny (p.p) + A (p. D). (Cs)
where A,y # 0 when s # s/, which characterizes certain projection in the spin space. When taking the spin sum, we assign
foé;r:n'o:n-ﬁzl,
N
ngAss’é;r' = S(pa p/) ‘0, (C6)

5,8

where S - n = 0. Consequently, we find

(o Nar(oop=) - (Vo @5 -5 Vo lg+5)e (a-5)
Z:u(cH—Z) (q 2>_< 5 )G (g =L S A ,,7)> (C7)

6-(q+5)6-(g=%5) e (a+5)o-(q-
and
RSN A T :<\/0-(q+"2‘)0-5\/5-(q—"2‘) o (q+5)o-S 0'(61—"2‘)) 8
Z <q+2> <q 2> Ve (g+5)e-5/6-(qa-%5) G- (q+Z)o-S\/o (¢-5) (C8)

To compute the matrix elements above, we will employ the following tricks for Pauli matrices. We may write

q-6=mexp(q, -c0), 6 = tanh™! (g—J) (C9)
q
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where §'| = ¢/| /|q. |, which yields

0 0
Vq-o= ﬁ(coshi—kfﬂ -asinh§>

= (B 4+ m) + 4. o).

2(E, +m) (C10)

Hereafter, we will use the subscripts L to denote the
components perpendicular to the frame vector n#. That is,
V! = V¥ —n-Vn¥ for an arbitrary V¥. We can now write

-q,-0), (C11)

where y, = E, + m. We then have to utilize the following
parametrization,

viot =, +pL-0)xy +p.-0)

=XpXp —PL P+ UpP Xy P10
— ietp NgOP 1P, (C12)
which gives
vt -nr2E,(E, + m)+ O(p?) (C13)
and
i1, = 2(E; + m)qu, — ieuan®e’pL + O(p2).  (Cl4)

Similarly, one finds that
El;o’” = ()(p—'—pJ_'G)SJ_'O-(Zp’ —|—pi0')
=xpXpSL 0= (ppPL, F Xy PL)SL
- ieﬂvaﬂnao-ﬂsy ()(pp:/ _Zp’pl/) +p1- p/J_SJ_ "0
S, -ppL-o=S -pip|-o—ie"Pp,p,n,S.
(C15)
which gives
at-nwx=2(E,+m)qy S, +ie"Pq,p_n,Ss+ O(p2)
(C16)

and
aLﬂ =2(m(E;+m)S,1,—S,-91q.1,)

. p q1 - DP-
— €aplt Sﬂ< z

q" + (E,+m)p )+O(p%),

(C17)

where we use p_-dyx, =
hand, we also introduce

—q, - p-/E,. On the other

b0t =(x,—pL-o)xy =P -0),
a ot =(y,—pL-0)S,-o(yy —p'| o). (C18)
In the end, up to O(p_), we derive
vEn=(E, +m)?,
at-n=F2E,+m)q, -S| + i€upnq"p~Ss  (C19)
UJ_M - :I:2<E + m)qJ_ﬂ ﬂuaﬂnaqﬁpi’ (CZO)

le‘iﬂ = 2(m<Eq + m>SJ_;4 - SJ_ : QJ_qJ_ﬂ>

¥ zeﬂmﬁn"S/}( —q" + (E, + m)p~ > (C21)
q

Let us focus on the off-diagonal terms in Egs. (C7) and
(C8) associated with V, + A,. By utilizing Egs. (C19)-
(C21), it is found that

dp_e""%5(q - Ey)
o (V-A)= ”/ (27 2E,(E, O+ m)

x (7t -oNy +at - o),

dp_e"%5(qy — E,)
5 (V4 A) = / g
7 )=x (27)' 2E,(E, + m)

X (07 -oNy +a - o).

(C22)

Recall that Ny = Ny(q +% .9 -%) and S, = S, (¢ + %

2 9
g —%) in the integrands. Thus, one obtains

m [dp_ e™'P-X5(qy — E,)
”'A_2/(27z)3 2E,(E, 1m)
x nt((T; = )Ny + (a, —a,))

=276(q> —m*)q - SJ_» (C23)
A :_E/d%-fm“&%—Eﬁ
T2 ) 2a) 2E,(E,+m)
x (07, +01,)Ny + (a1, +aj,))  (C24)
SJ_ an S
= 276(q> — m?*) KEq sl A0y mSm)
7 C25
—%aﬂw fv} (C25)
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y n/ dp_ e 7-%5(qo — E,)
n- —
2) (2x)* 2E,(E,+m)

a, +a;))
€pvaﬂ
2(E, +m)

x (T, + 0 )Ny + (

= 278(q* — m?) [quv + naq,;ayfs,,
= 276(q> — m*)E,fy. (C26)

and

Vo _g/ dp_e"-%5(qy— E,)
T2 ) 2a) 2E,(E,+m)

((vlﬂ

viy NV + (aJ_ﬂ aly))

 Cuaph®
2(E, +m)

(q qz 8+ (E, —l—m)@”)Sﬁ}

= 27'[5 |:qJ_yfV T T

= 276( fI —m? |:CIJ_/4fV q.X

~ Cuwap” o [ 4 9q  ap
2E, a((Eq—l—m) mS)]

(C27)
where
- dp_ p- P\

X)= | —= = g-—"—=eP-X
fV(Q’ ) /(2”)3 IVV(q+ 2 7q 2 e k)
A d3p— p- p- —ip_-X
5.(q.X)= (zﬂ)Bsﬂ g+ .q="5 )X, (C28)

with

€/}u(1/)’

fv(g. X) = fyv(g,.X) +m

naQ[)’avSp<q’ X)
(C29)

Recall that SM =S 1+ In the computations above, we have
employed Schouten identity (A43).
|

226(q> — m*)e!r° [ (E,n,a,
( ) << H + (6] . n)

2n-q qg-n

n 275(q* — m*)e! e f (((5‘ E
2n-gq

A'Vlz

278 (¢* — m?)
n-q

ny) + #

Finally, by taking

A

~ qg-S ~
S-q =a-nfy, WQLM mSﬂ:aJ_/AfA (C30)
and retrieving the 7 parameters, we obtain
vay q
A, = 215(q* - p Gy,
/4 ”(q m)(ﬂfA+ (q n+m) fV
V= 200047 = ) (aufy + 0L,
2(q - n)
(C31)

where we replace E, with g -n. Note that here g-a =
g> — m? is indeed satisfied by taking a-n = q-n+ m.
One can now also decompose the spin four vector
into a*f4 = (g* + mn*)f, — S~

In the presence of arbitrary background fields, the
analytic solution for Dirac wave functions is unknown.
Consequently, we generalize the free solution for axial WFs
based on the solution in Eq. (C31) and its connection to the
massless result for Weyl fermions. We hence conclude that

A, =2r8(q* — m*)(a,fa+ hS’;”(n)A”fv)

+ th,q”Zﬂé’(qz -m?)fy (C32)
by replacing the 0, operator with the A” operator in the
magnetization-current term, where

» €ﬂz/aﬂ qanp

S = 3] (C33)

APPENDIX D: SCALAR/AXIAL-VECTOR
KINETIC EQUATIONS

Given the perturbative solution for V¥ up to O(h) in
Eq. (B12), we first derive the SKE from A-)V =0 in
Eq. (A37). In the derivation, we assume that the frame
vector n,, is independent of the momentum g. By perform-
ing straightforward computations, we find that

<%> - nu(aﬂao’)> A/) + nya0<auF/3p)6z) fA

- (8uq ’ I’l)
q-n
2xE"5(q* — m?)fa

ny> A, + nl,(ﬁﬂFﬂp)ag> a,

B'(q - Aa, + F,a") +

P—m? E,— (9,9 -n)
U H
q-n <(a"n”)+ q-n n’“)
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v

— 2726(q? — m? E”S"(”)A n &+ (9,5" _
”(q m) q- +S (/lpl/) +(S )va

(gt —m >eﬂwﬂ( (DA,

q-n

where the electric/magnetic fields are defined in terms of n*,

- 1
F

From Eq. (D1), we derive the SKE

h (EuSy
0—5(612—”12)[6]‘Afv+§< ; )

2 _ 02\ pvap
+h6(q 4m )e < ng (Dya0)A, +

q-n
_hé’(qz—mz)
2q-n

where

eyya/} any

gy = F D4
an = g m (D4)
Next, we may derive the AKE from the perturbative
solution of A, up to O(h) in Egs. (C32) and (A42)
in the master equations. The computations will be more
|

0=156(¢q" —m?)[(a"q - Afa+ falqg - Ad" + F*a,)) + h(q - A(S),
— he?(0,F 5,)q,04fv] + 1 (q* — m*)Fq,q - Afy.

+(0uF ) (0404)) +

w = Ee,M,,Faﬂ = €uapE*n’ + B,n, — B,n,, F,, = —€,43B*n’ +E,n, — E,n,.

A, + S (

(0,F ) (9404)) +

Bﬂ(q ' A(aﬂfA) + Fu;tayfA)a

278 (¢* — m?)
n-q

8 (2 () + Fu) )

B'(q-Aa, + F,a")

(D1)
(02)
O, )% + (9,8 )A )f}

8, () (8 + ) )

(D3)

[

complicated than in the case with the SKE but straightfor-
ward. Nevertheless, in order to make a direct comparison
with the massless CKT, the underlying strategy is to isolate
the 7 terms proportional to ¢* and the other terms explicitly
proportional to m since we expect that the AKE should
reduce to ¢ multiplied by the CKT in the massless limit, as
foreseen from the off-shell BMT equation.

From Egs. (C32) and (A42), we obtain

Aufv) + F* S f v)

(Ds)

We then rearrange this equation in light of the aforementioned strategy to obtain the form for comparison with the CKT

when m = 0. We shall first evaluate
8(q* —m*)q - A(S)

= [6(¢* —=m*)((q - AS),))A

= 28'(q* = m*)q"F S04 -

pv

where we take

8(g* —m*)q- A(Afy) = 8(¢* —m*)((q- AA) fv + A(q-Afy) —
=68(q> —=m*)((q- ML) fy
—(A8(q> —m?))(q - Afy).

For the first component of Eq. (D6), we find that

Alfv.

Afy) =08(q> —m?)((q- AS, ) )ALy + S 0a - AAfy))
u_S’w F, A+ S!nlf(n)((Q'aF[)’v)_q/)(avFﬂ/)))ag)

O

(Do)

(Avq : A)fV)
— (A, A)fy)+ A,(8(q> —m*)g - Afy)
(D7)
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q’F Ny n
5 2 N Sﬂl./ =5 _ (A S A S uvac 2 (9 o

€ﬂp(qunaEa q- ana e;wpaq nq;) a
+ . r o % + uwpo | -~ F* + A
2(q-n+m)? ¢ 2(qg-n+m) q" 2(q - n+m 2(q-n+m)? ulv

S‘;l”(n)E (g-n Fuv q*BY) ¢"2q E,

=5 2 _ 02 (o Sev "
(g m){q(,, nioy) T g-n+m 2(q-n+m) +2(q n+m)
€ﬂy{z/3m2 €puaﬂ<m2nﬂ + mqﬁ)
—(0 O(h D8
[
where we use -8 (q* —m*)q°F,, S}w ) - Afv
§(q* —m?)
€/waana — (3%3[611”] + 5ZB[unﬂ] + 5;/)3[/4”0] + eﬂuao‘E[pna] = —mqpl?pveﬂbaﬁqanﬂq . AfV
= SLF 4 g F 4 sy (D9) §(q? = m?
q> —m?)
— F M eprop v phpaf a  pvpp
g ntm) (e + g e + ge
and + 47" ) qanpq - Afy
5/(q2 _ mZ) 5 ) ,
A, Sav =0, Sav _|_ P P aﬁ 4p"s =-|49"q-B g-n+m _5/(61 —m )q/Fﬂl/Sﬁ:(n)
Nl ) 5(g = m?)
qg —m
B Sum E - P (qPny —q - n - Afy, D13

@Sl F g-n+m q-n+m

Subsequently, the second component in Eq. (D6) reads which yields

v NG v 49 Af
- 5(q2 —m )SM /w Alfy - 5,<q2 - mz)quPl/Sﬁz(n) 2 .
8(q> —m?) 3(q>—m?) (g’ —m?)
= - ebg n i — _lgtg-B _ 2BH
2(q-n+m) Ay Sy [qq g-n+m g-n+m (m
5(q2 _mZ) I pa o Iup 5ﬁ~a 0 7
Im(‘%F + S 4 G F ) qonp A’ fy —q-nqgF*’)|q- Afy + O(h)
2_ 2 i
_ 5(q* —m?) (=g~ BA* + g, F%n - A)fy. 1) _ _5/(q2 -m®) [ ¢"q-B B m(mB* + qzF*P)
2(q-n+m) 2 g-n+m g-n+m
Next, the third component in Eq. (D6) can be written as +q,F W] q-Afy +O(h). (D14)
5(q* — mZ)S”my(,,)((q -0Fg,) — q"(0,F /}p))&ﬁ fv On the other hand, one finds that
8(¢> —m?)
=68(¢*—m OF )0 ——(g"eP e
(q ) (q ﬂ) fV (q n+m)(q 5(q2—m)F S D/}A fV
+ qyeﬂﬂaa + qaeﬂvpa + qaeﬂmp)qan ((9 Fﬂp)ﬁgfv _ 5(612 _ m2) Mg“n”&”f‘/
o(q” = )35, 0.2 LSNPy ot
=—=8(¢* = m*)| ¢ Fpo) +5 vE o (¢ —m? .
(g m) P _ 0= m) (o gar— B A+ g F, A
m €yb/)(7qp 6 aﬂ 2<q n—+ m)
—(1- F . D12
(1- ) 2 0 i 1) 15
For the forth component in Eq. (D6), it is found Combining all pieces, we acquire
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ehvre

2 (anFﬂD)q/)ang

S;yn E{ .nFﬂV+ Fﬂﬂnﬂ+nﬂ FD/J ey B

8(q* —m?)|q - A(Sy ) Aufv) + F*Spmu, A fv] + 8 (¢* = m*)F* q,q - Afy —

qg-n+m 2(g-n+m) 2(q-n+m)
P (m*ng + mqp) g*q-B  m(mB* + qzF"F)
E, - )| A fy =8 (g? — m? - ! A
o) (5, = 0,(q )| Aufy = 02 -y | LB MO EGTDN
ePom(mn, + q,)
20 pv » T4
o062 =) |50 0,F) + S ) 0,7, i
sw E ‘B
_ 2.2 av m(n)~a—V pv a2 ooy 4 )
_qﬂ{é(q m )|:(8asm(n))Ab+ g-n+m +Sm(n)(aﬂFﬂl/)a§:| 5(q m )qn+mq A}fv
e (mny + qp) ((Eq —alq - 1))
S(a? — m?2 BT 9p a” Ya A — (O F
ot - ST ) (B0 1) o 0,1,
BH Fub
+5’(q2—m2)wq¢}fv. (D16)
qg-n+m

To obtain the last equality above, we apply
q-nF* + qu””n” + n”qu”/’ +e"q,Ey = q - n(B[”n"] + €”””’ﬂEanﬁ) + g Bn*n* — q-nB'n*
+ e q E.ngn’ + n*(B'q - n— q - Bn*) + n*e’* q,E ng + e7°q,E,
= e (q-nEung — Eqoqp) + q,Eqng (e’ Pn? — e Ppk)

=0, (D17)
where we also use
q,Eqnpe™ Pt = (q - n)E nge"® + q,E nzePn’ + e q E,. (D18)
From Eq. (D5), the AKE takes the form
S E A,
0=&fﬂwWWAn+nwﬂw+Wm»+mﬂdfﬂﬂ@%%mm+f%:;

v q- B
+ an(n)(apFﬁu)aZ] - 5’(q2 - mz)mq : A}fv

e (mng + qp) ((Eq— 0alq - 1))
amd 8(q? — m? PP (e A, - (8,F ),
+ m{ (q m) 2(qn+m) q-n+m v (y/)a)q
B + g, )
5 —m) B ANy D19
Falg —mt) g A by (D19)
|
APPENDIX E: SPIN HALL EFFECT where LI = g - A + F** and @ = a’f,. By using

We show how Eq. (D19) reveals a spin Hall effect in a
nonrelativistic case. Assuming that E# and n* are constant  §'(g> — m?)e"**PEn 54,9 Afy
and approximating ¢ ~ mn”, Eq. (D19) reduces to 5(q% — m?)

= _feﬂyaﬂEan/}(Ay + q- Aaqu)fV + O(h)’

_ h
8(q* = m?) <D"”a,, + 3P Eanyh, fv> (£2)

h
+75/(‘12 - mz)eﬂyaﬁEanﬁqu : AfV ~0, (El)

2 Eq. (E1) becomes
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pvaf In a stationary state such that

h
5(q* — m?) [q A <Zl” _nhe Eanﬁaqbfv) + F””Zly] ~0,

~ h voy
(ES) at = ZSM ﬁEal’lﬁaqyfv, (E6)

we find that

d4q
(A "
V=4 / S

d*q . .
& 477/ 2n) 8(q* — m*)(2a" — het ﬁEanﬂé‘ql,fv)

which can be written as

A pvaf
n-A (a/" —_ €4 Eanﬂaqyfv>

ghap

— -0+ £,0) (@ =" B0, 1 ) 0 (B4

d4
= —2nhe"PE,ny / ﬁé(gz —m?)0,,fv. (E7)
by further dropping the O(1/m) suppression terms. On the "
other hand, in such a limit, the axial WF approximately APPENDIX F: FRAME INDEPENDENCE

reads

In this section, we derive the modified frame trans-
A, 7 216(q* — m?)a,fa formation upon fy and a*f, at O(#) to ensure the frame
o 5 5 independence of V¥ and A*. Recall that the explicit form of
+ hreyop B0 (935(q° —m?)) fv. - (E5)  ywand A% in an arbitrary frame n* reads

hetPon,

S P

(A, (@S 1) + Fpgfg"b} + 2z Eal"s (g2 — m?) £y, (F1)

het*Pg n -
H =25 2 _ a2 (n)u (n) a’tp A (n) 2xhF*™ g & 2 _ 2 (”)’ 25)
A= 2a(q? = )| ) T, 1) g, ) (F2)

where we further add the superscripts (n) on fy and a”f, to highlight their frame dependence due to the presence of
magnetization terms. Based on the frame independence of V¥, we obtain

n,

8(q* —m?) [61" (1) = 137 + heswre <—””

2Q'n_2q~n’>(Aﬂ(a"fA)+FpafA) =0 (F3)

up to O(#) when considering the frame transformation from n* to n’#, where we drop the frame dependence on a* and f,
therein since only their frame independent part O(#°) contributes. Contracting Eq. (F3) with n¥, one immediately obtains

o " heﬂupﬂ n, n'
f( ) _ f( ) + v
Yo T 2(g (g )

as the modified frame transformation of fy,. One may show that Eq. (F4) indeed satisfies Eq. (F3) explicitly. By using
Eq. (F4) and Schouten identity (A43), it is found that

(A/J(aafA) + F/mfA) (F4)

8(q* = m2)g () = 1)

A (a, + F
= hé(q* — m*)(e"P°q - nnl, + e¥°n,q - n' + onnl,q” + P nynlq°) (8,(a0f4) pof'4)

2(q-n)(q-n')

(q ' A<aafA) + Fpaang> ’ (FS)

/

n, n, ghne

= 1d(g* — m?) | erwre (Ay(asfa) + Fpofa) +
o ) z

(g-n)(g-n')

where we employ ¢”A,(a,fs) = A,(q-afs) — F,na’f4 and g - a = g*> — m* in the computation. Since

Zq-n’_Zq-n

18(q* —m*)(q - Aasfa) + Fpea®fa) = O(R?) (F6)

according to the AKE and the corresponding term thus can be dropped in Eq. (F5), Eq. (F3) is indeed satisfied by the
modified frame transformation. For the frame independence of A, it is straightforward to find that
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a("')ﬂfl(“" ) _ a(n)ﬂfﬁ‘")
/

— heﬂvaﬂ( nﬂ _ nﬂ
2(q-n+m) 2(qg-n"+m)

)%Aufv (7)

as the modified frame transformation. From Eq. (F4), one
can make the connection between n* = n#(X) and the rest
frame ny = ¢"/m through

Rensq,

= L(Ay(asfa) + Fpofa).  (F8)

2(qg-n)m

Nonetheless, in the small-mass region, fgf') contains a
divergent term. For V¥ to be frame invariant, such a

divergent term from the modified frame transformation
should cancel the divergent part of the magnetization
current in 7 so that the remaining finite part agrees with
the magnetization current obtained in ##(X). One is forced
to deal with such a subtle cancellation caused by an
inappropriate frame choice when m is smaller than the
gradient or electromagnetic scales. Thanks to our results in
the general frame, we may discuss the frame transformation
property and find how the frame invariance should be
realized. Even better, we can choose an appropriate frame
to avoid such pathological behavior. However, without
knowing such a general frame transformation, naively
working in the rest frame cannot correctly capture the
finite quantum effect when m is small.
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