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We’ present a gauge and Lorentz invariant model for the scattering of matter off magnetic poles, which
justifies the presence of velocity-dependent magnetic charges as an effective description of either the
behavior of monopoles in scattering with matter or their production from matter particles at colliders.
Hence, in such an approach, perturbativity of the magnetic charge is ensured for relative low velocities of
monopoles with respect to matter particles. The model employs a Uð1Þweak × Uð1Þstrong effective gauge
field theory under which electrons and monopoles (assumed to be fermions) are appropriately charged. The
nonperturbative quantum effects of the strongly coupled sector of the theory lead to dressed effective
couplings of the monopole/dyon with the electromagnetic photon, due to nontrivial wave-function
renormalization effects. For slowly moving monopole/dyons, such effects lead to weak coupling, thus
turning the bare nonperturbative magnetic charge, which is large due to the Dirac/Schwinger quantization
rule, into a perturbative effective, velocity-(“β”)-dependent magnetic coupling. Our work thus offers formal
support to previous conjectural studies, employing effective U(1)-electromagnetic gauge field theories for
the description of monopole production from standard model matter, which are used in contemporary
collider searches of such objects. This work necessarily pertains to composite monopoles, as seems to be
the case of all known monopoles so far, that are solutions of specific particle physics models. This is a
consequence of the fact that the wave-function renormalization of the (slowly moving) monopole fermion
turns out to violate unitarity bounds that would characterize asymptotic elementary particle states.
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I. INTRODUCTION AND MOTIVATION

The quantum theory of structureless magnetic poles as
introduced by Dirac [1] was characterized by nonlocal
hidden degrees of freedom (d.o.f.), the “Dirac string,”
whose invisibility in physical processes lead to the charge
quantization condition. The presence of the string leads
also to Lorentz noninvariance of the configuration and the
associated field theory treatments, which manifested itself
in various contexts, such as the local formulation of the
magnetic charges by Zwanziger [2], which necessitated the
presence of a fixed four vector in the associated effective
Lagrangian, containing two gauge potentials, associated
with electric and magnetic current sources, or the famous
Weinberg’s paradox [3], according to which the leading
perturbative term in the scattering amplitude between en
electric charge and a magnetic pole was not Lorentz
invariant. Schwinger’s formulation of the dyon [4], which
generalized the magnetic monopole to an object carrying

both electric qe and magnetic qm charge, restored Lorentz
invariance, but at the cost of introducing a nonlocal
Hamiltonian formulation of the dyon field, provided
Schwinger generalization of Dirac’s quantization condition
is valid, for the scattering of dyon configurations with
charges qne , glm, n;l positive integers,

ðqneglm − qlegnmÞ=4π ¼ Znl ∈ Z; ð1Þ

where Z denotes the set of integers. In the absence of
electric charges, this condition leads to the Dirac quantiza-
tion (but the fundamental charge unit is twice that of Dirac
[1]). It should be remarked that, upon the imposition of (1),
any Lorentz noninvariant effect in the effective two-gauge-
potential Lagrangian of Zwanziger [2] disappears, and this
is also associated with an integrability condition of the
representation of the Poincaré Lie algebra that stems from
Poincaré invariance into a representation of the finite
Poincaré group [2].
Although the initial concept of the monopole as envis-

aged by Dirac was structureless, subsequently, ‘t Hooft and
Polyakov [5] proposed composite monopoles, which were
topological soliton solutions of phenomenologically real-
istic gauge and Lorentz invariant field theories, involving
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spontaneous (Higgs-like) symmetry breaking. Unlike the
Dirac monopole, such solutions were smooth, with no
Dirac-string singularities, being characterized by finite
energy.1 The solution is localized around the origin, where
the gauge group is unbroken, but very far from it the gauge
group G is broken to a subgroup H, and the ‘t Hooft-
Polyakov monopole reduces to the Dirac one. ‘t Hooft
considered the Georgi-Glashow model [6] involving a
Higgs triplet that spontaneously breaks the SU(2) group.
The importance of this type of simply connected gauge
group is that it is characterized by a nontrivial homotopy,
e.g., for the SU(2) gauge group π2ðSUð2ÞÞ ¼ Z, with Z
being the set of integers. This defines how many times the
spatial three-sphere, where the Higgs field lives, wraps
around the internal (gauge) space sphere spanned by the
Higgs triplet of the Georgi-Glashow model, which leads to
the magnetic charge quantization condition [(1) for the
magnetic monopole, i.e., qle ¼ 0]. Extension of the monop-
ole and dyon solutions to phenomenologically realistic
grand unified theories (GUT) with gauge group SU(5), with
similar conclusions, was made in [7]. In such models,
the monopoles have masses of order of the GUT scale
1014–1016 GeV, which implies that inflation (whose scale
is believed to be closed to this scale) would have inflated
them away, which probably explains why such large GUT
scale monopoles have not been discovered in cosmic
searches so far [8]. In superstring theories, with appropriate
grand unifying gauge groups, broken by stringy methods
(Wilson lines), structures with magnetic charges have been
first considered in [9]. Moreover, in D-brane-inspired GUT
models [10], the unification scale (and hence the mass of
the appropriate magnetic monopoles/dyons) can be lowered
significantly, down to 104–106 GeV, relevant for future
collider or cosmic-ray searches.
Unfortunately, unlike the SU(2) or SU(5) or other GUT-

like-group monopoles, the gauge group of the standard
model (SM) SUð2Þ ×UYð1Þ does not have this simple
structure allowing for topological charge quantization,
because of the hypercharge UYð1Þ factor. As a result, after
Higgs breaking, the quotient group SUð2Þ×UYð1Þ=Uemð1Þ
is not characterized by a nontrivial second homotopy; thus
monopoles were not expected to exist in the standard
model. Phenomenologically, such a conclusion would
imply that current collider (LHC) monopole searches might
be futile.
However, in [11], it was argued that one can look for

nontrivial topology in the Higgs field structure. Indeed, in
the presence of the UYð1Þ hypercharge group factor, the
Weinberg Salam model is viewed as a gauge CP1 model
with the (normalized) Higgs doublet field playing the role

of the corresponding CP1 field, characterized by a non-
trivial homotopy π2ðCP1Þ ¼ Z thus allowing, in principle,
for a topological quantization à la ‘t Hooft-Polyakov. This
monopole is not characterized by a Dirac string, given that
the latter had been argued to be a gauge artifact, provided
the UYð1Þ hypercharge group is endowed with a nontrivial
bundle structure [11]. Unfortunately, however, the resulting
monopole or dyon solutions of [11] were characterized by
infinite energy.
Recently, though, it was observed that finite energy

monopoles of the type proposed in [11] can characterize
extensions of the standard model, with either appropriate
nonminimally coupled Higgs and hypercharge sectors [12],
or higher-derivative extensions of the hypercharge sector,
for instance, in a (string-inspired) Born-Infeld configura-
tion [13]. Such monopole/dyon solutions could have
masses accessible to the scales of current or future colliders.
Other finite-energy structured monopole/dyon solutions
with potentially low mass (characterized by a Dirac string,
though) can be found in string-inspired models with
axionlike structures [14].
In view of the above theoretical advances in the field

of relatively light monopoles/dyons, the development of
effective field theory methods that could allow study of
their production at colliders or scattering off SM matter has
gained renewed interest. So far, lacking a fundamental
theory for the description of the interaction of magnetic
poles with standard model matter, like leptons, quarks, and
photons, only ad hoc phenomenological effective U(1)
gauge field theory models are used for collider searches of
monopoles [15].
These models are essentially dual extensions of electri-

cally charged particles of various spins interacting with
photons, in which the electric charge in the coupling with
the photon is replaced by an effective magnetic charge.
Such effective descriptions may contain some truth in them,
provided one considers the above-mentioned cases of the
composite monopole solutions in (extensions of) the SM.
Indeed, as discussed in [16], one may think of the magnetic
monopole charge in such cases as a collective coupling to
photons of (electrically) charged constituent d.o.f., such as
chargedW-bosons and Higgs fields, which the monopole is
composed of. Modeling these constituent fields as quantum
harmonic oscillators, the authors of [16] argued that the
monopole might be viewed as a coherent superposition of
∼ 1

α such quantum states, with the result that the collective
coupling to photons is 1

α e, consistent with the lowest
nontrivial sector of the charge quantization condition (1).
In this work we attempt to construct (strongly coupled)

effective gauge field theories for the above type of
composite monopoles, by extending nontrivially the ideas
of Zwanziger [2] that were developed for structureless
monopoles. When we consider our effective theory suffi-
ciently far away from the monopole centre, the ‘t-Hooft-
Polyakov-type monopoles mentioned above resemble the

1The fact that such solutions were obtained from gauge and
Lorentz invariant field theories made Weinberg’s observation on
the non-Lorentz invariant nature of the (perturbative) scattering of
electric charges off (generic) magnetic poles a true paradox.
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structureless Dirac ones, to a good approximation.
Nonetheless, as we explain below, the role of composite-
ness turns out to be crucial for us, since, as we see, when we
consider the quantization of our nonperturbative effective
field theory, the resulting wave-function renormalization
for the monopole field does not respect the appropriate
unitarity bounds for an elementary field, thus making our
effective description suitable only for composite fields [17].
We are quite generic though in our considerations, and we
do not specify the type of the composite monopole/dyon.
For us, it might be one of the known types, mentioned
above, or an as yet unknown solution of some beyond the
SM theory with or without Dirac-string singularities.
Let us commence our study by first reviewing

Zwanziger’s approach [2], which we make partial use of
in thiswork. The approach employs two related gauge fields,
which allows for the construction of a local Lagrangian for
the description of dyons, albeit non-Lorentz invariant. If one

considers electric and magnetic currents, Jμe and J
μ
m, respec-

tively, then, as shown in [2], the corresponding Maxwell’s
equations read

∂μFμν ¼ Jνe; ∂μ
⋆Fμν ¼ Jνm; ð2Þ

whereFμν denotes the electromagnetic field-strength tensor,
with ⋆Fμν≡ 1

2
ϵμνρσFρσ being the dual tensor, and ϵμνρσ the

totally antisymmetric Levi-Civita symbol, with ϵ0123 ¼ þ1,
etc. We work throughout this work in a flat Minkowski
space-time with metric ημν ¼ ð1;−1;−1;−1Þ. For future
purposes, we note the axial-vector (pseudovector) nature of
the magnetic current in (2).
The general solution of the two Maxwell’s equations can

be expressed in terms of two (related, as we see) potentials
Aμ and Bμ and a fixed four vector ημ, as follows [2]:

First equation with electric current∶ F ¼ −⋆ð∂ ∧ BÞ þ ðη · ∂Þ−1ðη ∧ JeÞ; ⋆F ¼ ∂ ∧ B þ ðη · ∂Þ−1⋆ðη ∧ JeÞ; ð3Þ

Second equation with magnetic current∶ ⋆F ¼ ⋆ð∂ ∧ AÞ þ ðη · ∂Þ−1ðη ∧ JmÞ; F ¼ ∂ ∧ A − ðη · ∂Þ−1⋆ðη ∧ JmÞ; ð4Þ

where we used a form notation for brevity, with ∧ (·)
denoting exterior (interior-dot) product as usual, such that
for four vectors ða ∧ bÞμν ≡ aμbν − aνbμ, a · b≡ aμbμ.
With these conventions we have for any antisymmetric
second-rank tensor F μν ¼ F νμ: ⋆⋆F μν ¼ −F μν.
As discussed in [2], one can eliminate the currents from

(3) and (4), and express these equations solely in terms
of the potentials Aμ and Bμ. The following representation
of the kernel ðη · ∂Þ−1ðxÞ [satisfying η · ∂ðη · ∂Þ−1ðxÞ ¼
δð4ÞðxÞ] is used:

ðη · ∂Þ−1ðxÞ ¼ c1

Z
∞

0

δð4Þðx − ηsÞds

− ð1 − c1Þ
Z

∞

0

δð4Þðxþ ηsÞds; ð5Þ

with c1 being a real constant, appropriately defined in order
to obtain the correct form of the Lorentz force in the
classical relativistic particle limit of the dyon field [2]. The
form (5) implies that, in the point-particle case, the support
of ðη · ∂Þ−1ðxi − xfÞ is reduced to xμi ðτiÞ − xμi ðτfÞ ¼ ημs,
for −∞ < τi; τf; s < þ∞, with τ being the proper time.
The gauge potentialsAμ and Bμ depend on ημ and on the

gauge choice. For convenience, in the approach of Ref. [2],
the fixed four vector ημ was chosen to be spacelike
ημημ < 0. The gauge potentials are not independent, as
they are associated with a single field strength F, since the
dual ⋆F is expressed in terms of F. Indeed, from (3),
equating the expressions for the field strength F between

the first equation in (3) and the second equation in (4)
yields

∂ ∧ Aþ ⋆ð∂ ∧ BÞ ¼ ðη · ∂Þ−1½η ∧ Je þ ⋆ðη ∧ JmÞ�; ð6Þ
so that only two photon d.o.f. propagate on shell in this local
theory, despite the fact that two potentials are needed to
ensure a local formulation of the dyon. The constraint (6)
would imply that B is an axial vector, since this is the case
with themagnetic current aswell, and in this way one obtains
consistent transformations under the (improper) Lorentz
group, involving reflexions. This is essential for our purposes
in this work, when we formulate in the next section the
effective quantum gauge field theory for the monopole.
We also remark at this point that, upon using the

following identity for an antisymmetric second-rank tensor
F μν ¼ −F νμ,

trðF ·F Þ≡F μνF νμ ¼ 2

η2
½−ðη ·F Þ2þðη · ⋆F Þ2�; ð7Þ

with the notation η2 ¼ ημη
μ, ðη · F Þν ¼ ημF μν, etc., it is

possible express the electromagnetic tensor F and its dual
⋆F, (3), (4), in terms of the potentials Aμ and Bμ alone [2],

F¼ 1

η2
ðη∧ ðη · ½∂ ∧A�Þ− ⋆fη∧ ðη · ½∂ ∧B�ÞgÞ;

⋆F¼ 1

η2
ð⋆fη∧ ðη · ½∂ ∧A�Þgþfη∧ ðη · ½∂ ∧B�ÞgÞ; ð8Þ

in differential form notation.
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Taking into account the identity (7), the Lagrangian
yielding the field equations (2), in agreement with the
solutions (3) and (4), reads [2]

L ¼ 1

8
tr½ð∂ ∧ AÞ · ð∂ ∧ AÞ� þ 1

8
tr½ð∂ ∧ BÞ · ð∂ ∧ BÞ�

− Je ·A − Jm · B −
1

4η2
ðη · ½ð∂ ∧ AÞ þ⋆ ð∂ ∧ BÞ�Þ2

−
1

4η2
ðη · ½ð∂ ∧ BÞ −⋆ ð∂ ∧ AÞ�Þ2: ð9Þ

The expression (9) has the advantage of separating,
formally at least, the Lorentz-violating effects of the fixed
four vector η from the conventional Lorentz-invariant form
of the quantum electrodynamics (QED) Lagrangian in
terms of the photon field. Indeed, the first line of (9)
would correspond to the conventional (Lorentz invariant,
isotropic) QED terms, independent of the four vector ημ,
while the second line would correspond to the Lorentz-
violating effects of the Dirac string in the dyon/monopole
case, under the assumption that the Dirac string direction is
aligned with that of the fixed spacelike four vector ημ. The
presence of the monopole, and its topologically nontrivial
nature (the solutions belong to field-theory sectors of
monopole number n ¼ 1; 2;…) is reflected precisely in
the impossibility to deform continuously the vector so as
ημ → 0μ ≡ ð0; 0; 0; 0ÞT , with T denoting matrix transposi-
tion. However, by using the form (9), such a limit can be
formally taken. Indeed, Eq. (6) implies in such a case

∂ ∧ Aþ⋆ ð∂ ∧ BÞ ¼ημ→0μ

0; ð10Þ

since, in view of (5), we can formally set the η-dependent
right-hand side to 0 [given that it approaches 0 faster
than η2 → 0, since the operator ðη · ∂Þ−1ðxi − xfÞ has zero
support in the limit ημ → 0μ]. The Lagrangian (9) then does
not contain any Lorentz-symmetry violating term, and
involves two gauge fields related by the constraint (10).
Our starting point is a similar model, as we explain in the
next section.
In [18], it was argued, by means of topological consid-

erations, that any Lorentz-violating effects of a magnetic
pole (due to the Dirac string), can be resummed in a
nonperturbative way in such a way that the scattering
amplitude of an electric charge off a magnetic charge
contains all such Lorentz-violating effects in a phase, which
thus drops out of physical quantities such as cross sections.
Moreover, this phase turns out to be a multiple of 2π,
provided the quantization condition (1), and thus in such a
case the amplitude is Lorentz invariant. Such a conclusion
was reached by means of studying a toy model employing
perturbative magnetic charges in a dark sector, using the
two potential formalism (9) appropriately in both the
visible and dark sectors, and assuming a perturbative small

mixing of ordinary photons with dark photons, that leads to
perturbative couplings of magnetic charges to ordinary
photons in the visible sector. This allows for a perturbative
resummation of the dark monopole effects, making use of
appropriate soft emissions of both gauge fields Aμ and
Bμ in the pertinent Feynman diagrams, describing the
scattering of electrons off monopoles, which in turn leads
to the aforementioned decoupling of the Lorentz-violating
(Dirac-stringlike) effects of the vector ημ from the relevant
cross sections.
Before proceeding further, we mention another pecu-

liarity of the dyon, discussed in [19], which turns out to be
of pivotal importance for our purposes here. When con-
sidering dyon-dyon scattering within a nonrelativistic
quantum-mechanical framework, as appropriate for small
relative velocities of the scattered dyons, Schwinger et al.
arrived at the following differential cross section for the
particular case of an electric charge e scattered off a
magnetic one g (in units with the speed of light in vacuo
is c ¼ 1):

dσ
dΩ

≃
�

eg
2μv

�
2 1

ðθ=2Þ4 ; ð11Þ

where μ is the reduced mass, θ is the (small) scattering
angle of the nonrelativistic scattering, and v ¼ jv⃗j is the
magnitude of relative velocity v⃗ of the magnetic charge.
If the magnetic pole is a dyon, carrying also an electric

charge ed, then (11) is extended classically to [19],

dσ
dΩ

≃
�

1

2μv

�
2
�
ðegÞ2 þ ðeedÞ2

v2

�
1

ðθ=2Þ4 : ð12Þ

However, when consider quantum scattering, of an electron
off a dyon, the small-angle formula for the differential cross
section contains [19] only the first term inside the brackets
of (12) and thus coincides with (11). This turns out to be
important for our work, when we define the magnetic
charge in Sec. IV using scattering arguments.
One observes that the cross section (11) of electron-

magnetic-monopole scattering can be obtained from the
Rutherford differential cross section

dσ
dΩ

����
Ruth

¼
�

e2

2μv2

�
2 1

ðθ=2Þ4 ð13Þ

upon the replacement e2 → egeff , where the effective
monopole charge is (we reinstate the units of c in this
formula for notational clarity, so that the reader connects
easily to the existing literature [19])

geff ≡ g
v
c
≡ gβ: ð14Þ

Upon invoking electric-magnetic duality, one thereforemight
expect that geff defines an effective “velocity-dependent”
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magnetic charge that describes the behavior of a magnetic
monopole in matter (or equivalently its production from the
collision ofmatter standardmodel particles, such as quarks or
charged leptons, at colliders). The important part of having a
magnetic coupling (14) is its perturbative nature for small v,
which can be used in monopole searches at colliders to place
monopolemass bounds [20]. In fact, in the case ofmonopole-
antimonopole pair production mechanisms at colliders, one
may use such effective magnetic charges but in a Lorentz-
invariant manner, using the center-of-mass velocity [15]

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2

s

r
; ð15Þ

where M is the monopole mass, and s ¼ ðp1 þ p2Þ2 is
theMandelstamvariable,withpi, i ¼ 1, 2 being themomenta
of the colliding particles (quarks of photons, in Drell-Yan
or photon fusion processes for monopole production,
respectively).
It is the purpose of this work to justify the use of an

effective magnetic charge (14) in scattering processes
involving magnetic poles by constructing a Lorentz and
gauge invariant effective field theory of monopoles within a
toymodel, whichwe describe below. Ourmodel ismotivated
by the model of Zwanziger [2] (9), combined with the
findings/arguments of [18] that any Lorentz-violating effects
of the monopole will not be present in cross sections [or
scattering amplitudes, if the quantization condition (1) is
valid]. Our results are based on a nonperturbative dressing of
the coupling of themonopole to the real photon.At present, it
is not technically possible to work directly with the
Lagrangian (9), due to complications arising from the
presence of the four vector ημ, and the associated constraint
(6). However, as our main purpose here is to demonstrate the
emergence of nonperturbative dressing of the magnetic
coupling, we deviate from the letter of the Zwanziger
approach [2], keeping as much as possible of its spirit.
To this end, we consider a model Lagrangian, involving

two independent U(1) gauge potentials Aμ, Bμ, with Aμ

denoting the ordinary photon of the weakly coupled quan-
tum electrodynamics [denoted byUð1Þweak]. The gauge field
Bμ, referred to as a dual photon, belongs to the Lie algebra of
a strongly coupledUð1Þstrong, which is independent of that of
electromagnetism. We also ignore any Lorentz-violating
effects, anticipating the results of [18], based on soft gauge-
field resummation,whichwe discuss briefly at the end of our
article. The ordinary standardmatter is represented as a spin-
1=2 fermion, for simplicity, carrying electric charge only.
For concreteness, in this workwe assume thematter fermion
to be an electron of charge e, but extension to any other
electrically charged fermion in the standard model sector is
straightforward. The dyon, on the other hand, is represented
as a dual of the ordinary electron, under the aforementioned
electric-magnetic duality, which leads to the symmetry of
Maxwell’s equations if magnetic poles are present. Hence it

is a fermion field itself (spin 1=2), which however carries
both electric and magnetic charge, and thus couples to both
Aμ andBμ fields. Our approach consists in studying coupled
Schwinger-Dyson (SD) equations, so as to study the
effective vertex of the coupling of the dyon to the real
photon, which, as we demonstrate, can be identified with an
effectivemagnetic charge of the form (14), consistently with
electric-magnetic duality.
The structure of the article is the following: in the Sec. II,

we present the Uð1Þweak × Uð1Þstrong model, discuss its
properties, and present the relevant set of coupled SD
equations. In Sec. III we solve these equations in the
nonperturbative regime for the coupling of the dual photon,
but in the weak-coupling limit of the ordinary QED, and
obtain expressions for the dressed dual photon propagator
and the photon-monopole vertices. Of particular interest to
our study is the ordinary-photon-monopole dressed vertex,
which turns out to be proportional to the monopole-field
wave-function renormalization. The latter is computed in a
self-consistent way in the strong-coupling limit of the dual
U(1) gauge theory, under the assumption that it is approx-
imately momentum independent. The gauge independence
of the associated physical observables is also discussed.
In the following Sec. IV, we discuss electron (matter-)
monopole scattering, compute the relevant cross section,
and derive the effective velocity-dependent magnetic
charge (14) as a dressed coupling of the monopole-real-
photon vertex derived previously. An important role in this
is played by the appropriate physical interpretation of the
dimensional-transmutation scale than enters the expression
for the wave-function renormalization within our dimen-
sional-regularization treatment. For slowly moving monop-
oles, the resulting wave-function renormalization turns
out to violate unitarity bounds for elementary particle
states. Thus, our effective field theory can only describe
composite monopoles. Finally, Sec. V contains our con-
clusions and outlook. Technical aspects of our analysis are
given in several Appendixes.

II. THE MODEL

We consider a gauge field theory with two independent
sectors: (i) the standard model, with electric charges only
and a corresponding Uð1Þweak gauge field Aμ, and (ii) the
monopole/dyon sector, electrically charged under Aμ (with
a bare charge eA) and magnetically coupled to an inde-
pendent Uð1Þstrong axial gauge field Bμ (with the corre-
sponding bare coupling eB). Before proceeding, we should
make some important comments regarding the characteri-
zation of the monopole/dyon as electrically charged under
Uð1Þweak. From a naive point of view it seems that we are
dealing here with a dyon in the sense of Schwinger [4] or
Zwanzinger [2], whose bare electric charge is eA. However,
as we discuss in this work, the nonperturbative dressing
of the corresponding monopole-electromagnetic-photon
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vertex leads to a nonconventional dressed electric charge
proportional to the (square of the) magnetic charge eB
[cf. (70) and (72) in Sec. IV, below], and thus vanishing
when eB → 0. In this sense, this dressed coupling is the
induced magnetic charge coupling of the monopole/dyon to
the real photons, assumed ad hoc in the phenomenological
searches of magnetic monopoles using effective field
theories [15]. Our approach provides a microscopic deri-
vation of this effect.
For our purposes it is enough to consider a simplified

matter sector, consisting of an electron ψ of (bare) mass m,
coupled to the standard model photon Aμ with a perturba-
tive electric charge e. We also consider a spin-1

2
monopole

χ, of (bare) mass M, coupled electrically to Aμ and
magnetically to the axial dual photon Bμ. Unlike the
Zwanziger approach [2], here Aμ and Bμ are independent
U(1) gauge d.o.f., which suffice for our main purpose,
which is a demonstration of the emergence of an effective
velocity-dependent coupling of the monopole to the ordi-
nary photon, after nonperturbative quantum dressing. As
already mentioned, the restriction to a fermion monopole
makes direct contact with the work of [2] and is motivated
by the electric-magnetic duality, under which the dual of an
electron is such a fermion monopole, although it must be
said that consistent formulations of field theories of
monopoles with spin one or zero might also exist.

A. Lagrangian

The Lagrangian of our model is given by

L ¼ −
1

4
Fμν
A FA

μν −
1

4
Fμν
B FB

μν þ ψðiγμDA
μ −mÞψ

þ χ̄ðiγμDAþB
μ −MÞχ; ð16Þ

where Aμ is a vector and Bμ is an axial vector (pseudo-
vector). The corresponding field-strength tensors are
given by

Fμν
A ¼ ∂μAν − ∂νAμ; Fμν

B ¼ ∂μBν − ∂νBμ; ð17Þ
and the covariant derivatives are

DA
μ ¼ ∂μ− ieAμ and DAþB

μ ¼ ∂μ− ieAAμ− ieBBμ; ð18Þ
where e is the coupling the electron to the gauge field Aμ

and eA, eB are the couplings of the monopole to Aμ and Bμ,
respectively. These covariant derivatives ensure that the
Lagrangian is invariant under the gauge transformation

Aμ → Aμ þ ∂μθA

Bμ → Bμ þ ∂μθB

ψ → expðieθAÞψ
χ → expðieAθA þ ieBθBÞχ: ð19Þ

A few remarks are in order at this point.

(i) The axial nature of the gauge field Bμ is required for
consistency of the field equations [see Eq. (23)
below], under improper Lorentz transformations,
including spatial reflexions and reversal in time.
As a consequence, the Lagrangian (16) breaks
parity, P, and time reversal symmetry, T, but pre-
serves CPT, where C denotes charge conjugation. It
should be noted that such an explicit parity and time
reversal symmetry breaking, but CPT conservation,
is a generic feature of theories with magnetic
charges [21].

(ii) The (bare) electric charges e and eA are both
assumed to be perturbative: e ≪ 1 and eA ≪ 1; as
already mentioned, we assume here, for concrete-
ness, that the electrically charged matter fermion ψ
is an electron of charge e. Our analysis can of course
be extended trivially to incorporate any other
charged matter, in which case the coupling e is
replaced by the corresponding electric charge qe.

(iii) The coupling eB of the spin-1
2
monopole to the dual

photon should not be identified immediately with
the magnetic charge of the monopole/dyon. The
latter is defined appropriately later on, in Sec. IV, via
studying the scattering process of dyons with matter
fermions in our effective theory, and identifying the
relevant cross sections in the nonrelativistic limit
with the corresponding ones in the quantum-
mechanical approach of [19]. It is this charge that
satisfies the quantization condition (1). As we
discuss in this work, this quantization condition
implies strong coupling for the dual photons
eB ≫ eA, and it is the dressing of the electric vertex
of the monopole with the real photon by non-
perturbative quantum corrections of the strongly
coupled dual photon that leads in general to non-
perturbative electromagnetic couplings of the mo-
nopole/dyons to the real photon. This coupling is
identified with the “magnetic charge coupling g” of
the monopole to photons, appearing in phenomeno-
logical effective field theories used in monopole/
matter scattering or production of monopoles at
colliders [15]. As we discuss in Sec. IV, this
magnetic charge g coincides with the one defined
by Dirac [1] in the expression for the (singular)
magnetic field of the monopole. In our context, it
turns out to be a product of eA with the monopole/
dyon wave-function renormalization Z, g ¼ ZeA,
where the factor Z is due to the (strongly coupled,
nonperturbative) quantum effects associated with the
dual photon of the gauge group factor Ustrongð1Þ of
our Uð1Þweak ⊗ Ustrongð1Þ effective field theory.
This wave-function renormalization factor is itself
a nontrivial function of both couplings eB and eA,
and under the requirement of the validity of the
charge quantization (1), turns out to be proportional
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to eB [cf. (70) and (72)], thus vanishing in the
absence of a magnetic coupling eB. Moreover, and
most importantly, as our effective field theory
approach also indicates, such magnetic charge
dressed couplings can become perturbative for
slowly moving monopole/dyons, in agreement with
the electric-magnetic-duality-inspired conjecture of
[19] on the emergence of an effective magnetic
charge (14) in scattering processes of monopole/
dyons with matter. We stress once again that for us,
the presence of a bare electric coupling eA of the
monopole associated with the weak Uð1Þweak
electromagnetic gauge group is essential.

After the above necessary remarks, we are in position to
commence our study. Minimizing the action with respect to
Aμ and Bμ respectively leads to

∂μF
μν
A ¼ ejνψ þ eAjνχ and ∂μF

μν
B ¼ eBjνχ ; ð20Þ

where the currents are defined here without the charges

jνψ ¼ ψ̄γνψ and jνχ ¼ χ̄γνχ: ð21Þ

Contracting Eqs. (20) with the divergence ∂ν, one can see
that both vector currents are conserved individually,

∂νjνψ ¼ ∂νjνχ ¼ 0; ð22Þ

which is expected, since the gauge functions θA and θB are
independent. To make the connection with Zwanziger’s
approach [2] and the (electromagnetic) field-strength tensor
F, which appears in the field equations (2), we require that
the gauge fields Aμ and Bμ satisfy the on-shell constraints

Fμν
A ¼ Fμν; Fμν

B ¼ ⋆Fμν: ð23Þ

This leads to a condition identical to Eq. (10), since
⋆ð⋆FÞ ¼ −F. The fields Aμ and Bμ in our model are treated
as independent variables in the quantum theory, though,
and the constraints (23) then characterize external photon
lines with the relevant fields put on shell. This is implied in
what follows.
Our main point in doing this is to demonstrate the

existence of effective nonperturbatively dressed couplings
of the photons Aμ and Bμ with the monopole, which depend
on a wave-function renormalization factor [cf. (33) below]
that vanishes for vanishing monopole velocities [cf. (63)
and (68) below], thus becoming perturbative for slowly
moving monopoles. This allows for the soft-photon resum-
mation arguments of [18] to go through, implying that any
ημ-dependent term in (9) can be ignored as it will contribute
only to the phase of the electron-monopole scattering
amplitude; upon the quantization condition (1), such ημ-
dependent terms in the phase would vanish, thus leaving the
amplitude itself Lorentz and gauge invariant.

With the above in mind we proceed to study non-
perturbatively the model described by (16).

B. Properties of the quantum theory

The notations used here are defined in Appendix A,
where the properties of the one-particle-irreducible graph
generating functional Γ are given.

1. Current conservation and Furry’s theorem

Because of the two independent conserved currents,
there is no mixing between ψ and χ, and the following
inverse propagators vanish:

δ2Γ
δψ̄δχ

����
0

¼ 0 ¼ δ2Γ
δχ̄δψ

����
0

: ð24Þ

Also, Furry’s theorem [17], based on charge conjugation
of magnetic currents, states that any graph involving a
monopole loop vanishes if it has an odd number of dual
photon insertions. This result is also valid for an axial
vector Bμ, since it relies on the charge-conjugation proper-
ties of the current only. As a consequence, the gauge field
propagator is diagonal in gauge fields space and

δ2Γ
δAμδBν

����
0

¼ 0; ð25Þ

since any corresponding graph necessarily contains an odd
number of monopole/dual-photon vertices. For the same
reason, the dressed electron/dual-photon vertex also van-
ishes, ΛBψ

μ ¼ 0, which implies that the electron does not
couple to a single dual photon. The electron can couple to
two dual photons though, through a two-loop process that
involves a monopole loop, and it is therefore possible to
detect the electromagnetic field generated by Bμ via the
electron.

2. Ward identities

It is shown in Appendix B that the usual Ward identities
hold for fermions: in the limit of vanishing momentum for
the gauge fields, one obtains

1

e
ΛAψ
μ ðp; 0Þ ¼ ∂G−1

ψ

∂pμ ;

1

eB
ΛBχ
μ ðp; 0Þ ¼ ∂G−1

χ

∂pμ : ð26Þ

We also find

qμΛBψ
μ ðp; qÞ ¼ 0; ð27Þ

with q denoting the gauge-field momentum, which is
consistent with the fact that the electron does not couple
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to the dual photon. An additional property one finds is that
[cf. (B9)]

eBqμΛ
Aχ
μ ðp; qÞ ¼ eAqμΛ

Bχ
μ ðp; qÞ; ð28Þ

showing that the interactions between the monopole and
the gauge fields are dressed with the same quantum
corrections. The condition (28) also implies that the
Uð1Þstrong nonperturbative quantum corrections due to
the dual photons induce a nonperturbative coupling of
the monopole/dyon to the electromagnetic photon, which is
an important feature for the matter-monopole/dyon scatter-
ing or production of monopole/dyons in our framework, as
we discuss later in Sec. IV.

3. Schwinger-Dyson equations

Following the usual derivation of SD equations and
taking into account the property (24), we show in
Appendix C that the fermion self-energies satisfy

G−1
ψ − S−1ψ ¼ ieγμGψΛν

AψΔA
μν;

G−1
χ − S−1χ ¼ ieAγμGχΛν

AχΔA
μν þ ieBγμGχΛν

BχΔB
μν; ð29Þ

where integration over repeated space-time coordinates
is understood. Because of the property (25), the gauge
propagator is diagonal, and the gauge-field self-energies
satisfy

ðΔA
μνÞ−1 − D−1

μν ¼ itrfe γμGψΛ
Aψ
ν Gψ þ eA γμGχΛ

Aχ
ν Gχg;

ðΔB
μνÞ−1 − D−1

μν ¼ ieBtrfγμGχΛ
Bχ
ν Gχg: ð30Þ

In the next section we apply these nonperturbative equa-
tions to study a specific limit, where the monopole does not
propagate.

III. SOLUTION OF SCHWINGER-DYSON
EQUATIONS IN THE NONPERTURBATIVE

REGIME

We consider a regime that is perturbative in the electric
charge eA ≪ 1, but where the coupling eB is large, eB ≫ 1.
Thus, quantum corrections to the electronic sector are
neglected, and the SD equations are used to calculate
quantum corrections in the monopole sector only. In what
follows, we neglect the momentum dependence of quantum
corrections for the calculation of loop integrals. Because of
regularization, though, these corrections acquire a scale
dependence, which is interpreted as an external momentum
dependence, in graphs describing the relevant scattering
process we are interested in.

A. Quantum corrections

We derive here the monopole self-energy, as well as the
polarization tensor for the dual photon. In a perturbative

approach, these two quantities would be determined inde-
pendently but, in the nonperturbative framework of SD
equations, as appropriate for strong eB couplings, the
corresponding quantum corrections are coupled and
depend on one another.
The bare fermion propagators are

Sψ ¼ i
pþm
p2 −m2

; Sχ ¼ i
pþM
p2 −M2

; ð31Þ

and we consider the approximation where the dressed
fermion propagators are

Gψ ≃ Sψ ; Gχ ¼ i
Zpþ M̃

Z2p2 − M̃2
; ð32Þ

where Z is the monopole wave-function renormalization
and M̃ is the dressed monopole mass. If we assume that Z
and the dressed vertices ΛBχ

μ and ΛAχ
μ are momentum

independent, the Ward identities given in Sec. II B 2 imply

ΛBχ
μ ¼ eBZγμ and ΛAχ

μ ¼ eAZγμ: ð33Þ

In a generic covariant gauge parametrized by λ > 0, the
gauge propagators assume the form

ΔA
μν ≃Dμν ¼

−i
q2

�
ημν þ

1 − λ

λ

qμqν
q2

�

ΔB
μν ¼

−i
ð1þ ωÞq2

�
ημν þ

1þ ω − λ

λ

qμqν
q2

�
; ð34Þ

where ω is the quantum correction responsible for the dual
photon transverse polarization tensor, defined by

ΔB−1
μν −D−1

μν ¼ iωðq2ημν − qμqνÞ; ð35Þ

and is also assumed to be momentum independent.
We show in Appendix D that the SD equation for the

monopole self-energy, given in Sec. II B 3, leads to

δM

M̃
¼ 1

8π2λZ

�
e2Að1þ 3λÞ þ e2B

1þ 3λþ ω

1þ ω

�
1

ϵ

�
Zk

M̃

�
ϵ

þ finite; ð36Þ

and

Z ¼ 1þ e2A þ e2B
8π2λ

1

ϵ

�
Zk

M̃

�
ϵ

þ finite; ð37Þ

where

δM≡ M̃ −M; ð38Þ

and dimensional regularization is used. The latter introdu-
ces the arbitrary (transmutation) mass scale k in dimensions
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d ¼ 4 − ϵ. It is interesting to note that the expression for Z
does not involve ω, although it does correspond to a
nontrivial resummation of higher-order loops.
The SD equation for the dual photon self-energy gives

the same integral as in the perturbative case, except for a
factor 1=Z,

ω ¼ e2B
6π2Z

1

ϵ

�
Zk

M̃

�
ϵ

þ finite as ϵ → 0þ; ð39Þ

which is a nonperturbative effect.

B. Strong-coupling limit

The SD equations relevant to our model lead us to the
quantum corrections given by Eqs. (36), (37), and (39). In a
perturbative context, these corrections vanish in the limit
where the coupling constants go to 0, but we are interested
here in a nontrivial solution of the SD equations, which
does not necessarily reproduce the perturbative results for
small couplings. In order to achieve this, we first derive the
coupled differential equations obtained from Eqs. (36),
(37), and (39), which describe the evolution of M̃; Z;ωwith
the scale k. Instead of taking boundary conditions set by the
perturbative regime, we explore here the possibility of
having Z ¼ 0 as part of the boundary conditions. We stress
that it is only in the framework of effective theories that
such a nonperturbative regime is relevant, and the renorm-
alization flows we derive in this section are not related to
the usual perturbative ones.
Before proceeding, we remark that the usual perturbative

renormalization procedure, which consists of appropriately
absorbing the 1=ϵ divergence in (37), introduces the
rescaling χB →

ffiffiffiffiffiffi
ZB

p
χB, where χB is the bare fermion field.

One chooses then ZBZ ¼ 1 such that perturbatively,

ZB ¼ 1 −
e2A þ e2B
8π2λ

1

ϵ

�
Zk

M̃

�
ϵ

þ � � � ; ð40Þ

where the dots represent higher orders in eA, eB. As
expected from a consistent unitary description of asymp-
totic states [17], given the interpretation of the wave-
function renormalization as the probability for finding such
states, the unitarity bound 0 ≤ ZB < 1 is indeed satisfied.
In principle, this implies

Z > 1; ð41Þ

whereas we are interested in the regime where Z ≪ 1. The
latter regime violates the unitarity bound (41), which is
possible in the case of composite monopoles. As mentioned
in the introduction, these are the only type of known
solutions of field theories of phenomenological interest so
far [5,7,12,13]. Thus, the effective field theory developed
here can only be associated with composite monopoles/
dyons, not necessarily restricted to the aforementioned

types, but also encompassing new composite monopole/
dyon solutions that may exist in beyond the standard model
physics.
Equation (37) implies

∂kZ ¼ e2A þ e2B
8π2λ

M̃
Zk

∂k

�
Zk

M̃

�
; ð42Þ

with solution

Z ¼ C1 þ
e2A þ e2B
8π2λ

ln

�
Zk

M̃

�
; ð43Þ

where C1 is a constant. We then introduce the “running
mass” MrðkÞ via the definition

MrðkÞ≡ M̃
Z
; ð44Þ

from which the scale k0, at which Z → 0, can be defined as
the solution of the self-consistent equation2

k0 ¼ M0 exp

�
−
8π2λC1

e2A þ e2B

�
where M0 ≡Mrðk0Þ: ð45Þ

This allows one to express Z as

Z ¼ e2A þ e2B
8π2λ

ln

�
kM0

k0MrðkÞ
�
: ð46Þ

For the polarization tensor, we obtain from Eq. (39)

∂kðZωÞ ¼
e2B
6π2

M̃
Zk

∂k

�
Zk

M̃

�

⇒ Zω ¼ C2 þ
e2B
6π2

ln

�
k

MrðkÞ
�
; ð47Þ

where C2 is a constant. On requiring a finite limit ω → ω0

when Z → 0, we can easily determine C2, implying, on
account of (46), that ω is actually independent of k,

ω ¼ e2B
6π2Z

ln

�
kM0

k0MrðkÞ
�

¼ 4λe2B
3ðe2A þ e2BÞ

¼ ω0: ð48Þ

Notice that ω0 ≥ 0, since the gauge parameter λ is positive.
For the mass correction, we obtain from (36)

∂k

�
δM
Mr

�
¼ κ2

8π2λ

Mr

k
∂k

�
k
Mr

�
; ð49Þ

2The reader should bear in mind that the scale k0 is gauge
independent, which can be guaranteed by requiring an appro-
priate dependence of the constant C1 and the bare coupling eB on
the gauge parameter λ.
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where the effective coupling κ is given by

κ2 ≡ e2A þ e2B þ 3λ

�
e2A þ e2B

1þ ω0

�
: ð50Þ

As a consequence,

δM
Mr

¼ C3 þ
κ2

8π2λ
ln

�
k
Mr

�
; ð51Þ

where C3 is a constant. Taking into account the definition
δM ¼ M̃ −M and the expression (46) for Z, we obtain the
self-consistent equation that must be satisfied by the
function MrðkÞ,

M
MrðkÞ

¼ e2A þ e2B − κ2

8π2λ
ln

�
k

MrðkÞ
�

þ e2A þ e2B
8π2λ

ln

�
M0

k0

�
− C3: ð52Þ

One can check that there is indeed an appropriate solution
for M0: the latter equation for k ¼ k0 is of the form

X ¼ −a lnðXÞ þ b; ð53Þ

where X ¼ k0=M0, a is a positive constant, and b is a
constant of integration. It can be easily seen graphically that
this equation has always a finite and positive solution,
which ensures the consistency of the present derivation.
We note that Mr increases with k since, from Eq. (52),

k∂kMr ¼
ðκ2 − e2A − e2BÞMr

κ2 − e2A − e2B þ 8π2λM=Mr

¼ 3½e2A þ e2B=ð1þ ω0Þ�Mr

3½e2A þ e2B=ð1þ ω0Þ� þ 8π2M=Mr
> 0: ð54Þ

Also, one can see that for M > 0 (and ω0 > 0)

k∂kMr < Mr; ð55Þ

implying that Z increases with k,

k∂kZ ¼ e2A þ e2B
8π2λ

�
1 −

k∂kMr

Mr

�
> 0: ð56Þ

The above analysis has shown that it was possible to find
a consistent solution of the SD equations, which allowed
for the nonperturbative limit Z → 0 to be taken. Such a
solution is parametrized by two scales with dimensions of
mass, k0 and M0. We also note that as k → k0, the
renormalized mass M̃ðkÞ → M̃ðk0Þ ¼ 0, since Z → 0 and
Mr ¼ M̃=Z goes to the finite value M0. As a consequence,
the corrections to the mass of the monopole/dyon are
negative when k → k0, since [cf. (38)] δMðk0Þ ¼ −M < 0.

This feature is specific to the nonperturbative regime we
consider here, and we emphasize again that it does not
reduce to the usual perturbative solution when the coupling
constant becomes small: it represents instead a discon-
nected configuration of quantum fluctuations in the model.

C. Gauge dependence

The polarization ω0 given in the expression (48) depends
on λ, which is allowed by the nonperturbative resummation
provided by the SD equations. Unfortunately this has an
effect on the gauge dependence of physical observables.
Indeed, let us consider the scalar potential V seen by a dual
charge eB, and generated by a pointlike dual charge
at rest, assumed to correspond to a magnetic current
jνχðrÞ ¼ ðeBδðr⃗Þ; 0Þ, which in Fourier components reads
jνχðqÞ ¼ ðeB; 0Þ. We have

V ¼ eBB0 ¼ eBΔB
0νj

ν
χ ; ð57Þ

where ΔB
μν is the dual photon propagator (34). For the static

modes qμ ¼ ð0; q⃗Þ, this leads to the Coulomb potential

Vðr⃗Þ ¼ eB

Z
d3q
ð2πÞ3 Δ

B
00ðqÞj0χðqÞeiq⃗·r⃗

¼ e2B
1þ ω0

Z
d3q
ð2πÞ3

eiq⃗·r⃗

ðq⃗Þ2 ¼
e2B

4πjr⃗jð1þ ω0Þ
; ð58Þ

which depends on the gauge through ω0.
A similar situation characterizes dynamically

generated masses in nonperturbative gauge theories [22].
Nevertheless, it is possible that, through appropriate
resummation of special classes of appropriate Feynman
graphs (“pinched technique” [23]), one recovers the gauge-
independent value of physical quantities, such as masses, or
in our case dressed charges, and such values seem to
correspond to the value one would obtain in the truncated
SD treatment in Feynman gauge λ ¼ 1. In what follows, we
therefore make this gauge choice, and we identify the
effective dual coupling

ẽ2B ≡ e2B
1þ ω0ðλ ¼ 1Þ ¼

3e2Bðe2A þ e2BÞ
3e2A þ 7e2B

; ð59Þ

from which the flow for the running mass given in Eq. (54)
reads

k∂kMr ¼
ðe2A þ ẽ2BÞMr

e2A þ ẽ2B þ ð8π2=3ÞM=Mr
; ð60Þ

and is used in the discussion below. We finally note that the
pinched technique is based on the description of physical
processes, like a scattering process, for which it is shown
that the longitudinal component of the gauge propagator
cancels out in the calculation of physical observables. Such
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processes are exactly those that motivate our present study,
which therefore singles out the Feynman gauge as the
physical one.

IV. ELECTRON-MONOPOLE SCATTERING
AND AN EFFECTIVE VELOCITY-DEPENDENT

MAGNETIC CHARGE FOR (COMPOSITE)
MONOPOLES

As we have discussed in the introduction, one may
obtain the differential cross section for nonrelativistic
electron-monopole scattering at small angles using quan-
tum-mechanical treatment, leading to expression (11),
which scales with the relative momentum p ¼ μv of the
incident matter particle (in the frame where the heavy
monopole is initially at rest) as 1=p2 instead of the
traditional 1=p4 of the conventional Ruhterford scattering
differential cross section (13) between charged matter
particles. As already mentioned previously, upon invoking
electric-magnetic duality, one may obtain the Rutherford
scattering formula from (11), by replacing the monopole
magnetic coupling with an effective velocity (β)-dependent
magnetic coupling, (14) and (15). In what follows, we
propose an origin of such a coupling based on the non-
perturbative results derived in the previous section.

A. Perturbative effective magnetic charge for slowly
moving (composite) monopoles

To this end, we consider slowly moving monopoles,
relative to the incident matter particle, assumed for con-
creteness to be an electron of charge e. The one-photon
exchange scattering Feynman graph of Fig. 1, between the
fermions ψ (electron) and χ (monopole fermion), proves

sufficient for this purpose, as a result of the perturbative
nature of both couplings, the electron charge e ≪ 1, but
also the coupling of the monopole χ to the real photon.
The latter is determined by the appropriate dressed vertex
ΛAχ
μ ¼ eAZγμ, (33), with the wave function Z to be

determined from (46), and as we see below it can become
perturbative, when the scale k approaches k0, for which
Z ≪ 1, with Zðk0Þ ¼ 0. We are also able to express the
magnetic charge g of the monopole, which is subjected to
the quantization condition (1), in terms of e.
We first notice that, from the differential equation (60),

one can expand Mr to first order in k − k0 to find

MrðkÞ
M

≃
M0

M
þ a

k − k0
k0

; ð61Þ

where

a≡ ðe2A þ ẽ2BÞðM0=MÞ2
8π2=3þ ðe2A þ ẽ2BÞM0=M

: ð62Þ

From the expression (46) for Z we obtain then, to first order
in k − k0,

Z ≃
Z0

k0
ðk − k0Þ; ð63Þ

where

Z0 ¼
e2A þ e2B

8π2 þ 3ðe2A þ ẽ2BÞM0=M
; ð64Þ

with ẽB given by (59).
The Feynmandiagramof Fig. 1makes sense if the dressed

coupling of the monopole to the electromagnetic photon γ is
small, which necessitatesZ < 1 in (63), and can be achieved
for k → k0. Then the scattering process resembles that of two
ordinary charged particles in (perturbative) electrodynamics
with charges e and ZeA, both small. The result for the
corresponding differential cross section can be borrowed
from standard quantum electrodynamics then. Since our
interest is to compare this result with the differential cross
section (11) of the nonrelativistic scattering of an electron off
a monopole with magnetic charge g, discussed in [19], we
consider here the appropriate limit, of a low relative velocity
between the electron and the monopole. The result from the
differential cross section at small angles θ, in a frame where
the monopole is initially at rest, reads then (in appropriate
units in which the fine structure constant α ¼ e2, as per the
conventions of [19]) [24]

dσ
dΩ

����
LAB

≃
�

ZeAe
2μjv⃗j2sin2 θ

2

�
2

≃θ≪1
�Z0

k−k0
k0

eAe

2μjv⃗j2
�2

1

ðθ=2Þ4 ; ð65Þ

FIG. 1. Typical scattering graph between an electron (ψ) and a
fermion monopole (χ). Wavy lines denote electrodynamical
photons, γ. Straight lineswith arrows denote the scattered fermions
(dashed arrow lines denote electrons and continuous arrow lines
denote the monopole). The dark blob denotes the dressed coupling
ZeA due to quantum corrections induced by the strongly coupled
dual photon, which only the monopole couples to, characterized
by the presence of the Z factor. By rotating the graph by 90°
counterclockwise, one obtains a Drell-Yan diagram for monopole-
antimonopole pair production from matter fermions.
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where μ is the reduced mass of the electron-monopole
system.
Comparing (65) with (11), which as we discussed in

Sec. I describes quantum scattering of an electron off a
dyon at small angles, we then observe that one can define
an effective magnetic charge, describing the coupling of the
monopole to the photon, by [cf. (63)]

geff ¼ ZeA ≃ Z0

k − k0
k0

eA; ð66Þ

with the scale jk − k0j being identified with a proper
(Lorentz invariant) center-of-mass momentum scale, and
k0 is identified with a mass scale through the self-consistent
relation (45), where we choose the constant of integration
C1 such that

k0 ¼ 2M0: ð67Þ

Consistently with the effective field theory approach for
monopole-antimonopole pair production [15], we may take
the mass scale M0 to represent the monopole (rest) mass,
and in this way one can reproduce the formula (11) of [19],
and arrive at an effective velocity-dependent magnetic
charge (14)3

jk − k0j
k0

→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 4M2

0

p
2M0

¼ E
2M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
0

s

r
≃ β; ð68Þ

with E2 ¼ s ¼ ðp1 þ p2Þ2 being the relevant Mandelstam
variable [with p1 (p2) being the incoming (outgoing) four
momenta in the scattering process of Fig. 1, or the
corresponding fused momenta in the case of production].
In such an identification, E denotes the exchanged photon
momentum scale [see Fig. 1]. In the last approximate
equality of (68), we considered slowly moving monopoles,
for which E ≃ 2M0 (since their kinetic energy is small), and
this case corresponds to k → k0 where perturbativity
applies, and

geff ≃ Z0βeA; ð69Þ

with Z0 given by (64). In the duality-compatible approach
of [19], geff ¼ gβ, with g being the magnetic charge that in
the monopole case satisfies the appropriate quantization
rule (1). Hence, it is natural to identify in the context of our
effective field theory

g ¼ Z0eA: ð70Þ

Schwinger’s quantization condition for the monopole (1)
would then require

Z0eA ¼ n
α
e; n ∈ Z; ð71Þ

with Z being the set of integers, and α the fine structure
constant of electromagnetism.
The value of Z0 depends on several parameters, and the

quantization condition (71) is not compatible with all of
them. For bare couplings e2B ≫ e2A, we note that we also
have ẽ2B ≃ 3e2B=7 ≫ e2A and we can see, for instance, that
the case M0 ≫ M, would be inconsistent with (71). On the
other hand, for M0 ≪ M, we have from (64),

Z0 ≃
7ẽ2B
24π2

; ðM0 ≪ MÞ; ð72Þ

which, together with Eq. (71), implies a quantization
condition for the (gauge-independent) dressed dual photon
coupling ẽB (59). In this sense, we understand why the dual
photon coupling is proportional to the magnetic charge of
the monopole, and how our effective theory (9) describes
the scattering of the latter with charged matter or its
production from charged matter [19].
At this point we make some important remarks, which

relate to the fact that the above effective field theory
approach can only describe composite monopoles, like
the ones that exist currently as topological soliton solutions
of several field theories of phenomenological relevance
[5,7,12,13], as discussed in the introduction of the article.
This becomes clear by noticing that, because of the
presence of the transmutation scale k, the wave-function
renormalization Z (63) for the monopole fermion can, and
in fact does for k → k0, become smaller than unity. This
violates the unitarity bound [17] that requires the wave-
function renormalization to be larger than one [cf. (41)],
should the monopole be an elementary particle asymptotic
state. However, such a bound can be evaded for composite
states, either of the type discussed in the literature so far, or
new, yet-unknown structured solutions to be discovered in
theories beyond the standard model.
We stress that in our approach, the arguments of [16] on

the strong suppression of the cross section for the collider
production of such (composite) monopole-antimonopole
pairs by form factors of order Oðe−4

αÞ ≃ 10−238, are not
valid for slowly moving monopoles; effectively, such

factors would be replaced by terms of order Oðe−4
α
k−k0
k0 Þ

in our case, which would be of Oð1Þ for slowly moving
heavy monopoles (k → k0), with masses much larger than
the SM quarks or leptons, whose collisions can lead to the
monopole production. At present, such remarks of course
remain speculations, as we do not have a complete micro-
scopic understanding on the strong Uð1Þ dual interactions
involved in our effective model.

3The reader should bear in mind the Lorentz-invariant nature
of the scale (68), characteristic of the effective field theory [15],
which was not evident in the initial nonrelativistic quantum-
mechanical approach to dyon-dyon scattering of [19].
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B. Soft gauge-field-emission resummation and
disappearance of Dirac-String effects from cross
sections: a brief review of the arguments of [18]

Before closing the discussion, we review briefly the
arguments of [18] on the decoupling of any Lorentz-
violating Dirac-string effects from the physical cross sec-
tions [or even the scattering amplitudes if the quantization
condition (1) is valid]. These arguments were based on a
perturbative resummation of soft photons in the toy model
for the monopole used in that work, where the magnetic
charge was perturbative. This was achieved in [18] by
assuming dark sector monopoles, and weak coupling of
the monopole sector with the visible sector. In our case, as
discussed above, both the magnetic and electric charge
couplings of the monopole to photon and dual photon are
perturbative for slowlymovingmonopoles, due to thewave-
function renormalization screening effects on the effective
magnetic charge (33) and (69) [see also (70)–(72)].
For such perturbative couplings, the leading soft gauge

field (photons and dual photons) emissions that affect
generic scattering processes of electrons off fermion
monopoles in our effective Uð1Þweak ×Uð1Þstrong gauge
theory are depicted in Fig. 2. The analysis has been
performed in [18] and in previous relevant literature

referenced there, and we do not repeat it here. We only
point out a trivial modification in our case as compared to
those works, namely, the addition of the soft-Bμ (dual-
photon-) emission graph, since, in contrast to the standard
Zwanziger approach [2], here the fields Aμ and Bμ are
treated as independent gauge fields, not related through (6),
except when one considers classical solutions (10). Such
solutions are the on-shell solutions represented by the
external gauge field wavy lines in the graphs, and combine
the A and B photon emission into one; this is indicated with
the pertinentþ sign in Fig. 2.
The presence of a classical solution, satisfying the

constraint (10), implies a classical Lagrangian (9) that has
Chern-Simons-like topological terms mixing the A and B
fields, which depend on the Lorentz-violating Dirac-string
effects (∝ ημ fixed four vector). However, upon resumming
soft photon and dual photon emissions, such effects expo-
nentiate in the pertinent scattering amplitude, in such a way
that they appear only in the phases of the amplitude, as
demonstrated in [18], whose arguments apply here as a
consequence of our perturbativemagnetic charge couplings.
Upon the quantization condition (1), which should be
respected by the nonperturbative dressing, as discussed
above, the effects disappear also from the phase of the

FIG. 2. Typical scattering graphs between an electron (representing generically charged matter) and a fermion monopole. Wavy lines
denote real (on-shell) soft electrodynamical photons Aμ, or gauge bosons Bμ of the strongly coupled Uð1Þstrong, the latter associated only
with the monopole/dyon. Thin straight lines with arrows denote the scattered electrons, while double arrowed straight lines denote the
monopole/dyon. The gray blobs denote generic scattering processes, involving all fields. The dressed couplings of the monopole to the
Aμ (photon) and Bμ (dual-photon) fields are given by ZeA and ZeB, respectively, where Z is the wave-function renormalization factor,
computed nonperturbatively due to the quantum corrections induced by the strongly coupledUð1Þstrong gauge interactions. Notice that in
our approach, in contrast to that of Zwanziger [2], which was adopted in [18], the photon (Aμ) and the dual photon (Bμ) are independent
fields, which explains the presence of the last two graphs on the right-hand side of the figure (connected with aþ sign). When however
considering the monopole, one should impose on the classical on-shell gauge fields the constraint (10), which brings back the Dirac-
string effects. For slowly moving monopoles, Z ≪ 1 and this ensures perturbativity of all couplings; hence the depicted graphs denote
the leading corrections in both Aμ and Bμ sectors. In such a case, resummation of the soft on-shell photons exponentiates such string
effects into phases of the pertinent scattering amplitudes [18].

WEAK-U(1) × STRONG-U(1) EFFECTIVE GAUGE FIELD … PHYS. REV. D 100, 096005 (2019)

096005-13



scattering amplitude. This completes our discussion on the
self-consistency of our perturbative effective gauge field
theory approach to the (slow) monopole-matter scattering
or (slow) monopole-antimonopole-pair-production-from-
matter processes, which have been conjectured in the
previous literature and used in monopole searches at
colliders [15,20].

V. CONCLUSIONS AND OUTLOOK

In this work we have considered a rather toy model of
magnetically charged spin-1

2
dyons interacting with ordi-

nary electrically charged matter fermions (electrons for
concreteness). We have considered an effective gauge field
theory Uð1Þweak × Uð1Þstrong, where the weak Uð1Þ repre-
sents electromagnetism, while the strong Uð1Þ effectively
describes interactions that would lead to the presence of
magnetic poles in then theory. The presence of two
potentials was adopted by Zwanziger [2] in an attempt
to describe the effective theory of Dirac monopoles in a
local fashion, avoiding the use of infinite strings. However,
the theory lacked Lorentz invariance. In a recent work [18],
employing a toy model of perturbative magnetic charge, it
was argued that all such string effects can be resummed to a
physically irrelevant phase of the scattering amplitude
between monopoles and matter, and in case the charge
quantization condition applies, such phases vanish, so the
amplitude itself was Lorentz (and gauge) invariant. In
realistic monopole models, perturbative magnetic charges
have been argued by Schwinger, Milton, and collaborators
[19] to characterize the interaction of monopoles with
matter as a result of electric magnetic duality. However,
such arguments were purely qualitative, not supported by
any detailed modeling. They were based on quantum-
mechanical scattering of electrons off magnetic poles,
whose cross sections had a form that, in order to be
obtained from Rutherford cross section of normal charged
particles by means of imposing electromagnetic duality,
one should impose that the magnetic charge was effectively
proportional to the monopole velocity, hence perturbative
for slowly moving monopoles.
Motivated by these results, we have discussed in this

work a toy model for describing the interaction of magnetic
monopoles/dyons with matter, where quantum fluctuation
effects of the magnetic charge are represented by the
presence of a second independent strong U(1) gauge
potential. However, we have ignored any Lorentz (or
gauge) violation effects, anticipating the results of [18].
Our analysis has led to a consistent result, namely, the
emergence of an effective magnetic coupling of the
monopole/dyon to the real photons, depending on
the monopole velocity, in the spirit conjectured in [19].
This result was obtained as a mathematically self-consistent
solution of the appropriate Schwinger-Dyson equations.
The role of the velocity-dependent factor that appeared in

the work of [19] is played here by the transmutation mass
scale that appears in the Schwinger-Dyson solution for the
monopole wave-function renormalization, which enters
the expression of the monopole-photon vertex. The role
of the nonperturbative corrections of the dual Uð1Þstrong is
crucial to this effect. However, we stress that in the case of
slowly moving monopoles/dyons, the wave-function
renormalization violates unitarity bounds set for elementary
particle asymptotic states (41), thus necessitating the
application of our effective Uð1Þweak × Uð1Þstrong gauge
field theory only to composite monopoles/dyons, of generic
type though, not necessarily restricted to the known
solutions existing in the literature.
Once such a perturbative monopole-photon coupling is

established [for slowly moving, heavy (compared to the
matter-fermion mass) monopoles], the arguments of [18]
are in operation, and one may assume that any Lorentz
noninvariant string effects that might appear in the theory
of [2] affect only the phases of the respective scattering
amplitudes, and they actually disappear once the charge
quantization condition (1) is imposed. In our approach we
have explained how such a quantization arises naturally for
the dual photon coupling. Although in the theory of [2]
such string effects implied that the dual photon is not
independent of the real photon, and that on shell there are
only two propagating d.o.f., in our fully quantum theory,
the dual photon quantum fluctuations have been assumed
independent of electromagnetism. Nonetheless, one may
impose the monopole solution of Zwanziger as a consistent
Lorentz noninvariant solution to the respective equations
of motion, thus making contact with the original Dirac
monopole case.
We should stress though that the emergence of the strong

U(1) interactions from microscopic considerations in con-
crete composite monopole models existing in the current
literature [5,7,12,13] is still not understood. It might be
possible that the very existence of a magnetic pole
implies automatically such interactions, as an effective
way of describing the monopole quantum fluctuations.4

Nonetheless, our effective field theory description of
monopole-matter interactions developed in the current
work offers support to the relativistic effective gauge field
theory approach of [15], used so far in collider searches of
magnetically charged particles [20]. Formulating our
theory on the lattice might then be a way forward for
obtaining results in the nonperturbative regime of the
effective magnetic couplings, when the monopoles are
not slowly moving, or appear as virtual particles in
quantum loops of, say, light-by-light scattering processes,

4In this latter respect, we mention that an interesting research
direction would be to attempt and find connections, if any, of the
current approach with the manifestly dual quantum field theory
proposal for electric and magnetic charges of [25], in which the
Dirac string (and thus the associated fixed vector ημ in the
Zwanziger approach [2]) becomes dynamical.
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of interest to collider searches for monopoles heavier than
the respective collider production threshold. In the latter
case, an enhanced light-by-light scattering cross section,
as compared to the standard-model case, has been
claimed in Ref. [26] as an indirect way of detecting the
existence of monopoles. In that work, analytical estimates
for the corresponding cross sections have been made on
assuming ad hoc photon-energy dependent monopole-
photon couplings of the form (66) and (68), which are
weak for sufficiently low photon energies compared
to the monopole mass. Our effective gauge field theory
not only provides justification for such assumptions, as we
discussed above, but, by being placed on the lattice, can
also lead, in principle, to an extension of the consider-
ations of [26] to higher photon energies and lower
monopole masses, thus enhancing the appropriate
parameter space region in future collider searches. Such
issues constitute interesting research material for future
work.
Finally, before closing, we mention that another interest-

ing open issue is the existence of nonperturbative effects
associated with the strongly coupled Uð1Þstrong sector. One
way such effects could be manifested is through the
monopole-antimonopole pair creation from the vacuum in
the presence of external magnetic fields [27] and/or high
temperatures [28]. In this approach, which generalizes
Schwinger electron-positron pair production in external
electric fields [29] to themagnetic charge case, one calculates
the monopole production rate Γmono per unit volume, in the
presence of a (weak) magnetic field of intensity B. The
rate Γmono is calculated from the imaginary part of the total
energy of the configuration Γmono ¼ 2

ℏ ImE0, which implies
jh0j expð−iHt=ℏÞj0ij2 expð−ΓmonotÞ, where H is the
Hamiltonian. Following the calculation in [27] one obtains
for weak magnetic fieldsB and heavy monopoles of massM

Γmono ¼ expð−E0TÞ ∼
Z
T→∞

Dϕ expð−IðϕÞÞ

¼ C½1 − iK exp ð−IclðϕÞÞVT�

≃
g2B2

8π3
exp

�
−
πM2

gB
þ g2

4

��
1þO

�
g3B
M2

�
þ � � �

�
;

ð73Þ
where IclðϕÞ is the classical instanton action andK a one-loop
factor [the dilute instanton gas approximation was adopted in
[27], with expð−IclÞ the instanton density]. In (73), g denotes
the monopole magnetic charge, while the … denote terms
which in the specific (scalar) monopole model of Georgi-
Glashow SO(3) type considered in [27] denote terms of order
Oðe2Þwheree is the gaugeSO(3) coupling constant related to
g via g ¼ 4π=e, where in the presence of weak magnetic
fieldsB then, one can calculate Icl and the one-loop factorK,
which yields the result (73). In the computation of [27] no
charge renormalization effects have been taken into account.
In this respect, in our case, should the result (73) be valid,

onewould expect to consider the full monopole propagators
obtained in the context of our Schwinger-Dyson treatment to
circulate in the loop. According to our analysis in this work,
the electromagnetic coupling of our fermion monopole to
photons, and thus to external magnetic fields, is given by geff
(69), which contains the nontrivial wave-function renorm-
alization and the monopole velocity β dependence. For
slowly moving monopoles, β → 0 and hence the pair
production would be suppressed according to (73).
However, the vacuum polarization produces monopoles
with all βs and the production rate of monopole-antimono-
pole pairs with β ∼ 1 is unsuppressed. The total rate, should
one accept formula (73), should then be given by replacing g
in (73) by geff ¼ Z0eAβ≡ gβ [cf. (68) and (69)] and
integrating over all possible velocities β ∈ ½0; 1�,

Γmono ¼
Z

1

0

dβ
g2β2B2

8π3
exp

�
−
πM2

gβB
þ g2β2

4

��
1þO

�
g3β3B
M2

�
þ � � �

�

≃
g2B2

48π3
exp

�
−
πM2

gB

��
2þ

�
−1þ πM2

gB

�
πM2

gB

þ
�
πM2

gB

�
3

exp

�
πM2

gB

��
CoshIntegral

�
πM2

gB

�
− SinhIntegral

�
πM2

gB

���

≃
g2B2

24π3
exp

�
−
πM2

gB

�
≪ 1; for

πM2

gB
≫ 1; ð74Þ

which is the case of relatively heavy monopoles and weak
magnetic fields considered in [27]. We thus observe that the
rate (74) is 1=3 of the rate (73) (they are both very strongly
suppressed of course). To arrive at the result (74)we took into
account that CoshIntegralðxÞ ¼ γ þ ln jxj þ R

x
0 dt

coshðtÞ−1
t ,

SinhIntegralðxÞ ¼ R
x
0 dt

sinhðtÞ
t , with γ ¼ 0.577216… the

Euler-Mascheroni constant, and we used the asymptotic
expression of these integrals for large x ≫ 1 [30]:
x3ðCoshIntegralðxÞ−SinhIntegralðxÞÞ≃xð−xþ1Þexpð−xÞ.
The above remarks should be considered as speculative,

though, given that the precise computation of such vacuum

nonperturbative effects for fermion monopoles that we
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discussed in our approach is still pending [the computation
of [27] pertained to scalar (spinless) monopoles of a
specific microscopic model].
Another kind of nonperturbative effect can shortly be

discussed, which is the possibility to dynamically generate
the monopole mass. From Eq. (54), we can see that a
vanishing monopole bare mass M ¼ 0 leads to the consis-
tent solutionMr ¼ c1k for the dressedmass,where c1 > 0 is
a numerical (dimensionless) integration constant (taken to
be positive to ensure positivity of the mass, since k > 0).
This dynamical mass is independent of the coupling con-
stants, and hence purely a nonperturbative phenomenon. k is
a transmutational scale, and therefore is not fixed by the
model but instead should be considered as a physical
parameter of the theory. The latter can be defined from
the nonvanishing bare mass of the standard-model fermion,
which is a natural scale in our description. Therefore, a
monopole dynamical mass is in principle consistent, within
the nonperturbative regime we describe here. We also note
that dynamical mass generation is related to the existence of
bound states,which, aswe already discussed in this article, is
a necessary interpretation to avoid the unitarity bound
Z > 1. The formation of bound states between monopoles
and antimonopoles in our effective theory (termed “monop-
olia”), as a result of the strongly coupledUstrongð1Þ sector, is
a very interesting open issue, which requires a separate
study, in order the establish the existence of a potentially
confining phase. Such a study might prove useful for the
discussion of monopolium production at colliders [31].
The above nonperturbative effects, as well a phase

diagram of our effective theory, including potential confine-
ment, deserve a full study, which is left for future work.
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APPENDIX A: ONE-PARTICLE-IRREDUCIBLE
(1PI) EFFECTIVE ACTION

(i) The partition function is

Z ¼
Z

D½ϕ� exp ðiI þ iIsÞ; ðA1Þ

where ϕ denotes collectively the different d.o.f. Aμ,
Bμ, ψψ̄ ; χ; χ̄ with sources jμA; j

μ
B; η̄; η; ξ̄; ξ, respec-

tively, such that the source term is

Is ¼
Z
x
jμAAμ þ jμBBμ þ η̄ψ þ ψ̄ηþ ξ̄χ þ χ̄ξ: ðA2Þ

The connected-graphs generating functional is

W ¼ −i lnZ; ðA3Þ

whose functional derivatives define the background
fields

ψb ¼ hψi ¼ δW
δη̄

; ψ̄b ¼ hψ̄i ¼ δW
δη

χb ¼ hχi ¼ δW
δξ̄

; χ̄b ¼ hχ̄i ¼ δW
δξ

Aμ
b ¼ hAμi ¼ δW

δjAμ
; Bμ

b ¼ hBμi ¼ δW
δjBμ

; ðA4Þ

with

h� � �i≡ 1

Z

Z
D½ϕ�ð� � �Þ exp ðiI þ iIsÞ: ðA5Þ

(ii) The 1PI-graphs generating functional, the effective
action Γ, is a functional of the background fields and
is obtained via a Legendre transform of W, after
inverting the relations (A4) and treating the sources
as functionals of the background fields

Γ ¼ W −
Z
x
jμAA

b
μ þ jμBB

b
μ þ η̄ψb þ ψ̄bη

þ ξ̄χb þ χ̄bξ: ðA6Þ

Γ has the following functional derivatives:

δΓ
δψb

¼ −η̄;
δΓ
δψ̄b

¼ −η

δΓ
δχb

¼ −ξ̄;
δΓ
δχ̄b

¼ −ξ

δΓ
δAμ

b
¼ −jAμ ;

δΓ
δBμ

b
¼ −jBμ : ðA7Þ

(iii) The bare propagators are defined by

Sψ ¼
�

δ2I
δψδψ̄

�−1

0

; Sχ ¼
�

δ2I
δχδχ̄

�−1

0

Dμν ¼
�

δ2I
δAνδAμ

�−1

0

¼
�

δ2I
δBνδBμ

�−1

0

; ðA8Þ

where the subscript 0 denotes vanishing fields. As
explained in Sec. II B 1, the dressed propagators are
diagonal, both for fermions and gauge fields, and are
defined by
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Gψ ¼
�

δ2Γ
δψbδψ̄b

�−1

0

; Gχ ¼
�

δ2Γ
δχbδχ̄b

�−1

0

ΔA
μν ¼

�
δ2Γ

δAν
bδA

μ
b

�−1

0

; ΔB
μν¼

�
δ2Γ

δBν
bδB

μ
b

�−1

0

: ðA9Þ

The dressed vertices are

ΛAψ
μ ¼ δ3Γ

δψbδA
μ
bδψ̄b

����
0

; ΛAχ
μ ¼ δ3Γ

δχbδA
μ
bδχ̄b

����
0

ΛBψ
μ ¼ δ3Γ

δψbδB
μ
bδψ̄b

����
0

; ΛBχ
μ ¼ δ3Γ

δχbδB
μ
bδχ̄b

����
0

: ðA10Þ

(iv) From the first functional derivatives (A7), one can
obtain the following identities, relating the second
functional derivatives of W and Γ,

δ2Γ
δψbδψ̄b

¼ −ðδ2WÞ−1η;η̄;
δ2Γ

δχbδχ̄b
¼ −ðδ2WÞ−1

ξξ̄

δ2Γ
δAμ

bδA
ν
b
¼ −ðδ2WÞ−1jAμ jAν ;

δ2Γ
δBμ

bδB
ν
b
¼ −ðδ2WÞ−1jBμ jBν ;

ðA11Þ

where the inverse has to be read as the element of the
inverse matrix.

APPENDIX B: WARD IDENTITIES

(i) The gauge transformation (19) leaves the action S
invariant and modifies the source terms, such that the
partition function (A1) is modified as

Z→Zþ i
Z

D½ϕ�exp ðiIþ iIsÞ

×
Z
x
ðjμA∂μθAþ jμB∂μθBþ ieθAðη̄ψ − ψ̄ηÞ

þ iðeAθAþeBθBÞðξ̄χ− χ̄ξÞÞþOðθA;BÞ2: ðB1Þ

Integration by parts lead to

Z→Zþ i
Z
x
θA

Z
D½ϕ�expðiIþ iIsÞ

× ð−∂μj
μ
Aþ ieðη̄ψ − ψ̄ηÞþ ieAðξ̄χ− χ̄ξÞÞ

þ i
Z
x
θB

Z
D½ϕ�expðiIþ iIsÞ

× ð−∂μj
μ
Bþ ieBðξ̄χ− χ̄ξÞÞþOðθA;BÞ2; ðB2Þ

and gauge invariance for independent functions θA
and θB leads to

0 ¼
Z

D½ϕ� expðiI þ iIsÞð−∂μj
μ
A þ ieðη̄ψ − ψ̄ηÞ

þ ieAðξ̄χ − χ̄ξÞÞ;

0 ¼
Z

D½ϕ� expðiI þ iIsÞð−∂μj
μ
B þ ieBðξ̄χ − χ̄ξÞÞ:

ðB3Þ

Together with the identities given in Appendix A, we
obtain then

0 ¼ ∂μ

�
δΓ
δAμ

�
þ ie

δΓ
δψb

ψb − ieψ̄b
δΓ
δψ̄b

þ ieA
δΓ
δχb

χb − ieAχ̄b
δΓ
δχ̄b

0 ¼ ∂μ

�
δΓ
δBμ

�
þ ieB

δΓ
δχb

χ − ieBχ̄
δΓ
δχ̄b

: ðB4Þ

(ii) On account of the property (24), taking the func-
tional derivatives of Eqs. (B4) with respect to ψb and
ψ̄b, followed by setting the background fields to 0,
leads to

1

e
∂ΛAψ

μ

∂zμ ðx; y; zÞ ¼ iG−1
ψ ðx; zÞδðx − yÞ

− iG−1
ψ ðy; zÞδðx − yÞ

∂ΛBψ
μ

∂zμ ðx; y; zÞ ¼ 0: ðB5Þ

(iii) For the same reason, on taking the functional
derivatives of Eqs. (B4) with respect to χb and χ̄b,
and then setting the background fields to 0, leads to

1

eA

∂ΛAχ
μ

∂zμ ðx; y; zÞ ¼ iG−1
χ ðx; zÞδðx − yÞ

− iG−1
χ ðy; zÞδðx − yÞ;

1

eB

∂ΛBχ
μ

∂zμ ðx; y; zÞ ¼ iG−1
χ ðx; zÞδðx − yÞ

− iG−1
χ ðy; zÞδðx − yÞ: ðB6Þ

In Fourier components, we have

iG−1ðx; zÞ − iG−1ðy; zÞ → G−1ðpþ qÞ −G−1ðpÞ

¼ qμ
∂G−1

∂pμ

����
p
þOðq2Þ; ðB7Þ

where p is an incoming fermion momentum and q is
the gauge-field momentum. In the limit q → 0, we
then obtain the Ward identities
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1

e
ΛAψ
μ ðp; 0Þ ¼ ∂G−1

ψ

∂pμ ;
1

eB
ΛBχ
μ ðp; 0Þ ¼ ∂G−1

χ

∂pμ ;

ðB8Þ

and the additional properties

qμΛBψ
μ ðp; qÞ ¼ 0;

eBqμΛ
Aχ
μ ðp; qÞ ¼ eAqμΛ

Bχ
μ ðp; qÞ: ðB9Þ

APPENDIX C: SD EQUATIONS

(i) The SD equation for the ψ self-energy is obtained by
noting that the integral of the following functional
derivative vanishes,

Z
D½ϕ� δ

δψ̄
expðiI þ iIsÞ ¼ 0; ðC1Þ

such that

Z
D½ϕ�ðiγμDA

μψ −mψþηÞexpðiIþ iIsÞ¼ 0: ðC2Þ

Using the identities in Appendix A, the latter
equation can also be written,

0 ¼ ðiγμ∂μ −mÞψb −
δΓ
δψ̄b

− eγμhAμψi; ðC3Þ

and a functional derivative with respect to ψb,
followed by setting the fields to 0, leads to

G−1
ψ − S−1ψ ¼ −eγμ

δ

δψb
hAμψi0: ðC4Þ

We have

hAμψi ¼ Ab
μψb − i

δ2W
δjμAδη̄

; ðC5Þ

and

δ

δψb

δ2W
δjμAδη̄

����
0

¼ −
δ3W

δηδjμAδη̄

����
0

G−1
ψ ; ðC6Þ

where the missing terms vanish when fields are set to
0, and the integral over space-time coordinates is
understood. The next step consists in noting that

δ3W
δηδjμAδη̄

����
0

¼ −
δ

δjμA

�
δ2Γ

δψbδψ̄b

�−1����
0

¼ Gψ

�
δ3Γ

δψbδAνδψ̄b

δAν

δjμA
þ δ3Γ
δψbδBνδψ̄b

δBν

δjμA

�
0

Gψ

ðC7Þ

¼ GψΛν
AψΔA

μνGψ ; ðC8Þ

where δBν=δjAμ j0 ¼ 0 since the gauge propagator is
diagonal. We finally obtain

G−1
ψ − S−1ψ ¼ ieγμGψΛν

AψΔA
μν; ðC9Þ

where the integration over space-time coordinates is
understood.

(ii) The SD equation for the χ-fermion self-energy is
obtained by noting that

Z
D½ϕ� δ

δχ̄
expðiI þ iIsÞ ¼ 0; ðC10Þ

such that

Z
D½ϕ�ðiγμDAþB

μ χ −Mχ þ ξÞ expðiI þ iIsÞ ¼ 0;

ðC11Þ

and the same steps as the ones described above
lead to

G−1
χ − S−1χ ¼ ieAγμGχΛν

AχΔA
μν þ ieBγμGχΛν

BχΔB
μν:

ðC12Þ

(iii) The SD equation for the Aμ self-energy is obtained
by noting that

Z
D½ϕ� δ

δAμ
expðiI þ iIsÞ ¼ 0; ðC13Þ

such that

D−1
μνAν

b − ehψ̄γμψi − eAhχ̄γμχi þ jAμ ¼ 0: ðC14Þ

A functional derivative with respect to Aν
b leads to

ðΔA
μνÞ−1 −D−1

μν ¼ ie tr

�
γμ

δ

δAν
b

δ2W
δηδη̄

	

þ ieA tr

�
γμ

δ

δAν
b

δ2W

δξδξ̄

	
ðC15Þ
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and for vanishing fields we have

δ

δAν
b

δ2W
δηδη̄

����
0

¼ δ

δAν
b

�
δ2Γ

δψbδψ̄b

�−1

0

¼ −GψΛ
Aψ
ν Gψ ;

ðC16Þ

δ

δAν
b

δ2W
δξδξ̄

����
0

¼ δ

δAν
b

�
δ2Γ

δψbδψ̄b

�−1

0

¼ −GχΛ
Aχ
ν Gχ :

ðC17Þ

Finally we obtain

ðΔA
μνÞ−1−D−1

μν ¼i trfeγμGψΛ
Aψ
ν GψþeAγμGχΛ

Aχ
ν Gχg:
ðC18Þ

(iv) The SD equation for the Bμ self-energy is obtained
by noting that

Z
D½ϕ� δ

δBμ
expðiI þ iIsÞ ¼ 0; ðC19Þ

such that

D−1
μνBν

b − eBhχ̄γμχi þ jBμ ¼ 0; ðC20Þ

and similar steps as the ones described above lead to

ðΔ−1
μν ÞB −D−1

μν ¼ ieB trfγμGχΛ
Bχ
ν Gχg: ðC21Þ

APPENDIX D: CALCULATION
OF QUANTUM CORRECTIONS

(i) Within the approximations described in Sec. III, the
SD equation for the monopole self-energy is

ðZ−1Þp−δM

¼ ie2A

Z
d4q
ð2πÞ4 γ

μGχðpþqÞZγνDμνðqÞ

þ ie2B

Z
d4q
ð2πÞ4 γ

μGχðpþqÞZγνΔB
μνðqÞ; ðD1Þ

and the SD equation for the dual photon polarization
tensor is

ωðq2ημν − qμqνÞ

¼ ie2B tr
Z

d4p
ð2πÞ4 γμGχðpÞZγνGχðpþ qÞ; ðD2Þ

where the propagators and vertices are given in
Sec. III.

(ii) For the monopole self-energy (D1), the mass cor-
rections are obtained by setting the external mo-
mentum to 0,

δM¼ ie2Ak
ϵ

Z
ddq
ð2πÞdγ

μ M̃

Z2q2−M̃2
γν
�
ημν
q2

þ1−λ

λ

qμqν
q4

�

þie2Bk
ϵ

Z
ddq
ð2πÞdγ

μ M̃

Z2q2−M̃2

Zγν

1þω

×

�
ημν
q2

þ1þω−λ

λ

qμqν
q4

�
: ðD3Þ

and the wave-function renormalization is obtained
by taking a derivative with respect to the external
momentum component pσ , which is then set to 0,

ðZ−1Þγσ

¼ ie2Ak
ϵ

Z
ddq
ð2πÞdγ

μ

�
Zγσ

Z2q2−M̃2
−
2Z2ðZ=q−M̃Þqσ
ðZ2q2−M̃2Þ2

�

×γν
�
ημν
q2

þ1−λ

λ

qμqν
q4

�

þie2Bk
ϵ

Z
ddq
ð2πÞdγ

μ

�
Zγσ

Z2q2−M̃2
−
2Z2ðZ=q−M̃Þqσ
ðZ2q2−M̃2Þ2

�

×
Zγν

1þω

�
ημν
q2

þ1þω−λ

λ

qμqν
q4

�
: ðD4Þ

In the latter expressions dimensional regularization
is used, in dimension d ¼ 4 − ϵ and with the
arbitrary mass scale k. In both cases the simplifica-
tion of the integrand is straightforward, and we
obtain for the mass corrections

δM

M̃
¼ i
λ

�
e2Að1þ3λÞþe2B

1þ3λþω

1þω

�

×
kϵ

Zd−3

Z
ddq
ð2πÞd

1

q2ðq2−M̃2Þþ finite

¼ 1

8π2λZ

�
e2Að1þ3λÞþe2B

1þ3λþω

1þω

�
1

ϵ

�
Zk

M̃

�
ϵ

þ finite: ðD5Þ

(iii) For the monopole wave-function renormalization,
we observe that both Z and ω cancel in the integrand
(both in the diverging and finite parts), such that the
corrections arising from Aμ are identical to those
arising from Bμ, and we obtain

Z ¼ 1− i
e2A þ e2B

λ

kϵ

Zd−4

Z
ddq
ð2πÞd

1

ðq2 − M̃2Þ2 þ finite

¼ 1þ e2A þ e2B
8π2λ

1

ϵ

�
Zk

M̃

�
ϵ

þ finite: ðD6Þ
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(iv) For the dual photon polarization, the integral in Eq. (D2) is the same as in the usual perturbative case, except for an
overall factor 1=Z, which is a nonperturbative feature,

ω ¼ e2B
6π2Z

1

ϵ

�
Zk

M̃

�
ϵ

þ finite: ðD7Þ
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