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This paper describes a computation of a part of the QED contribution to the electron anomalous
magnetic moment that was performed by the author with the help of a supercomputer. The computed part
includes all 5-loop QED Feynman graphs without lepton loops. The calculation has led to the result

Að10Þ
1 ½no lepton loops� ¼ 6.793ð90Þ that is slightly different than the value 7.668(159) presented by

T. Aoyama, T. Kinoshita, and M. Nio in 2018. The discrepancy is about 4.8σ. The computation gives the
first independent check for that value. A shift in the fine-structure constant prediction is revealed in the
paper. The developed calculation method is based on (a) a subtraction procedure for removing all
ultraviolet and infrared divergences in Feynman parametric space before integration; (b) a nonadaptive
Monte Carlo integration that uses the probability density functions that are constructed for each Feynman
graph individually using its combinatorial structure. The method is described briefly in the paper (with the
corresponding references to the previous papers). The values for the contributions of nine gauge-invariant
classes splitting the whole set are presented in the paper. Moreover, the whole set of all 5-loop graphs
without lepton loops is split into 807 subsets for comparison (in the future) of the calculated values with the
values obtained by other methods. These detailed results are presented in the supplemental materials. Also,
the supplemental materials contain the contribution values for each of 3213 individual Feynman graphs. An
“oscillating” nature of these values is discussed. A realization of the numerical integration on the graphics
accelerator NVidia Tesla V100 (as a part of the supercomputer “Govorun” from JINR, Dubna) is described
with technical details such as pseudorandom generators, calculation speed, code sizes and structure,
prevention of round-off errors and overflows, etc.
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I. INTRODUCTION

The most precise measurement of the electron anoma-
lous magnetic moment (AMM) gave the result

ae½expt� ¼ 0.00115965218073ð28Þ: ð1Þ
This result was presented by Gabrielse research group at
Harvard in Ref. [1]. All theoretical predictions for ae must
satisfy this “quality standard” for the precision. The “main-
stream” Standard Model prediction uses the following
expression:

ae ¼ aeðQEDÞ þ aeðhadronicÞ þ aeðelectroweakÞ;

aeðQEDÞ ¼
X
n≥1

�
α

π

�
n
a2ne ;

a2ne ¼ Að2nÞ
1 þ Að2nÞ

2 ðme=mμÞ þ Að2nÞ
2 ðme=mτÞ

þ Að2nÞ
3 ðme=mμ; me=mτÞ;

where me, mμ, mτ are the masses of the electron, muon
and tau-lepton, respectively. The universal QED terms

Að2nÞ
1 ðα=πÞn form the most significant contribution to the

value. The coefficient values

Að2Þ
1 ¼ 0.5; Að4Þ

1 ¼ −0.328478965579…

were presented in Refs. [2,3] and Refs. [4,5], respectively.

The value of Að6Þ
1 was being calculated in 1970-x by

different groups of scientists using numerical integration;

see Refs. [6–9]. The most accurate value Að6Þ
1 ¼ 1.195�

0.026 for that era was obtained in 1974 by T. Kinoshita and
P. Cvitanović. The uncertainty is caused by the statistical
error of the Monte Carlo integration. A work of analytical

calculation of Að6Þ
1 with the help of computers was started at

the same time. The final value
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Að6Þ
1 ¼ 1.181241456…

was obtained by S. Laporta and E. Remiddi in 1996; see
Ref. [10]. That value was a product of efforts of many
researchers; see, for example, Refs. [11–26]. First numeri-

cal estimations for Að8Þ
1 were obtained by T. Kinoshita and

W. B. Lindquist in 1981 and published in Ref. [27]. The
most accurate value presented by T. Kinoshita’s team

Að8Þ
1 ¼ −1.91298ð84Þ

was published in 2015 in Ref. [28]. That value was
obtained by Monte Carlo integration. S. Laporta’s semi-
analytical result

Að8Þ
1 ¼ −1.9122457649…

was obtained in 2017 and published in Ref. [29]. These

two calculations of Að8Þ
1 are in good agreement as well

as other independent calculations of this value from
Refs. [30,31], and for Feynman graphs without lepton
loops from Ref. [32].
The full calculation of Að10Þ

1 was performed only by
T. Kinoshita’s team using Monte Carlo integration. The
most precise value was obtained in 2019 by T. Aoyama,
T. Kinoshita, M. Nio and was published in Ref. [33]:

Að10Þ
1 ½AKN� ¼ 6.737ð159Þ: ð2Þ

A special place is occupied by the contribution of Feynman

graphs without lepton loops to Að10Þ
1 . This set contains

3213 Feynman graphs1 and forms a gauge-invariant class.
This contribution is the most complicated one for both
Monte Carlo integration and analytical calculations. For
example, the uncertainty in (2) is entirely determined by
that contribution. Also, it is the contribution that suffered
the most from found mistakes and corrections; see
Ref. [34]. The value

Að10Þ
1 ½no lepton loops; AKN� ¼ 7.668ð159Þ ð3Þ

can be obtained by using (2) and the value of the remaining
part that can be extracted from Ref. [34]. By 2019, there

were no independent calculations of Að10Þ
1 ½no lepton loops�.

We recalculated this contribution with the help of the
supercomputer “Govorun” (JINR, Dubna, Russia). 40000
GPU-hours of Monte Carlo integration on NVidia Tesla
V100 that were spread over several months have led to the
result

Að10Þ
1 ½no lepton loops; Volkov� ¼ 6.793ð90Þ; ð4Þ

where the uncertainty corresponds to 1σ limits. It is in good
agreement with the preliminary value 6.782(113) published
in Ref. [35]. The discrepancy between this result and (3) is
approximately 4.8σ. This means that the values are prob-
ably different. The reason of this difference is unknown.
Section V contains some considerations about the reliabil-
ity of the result. In addition, it is important that this result
can be checked by parts; see the detailed explanation
in Sec. V.
Combining (4) with the value of the residual part of Að10Þ

1

from Ref. [34], we obtain

Að10Þ
1 ½Volkovþ AKN� ¼ 5.862ð90Þ: ð5Þ

Taking the known and double-checked values for Að2nÞ
2 ,

n ≤ 5, Að2nÞ
3 , n ≤ 4, aeðhadronicÞ þ aeðelectroweakÞ (see a

review in Ref. [33]) and the measured value of α from
Ref. [36] based on a measurement of the cesium atom mass
relative to the Planck constant

α−1ðCsÞ ¼ 137.035999046ð27Þ; ð6Þ

we obtain

ae½theory; αðCsÞ;Volkov�
¼ 0.001159652181547ð6Þð12Þð229Þ;

where the first uncertainty comes from (4), the second one
from the hadronic and electroweak corrections, and the last
one from the uncertainty of α. The usage of (2) will give

ae½theory; αðCsÞ;AKN�
¼ 0.001159652181606ð11Þð12Þð229Þ

instead. If we will use the ae prediction with (5) and the
measured value (1) for improving α, we obtain

α−1½ae;Volkov� ¼ 137.0359991427ð7Þð14Þð331Þ; ð7Þ

where the uncertainties come from (4), the hadronic and
electroweak corrections, (1), correspondingly. The discrep-
ancy with (6) is approximately 2.27σ. The corresponding
value obtained from (2) is

α−1½ae;AKN� ¼ 137.0359991496ð13Þð14Þð330Þ; ð8Þ

with the discrepancy 2.43σ relative to (6). If we take

α−1ðRbÞ ¼ 137.035998996ð85Þ ð9Þ

obtained from the measurement of the rubidium atom mass
relative to the Planck constant (Ref. [37]) combined with

1Graphs that are obtained from each other by changing arrow
directions are regarded as one.
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the improved values of some constants from CODATA-
2014 (Ref. [38]), we obtain

ae½theory; αðRbÞ;Volkov�
¼ 0.001159652181969ð6Þð12Þð720Þ;

ae½theory; αðRbÞ;AKN�
¼ 0.001159652182037ð11Þð12Þð720Þ:

The values (7) and (8) have the discrepancies 1.61σ and
1.69σ relative to (9). This means that the discrepancy
between (4) and (3) affects α and ae slightly. However, this
discrepancy can become significant in the future, when the
precision of the measurements will be increased. Also, if
both calculations have mistakes, then this can be sensible
even at the current level of precision. Thus, an additional
independent calculation is required.
There is no universal method that makes it possible to

calculate 5-loop QED contributions in a realistic time
frame. Firstly, the existing universal IR divergence control
methods like those that are based on the dimensional
regularization lead to enormous amounts of symbolic
manipulations. And secondly, the universal integration
routines demonstrate a very slow convergence on the
obtained integrals.
To make the 5-loop calculations practically feasible it is

required to remove all ultraviolet (UV) and infrared (IR)
divergences before integration and to avoid any ε-like
regularizations. All UV divergences in Feynman integrals
can be removed by the direct subtraction on the mass shell
using a forestlike formula like Zimmermann’s forest for-
mula.2 However, an analogous method for removing IR
divergences has not been invented yet. The anomalous
magnetic moment is free from IR divergences: the IR
divergences corresponding to soft virtual photons are
compensated by the IR divergences connected with the
on-shell renormalization; see notes in Ref. [42]. But,
unfortunately, direct methods lead to an emergence of IR
divergences in individual Feynman graphs. Different
authors use different homemade divergence subtraction
procedures that work in some cases; see Refs. [6,8,33,43].
A relatively simple subtraction procedure giving finite
Feynman parametric integrals was developed for our
calculations. It was presented firstly in Ref. [44] and is
briefly described in Sec. II.
The 5-loop calculations lead to Feynman parametric

integrals with 13 variables. At this time, the only way to
evaluate such integrals numerically is to use Monte Carlo
integration. Unfortunately, Feynman parametric integrands
after divergence subtraction are unbounded and have a very

complicated asymptotic behavior near boundaries. The
universal adaptive Monte Carlo integration routines like
VEGAS can, in principle, work with unbounded functions
and functions having a steep landscape. However, these
routines are suited for functions with a certain shape. This
becomes critical for large numbers of variables. For
example, VEGAS uses the probability density functions
of the form

f1ðx1Þ · f2ðx2Þ ·… · fnðxnÞ

and tries to fit the functions fj to make the convergence as
fast as possible.3 Unfortunately, this approximation does
not work fine for Feynman parametric integrals with large
numbers of variables. A nonadaptive4 method that uses
some a priori knowledge about the Feynman parametric
integrands behavior was developed for our calculations.
The method that is briefly described in Sec. III works only
for graphs without lepton loops. The first version of this
method was presented in Ref. [42].
The developed Monte Carlo integration method allows

us to reduce the needed number of samples substantially.
However, in the 5-loop case, for evaluating 3213 Feynman
graphs a supercomputer is still required. Modern graphics
processors (GPUs) are more suitable for performing many
uniform sequences of arithmetic operations in parallel than
usual processors. The Monte Carlo integration was per-
formed on GPUs NVidia Tesla V100 as a part of the
supercomputer5 “Govorun” from JINR (Dubna, Russia).
The realization is described in Sec. IV with some pro-
gramming details. Section V contains the results of the
calculations, a discussion about these results, the descrip-
tion of the supplemental materials [45], and some technical
information about the computation including the GPU
performance, arithmetic precision statistics and so on.

II. DIVERGENCE ELIMINATION

The developed subtraction procedure is based on a forest
formula with linear operators that are applied to the
Feynman amplitudes of UV divergent subgraphs. This is
similar to the Zimmermann forest formula. The difference
is only in the choice of the linear operators used and in the
way of combining them. Let us recapitulate the advantages
of the developed procedure:

2The Zimmermann forest formula was first published in
Ref. [39] and Ref. [40]. However, the historic name is connected
with Ref. [41].

3The Monte Carlo integration error usually behaves as
σ∼C=

ffiffiffiffi
N

p
, where N is the number of samples. However, it

is very important to make C as small as possible.
4Except the intergraph adaptivity described in Sec. IV C and

the adjustment of six constants (15) that was performed once for
the 4-loop graphs.

5The GPU part of the supercomputer “Govorun” has 40 GPUs
NVidia Tesla V100. The peak performance of the GPU part is 300
TFlops for double precision. The peak performance of the whole
supercomputer (including the CPU part) is 500 TFlops.
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(i) The procedure is fully automated for any order of the
perturbation series.6

(ii) The method is beautiful and is relatively simple for
realization on computers.

(iii) The subtraction is equivalent to the on-shell renorm-
alization: for obtaining the final result we should
only sum up the contributions of all Feynman graphs
after subtraction. Thus, no residual renormalizations
are required.

(iv) Feynman parameters can be used directly, without
any additional tricks.

There are the following types of UV-divergent sub-
graphs7 in QED Feynman graphs without lepton loops:
electron self-energy subgraphs (Ne ¼ 2, Nγ ¼ 0) and
vertexlike subgraphs (Ne ¼ 2, Nγ ¼ 1), where by Ne

and Nγ we denote the number of external electron and
photon lines in the subgraph.
Two subgraphs are said to overlap if they are not

contained one inside the other, and the intersection of their
sets of lines is not empty.
A set of subgraphs of a graph is called a forest if any two

elements of this set do not overlap.
For a vertexlike graph G byF½G� we denote the set of all

forests F that consist of UV-divergent subgraphs of G and
satisfy the condition G ∈ F. By I½G� we denote the set of
all vertexlike subgraphs G0 of G such that G0 contains the
vertex that is incident8 to the external photon line of G.9

We work in the system of units, in which ℏ ¼ c ¼ 1, the
factors of 4π appear in the fine-structure constant:
α ¼ e2=ð4πÞ, the tensor gμν is defined by

gμν ¼ gμν ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA;

the Dirac gamma-matrices satisfy the condition γμγν þ
γνγμ ¼ 2gμν.
The following linear operators are used for the

subtraction:
(1) A is the projector of the AMM. This operator is

applied to the Feynman amplitudes of vertexlike
subgraphs. See the definition in Refs. [42,44].

(2) The definition of the operator U depends on the type
of UV-divergent subgraph to which the operator is
applied:
(a) If ΣðpÞ is the Feynman amplitude that corre-

sponds to an electron self-energy subgraph,

ΣðpÞ ¼ uðp2Þ þ vðp2Þp̂;

then, by definition,10

UΣðpÞ ¼ uðm2Þ þ vðm2Þp̂;

where m is the mass of the electron, p̂ ¼ pμγμ.
(b) If Γμðp; qÞ is the Feynman amplitude corre-

sponding to a vertexlike subgraph,

Γμðp; 0Þ ¼ aðp2Þγμ þ bðp2Þpμ þ cðp2Þp̂pμ

þ dðp2Þðp̂γμ − γμp̂Þ; ð10Þ

then, by definition,

UΓμ ¼ aðm2Þγμ:

(3) L is the operator that is used in the standard
subtractive on-shell renormalization of vertexlike
subgraphs. If Γμðp; qÞ is the Feynman amplitude
that corresponds to a vertexlike subgraph, (10) is
satisfied, then, by definition,

LΓμ ¼ ½aðm2Þ þmbðm2Þ þm2cðm2Þ�γμ:

Let fG be the unrenormalized Feynman amplitude that
corresponds to a vertexlike graph G. Let us write the
symbolic definition

f̃G ¼ Rnew
G fG;

where

Rnew
G ¼

X
F¼fG1 ;…;Gng∈F½G�

G0∈I½G�∩F

ð−1Þn−1MG0
G1
MG0

G2
…MG0

Gn
;

MG0
G00 ¼

8>>><
>>>:

AG0 ; if G0 ¼ G00;

UG00 ; if G00 ∉ I½G�; or G00 ⊈ G0;

LG00 ; if G00 ∈ I½G�; G0 ⊈ G00; G00 ≠ G;

ðLG00 −UG00 Þ; if G00 ¼ G;G0 ≠ G:

In this notation, the subscript of an operator symbol denotes
the subgraph to which this operator is applied.

6The method must work for all Feynman graphs contributing
to Að2nÞ

1 including the ones containing lepton loops; see Ref. [44].
However, a rigorous mathematical proof for this fact is not
developed even for graphs without lepton loops.

7We consider only such subgraphs that are strongly connected
and contain all lines that join the vertexes of the given subgraph.

8We say that a line l and a vertex v are incident if v is one of the
endpoints of l.

9In particular, G ∈ I½G�.
10Note that it differs from the standard on-shell

renormalization.
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The coefficient before γμ in f̃G is the contribution
of G to ae.
For example, for the graph G from Fig. 3 we will have

the following operator expression:

½AGð1 −UbcdefghijÞ − ðLG −UGÞAbcdefghij�
× ð1 −UcdÞð1 −UfghiÞð1 −Ufgh − UghiÞ: ð11Þ

Here the subscripts mean the subgraphs to which the
operators are applied (denoted by the enumeration of the
vertexes). The expression means that we should remove
brackets, and for each term we should transform the
Feynman amplitudes of the subgraphs using the corre-
sponding operators from the inner subgraphs to the outer
ones. The transformation is applied in Feynman parametric
space before integration. This can be explained easily using
the approach to Feynman parameters based on the trans-
ferring from Schwinger parameters; see Ref. [44].
The operators U are designed for removing UV diver-

gences in the way similar to the Zimmermann forest formula
and Bogoliubov’s R-operation. In contrast to the usual for
QED operator L the operators U do not generate additional
IR divergences. The multiplier in the square brackets in (11)
corresponds to elimination of the IR divergences that
correspond to soft virtual photons on the external electron
lines and the UV divergences connected with the subgraphs
to which the operators are applied. Also, the “overall” UV
and IR divergences are removed by the magnetic moment
projectorA as well as it works in the 1-loop case; see [43,44].
It is important that the operator U applied to self-energy
subgraphs extracts the self-mass part completely. This allows
us to avoid IR divergences of power type; see Discussion in
Ref. [44]. The cancellation of divergences is described in
detail11 in terms of Feynman parameters in Ref. [44]; see also
additional comments in Ref. [32].
The equivalence of the subtraction procedure and the

direct subtraction on the mass shell is proved in a
combinatorial way in Ref. [44], Appendix B. For proving
this equivalence we use the fact that the operator U
preserves the Ward identity; see Ref. [44]. It is easy to
see this equivalence in the 2-loop case; see Sec. 3 of
Ref. [44]. Let us note that we do not use the operator of
QED on-shell renormalization of electron self-energy sub-
graphs; the Ward identity helps us in this case too. For a
detailed explanation of the developed method, see Ref. [44]
and some additional explanations in Refs. [32,42].

III. MONTE CARLO INTEGRATION

A. Probability density functions

After removing divergences the contribution of each
Feynman graph to Að2nÞ

1 is represented as an integral of the
form

Z
z1;…;zM>0

Iðz1;…; zMÞδðz1 þ � � � þ zM − 1Þdz1…dzM;

ð12Þ

where M ¼ 3n − 1 (see12), zj are the Feynman para-
meters. For each graph we calculate the (3n − 2)-
dimensional integral directly; we do not use any
additional reductions.
We propose to split all the integration area into the Hepp

sectors (see Ref. [46]) that are simply orders on the
Feynman parameters:

zj1 ≥ zj2 ≥ … ≥ zjM :

We use the probability density functions of the form

gðzÞ ¼ C1g1ðzÞ þ C2g2ðzÞ þ C3g3ðzÞ þ C4g4ðzÞ; ð13Þ

where z ¼ ðz1;…; zMÞ,

g1ðzÞ ¼ C ·

Q
M
l¼2 ðzjl=zjl−1ÞDegðfjl;jlþ1;…;jMgÞ

z1 · z2 ·… · zM
; ð14Þ

C1, C2, C3, C4 are some constants (see Sec. IV), DegðsÞ are
positive real numbers for each set s of internal lines13

of the graph (except the empty and full sets), C is the
normalization constant defined by

Z
z1;…;zM>0

g1ðz1;…; zMÞδðz1þ�� �þ zM − 1Þdz1…dzM ¼ 1:

The stabilization functions g2, g3, g4 are defined in
Ref. [32]; an additional constant D is used for
defining g3.
Functions of the form (14) were first used for approxi-

mating the behavior of parametric integrals by E. Speer;
see Ref. [47].
The main problem in this approach is that for good

Monte Carlo convergence the values Deg must be
adjusted very accurately. Speer’s lemma (Ref. [47]) states
that in some simple cases, when we do not have UV
divergent subgraphs and we do not consider the infrared
behavior, we may take the ultraviolet degree of diver-
gence (with the sign minus) of s as DegðsÞ and use (14)
as an upper bound for jIðzÞj. A good upper bound can
play the role of a good probability density function for
Monte Carlo integration; see Ref. [42]. However, in the
real case we should use more complicated formulas for
obtaining DegðsÞ. These formulas were developed for

11Although not completely rigorously.

12We use a trick for reducing the number from 3n to
3n − 1; see [42].

13If we use the trick for reducing the number of variables by
one, we consider two electron lines that adjoin the external
photon line as one line.
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our calculations.14 The first version of the method was
presented in Ref. [42]. We use an improved version from
Ref. [32]. The algorithm of obtaining DegðsÞ uses six
constants CbigF > 0, CbigZ > 0, Cadd, CsubI, CsubSE, CsubO

that should be chosen by hand. For the 5-loop case we
use the same values as we used for the 4-loop, 3-loop,
and 2-loop cases in Ref. [32]:

CbigZ ¼ 0.256; CbigF ¼ 0.839; Cadd ¼ 0.786;

CsubI ¼ 0.2; CsubSE ¼ 0; CsubO ¼ 0.2: ð15Þ

These values were obtained by numerical experiments
with 4-loop graphs. For clarity and completeness note
that some of the values DegðsÞ, obtained by the method,
less than 1 and even sometimes less than 1=3, in contrast
to integer numbers in Speer’s lemma (Ref. [47]).
The terms CjgjðzÞ, j ¼ 2, 3, 4 in (13) are added for

insurance: they cannot slow down the Monte Carlo con-
vergence speed significantly, but they can (in principle)
prevent from occasional emergence of gigantic contribu-
tions of some samples; see Ref. [32].
The algorithm of fast random sample generation is

described in Ref. [42].

B. Obtaining the value and uncertainty

If the random samples z1;…; zN are generated with the
probability density function gðzÞ, then the integral value is
approximated as

1

N

XN
j¼1

IðzjÞ
gðzjÞ

: ð16Þ

For approximating the standard deviation σ we can use the
formula

σ2 ¼
P

N
j¼1 y

2
j

N2
−
ðPN

j¼1 yjÞ2
N3

; ð17Þ

where yj ¼ IðzjÞ=gðzjÞ. However, in practice this formula
often leads to an underestimation of the standard deviation.
The reason is that the real σ2 is the mean value of the right
part of (17), but using (17) we will rather obtain something
near the median of that value that is often less than the mean
value. Taking into account this difference is especially
important when we integrate unbounded functions.
Because of this, we use an improved value σ↑ as σ instead
of (17). The algorithm of obtaining σ↑ based on heuristic
predictions is described in Ref. [32]. For the 5-loop case we
use exactly the same method. The value defined by (17) we

denote by σ↓. A large value of σ↑=σ↓ indicates that the
obtained integral value is suspicious, but no guarantees are
possible for Monte Carlo integration. We use σ↑ for all
intervals in the paper.

IV. REALIZATION

A. Evaluation of the integrands with GPUs

The code for all 3213 integrands was generated auto-
matically. The D programming language was used for the
code generator; see Ref. [48]. The generated code was
written in C++

15 with CUDA; see Ref. [49]. The code
generation took about one month on two CPU cores of a
personal computer.
Numerical subtraction of divergences under the integral

sign can cause round-off errors. We use interval arithmetic
(IA) for controlling them. In interval arithmetic we work
not with numbers, but with intervals of numbers. NVidia
GPUs support all necessary operations for the realization of
interval arithmetic. However, arithmetic operations with
intervals are slow, and we developed a fast modification of
interval arithmetic that was called “eliminated interval
arithmetic” (EIA). The main idea of EIA is that in some
cases we can replace a large sequence of interval arithmetic
operations by the analogous sequence of operations on the
centers of the intervals and estimate the radius of the final
interval by a relatively simple formula. The intervals
obtained by EIA are wider than the ones obtained by
IA, but both of them are reliable. EIA is described in detail
in Ref. [32].
The integrals for all Feynman graphs are calculated

simultaneously; see Sec. IV C. At the stage of initialization,
we evaluate approximately 108 random points for each
Feynman graph with the machine double-precision IA
taking the nearest to zero point of each interval. After
initialization, when we evaluate the value of IðzÞ=gðzÞ from
(16) at some point z, we first calculate it using EIA. The
obtained interval ½y−; yþ� is accepted if16

yþ − y− ≤
1

4
σ↓;j ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
lðσ↓;lÞ2

q
P

l σ↓;l
; ð18Þ

where the summations go over all contributing Feynman
graphs, j is the number of the current graph, σ↓;l is the value
of σ↓ calculated for the integral corresponding to the graph
with the number l. This formula guarantees that the total

14However, a rigorous mathematical proof that the expressions
of this form can be used as upper bounds for IðzÞ has not been
obtained yet. The assurance is based on numerical experiments.

15We did not use any substantial improvement of C++ over C
like object oriented programming for the generated code.
But some little improvements were used, sowe must call it “C++”,
not “C”.

16This criteria differs from the previous one from Ref. [32].
The previous criteria was erroneous: it did not take into account
that the mean value of the round-off error is not zero. However,
that error did not significantly affect the result.
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round-off error (summed over all graphs) does not exceed
Cσ↓ for some constant C. Also, it satisfies the natural
demand that larger round-off errors are possible for graphs
with larger σ↓;l. If the interval was not accepted, it is
recalculated using IA with increased precisions until it is
accepted: machine double precision, 128-bit-mantissa
precision, 192-bit-mantissa precision, 256-bit-mantissa
precision. If all precisions failed, then the contribution is
supposed to be zero. EIA fails approximately on one in five
samples. However, the integrand evaluation in EIA is
approximately 6.5 times faster than in the double-precision
IA; see Sec. V. Thus, the usage of EIA significantly
improves the performance.
The Monte Carlo samples are generated and performed

by blocks. Each block contains approximately 109 samples
pertaining to a single Feynman graph. The block sched-
uling algorithm is described in Sec. IV C. The samples
are processed on a GPU in 20480 parallel threads.17 Each
thread processes some set of the block samples sequen-
tially. Branching is not allowed in the execution of a code
for GPU, so the samples requiring increased precision are
collected and then processed in the subsequent GPU calls.
We use a handmade library for arbitrary precision

arithmetic. The 128-bit-mantissa arithmetic is realized
using the GPU register memory.18 The greater precisions
are realized with the global GPU memory. The usage of the
register memory improves the performance by approxi-
mately 10 times.19 Nevertheless, the increased precision
calculations occupy a considerable part of the calculation
time; see Sec. V.
For each integrand we generate program codes for three

precisions separately: EIA, double-precision IA, and arbi-
trary-precision IA. This leads to a relatively large code. The
total size of the integrands code is 400 GB in the not
compiled form and 500 GB in the compiled form.
The calculation of some integrand values requires

millions of arithmetic operations. However, both compilers
and optimizers do not like big functions. We split the
calculation of each integrand into several CUDA kernels.20

Each CUDA kernel contains approximately 3000 arith-
metic operations for the EIA code, 2000 operations for the
double-precision IA code, and 1000 operations for the
arbitrary-precision IA code. The arbitrary-precision inte-
grand code is also split into several files: approximately 50
CUDA kernels per file. The choice of the function sizes is a
compromise: the performance of small functions suffers

from memory transfer delays, but a big function size leads
to a badly optimized21 and slowly compiled code.
We use the techniques for prevention of occasional

emergence of very large values that are described in
[42] (with little modifications and adaptation for GPU
parallelism).
When we calculate IðzÞ=gðzÞ, it is often the case that

machine double precision is not enough for storing gðzÞ.
The machine double precision allows values up to 21025.
This situation is due to a large number of variables and a
closeness of some values of DegðsÞ from (14) to zero. It is
not obvious from the beginning that these points can be
ignored; see Sec. V. To solve this problem, we store gðzÞ as
x · 2j, where 0.5 ≤ x < 1 is stored with machine double
precision, j is stored as 32-bit integer.

B. Compilation of the integrands code

The integrands code was compiled with the NVidia
Compiler nvcc into shared libraries that are linked
dynamically with the integrator. The compiler is a relatively
slow one, and 400 GB of code requires a lot of time for
compilation. Like the integration, this compilation was
performed on the supercomputer “Govorun” from JINR
(Dubna, Russia). The processors Intel Xeon Gold 6154
with 18 cores were mostly used for this work. The
compilation operation was organized using the MPI22

protocol with parallel processes that run nvcc: two
processes per CPU core. The total compilation time
amounted to about 120 CPU-hours.

C. Monte Carlo integration: Details

The Monte Carlo integrator was written in C++ with
CUDA. The integration was performed on several GPUs
NVidia Tesla V100 of the supercomputer “Govorun” from
JINR (Dubna, Russia). Most of the time from 2 to 16 GPUs
were occupied for the integration. The interdevice paral-
lelism was organized using the MPI protocol.
The controlling part of the integrator generates the

numbers of Feynman graphs to obtain a next block of
samples. The number j of a Feynman graph is generated
randomly. The probabilities pj of taking the graph j are
chosen to make the convergence as fast as possible. Let us
describe the method of obtaining pj. Put

Cj ¼ σ↑;j
ffiffiffiffiffiffi
Nj

p
;

where Nj is the number of samples that have already been
processed for the graph j. By tj we denote the average

1780 blocks of 256 threads; see [49].
18The register memory is the fastest kind of memory in NVidia

GPUs.
19However, the computation shows a more significant gap; See

Sec. V. That is because there are very few points that require 192-
bit-mantissa and more precision, and the GPU parallelism can not
be exploited for all its worth on these points.

20A CUDA kernel is a GPU function that is called from the
CPU part; see [49].

21We are not sure that we understand the behavior of the
NVidia optimizer. For example, increasing the CUDA kernel size
from 2000 arithmetic operations to 3000 ones sometimes slows
down the integrand evaluation speed twice.

22Message passing interface.
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time required for evaluation of one integrand value for the
graph j. The total time that is needed for evaluation of N
samples is approximately

t ¼ N
X
j

pjtj:

The total standard deviation can be estimated as

σ2 ¼ 1

N

X
j

ðCjÞ2
pj

¼ 1

t

�X
j

ðCjÞ2
pj

��X
j

pjtj

�

¼ 1

t

�X
j

ðCjÞ2tj
qj

��X
j

qj

�
;

where qj ¼ pjtj. The minimum point satisfies the equation

� ∂
∂qi −

∂
∂ql

��X
j

ðCjÞ2tj
qj

�
¼ 0

for any i, l. Using this, we obtain

qj ¼ CCj
ffiffiffiffi
tj

p
;

where C is some constant, or

pj ¼
Cj=

ffiffiffiffi
tj

p
P

lðCl=
ffiffiffi
tl

p Þ :

We use these probabilities for random generation of the
graph numbers with a little modification for stabilization:
a little more attention is being given to the graphs j with
big σ↑;j=σ↓;j.
After integration, the total standard deviations (upper

and lower) are obtained by

ðσ↑Þ2 ¼
X
j

ðσ↑;jÞ2; ðσ↓Þ2 ¼
X
j

ðσ↓;jÞ2: ð19Þ

V. RESULTS AND THE TECHNICAL
INFORMATION

For reliability, two calculations were performed with
different pseudorandom generators, with different choices
of the constants C2, C3, C4 from (13) and the constant D
that is used for defining g3 from (13); see Ref. [32].

(i) Calc 1: the generator MRG32k3a from the NVidia
CURAND library,

C2 ¼ 0.03; C3 ¼ 0.035; C4 ¼ 0.035; D¼ 0.75:

(ii) Calc 2: the generator Philox_4x32_10 from
the NVidia CURAND library,

C2 ¼ 0.03; C3 ¼ 0.01; C4 ¼ 0.06; D ¼ 0.75:

We use the value

C1 ¼ 1 − C2 − C3 − C4

for all calculations.
The calculations have led to the results

Að10Þ
1 ½no lepton loops; Calc 1� ¼ 6.74ð13Þ;

Að10Þ
1 ½no lepton loops; Calc 2� ¼ 6.84ð12Þ:

The results were first statistically combined graph-by-graph
and then were summed using (19). These operations are not
commutative. Thus, some of the results may look strange.23

The supplemental materials contain the results for all
3213 Feynman graphs for both calculations [45].
Table I contains the results for nine gauge-invariant

classes (k;m;m0) splitting the set of all 5-loop Feynman
graphs without lepton loops. By definition, (k;m;m0) is the
set of all Feynman graphs such that m and m0 are the
quantities of internal photon lines to the left and to the right
from the external photon line (or vice versa), k is the
quantity of photons with the ends on the opposite sides of it.
In this table, Ndiag and Ntotal are the number of Feynman
graphs and the total number of Monte Carlo samples
generated for this class.
It was observed by different researchers that the con-

tributions of gauge-invariant classes are relatively small in
absolute value, but the contributions of individual Feynman
graphs are relatively large and often significantly greater
than the class contributions. This occurs regardless of the
divergence elimination method used. Table I demonstrates
this fact: the sums and maximums of the graph contribution
absolute values are included to the table. Some of the
individual graph contributions are 10 times greater than the
total contribution. However, this “oscillating” nature does
not emerge at the level of Feynman parameters. The table
demonstrates this too: if the graph contributions are
obtained by (12), then the values of

Z
z1;…;zM>0

jIðz1;…; zMÞjδðz1 þ � � � þ zM − 1Þdz1…dzM

are greater than the contribution absolute values only a
little; the sums are given in the table. These values are
useful for understanding what accuracy can potentially be
reached by Monte Carlo integration methods with these
integrands. The values for the individual graphs are
presented in the supplemental materials. The Feynman

23For example, in Table I some average values are not in the
interval of the source values.
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graphs with the maximal absolute values of the contribu-
tions are presented in Fig. 1 for each class (k;m;m0).
It is very important to check the obtained values

independently. However, the amount of computations is
huge is this case. Thus, an ability to check the values by
parts using different methods would be very useful. We
have a splitting of the whole set of graphs into 807 subsets
for which the developed subtraction procedure is equivalent
to the direct subtraction on the mass shell in Feynman
gauge. For each set the equivalence can be proved
combinatorially using the Ward identity for individual
graphs; see Ref. [32]. The splitting is presented in the
supplemental materials. It was generated automatically.
Each set in this splitting is contained in some gauge-
invariant class (k;m;m0). There are many sets containing
only one graph. The largest set contains 706 graphs: it is the
class (1,4,0). We do not know if it is possible to divide this
class. An analogous splitting and a comparison with known
analytical results is presented in Ref. [44] for the 3-loop
case and in Ref. [32] for the 2-loop and 3-loop cases
without lepton loops. For the 4-loop case without lepton
loops an analogous splitting is presented in Ref. [32], but

without a comparison (because no one presented the
4-loop results in the form that is applicable for the
comparison).
The graph sets from the splitting smooth the peaks

of the individual graph contributions as well as the
gauge-invariant sets.24 However, this “smoothing” is
not so prominent: some of the set contributions are
many times greater than the total contribution (in absolute
value). The set with the maximum contribution (in
absolute value) is depicted in Fig. 2. This contribution
equals 42.0700(50).
Table II contains the dependence of the total calculated

value and the error on the number of Monte Carlo samples
for Calc 2.
Table III contains some technical information about the

calculations Calc 1 and Calc 2. The fields of the table
have the following meaning:

(i) Value is the obtained value forAð10Þ
1 ½no lepton loops�

with the uncertainty σ↑; see Sec. III B and Ref. [32];
(ii) σ↑=σ↓ is the relation between the improved standard

deviation and the conventional one; see Sec. III B
and Ref. [32];

(iii) Ntotal is the total quantity of Monte Carlo samples;
(iv) Nfail

EIA is the quantity of samples for which elimi-
nated interval arithmetic failed; see Sec. IVA
and Ref. [32];

(v) △fail
EIA is the contribution of that samples;

(vi) Nfail
IA is the quantity of samples for which direct

double-precision interval arithmetic failed;
(vii) △fail

IA is the contribution of that samples;
(viii) Nfail

128, N
fail
192, N

fail
256 are the quantities of samples for

which the interval arithmetic based on numbers with
128-bit, 192-bit, 256-bit mantissa failed;

(ix) △fail
128, △

fail
192 are the contributions of that samples;

FIG. 1. Graphs from the gauge-invariant classes (k;m; n) with
the maximal absolute values of the contributions.

TABLE I. Contributions of the gauge invariant classes (k;m;m0) to Að10Þ
1 ; here, ai ¼

R
IiðzÞdz is the contribution of the i-th graph to

the value, Ii is the corresponding Feynman parametric integrand.

Class Calc 1 Calc 2 Value ¼ P
i ai

P
i jaij maxijaij

P
i

R jIiðzÞjdz Ndiag Ntotal

(1,4,0) 6.158(49) 6.184(45) 6.157(33) 1219.8 11.8 2521.8 706 43 × 1012

(2,3,0) −0.746ð63Þ −0.763ð59Þ −0.754ð42Þ 3076.8 46.2 4871.0 706 73 × 1012

(1,3,1) 0.854(50) 0.972(45) 0.970(33) 3170.1 67.5 3749.9 148 31 × 1012

(3,2,0) −0.399ð51Þ −0.402ð47Þ −0.403ð34Þ 2593.5 54.9 3783.4 558 56 × 1012

(2,2,1) −2.133ð53Þ −2.197ð50Þ −2.165ð36Þ 3318.1 85.0 4563.6 370 48 × 1012

(4,1,0) −1.028ð31Þ −0.991ð29Þ −1.011ð21Þ 1199.3 56.7 1758.2 336 27 × 1012

(1,2,2) 0.312(30) 0.315(28) 0.315(20) 1338.5 68.7 1515.3 55 11 × 1012

(3,1,1) 2.628(35) 2.630(33) 2.625(24) 1437.3 63.5 2013.9 261 26 × 1012

(5,0,0) 1.0929(94) 1.0898(87) 1.0902(62) 137.0 19.3 209.8 73 39 × 1011

24It should be noted that this smoothing is not a general
principle: for example, the sum of n independent random
numbers with the mean values 0 and the quadratic means a
have the quadratic mean a ·

ffiffiffi
n

p
.
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(x) Ndens
out of double is the quantity of samples for which

machine double precision was not enough for
storing the probability density; see Sec. IVA;

(xi) △dens
out of double is the contribution of those samples;

(xii) GFlops ¼ billions floating point number operations
per second (during the evaluation of the integrands);
GIntervals¼ billions interval operations per second
(in the sense of interval arithmetic); M ¼ millions.

It is easy to see that in EIA one arithmetic operation on
intervals takes approximately one operation on numbers.
This is due to the fact that the biggest part of the EIA
calculation is occupied by the operations on the centers of
the intervals. However, in IA one interval operation takes
approximately five operations on numbers. Also, the speed
of the number operations for IA is by 1.6 times less than for
EIA. This is because most of the operations in IA require

TABLE II. Dependence of the value and the estimated
error on the number of Monte Carlo samples Ntotal: Að10Þ

1

½no lepton loops�, Calc 2.

Ntotal Value σ↑=σ↓

5 × 1011 9(13) 2.40
1012 10.2(8.9) 2.45
2 × 1012 11.2(5.4) 2.42
5 × 1012 9.4(2.6) 2.25
1013 7.9(1.4) 2.10
2 × 1013 7.21(53) 1.67
5 × 1013 6.88(24) 1.38

FIG. 2. The set with the maximum contribution (in absolute
value) from the splitting for comparison with the direct sub-
traction on the mass shell: nonoriented Feynman graphs and their
contributions to Að10Þ

1 .

TABLE III. Technical information about the calculations.

Calc 1 Calc 2

Value 6.74(13) 6.84(12)
σ↑=σ↓ 1.31 1.31
Ntotal 15 × 1013 17 × 1013

Nfail
EIA 34 × 1012 39 × 1012

Nfail
IA 38 × 1010 42 × 1010

Nfail
128 67 × 106 73 × 106

Nfail
192

10787 2453
Nfail

256
8669 0

Ndens
out of double 11 × 105 13 × 105

△fail
EIA 4 5

△fail
IA 0.9 3

△fail
128

−0.07 −0.07
△fail

192
−0.002 −3 × 10−6

△dens
out of double −6 × 10−13 6 × 10−10

Total calculation time, GPU-hours 19515 20341
Share in the time: double-precision EIA 21.6% 23.3%
Share in the time: double-precision IA 35.5% 34.5%
Share in the time: 128-bit-mantissa IA 28.1% 29.1%
Share in the time: 192-bit and 256-bit-mantissa IA 11.4% 10.0%
Share in the time: sample generation 1.8% 1.5%
Share in the time: other operations 1.7% 1.7%
GPU speed: double-precision EIA, GFlop/s 2221.88 2227.99
GPU speed: double-precision EIA, GInterval/s 1962.13 1965.60
GPU speed: double-precision IA, GFlop/s 1358.63 1505.30
GPU speed: double-precision IA, GInterval/s 274.13 303.31
GPU speed: 128-bit-mantissa IA, GFlop/s 13.47 13.48
GPU speed: 128-bit-mantissa IA, GInterval/s 2.54 2.53
GPU speed: 192-bit and 256-bit-mantissa IA, MFlop/s 4.21 4.65
GPU speed: 192-bit and 256-bit-mantissa IA, MInterval/s 0.74 0.80
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specifying a rounding mode,25 but the operations on the
centers of intervals in EIA do not require it.
Calc 1 suffered from some errors that cause an eme-

rgence of anomalous points that have contributions to Nfail
192,

Nfail
256, N

dens
out of double; see Table III. We can not perform the

full recalculation because this requires a lot of time.
However, those points do not have a significant impact
on the results; the table confirms this fact. Those errors
were corrected in Calc 2.
Table III demonstrates that the points requiring an

increased precision have a significant contribution to the
result. For example, △fail

EIA and △fail
IA are at the level of the

total contribution, △fail
128 is at the level of the uncertainty.

Also, the table shows that contributions are unstable due to
an “oscillating” character of the individual graph contri-
butions, a floating character of the interval acceptance
criteria (18), and a difference in the probability density
functions. In addition, the table shows that the contribution
△dens

out of double is insignificant. However, this contribution is
too far from the boundaries of machine double precision
like 2−1025 (on a logarithmic scale). Thus, there may be
situations, where such contributions will be significant.
This fact demonstrates that universal Monte Carlo integra-
tion routines can work poorly for many-loop Feynman
parametric integrals.
An analogous information for the individual Feynman

graphs is contained in the supplemental materials. The
graphs with the maximal contributions to△fail

EIA,△
fail
IA ,△fail

128,
△fail

192, △
dens
out of double are shown in Fig. 3 and Fig. 4(c–f). The

corresponding contributions (for Calc 2) are

67.1; 26.3; 0.15; 3.1 × 10−5; 5.9 × 10−10:

The Monte Carlo integration convergence quality for a
given graph j can be estimated as

σ↑;j ·
ffiffiffiffiffiffi
Nj

p
R jIjðzÞjdz

;

where Nj is the number of Monte Carlo samples for the
j-th graph, Ij is the corresponding Feynman parametric
integrand. Less values correspond to a better quality. The
graphs with the best and the worst quality are shown in
Fig. 4(a,b). The corresponding values (for Calc 2) are

16.2; 525.9:

These values demonstrate that even in the best case the
Monte Carlo integration works not ideally due to large
dimensionality. However, this is acceptable and requires a
relatively small amount of the supercomputer time for
integration.

VI. CONCLUSION

A numerical calculation of the total contribution of
the 5-loop QED Feynman graphs without lepton loops
to the corresponding coefficient of the electron anomalous
magnetic moment expansion in α was performed. The
calculation is based on a specific method of reduction
of the problem to Feynman parametric integrals and on
Monte Carlo integration using a supercomputer. Usage of
some mathematical considerations about the integrands
behavior provided us an ability to reduce the amount of the
needed supercomputer power and time significantly.
This calculation provides the first independent check of

the value obtained by T. Kinoshita’s team that is presented
in Ref. [33]. However, the discrepancy of about 4.8σ
between the results was discovered. On the one hand, this
discrepancy does not significantly affect the known values
of ae and α. But on the other hand, it requires an additional
independent calculation and can affect the physics in the
future.
The results of the calculation are presented in detail. This

detailed presentation gives us an ability to check the results
by parts using other methods. The contribution values of
nine gauge-invariant classes splitting the whole set are

FIG. 3. The graph with the maximum (in absolute value)
contribution of the Monte Carlo samples for which eliminated
interval arithmetic failed. See Sec. V for the detailed information.

(a) (b) (c)

(d) (e) (f)

FIG. 4. The extreme graphs of different kinds: (a) best
Monte Carlo integration convergence quality; (b) worst
Monte Carlo integration convergence quality; (c,d,e) maximal
(in absolute value) contribution of the samples for which the
interval arithmetic with numbers of double precision, 128-bit
mantissa, 192-bit mantissa failed; (f) maximal (in absolute value)
contribution of the samples for which double precision was not
enough for storing the probability density.

25However, this difference in the speed was not discovered in
the calculations on NVidia Tesla K80 from Ref. [32] despite the
fact that the difference was discovered during the preliminary
tests.
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presented for the first time (except the preliminary values
in Ref. [35]).
For reliability, two different Monte Carlo integra-

tions with different pseudorandom generators were
performed. The results of these calculations agree with
each other, and they were statistically combined in the
final result.
A cancellation of an “oscillating” nature of the individual

Feynman graph contributions in the gauge-invariant classes
confirms that the results are correct. This “oscillating”
nature is described in detail. However, there is no math-
ematical foundation for this cancellation at the current
moment of time. Also, it is surprising that we have only an
intergraph oscillation, but not in Feynman parametric space
for one graph.
The technical information that is presented in the

paper will be useful for the scientists that are going to
perform many-loop calculations in quantum field theory or
another computations using supercomputers and graphics
accelerators. Also, the provided information about the
Monte Carlo integration will be useful for developers of
Monte Carlo integrators.
In closing, let us recapitulate some problems that still

remain open:

(1) To perform an independent calculation of the 5-loop
contribution of the graphs with lepton loops, to
check the value from Ref. [34];

(2) To prove rigorously (or disprove) that the developed
subtraction procedure (Ref. [44]) leads to finite
integrals for each suitable Feynman graph;

(3) To substantiate rigorously the developed
Monte Carlo integration method (Ref. [42]) and to
extend it to the graphs with lepton loops;

(4) To explain why the “oscillating” nature of the
individual Feynman graph contributions is cancelled
in the gauge-invariant classes.
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