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Effective field theories are an incredibly powerful tool in order to study and understand the true nature of
the symmetry breaking sector dynamics of the Standard Model. However, they can suffer from some
theoretical problems such as that of unitarity violation. Nevertheless, to interpret experimental data
correctly, a fully unitary prescription is needed. To this purpose, unitarization methods are addressed, but
each of them leads to a different (unitary) prediction. Because of this, there is an inherent theoretical
uncertainty in the determination of the effective field theory parameters due to the choice of one
unitarization scheme. In this work, we quantify this uncertainty, assuming a strongly interacting
electroweak symmetry breaking sector, described by the effective electroweak chiral Lagrangian. We
focus on the bosonic part of this effective Lagrangian and choose in particular the WZ scattering as our
main vector boson scattering channel to study the sensitivity to new physics at the LHC. We study the
different predictions of various well-known unitarization methods, considering the full coupled system of
helicity amplitudes, and construct the 95% confidence level exclusion regions for the most relevant
electroweak chiral Lagrangian parameters, given by the two anomalous quartic gauge couplings a4 and a5.
This provides a consistent analysis of the different constraints on electroweak chiral Lagrangian parameters
that can be achieved by using different unitarization methods in a combined way.
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I. INTRODUCTION

Although the discovery of the Higgs boson by the
ATLAS and CMS experiments supposed great success of
the Standard Model (SM), it also posed a lot of new
questions about the symmetry breaking sector of the
electroweak (EW) theory, questions such as why the
Higgs boson is so light, since its mass is so similar to
that of the EW gauge bosons; whether the Higgs boson is
an elementary or a composite particle; what mechanism
generates its potential; and others. All this can be summa-
rized in the fact that the dynamical generation of electro-
weak symmetry breaking (EWSB) is still a mystery to be
solved.
A very efficient way to try to understand the true nature

of the EWSB sector of the SM is to use effective field
theories (EFTs). Effective theories allow us to describe in a
model-independent way the relevant beyond the SM (BSM)

physics that might be responsible for the dynamical
generation of EWSB. In these theories, the UV dynamics
are, in principle, unknown, but their effects at low energies
remain present, encoded in a finite set of low-energy
parameters. If these low-energy parameters were measured,
we would have a hint toward the UV completion that might
describe best the true dynamics of the EWSB sector.
With the aim of obtaining such a measurement, many

experimental searches at the LHC are devoted to look for
signals predicted by these effective theories. The most
characteristic of these signals are those coming from vector
boson scattering (VBS) processes (for recent reviews on
VBS physics, see, for instance, Refs. [1–4] and references
therein) since, in those processes, the interactions among
the longitudinal EW gauge bosons will appear dominantly,
due to their relation to the scalar Goldstone boson modes,
which are associated to the spontaneous symmetry break-
ing taking place in the EW theory.
Nevertheless, predictions of observable rates computed

with effective theories can carry some theoretical problems.
It is typical from such theories, due to the energy structure
of the operators involved, to suffer from unitarity-violation
problems at high energies, such as the ones being now
probed by the LHC. However, predictions that are to be
tested at colliders must be fully unitary to be consistent with
the underlying quantum field theory. Therefore, a prescrip-
tion is needed to translate these nonunitary predictions into
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reliable, unitary ones with that interpret the experimental
data. These prescriptions are called unitarization methods
or procedures, which drive unitary the nonunitary EFT
predictions (for some illustrative reviews on different
unitarization methods in the context of VBS, see, for
instance, Refs. [1,5,6]). The problem with these methods
is that the various manners of unitarizing the computation
of an observable lead to different final results [1,5–15].
Thus, a theoretical uncertainty arises when computing
unitarized EFT predictions due to the fact that there is a
variety of ways to achieve such a unitary outcome.
Current constraints imposed on some of the mentioned

low-energy parameters by LHC experiments do not take
this theoretical uncertainty into account. They are all
basically based on searches for anomalous quartic gauge
couplings that are then interpreted using the theoretical
EFT predictions in different ways, i.e., using different
unitarization methods or no unitarization method at all. For
instance, the most recent constraints given in Refs. [16–19]
provide a model-independent experimental analysis, do not
rely upon any particular method, or employ one unitariza-
tion method only.
In this work, we quantify the uncertainty due to the

choice of unitarization scheme present in the determination
of some of the most relevant low-energy constants for VBS
processes. To this aim, we assume a strongly interacting
EWSB sector, properly described by the effective electro-
weak chiral Lagrangian (EChL) [nowadays also called the
Higgs effective field theory (HEFT)] (see, for instance,
Refs. [20–33], before the Higgs boson discovery, and
Refs. [8–15,34–42], after this discovery), and we focus
on the bosonic sector of this Lagrangian, choosing to study
the particular VBS process given by theWZ channel, as an
example that is also interesting from the experimental
detection perspective. Within this framework, we character-
ize the unitarity violation that arises in the predictions of the
WZ → WZ cross sections, and we analyze the impact that a
variety of well-established unitarization methods have on
them. We pay special attention to the fact that all helicity
states of the incoming and outgoing gauge bosons might
play a relevant role in the unitarization process and consider
them all at once as a coupled system. Then, we move on to
the LHC scenario. We use the effective W approximation
(EWA) [43,44] to give predictions of pp → WZ þ X
events at the LHC for different unitarization schemes.
To check that the EWA works for our purpose here, we
compare the EWA predictions for the cases of the SM and
the EChL with the corresponding full results from the
Monte Carlo MADGRAPH version 5 (MG5) [45,46], and we
find very good agreement in both cases. Finally, to provide
a quantitative analysis of the implications of our study on
the LHC searches, we choose, in particular, to compare our
results with those in Ref. [16]. Concretely, we translate the
ATLAS constraints from Ref. [16] to construct the 95%
exclusion regions in some of the EChL parameter space

for each of the considered unitarization methods, giving,
at the same time, the total theoretical uncertainty driven by
the variety of these methods, which represents our main
conclusions in this work.
The paper is organized as follows. In Sec. II, we

summarize the main features of the EChL and the relevant
operators for describing deviations with respect to the SM
in VBS processes. We also introduce the issue of unitarity
violation in effective field theories. In Sec. III, we present
the different methods we will use to deal with this problem
and the corresponding predictions for the WZ → WZ
scattering process within the EChL framework. We will
also comment on the importance of taking into account the
whole coupled system of helicity amplitudes, contrary to
what is usually done in the literature. Section IV is
devoted to the presentation of our main results, in which
we show the different predictions of the various unitari-
zation methods in VBS processes at the LHC. In this
section, we display the impact of using different unitari-
zation methods on the constraints that can be imposed on
the relevant EChL parameters. The final section summa-
rizes our main conclusions.

II. ELECTROWEAK CHIRAL LAGRANGIAN
AND THE VIOLATION OF UNITARITY

As already introduced in the previous section, we will
work under the assumption of a strongly interacting
EWSB sector. Even though the description of physics
beyond the SM is unavoidably model dependent, we will
employ a technology that is as model independent as
possible. This technology is based on the effective theory
parametrization of the possible BSM interactions, and the
appropriate approach to a strongly interacting EWSB
sector in this framework is to use the effective EChL,
also known as HEFT in the literature. In this context, the
information of the short-range theory is encoded in a
certain number of coefficients of local operators, often
called low-energy parameters.
The EChL is a gauged nonlinear effective field theory

based on the SUð2ÞL × SUð2ÞR chiral symmetry of the
EWSB sector that is spontaneously broken down to the
subgroup SUð2ÞLþR, usually called the custodial sym-
metry group or EW isospin group. It contains the EW
gauge bosons, W�, Z, and γ; their corresponding would-
be Goldstone bosons, w� and z; and the Higgs scalar
boson, H, as dynamical fields, the latter being a singlet
under the EW chiral symmetry. For the sake of simplicity,
and since their contribution to VBS processes in the
strongly interacting EWSB case should be negligible, we
will not discuss the fermion sector in this article.
The w� and z are introduced in a matrix fieldUðw�; zÞ ¼

1þ iwaτa=vþOðw2Þ that takes values in the SUð2ÞL ×
SUð2ÞR=SUð2ÞLþR coset and transforms as U → gLUg†R
under the SUð2ÞL × SUð2ÞR global group. The EW gauge
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bosons are introduced through the covariant derivative and
field strength tensors

DμU ¼ ∂μU þ iŴμU − iUB̂μ; ð2:1Þ

Ŵμν ¼ ∂μŴν − ∂νŴμ þ i½Ŵμ; Ŵν�;
B̂μν ¼ ∂μB̂ν − ∂νB̂μ; ð2:2Þ

with Ŵμ ¼ gW⃗μτ⃗=2; B̂μ ¼ g0Bμτ
3=2. Finally, the Higgs

boson, being a singlet of the EW chiral symmetry, is
described by a generic polynomial function F ðHÞ ¼ 1þ
2a H

v þ bðHvÞ2 þ � � �, where the parameters a and b, if differ-
ent from 1, describe the new BSM interactions of the Higgs
boson to the EW gauge bosons.
Here, we will assume that custodial symmetry is pre-

served in the EWSB sector, except for the explicit breaking
due to the gauging of the Uð1ÞY symmetry. This
assumption is based on experimental measurements of
the ρ parameter and of the effective couplings between
the Higgs and the EW gauge bosons, which disfavor
custodial breaking other than that induced from g0 ≠ 0.
According to the usual counting rules within the chiral

Lagrangian approach,1 the different EChL operators are
organized by means of their “chiral dimension.” This chiral
dimension can be found by following the scaling with the
external momentum, p, of the various contributing basic
functions, since, after all, the EChL structure is based on a
momentum expansion. Derivatives and masses are consid-
ered as soft scales of the EFT and of the same order in the
chiral counting, i.e., ofOðpÞ. Furthermore, to have a power
counting consistent with the loop expansion, one needs ∂μ,
ðgvÞ, and ðg0vÞ ∼OðpÞ or, equivalently, ∂μ, mW , and
mZ ∼OðpÞ. The typical energy scale that controls the size
of the various contributing terms in this chiral expansion is
provided by 4πv, where v ¼ 246 GeV is the vacuum
expectation value of the Higgs field, in close analogy to
the typical scale of 4πfπ , with fπ ¼ 94 MeV, for the case
of the chiral Lagrangian in QCD. In the scenarios in which
there are resonances that emerge typically from the
assumed strongly interacting underlying UV theory, then
there are additional mass scales given by the masses of the
resonances to account for in the EChL. However, in this
work, we will assume that there are not emergent reso-
nances below roughly 4πv ∼ 3 TeV, and therefore this will
be our unique energy scale parameter in the EW chiral
expansion. All the other masses involved,mH,mW , andmZ,
are soft masses, as we have already said.
With all these considerations in mind, one then con-

structs the EChL up to a given order in the chiral expansion.
This Lagrangian must be CP, Lorentz, and SUð2ÞL ×
Uð1ÞY gauge invariant. Furthermore, with our simplifying

assumption, it should also be custodial symmetry preserv-
ing. For the present work, we include the terms with chiral
dimension up to Oðp4Þ; thus, the EChL can be generically
written as

LEChL ¼ L2 þ L4 þ LGF þ LFP; ð2:3Þ

where L2 refers to the terms with chiral dimension Oðp2Þ,
L4 refers to the terms with chiral dimension Oðp4Þ, and
LGF and LFP are the gauge-fixing (GF) and the correspond-
ing Fadeev-Popov (FP) terms.
Nevertheless, not all the operators that can be included

a priori in L2 and L4 have the same relevance in VBS
processes. We conclude that for our purpose of describing
the most relevant deviations from the SM in VBS it will be
sufficient to work with just a subset of EChL operators, i.e.,
the most relevant ones. These operators are2

L2 ¼ −
1

2g2
TrðŴμνŴ

μνÞ − 1

2g02
TrðB̂μνB̂

μνÞ

þ v2

4

�
1þ 2a

H
v
þ b

H2

v2

�
TrðDμU†DμUÞ

þ 1

2
∂μH∂μH þ…; ð2:4Þ

L4¼a1TrðUB̂μνU†ŴμνÞþ ia2TrðUB̂μνU†½Vμ;Vν�Þ
− ia3TrðŴμν½Vμ;Vν�Þþa4½TrðVμVνÞ�
× ½TrðVμVνÞ�þa5½TrðVμVμÞ�½TrðVνVνÞ�þ… ð2:5Þ

where Vμ ¼ ðDμUÞU†.
In this framework, as we have said, the chiral parameters

a and b intervene in the interactions between two EW
gauge bosons and one or two Higgs bosons, respectively.
The other parameters, the ones controlling the strength of
the Oðp4Þ operators, appear in the self-interactions of the
EW gauge bosons. The SM prediction is recovered for
a ¼ b ¼ 1 and ai ¼ 0.
The fact that, in the context of this strongly interacting

dynamics, operators and thus interactions among gauge
bosons scale directly with the external momentum leads
to a scenario in which predictions of observables can
behave pathologically with energy from a certain energy
scale upward. This pathology translates into a violation of
unitarity of the S matrix, which basically implies an
unphysical leak in the interaction probability among
EW gauge bosons. The energy at which this violation
of unitarity occurs can be easily computed by studying
the unitarization condition, implemented at the level of
the partial waves, defined in this work as

1Throughout this work, we will use the same conventions and
counting rules presented in Ref. [39].

2Again, we use the same conventions for the EChL effective
operators as in Ref. [39].
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aJλ1λ2λ3λ4ðsÞ ¼
1

32π

Z
1

−1
d cos θ dJλ;λ0 ðcos θÞ

× AðWλ1Zλ2 → Wλ3Zλ4Þðs; cos θÞ; ð2:6Þ

where J is the total angular momentum of the system,
λ ¼ λ1 − λ2, λ0 ¼ λ3 − λ4, with λi being the helicity states
of the external gauge bosons, and where dJλ;λ0 ðcos θÞ are
the Wigner functions.
In this framework, the violation of unitarity occurs when

the expression

Im½aJλ1λ2λ3λ4ðsÞ� ¼ jaJλ1λ2λ3λ4ðsÞj2

¼
X
λaλb

aJλ1λ2λaλbðsÞaJ�λaλbλ3λ4ðsÞ ð2:7Þ

is not fulfilled. Therefore, the violation of unitarity can take
place for any value of the angular momentum J and for
every helicity channel, in principle. Furthermore, this
expression implies that the unitarity condition of a par-
ticular helicity amplitude might depend on the amplitudes
corresponding to other helicity channels, too. This is an
important statement, and therefore when studying the
possible unitarity violation of the various channels involved
in WZ scattering, all helicity states should be considered
consistently as a coupled system.
Equation (2.7) can be rewritten in a more friendly way in

the following manner:

jaJðsÞj ≤ 1: ð2:8Þ

This way, the value of the energy at which the Jth partial
wave crosses the unitarity limit, i.e., jaJðsÞj ¼ 1, defines
the unitarity-violation scale.
With these considerations in mind, we now want to

understand the relevance of each EChL parameter in the
violation of unitarity. Because each of these low-energy
parameters has a different role in the scattering of EW
gauge bosons, each of them will have a different impact on
this issue. To characterize the violation of unitarity induced
by each of the EChL parameters presented in Eqs. (2.4) and
(2.5), we compute the total cross section of WZ → WZ
scattering in the EChL at the tree level for different
representative values of one parameter at a time, setting
the rest of them to their SM value. In Fig. 1, we show these
cross sections as a function of the center-of-mass energy of
the process, and we mark the unitarity-violating predictions
with dashed lines. The value of the energy at which each
cross section overcomes the unitarity limit is chosen as the
lowest one at which any of the corresponding J and/or
helicity partial waves crosses the unitarity bound defined in
Eq. (2.8). In these plots, it can be clearly seen that in this
scattering process the parameters a; a1, and a2 (upper left,
upper right, and middle left panels, respectively) do not
play a relevant role in the violation of unitarity, since in the

whole energy range that has been studied in this work there
is no unitarity violation driven from these coefficients.
Notice that the b parameter, which controls the interaction
between two EW gauge bosons and two Higgs bosons,
does not appear in this scattering at tree level. When the
parameter a3 is considered (middle right panel), however,
cross sections show a unitarity-violating behavior in this
same energy range. This happens only for large values of
a3, of the order of 0.1, for which unitarity is violated at
around 2 TeV. However, this size of 0.1 is already at the
border of being in conflict with the EW precision data, and
therefore a realistic choice for this a3 parameter should
assume a smaller value than this, leading in consequence to
nonviolation of unitarity in the energy range relevant for
VBS at the LHC. Overall, it is clear that a4 and a5 are the
most relevant parameters regarding the issue of the viola-
tion of unitarity in this channel. If one takes a look at the
two lower panels of Fig. 1, it is manifest that for values of
these two parameters between 0.1 and 10−3 the violation of
unitarity occurs well inside the energy range considered in
this work. Actually, for values of the order of 0.1, the
crossing of the unitarity limit takes place at really low
values of the energy

ffiffiffi
s

p
∼ 800 GeV. Another interesting

feature to pay attention to is that, in this particular channel,
a4 has a bigger impact in the cross section values than a5.
Based on these results, from now on, we will consider

only a4 and a5, since their contribution to the violation of
unitarity is, by far, the most relevant one in this context.
This is indeed intuitive, as the effective operators related to
these two parameters are the only ones that would remain
present in L4 if the EW gauge interactions were switched
off, i.e., in the limit g; g0 → 0 that corresponds to just
keeping the self-interactions among the scalar modes. This
is similar to the situation in chiral perturbation theory
(ChPT) of low-energy QCD if the electromagnetic gauge
interactions were switched off by taking the limit e → 0 in
the chiral Lagrangian, which leads to just keeping the self-
interactions among pions that provide the dominant con-
tributions in pion-pion scattering. In summary, this means
that within the EChL, if the underlying UV theory is
strongly interacting, the dominant contributions from BSM
physics to the scattering of longitudinal EW bosons are
expected to be provided mainly by a4 and a5. Thus,
although we, of course, work in the framework in which
the electroweak interactions are still present (i.e., we
consider g and g0 nonvanishing), relying on the assumption
that the EW chiral coefficients a4 and a5 parametrize
most relevantly the deviations from BSM physics in VBS,
especially in terms of the violation of unitary, is well
justified.
At this point, it is important to make a comment on the

experimental constraints imposed on these parameters.
Nowadays, several experimental studies have been devoted
to set bounds on the values of these and other EFT
coefficients. Here, we will discuss those concerning
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a4 and a5. For a summary on the bounds imposed upon
other EChL parameters, see, for instance, Ref. [42].
Regarding the a4 and a5 constraints, there is not a unique
value for them given by the LHC experimental collabora-
tions. Although all focus their searches on VBS observ-
ables and on the search for anomalous quartic EW gauge
boson coupling signals, they differ in the interpretation of
the data to extract the bounds on the EFT parameters.
The most recent experimental searches at the LHC withffiffiffi
s

p ¼ 13 TeV aimed to constrain the parameter space of
effective field theories for EWSB are explained in
Refs. [17,18]. In Ref. [18], a maximum total cross section
of various VBS processes and therefore a model-
independent experimental study is reported, whereas in
Ref. [17], direct bounds on the linear counterparts of some

EChL parameters are provided. Concerning the results in
Ref. [17], the translation to the a4 and a5 95% C.L.
constraints corresponds to

ja4j < 6 × 10−4; ja5j < 8 × 10−4: ð2:9Þ

These are obtained without unitarizing the EChL (or, in
those references, the linear EFT3) predictions at all,
through a combined study of different VBS channels
and analyzing the effect of each parameter at a time. One
should keep in mind that these values for the a4 and a5

FIG. 1. Predictions of the total cross section of the processWþZ → WþZ as a function of the center-of-mass energy computed in the
EChL framework for different values of one of the chiral parameters at a time. The rest are set to their SM values for a simpler
comparison. From top to bottom and left to right, Δa≡ a − 1; a1; a2; a3; a4, and a5 are varied, respectively. Solid lines represent a
unitary prediction, whereas dashed lines denote unitarity-violating values. Lines not visible in these plots are under the yellow line.

3The relevant parameters considered in the present work and
the parameters of the linear EFT are related by a4 ¼ v4=16 ·
ðfS0=Λ4Þ and a5 ¼ v4=16 · ðfS1=Λ4Þ.
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bounds might be overestimated, since the issue of the
violation of unitarity has been neglected in the corre-
sponding study. The same happens in Ref. [19], in which
only the WZ channel is considered in order to provide
experimental bounds on a4 and a5. We shall not directly
use these bounds as reference, since they do not take into
account the issue of the violation of unitarity, but we are
planning to do it in a future work.
Another interesting bound on a4 and a5 is the one

provided in Ref. [16] for the LHC run at
ffiffiffi
s

p ¼ 8 TeV.
There, a K-matrix unitarization analysis, following the
procedure proposed in Ref. [7], is performed, and the
EChL ½a4; a5� parameter space is constrained, as shown in
Fig. 2, borrowed from Ref. [16]. We will rely mainly upon
this experimental search of Ref. [16] as a first example in
order to concrete quantitatively our final conclusions.
Besides, as the overall constraints imposed in the EChL
parameters in this study are of the order of a4 ∼ a5 ∼ 0.01,
we will use these values as reference to illustrate different
VBS features without loss of generality.
In this section, we have defined and studied the violation

of unitarity in WZ → WZ scattering in the context of the
EChL. This violation of unitarity takes place at values of
the energy of OðTeVÞ that are accessible at the LHC for
different values of the most relevant parameters, a4 and a5,
which are the ones on which we will base our study. The
fact that unitarity is not fulfilled at those energies is not
compatible with the correct interpretation of experimental
data in order to test the EFT, since we need unitary

predictions to be consistent with the underlying quantum
field theory. To obtain these unitary predictions, something
must be done in the proper way. This is precisely to what
the next section is devoted.

III. RESTORING UNITARITY IN WZ → WZ
SCATTERING

In the previous section, we have stated that the EChL,
and especially the operators governed by a4 and a5, lead
to unitarity-violation predictions forWZ → WZ scattering
cross sections in the energy range accessible by the LHC.
However, to make the EFT testable at colliders, we need to
solve this problem and obtain fully unitary results for the
relevant observables. To this aim, unitarization methods
are addressed: prescriptions to construct unitary scattering
amplitudes from the raw, nonunitary, EFT predictions.
This is what we will do in this section, but before entering
in the specific details of these unitarization methods, some
general considerations have to be mentioned.
First of all, it is important to have in mind that relying on

a particular unitarization method for the EFT implies
making some assumptions about the UV complete theory.
There is therefore a trade between obtaining unitary
predictions for observables and losing some of the model
independence inherent to EFTs. Nevertheless, there is a
caveat in this statement. When the EFT includes by
construction the presence of resonant heavy states in the
spectrum, the various unitarization methods for VBS
usually provide comparable results, since the main features
of the resonances (mass and width) are present in all cases.
However, when the resonances are instead generated
dynamically by the unitarization method itself (as is the
case of the inverse amplitude method), this is not the case
anymore, and the results may vary substantially from one
method to another one. Nevertheless, it is important to
notice that if the unitarization methods provide amplitudes
with the proper analytical structure they can all accom-
modate dynamically generated resonances of which the
mass and width are predicted to be more or less the same
independently of the employed method. Furthermore, in the
different case of nonresonant scenarios, i.e., when there are
not clear emergent peaks in VBS and one searches for
smooth deviations from the SM continuum, different
unitarization methods can lead to outstandingly different
predictions for diverse observables. This suggests that, in
order not to lose the appealing model independence of
EFTs in the nonresonant case, the predictions given from
the different unitarization methods available have to be
contrasted, and a quantitative estimate of their differences
should be provided. This inevitably introduces a theoretical
uncertainty in the unitarized EFT predictions, which is
precisely the one we want to quantify in this work.
Therefore, we will focus in the case in which new resonant
states do not manifest in the energies we are going to
explore at the LHC via VBS. Besides, if present, they

FIG. 2. The observed ½a4; a5� 95% C.L. region for the W�W�
final state (solid red contour), for the WZ final state (solid cyan
contour), and for the combined analysis (solid black contour)
observed by the ATLAS Collaboration interpreting the data using
the K-matrix unitarization at

ffiffiffi
s

p ¼ 8 TeV and L ¼ 20.2 fb−1.
The expected confidence regions are shown as well. Figure
borrowed from Ref. [16], in which the notation of ½α4; α5� is used
instead of ½a4; a5�.
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would also suppose a completely different experimental
setup and search strategy. For a recent study of these
emergent resonances at the LHC via WZ scattering within
the EFT approach, see, for instance, Ref. [42].
Second, if we recall the unitarity condition given in

Eq. (2.7) that all unitarized amplitudes must fulfill, we see
once again that the unitarity of a particular helicity
channel does not depend just on itself but on other helicity
amplitudes as well. This implies that considering only the
most pathological of these amplitudes in terms of the
violation of unitarity could mean that we are neglecting
important effects, given the fact that the helicity system is
coupled. In general, the most worrying helicity channel
regarding the violation of unitarity will be the purely
longitudinal one WLZL → WLZL. This is easily under-
stood since the longitudinal modes of the EW gauge
bosons are directly related to the strongly interacting
Goldstone bosons. Thus, the bigger the number of
longitudinally polarized gauge bosons involved in the
scattering, the lower the energy at which unitarity will be
violated. In any case, the fact that the purely longitudinal
helicity channel dominates at high energies and dominates
the violation of unitarity depends on the particular setup
that one is considering.
By studying the partial waves with the lowest values of

angular momenta, J ¼ 0, 1, 2, for the 81 helicity channels
independently and for different values of a4 and a5 and at
different center-of-mass energies, one can disentangle the
relevance of the purely longitudinal case with respect to the
other helicity channels. These three lowest-order partial
waves are the ones that should contain all the unitarity-
violating effects. This fact can be understood through the
equivalence theorem (ET) that relates the EW gauge boson
scattering amplitudes with the scalar scattering amplitudes
at energies well above the EW scale. In the scattering
involving just scalars in the external legs, since we have a
polynomial expansion in energy up to order s2 once we

compute with the EChL at order Oðp4Þ, all partial waves
with J > 2 project to 0. Thus, the unitarity violation arising
from the strongly interacting character of the interactions
among scalars must be encoded in just the three mentioned
partial waves even if we consider full gauge bosons in the
external legs of our computations.
With this in mind, we have calculated the absolute value

of the three lowest-order partial waves for all the helicity
channels at a certain center-of-mass energy and for a
particular value of a4 and a5, in order to understand the
implication of the different helicity amplitudes in the total
cross section and in the unitarization process. In Fig. 3, we
present an example of this for the reference values of a4 ¼
a5 ¼ 0.01 and for a representative center-of-mass energy of
1 TeV. Looking at this figure, one can observe various
interesting features. The first one is that, in general terms,
the J ¼ 0 partial wave (left panel) is around 1 order of
magnitude bigger than the other two, J ¼ 1, 2 (middle and
right panels, respectively), as it is already well known in the
literature. The second one is that only for that same value of
the angular momentum, J ¼ 0, the purely longitudinal
scattering [displayed in the (1,1) entry of these “matrices,”
where incoming and outgoing states can be interpreted
indistinctly since the results are presented in a symmetric
way due to time-reversal invariance] dominates, since it is a
factor 5 larger than the next contributing helicity channel
and thus becomes practically the only relevant amplitude to
take into account. In the other two cases, J ¼ 1, 2, the
LL → LL case is no longer dominating the picture, and
other helicity channels become important. In particular, we
see in this figure that TþTþ → TþTþ and T−T− → T−T−

play a relevant role in J ¼ 1, and TþT− → T−Tþ and
T−Tþ → TþT− do it in J ¼ 2. This points toward the fact
that, in some setups and for determined values of the
relevant chiral parameters, neglecting the unitarity-violat-
ing effects of channels other than the purely longitudinal
one could lead to incomplete predictions. This is the reason

FIG. 3. Numerical values of the three lowest angular momentum partial waves aJð ffiffiffi
s

p Þ with J ¼ 0 (left), J ¼ 1 (middle), and J ¼ 2

(right) of the 81 helicity combinations of WþZ → WþZ scattering. Predictions are shown for a fixed center-of-mass energy of
ffiffiffi
s

p ¼
1 TeV and for a4 ¼ a5 ¼ 0.01 (with the other parameters set to their SM value) as reference. Incoming and outgoing states can be
interpreted indistinctly since the results are presented in a symmetric way due to time-reversal invariance. The included labels of these
nine incomingWZ and nine outgoingWZ states with two polarized gauge bosons, longitudinal (L) and/or transverse (Tþ;−), are ordered
and denoted here correspondingly by LL, TþTþ, TþT−, T−Tþ, T−T−, LTþ, LT−, TþL, and T−L.
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why we will consider the whole coupled system of the 81
helicity amplitudes when applying the mentioned unitar-
ization methods.
The third comment one has to make regarding unitar-

ization methods is somehow obvious, but important: all
unitarization schemes have to provide similar predictions in
the low-energy region, i.e., above but not far from the WZ
threshold production. This is a well-known feature in the
context of ChPT in which the scattering amplitudes from
the chiral Lagrangian, unitarized with the various methods,
do recover the ChPT prediction at low energies, in agree-
ment with the well-known low-energy theorems.
Having stated all these considerations, we proceed to

briefly explain the unitarization methods that we are going
to consider in the present work. We have selected them
based on the fact that they are the most used ones nowadays
in the literature. Since these methods are the ones that are
currently being used to interpret the experimental data in
order to obtain information about the EFT, we find it
pertinent to contrast their predictions. They can be classi-
fied in two categories: 1) the ones that directly suppress by
hand the pathological energy behavior of the amplitudes
with energy (that we call here, as is usual in the literature,
cutoff, form factor, and kink) and 2) the ones that unitarize
the first three partial waves from which then the total
unitary amplitude is reconstructed [K-matrix and inverse
amplitude method (IAM)]. Furthermore, they differ in their
physical implications and motivation and in their analytical
properties, which we will discuss in the next paragraphs.
Despite these differences and the fact that some of them
could be more physically justified than others, there is in
principle no prior to choose a particular method with
respect to the others.
We now list the five unitarization prescriptions con-

sidered in these work with a brief explanation of each of
them (for some illustrative reviews on different unitar-
ization methods in the context of VBS, see, for instance,
Refs. [1,5,6]):

(i) Cutoff.—The cutoff is not a unitarization method
per se but a way to obtain unitary amplitudes by
just discarding those predictions given for energy
values above the unitarity-violation scale Λ, de-
fined in the previous section as the lowest value offfiffiffi
s

p
at which any partial wave crosses the unitarity

bound stated in Eq. (2.8). This would mean to reject
the predictions of the cross sections marked with
dashed lines in Fig. 1, sticking only to those that
respect the unitarity condition (i.e., solid lines in
these figures).

(ii) Form factor (FF).—In this case, instead of obviating
part of the results computed from the raw EFT, what
is done is suppressing the pathological behavior of
the amplitudes with energy above the scale at which
each of them violate unitarity. To that purpose, a
smooth, continuous function of the form

fFFi ¼ ð1þ s=Λ2
i Þ−ξi ð3:1Þ

is employed. Here, s is the center-of-mass energy
squared, Λi is the specific value of

ffiffiffi
s

p
at which the

helicity channel i violates unitarity according to
Eq. (2.8), and ξi is the minimum exponent that is
sufficient to fix the pathological behavior of the
corresponding ith helicity amplitude with energy.
Thus, every nonunitary helicity amplitude will be
unitarized in the manner

Âλ1;λ2;λ3;λ4 ¼ Aλ1;λ2;λ3;λ4 · ð1þ s=Λ2
λ1;λ2;λ3;λ4

Þ−ξλ1 ;λ2 ;λ3 ;λ4 ;
ð3:2Þ

with Â being the unitary amplitude and A being the
nonunitary EFT prediction. With all these unitarized
amplitudes, then, one would be able to recover a
unitary unpolarized, total cross section. In the
present case and for the values of the chiral para-
meters that are going to be probed in this work, the
scales at which unitarity is violated for all helicity
channels are above the maximum center-of-mass
energy considered, except in the purely longitudinal
case. We have checked that including the form factor
suppression given in Eq. (3.2) for all helicity
channels (notice that not only is the scale different
in each channel, but also the exponent is since they
depend differently on energy) is equivalent to doing
it just in the LL → LL one for the energies and
parameters we are considering, so, for simplicity,
from now on, we will apply Eq. (3.2) to the
scattering of longitudinally polarized gauge bosons,
leaving the rest unchanged. In this way, our pre-
scription to apply the form factor unitarization
method can be summarized as

ÂLLLL ¼ ALLLL · ð1þ s=Λ2
LLLLÞ−2; ð3:3Þ

recalling that any other helicity amplitude is left
unaffected. The exponent has been set to ξLLLL ¼ 2
since it is the minimum value necessary to repair the
anomalous growth with energy of the LL → LL
amplitude. The scale ΛLLLL has been computed with
the VBFNLO utility to calculate form factors [47–49].

(iii) Kink.—The so-called kink unitarization method is
very similar to the form factor. Conceptually, it is the
same, and the only difference present between both
prescriptions is that the suppression in the kink
method is not performed smoothly, but with a step
function:

fKinki ¼
�
1 s ≤ Λ2

i

ðs=Λ2
i Þ−ξi s > Λ2

i

: ð3:4Þ

Except for this fact, the rest of the discussion
regarding the form factor is equally valid for the
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kink, so, in this case, we will also apply the method
only to the LL → LL amplitude with an exponent
of ξLLLL ¼ 2.

(iv) K matrix.—The K-matrix unitarization method has
been extensively studied and implemented in the
context of ChPT in QCD. This method is a pre-
scription applied to the partial wave amplitudes and
basically projects the nonunitary ones into the
Argand circle through a stereographic projection.
This means that it takes a real, nonunitary partial
wave amplitude to which an imaginary part is added
ad hoc such that the unitarity limit is saturated. For
each helicity partial wave amplitude, this is achieved
by using the following simple formula:

âJ;K-matrix
λ1λ2λ3λ4

¼ aJλ1λ2λ3λ4
1 − iaJλ1λ2λ3λ4

: ð3:5Þ

However, as we have already mentioned throughout
the text, the unitarity condition implies that the
whole coupled system of helicities has to be taken
into account in our unitarization procedures. Thus,
we solve this coupled system in terms of matrices,
for which we construct a 9 × 9 matrix, the entries of
which correspond to the 81 possible helicity ampli-
tudes of the elastic WZ scattering we are studying,
and we unitarize it using the K-matrix method. This
way, we have

α̂J;K-matrix ¼ αJ · ½1 − iαJ�−1; ð3:6Þ
with α being the 9 × 9 matrix containing the whole
system of helicity partial wave amplitudes. Now,
what we need is to reconstruct, from these unitary
partial waves, the complete scattering amplitude. To
this aim, we substitute from the initial, nonunitary
amplitude the unitarity-violating partial waves by
their unitarized versions. As we have already ex-
plained in the text, these partial waves are those that
correspond to J ¼ 0, 1, 2, so what we do is to
subtract these three partial waves from the total
amplitude to then add the same partial waves after
the K-matrix unitarization has been performed:

Âλ1λ2λ3λ4ðs; cos θÞ
¼ Aλ1λ2λ3λ4ðs; cos θÞ − 16π

×
X2
J¼0

ð2J þ 1ÞdJλ;λ0 ðcos θÞaJλ1λ2λ3λ4ðsÞ

þ 16π
X2
J¼0

ð2J þ 1ÞdJλ;λ0 ðcos θÞα̂J;K-matrix
½λ1λ2λ3λ4� ðsÞ:

ð3:7Þ
Here, we denote as α̂J;K-matrix

½λ1λ2λ3λ4� ðsÞ (in the rest of the
formulas, it is implicit that all partial waves depend

solely on s) the element of the 9 × 9 matrix that
corresponds to the λ1λ2λ3λ4 polarization state. In this
way, we obtain a unitary amplitude in which we
maintain all the fundamental properties introduced
by all the partial wave amplitudes, including those
with higher J > 2 that, since they are not involved in
the violation of unitarity, remain unaffected. The
numerical computations in this K-matrix case and
the next one, IAM, have been performed with a
private Mathematica code developed by us.

(v) IAM.—The IAM is, probably, the most profoundly
studied unitarization prescription considered in this
work. It is very well known in the context of ChPT
for pion-pion scattering, and its accuracy has been
proven in various scenarios, for instance, in the
prediction of the ρ meson as an emergent resonance
in these scattering processes. It is based on the
application of dispersion relations (bidirectional
mathematical prescriptions allowing us to relate
the real and imaginary parts of complex functions)
to the inverse of the partial wave amplitudes com-
puted in the EFT framework. This unitarization
procedure can be actually understood as the result
of the first Padé approximant derived from the chiral
expansion series provided by ChPT. In practice, this
method implements an approximate resummation of
loops with bubbles in the s channel of the given
scattering process. Therefore, in the present context
of the EChL, it accounts for rescattering effects in
the scattering of the two EW gauge bosons, i.e.,WZ
in our chosen example, which are not taken into
account with the other unitarization methods. Notice
that this makes sense in the context of a strongly
interacting theory since these rescattering contribu-
tions are not suppressed as in weakly interacting
systems.

In summary, if one starts with the typical result for
a given partial wave amplitude from the chiral
Lagrangian, given by the sum of the two contribu-
tions in the chiral expansion, one of orderOðp2Þ and
the other one of order Oðp4Þ, the corresponding
prediction of the IAM leads to the unitarized helicity
partial wave amplitudes

âJ;IAMλ1λ2λ3λ4
¼ ðað2ÞJλ1λ2λ3λ4

Þ2
að2ÞJλ1λ2λ3λ4

− að4ÞJλ1λ2λ3λ4

; ð3:8Þ

where að2Þ is the contribution to the partial wave
amplitude computed with the operators from the L2

Lagrangian [Eq. (2.4)] at the tree level, which is of
order Oðp2Þ, and að4Þ is the contribution to the
partial wave amplitude computed with the operators
from the L4 [Eq. (2.5)] at the tree level, plus the
contribution computed with the operators from the
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L2 Lagrangian at one-loop level, which are both of
Oðp4Þ. In the present work, since the computation
of the complete one-loop level amplitudes that enter
in að4Þ has not been performed yet due to the
difficulty of the task, we will evaluate this here in
an approximate way. Following the usual features in
ChPT, we take the imaginary part of this contribu-
tion to be jað2Þj2 so that the unitarity condition is
fulfilled perturbatively and neglect the real contri-
bution of the loops that are expected to provide a
very small contribution, not being relevant for the
present computation.
Once again, we find ourselves in the scenario in

which we have a prescription to unitarize each
helicity amplitude independently. However, we want
to take the whole coupled system of helicities in full
generality, as explained above. We construct once
more the 9 × 9 matrix α, this time splitting it into its
Oðp2Þ andOðp4Þ contributions, that contains the 81
helicity amplitudes, and we unitarize it using the
IAM in the following matricial manner:

α̂J;IAM ¼ αð2ÞJ · ½αð2ÞJ − αð4ÞJ�−1 · αð2ÞJ: ð3:9Þ

At this point, to obtain a fully unitary amplitude, we
use the same trick as in the K-matrix case; i.e., we
replace the unitarity-violating partial waves of the
total amplitude by their IAM-unitarized version,
following Eq. (3.7), with the only change of
K-matrix → IAM. It is pertinent to now make some
comments regarding important differences between
the IAM unitarization method and the rest we have
considered. The IAM does not provide just unitary
predictions but also succeeds in getting partial wave
amplitudes with the appropriate analytical structure
(for more details on this, see, for instance, Ref. [6]).
This implies that it is the only method, among the

ones studied in this work, that can accommodate
dynamically generated resonances, since these ap-
pear as complex poles in the second Riemann sheet
of the partial wave with the corresponding J quan-
tum number. This is in contrast to the unitarized
partial waves with the K-matrix method that do not
have such poles. These resonances are characteristic
of strongly interacting theories and appear naturally
at high energies, such as in the case of low-energy
QCD. Furthermore, it is worth commenting that,
according to Ref. [11], results similar to those
obtained with the IAM regarding the appearance
of dynamical resonances are also provided by other
alternative unitarization methods that lead to the
proper analytical structure. Example of such meth-
ods are the N/D or the improved K matrix, which for
brevity we have decided not to include here. Never-
theless, for the forthcoming study at the LHC, as we
have already said, we are interested in studying the
nonresonant case of the unitarized theory, so the
differences among the various unitarization methods
will come in terms of smooth deviations from the
SM continuum via WZ scattering rather than from
the appearance of peaks due to the emergence of
resonances. It is important, though, to keep in mind
that the IAM has some peculiarities regarding its
structure and physical motivation, which differen-
tiate it from the others.

We have already discussed briefly each of the unitariza-
tion procedures that we consider in this work and the
specific way in which we implement them. Now, what we
need is to study the different predictions they provide in
regard of VBS observables. To that purpose, we apply each
of them, in the manner explained above, to the WZ → WZ
scattering amplitudes for different values of a4 and a5. The
final results of this computation can be seen in Fig. 4, in
which we present the total, unpolarized cross section of the

FIG. 4. Predictions of the total cross section of the process WþZ → WþZ as a function of the center-of-mass energy for the different
unitarization procedures explained in the text: K matrix (purple), kink (yellow), FF (blue), and IAM (dashed black). Nonunitarized
EChL and SM are also displayed. Two benchmark a4, a5 values are displayed: a4 ¼ a5 ¼ 0.01 (left) and a4 ¼ −a5 ¼ 0.01 (right). In all
plots, a ¼ 1 (or, equivalently, Δa ¼ 0Þ.
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WZ → WZ scattering as a function of the center-of-mass
energy for the different unitarization methods used. We also
display the SM prediction and the nonunitarized EChL
prediction for comparison. We consider, moreover, two
scenarios for the values of a4 and a5. We set their absolute
values to 0.01, as reference, and analyze two cases: the one
in which both have the same sign a4 ¼ a5 ¼ 0.01 (left) and
the one in which they have opposite sign a4 ¼ −a5 ¼
0.01 (right).
A great number of interesting facts can be extracted from

these plots. First, and most clearly, one can see that
different unitarization methods lead, indeed, to very differ-
ent predictions for this observable. These predictions differ,
in general, from those of the raw EChL and the SM, as well.
Therefore, one can expect that these differences might be
very well seen experimentally. Second, another interesting
issue arises from the comparison of both panels in the
figure. It appears plainly that the value of the EChL
prediction and of the K-matrix prediction are, in general,
smaller in the case in which both parameters, a4 and a5,
have opposite sign. On the contrary, the kink and the FF
provide larger results in this same case. This means that for
the nonunitarized prediction and for the K matrix, the
regions of the parameter space in which a4 and a5 have the
same sign will be more constrained, whereas for the kink
and the FF, the opposite-sided regions will be the most
constrained ones. We have checked that the predictions for
the scenario in which both parameters are negative gives the
same results as the one in which they are both positive and
that in the case in which they have opposite sign the same
result is obtained when either of the parameters is positive/
negative. Third, a comment has to be made regarding the
cutoff procedure. The unitarity-violation scale is not
explicitly shown in these plots, but it can be inferred from
the position of the “knee” in the kink prediction. As is clear,
discarding the values of the cross section above this scale
will imply losing a lot of sensitivity and will, of course,
correspond to a very different prediction with respect to the
other studied cases.
Regarding the IAM, we can clearly see that for the

particular choice of parameters in the left panel of Fig. 4 its
prediction lies very close to the SM one. In this case, the
IAM does not provide an emergent resonance in WZ
scattering, since for these particular values of the EChL
parameters there are not poles in the reconstructed total
amplitude from the IAM partial waves and, as a conse-
quence, the outcome provided by the IAM when applied to
the LHC context will not show any departure from the SM
continuum. In contrast, for the particular choice of param-
eters in the right panel, there is indeed an emergent
resonance below 1 TeV, which we have decided not to
include in this plot in the right panel since it is most likely
already excluded by the present searches at the LHC.
When other particular values of the EChL parameters

are chosen, different patterns in the predictions of the VBS

cross sections from the various unitarization methods can
appear. In general, the choice of values of ja4j and ja5j
smaller than those in Fig. 4 typically leads in the
nonresonant case, to closer predictions for the various
unitarization methods in the studied energy range, and
also closer to the SM prediction. This can be clearly seen
in the upper left pannel in Fig. 5, in which the para-
meters have been set to a4 ¼ a5 ¼ 0.0001 and a ¼ 0.9 (or
equivalently, Δa ¼ a − 1 ¼ −0.1). For this particular
choice, a scalar resonance emerges close to 3 TeV in
the IAM unitarized predictions, which does not manifest
in the channel of our interest here WZ → WZ but does in
the WW → ZZ channel. This can be seen clearly in the
plot of the upper right panel in Fig. 5, which we have
included for comparison. In this case, studying this
alternative VBS channel WW → ZZ at the LHC seems
more appropriate in order to analyze the distortions with
respect to the SM predictions due to BSM physics
represented by this particular choice of parameters.
The other example included in Fig. 5, in which the

parameters are set to a4 ¼ 0.0004, a5 ¼ −0.0001, and
again a ¼ 0.9, displays the emergence of a vector reso-
nance in the IAM prediction for WZ → WZ (lower left
panel) close to 2500 GeV and a scalar resonance close to
2800 GeV in the IAM prediction for WW → ZZ (lower
right panel). This resonant behavior is only found in the
predictions with the IAM but not in the predictions with the
other unitarization methods.
In summary, regarding the IAM, the appearance of

dynamically generated resonances in the energy range of
a few TeV occurs indeed for a continuum set of a4 and a5
values of the order of Oð10−3–10−4Þ, and its properties,
mass, and width, also depend on the other relevant
parameters, particularly on a. These features of the IAM
have been studied extensively in the literature and are not
the main focus of the present paper, which, as we have said,
is mainly devoted to the nonresonant case. Thus, for the rest
of this work, we will focus on the other unitarization
methods that will produce instead smooth distortions from
the SM continuum.
Finally, a significant point has to be made concerning

the K-matrix cross sections, since they are the ones we
will use in the next section as a link to the experimental
results. We have compared our estimates, obtained with
the K-matrix procedure explained in the text above, with
the ones provided by the Wizard group [5,7]. In the given
references, the authors construct unitarized four-point
functions that can be introduced in a Monte Carlo event
generator. Their prescription is based in the T-matrix
unitarization method, which they implement in a way
similar to ours: replacing the unitarity-violating partial
wave amplitudes of the total amplitude by their T-matrix
unitarized version.4 This prescription is used, actually, by

4In the present case, their T-matrix unitarization is equivalent
to our K-matrix unitarization, as we have explicitly checked.
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the ATLAS Collaboration in order to constrain the EChL
parameter space [16]. Nevertheless, their work is based on
the ET, and they unitarize all the helicity amplitudes using
the ET calculation, valid only to describe the longitudi-
nally polarized gauge bosons at high energies. Thus, given
this difference between their method and ours, we con-
sider it pertinent to make some comments about the
discrepancies we have found.
Our predictionsmatch those of theWizard group for all the

LL → LL amplitudes we have considered, i.e., for all the
studied energies and values of the chiral parameters.
However, there are some regions of the parameter space in
which the cross sections of the other helicity channels differ.
In the case in which the purely longitudinal scattering
dominates at high energies, both procedures give rise to
the same values for the cross sections. If other helicity
channels have important contributions to the total cross
section, we obtain different predictions. This can be the case
if the values of a4 and a5 are very small, of the order of, for
instance, 10−4. The authors in Refs. [5,7], themselves,
comment on the limitations of their approach in this regime,
so we are proposing here a way to avoid these limitations.

We have seen that different unitarization methods lead
to very different predictions for the values of the cross
section of the elastic WZ scattering. For this reason, one
can expect that the translation of these results to the LHC
scenario would also show the different behaviors present
at the subprocess level. Precisely because of this, the
experimental measurements and constraints interpreted
using one method or another will be different, and this
difference can be understood as a theoretical uncertainty
that is precisely the one that we want to quantify in this
work. Thus, in the next section, we will present our results
for the LHC, and we will give an estimate of this
uncertainty in the experimental determination of a4 and
a5 due to the unitarization scheme choice.

IV. PARAMETER DETERMINATION
UNCERTAINTIES AT THE LHC DUE TO
UNITARIZATION SCHEME CHOICE

In the previous section, we learned that the predictions for
WZ scattering observables computed in the EChL frame-
work can be very different depending on the unitarization

FIG. 5. Predictions of the total cross section of the process WþZ → WþZ (left panels) as a function of the center-of-mass energy for
the different unitarization procedures explained in the text: K matrix (purple), kink (yellow), FF (blue), and IAM (dashed black).
Nonunitarized EChL (gray) and SM (green) are also displayed. Two benchmark a4 and a5 values are displayed: a4 ¼ a5 ¼ 0.0001
(upper) and a4 ¼ 0.0004; a5 ¼ −0.0001 (lower). For comparison, we include the plots corresponding to our predictions for same choice
of the parameters but for the channel WW → ZZ (right panels). In all plots, a ¼ 0.9 (or, equivalently, Δa ¼ −0.1.)
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method we apply to them. This was manifest at the
subprocess level, but now we want to study and quantify
these deviations as they would be seen at the LHC. To
compute the total cross section at the LHC, we first used the
simple tool provided by the effective W approximation
[43,44], and then we compared this approximate result with
the full result fromMG5 [45,46]. The EWA is the translation
to the massive EW gauge bosons case of the familiar
Weiszäcker-Williams, or effective photon approximation
for photons [50,51]. This framework has two important
advantages: the first one is that it has the intuitive physical
interpretation of the distribution functions of theW and theZ
as the parton distribution functions (PDFs) in the parton
model, and the second one is that it is computationally simple
and, as wewill see next, leads to very good results within the
context we are working on here. The EWA provides
probability functions, fW;ZðxÞ, for the W and the Z that
describe the probability of the EW gauge boson being
radiated collinearly from a fermion carrying a fraction x of
its total momentum. To get the total cross section at the LHC
for the full process that starts with protons, these functions,
taking quarks as thementioned fermions, are then convoluted
with the PDFs of the quarks5 and with the corresponding
subprocess cross section for the scattering of on-shell
EW gauge bosons, σðWZ → WZÞ in our present case.
Furthermore, the computation with the EWA requires sepa-
rating the different polarizations for the EW gauge bosons
and using accordingly the corresponding probability func-
tion for the polarizedW or Z. For the numerical computation
of the cross section at theLHCwith theEWA in thiswork,we
have developed our own private PYTHON code.
There are several studies in the literature that use the

EWA to obtain reliable estimates. However, not all of them
employ the same probability functions. For this work, we
have considered and compared four of these implementa-
tions of the EWA. These four implementations are 1) the
original EWA functions given in Ref. [43], including first the
leading-log approximation (LLA) ones (Eqs. (2.19) and
(2.29) in Ref. [43]); 2) the improved ones that go beyond the
LLA by keeping OðM2

V=E
2Þ corrections, with MV the EW

gauge boson mass and E the energy of the initial quark
(Eqs. (2.18) and (2.28) in Ref. [43]); 3) the EWA functions
derived from Ref. [44]; and 4) the simplified functions of the
beyond LLA given in Ref. [7]. In principle, all should lead to
similar results for the pp → WZ þ X process, and they
do at high invariant masses of the final diboson system.
Nevertheless, they differ quite a lot at lower energies. It is
worth mentioning that to compute the pp → WZ þ X rates
with the EWA one has to consider the contributions from two
different subprocesses: the intermediate state with aW and a

Z radiated from the initial protons that then scatter and, in
addition, the case in which aW and a photon are radiated and
then scatter. The latter is of great importance in the low-
energy region where it dominates indeed over the other one.
For the photon case, we have used the well-established
probability function of the Weiszäcker- Williams approxi-
mation [50,51]. To select the most accurate probability
function for the EW gauge boson case among the ones
available in the literature, we have compared the results of
the above-mentioned four approaches to the full results for
the complete process pp → WZ þ X obtained using MG5.
Notice that for this comparison we have generated MG5
events of the exclusive process pp → WZjj, which auto-
matically contain all the topologies, i.e., the VBS topologies
and all the others contributing to the same order in
perturbation theory. Besides, to compare properly both
results, the MG5 one and the EWA one, one has to set
particular kinematical cuts on the final-state particles. In
particular, as it is well known, in order to regularize the
Coulomb singularity produced by the diagrams with a
photon interchanged in a t channel, some minimal cuts
have to be imposed on the final particles. Concretely, for this
quantitative comparison of the total cross sections, we give
the following cuts on the transverse momentum and pseu-
dorapidity of the final gauge bosons V and jets j and the
angular separation among the jets,

jpTV
j > 20 GeV; jηV j < 2;

jpTj
j > 5 GeV; jηjj < 10; ΔRjj > 0.1; ð4:1Þ

both in the EWA andMG5 for the cuts concerning the gauge
bosons and in MG5 events only for the ones concerning the
extra jets.
With these considerations in mind, we have qualitatively

compared the predictions of the pp → WZ þ X processes
in the SM and in the EChL for a4 ¼ a5 ¼ 0.01 within the
EWA for the four probability functions considered against
the MG5 computation of the pp → WZjj events. From our
numerical comparison (not included here for brevity), we
have reached the conclusion that the original, improved
probability functions given in Ref. [43] are the ones that
better match the MG5 prediction. The others overestimate
the probability of radiating a EW gauge boson at low
fractions of momentum of the initial quarks, thus missing
the correct prediction of the cross section at low energies in
which most of events lie. In Fig. 6, we display the results of
the differential cross section distribution with respect to the
invariant mass of the final gauge bosons, computed in the
SM (green) and in the EChL (gray) for a4 ¼ a5 ¼ 0.01
using the EWA and employing these improved probability
functions. We also show the MG5 prediction for these same
distributions as solid, darker lines of each corresponding
color as well as the total cross sections obtained with
both procedures. Cuts in Eq. (4.1) have been required,
if applicable, and center-of-mass energy has been set to

5For this comparison as well as for all the results presented in
this work for the LHC, we use the CT10 set of PDFs [52],
evaluated at Q2 ¼ M2

W . We utilize the same PDF set for the MG5
comparison, evaluated at the same factorization scale.
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p ¼ 14 TeV, as it will be considered for the rest of the
work. Regarding the comparison shown in this figure, it is
manifest that the EWAworks remarkably well, especially at
high invariant masses. Not only is the total MG5 cross
section recovered within a factor 1.5 at worst in the SM
case and 1.15 in the EChL case, but also the invariant mass
distributions match considerably well.
Now that we have checked that our computations

obtained with the EWA employing the improved proba-
bility functions provide reliable predictions of pp →
WZ þ X observables, we move on to characterize the
behavior of the different unitarization methods at the

LHC. To that purpose, we have convoluted the subprocess
cross sections of each of the studied unitarization methods,
corresponding to the different curves in Fig. 4, with the
EW gauge bosons probability functions and with the CT10

set of PDFs [52], evaluated at Q2 ¼ M2
W .

The results are displayed in Fig. 7, in which we present
the invariant mass distributions of the differential cross
section of the process pp → WZ þ X computed with the
EChL for a4 ¼ a5 ¼ 0.01 (left) and a4 ¼ −a5 ¼ 0.01
(right) and unitarized with the diverse procedures we have
described in the previous section. The nonunitarized EChL
and the SM predictions are also shown, for comparison.
The unitarity-violation scale is marked with a dashed line
in each case. The final gauge bosons are required to have
jηV j < 2 and jpTV

j > 20 GeV, and the evaluation is per-
formed at

ffiffiffi
s

p ¼ 14 TeV. From these curves, we can see
that the translation of the subprocess results to the LHC is
direct, and the conclusions regarding the results are very
similar. The different predictions among the various uni-
tarization methods are still manifest, which clearly indi-
cates that the experimental constraints imposed on the
EChL parameters will strongly depend on the unitarization
method used to analyze the data. Besides, the same pattern
of the predictions concerning the relative sign of the chiral
parameters is encountered: in the EChL and the K-matrix
cases, same-sign a4 and a5 lead to larger predictions than in
the opposite-sign case. For the FF and the kink, the reverse
setup is recovered. This still points toward the fact that
same-sign values of a4 and a5 will be more constrained in
the EChL and the K-matrix case, opposite to the Form
Factor and the kink case. The IAM is not shown in these
plots since, as we mentioned, it is more suitable for the
resonant case. Besides, as we have seen before, in the
present nonresonant case, for the chosen particular channel
WZ → WZ, and with the simplified setup of just two

FIG. 6. Predictions of the differential unpolarized cross section
of the process pp → WZ þ X as a function of the invariant mass
of the final WZ computed with the EWA (Eqs. (2.18) and (2.28)
in Ref. [43]). SM values (green) and EChL values for a4 ¼ a5 ¼
0.01 (gray) are shown. The other chiral parameters are set to their
SM value. The MADGRAPH prediction of pp → WZjj events
with jpTj

j > 5 GeV is included as a solid line of each corre-
sponding color for reference. All predictions are computed
applying the cuts in Eq. (4.1) and at

ffiffiffi
s

p ¼ 14 TeV.

FIG. 7. Predictions of the differential cross section of the process pp → WZ þ X as a function of the invariant mass of the final WZ
pair computed with different unitarization methods using the EWA. Predictions of nonunitarized EChL (gray), K-matrix unitarization
(purple), kink (yellow), FF (blue), and the SM (green) are shown for two referential values of the relevant chiral parameters a4 ¼
a5 ¼ 0.01 (left) and a4 ¼ −a5 ¼ 0.01 (right). The other chiral parameters are set to their SM value. The unitarity-violation scale is also
displayed for each case. Predictions are given for jηV j < 2 and jpTV

j > 20 GeV and at
ffiffiffi
s

p ¼ 14 TeV.
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nonvanishing chiral coefficients, a4 and a5, the IAM
predictions are very close to the SM ones. Notice that it
will not be the case if other channels were considered (for
instance, we have checked this explicitly for WW → ZZ)
and other chiral coefficients [in particular, we have checked
this for a ¼ 0.9, and ja4j; ja5j ∼Oð10−3–10−4Þ] were also
nonvanishing. Regarding the cutoff, it is clear that integrat-
ing only up to the unitarity-violation scale to obtain the
total cross section will lead to much smaller predictions
than in the rest of the cases. Finally, it is worth commenting
that, as they should, again all predictions match the EChL
one at low invariant masses.
We have now characterized the different predictions of

the studied unitarization methods at the LHC. The next step
should be to translate these predictions into uncertainties in
the extracted constraints on the parameter space of the
EChL. To do that, we will base our approach upon
the ATLAS results for

ffiffiffi
s

p ¼ 8 TeV given in Ref. [16].
In the mentioned reference, a very sophisticated exper-
imental analysis is performed, especially regarding triggers,
background estimations, and event selection. Then, using
the K-matrix (or T-matrix) unitarization prescription pro-
posed in Refs. [5,7], the 95% C.L. exclusion regions in the
½a4; a5� (sometimes called ½α4; α5� in the literature) param-
eter space are obtained. It is beyond the scope of this work
to accurately reproduce the experimental analysis of the
ATLAS searches. However, there is a consistent way in
which we can use their results to obtain the experimental
constraints corresponding to other unitarization methods
apart from the K-matrix one.
Our approach is the following. First, we take the a4 and

a5 values lying on the contour of theWZ observed “ellipse”
provided by the ATLAS study. With those values, we
evaluate the total cross section following our K-matrix
unitarization procedure for the LHC case, which is, indeed,
constant over the mentioned values. This should be
equivalent to what ATLAS has performed, since we have
checked that for these values of the parameters our
prescription matches the one given by the Wizard group.
The cross section that we obtain represents the cross section
in our framework equivalent to the one that ATLAS has
measured experimentally. It is, so to say, a translation
between the experimental results and our naive results.
Now, what we do is find the values of a4 and a5 that lead to
the same cross section for the other unitarization methods
considered in the present work. In this way, we construct
the 95% exclusion regions in the ½a4; a5� plane for the
various unitarization schemes presented in the previous
section, to see how they differ in magnitude and shape. By
applying this procedure, we are assuming that the selection
cuts required to be fulfilled by the ATLAS search affect all
our predictions equivalently. This could not be the case, but
we expect the differences to be small, so our prescription
should be a good first approximation on the issue.
Furthermore, it is worth commenting that, regarding the

backgrounds, since they are the same for all of our signals,
it is well justified to proceed in this way.
The final results of the present work, i.e., the 95% C.L.

exclusion regions in the ½a4; a5� plane for different unitar-
ization scheme choices, are presented in Fig. 8. There, we
show the corresponding limits for the case in which no
unitarization is performed at all (EChL, in gray) for the
K-matrix unitarization, matching, of course, the ATLAS
results (purple); for the FF prediction (blue); and for the
kink (yellow). We also show the total exclusion region,
obtained by the overlap of the former ones.
Many interesting features can be extracted from this

figure. First of all, and most importantly, it is indeed very
clear that using one unitarization method at a time to
interpret experimental data does not consider the full EFT
picture. Since there are many unitarization prescriptions
that lead to very different constraints, one should take them
all into account in order to provide a reliable bound on the
EFT parameters. These different constraints can vary even
in an order of magnitude, as is manifest in Fig. 8. For
instance, the FF prescription leads to bounds on ½a4; a5� of
the order of [0.8, 0.4], roughly speaking, whereas the case
in which there is no unitarization performed leads to con-
straints of the order of [0.04, 0.08]. Notice that these latter
bounds, i.e., those obtained from the raw, nonunitarized

FIG. 8. Predictions of the 95% confidence level exclusion
regions in the ½a4; a5� plane for theWZ final state at the LHC withffiffiffi
s

p ¼ 8 TeV and for the nonunitarized EChL (gray) and the
different unitarization methods described in the text: K matrix
(purple, corresponding to the solid cyan line in Fig. 2), kink
(yellow), and FF (blue). The total overall exclusion region is the
one outside the boundary denoted with a dashed black line. The
SM point is marked with a red cross. To obtain this figure, we
used the WZ results in Fig. 2 as reference.
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EChL, are not directly comparable to those given in
Ref. [19], since our results correspond to

ffiffiffi
s

p ¼ 8 TeV
and the ones reported in the mentioned reference corre-
spond to

ffiffiffi
s

p ¼ 13 TeV. We leave the precise computation
of the 13 TeV results for a future work. It is also obvious
from this figure that the kink method leads to more
stringent constraints than the FF method (the corresponding
pseudoellipse is smaller and oriented similarly to the FF
one). Also, the K-matrix method leads to more stringent
constraints than the FF one and, in this case, with a different
orientation of the pseudoellipse (indeed, similar to the
EChL one). Interestingly, for the present studied case of
nonresonant pp → WZ þ X events, there is not just a
difference in the magnitudes of the bounds of the EChL
parameters but also in the role of each of them, a4 and a5.
This feature was already stated before, since in Fig. 7 we
have already seen that points lying in the region of the plane
in which a4 and a5 have the same sign should be more
constrained in the EChL and the K-matrix cases, just in the
opposite direction to the FF and the kink case.
At this point, two further comments have to be made.

The first concerns the IAM, the prediction of which is not
present in this figure. This is due to the same argument we
have been giving throughout the text, which can be
summarized in the fact that, for our particular setup
[nonresonant case with deviation with respect to the SM
coming only from the two consideredOðp4Þ operators, i.e.,
for a ¼ b ¼ 1 and just a4 and a5 nonvanishing], this
method is not suitable for imposing reliable constraints
on the EChL parameters. Nevertheless, the IAM can be
extremely useful when looking for new physics signals at
the LHC in the resonant case, as has been studied in
Ref. [42]. The second concerns the cutoff, also not present
in the figure. Since this procedure implies summing events
only up a to a determined invariant mass of the diboson
system to obtain the total cross section, a problem con-
cerning the backgrounds arises. In our approach, we are
always integrating over the whole studied energy region,
for all the unitarization method predictions. This means that
the background is considered to be the same for all of our
signals and we can use the translation from the ATLAS
results safely. However, if we now change the picture and
integrate over a smaller invariant mass region, such as in the
cutoff procedure, we should take into account this same
integration over the background, and the pure translation
form the ATLAS results fails, since we do not know the
background scaling with energy. For this reason, we have
not included the cutoff prediction in our final results, but we
really do believe that it should be also considered in proper
experimental searches.

V. CONCLUSIONS

It is undoubtable that effective field theories constitute
a remarkable, model-independent tool to help us under-
stand the true nature of the electroweak symmetry

breaking sector. They typically suffer, however, from
unitarity-violation problems, due to the energy structure
of the operators they contain. If the predictions of
observables in such theories violate unitarity from some
energy scale upward, they are, in principle, not compat-
ible with the underlying quantum field theory. Therefore,
reliable, unitary predictions are needed to interpret
experimental data in order to obtain information about
the effective theory and thus about the dynamics it
describes. With the aim of obtaining these predictions,
unitarization methods are addressed. There are, never-
theless, many available options to drive nonunitary
observables computed with the raw effective theory into
unitary ones. This ambiguity supposes then a theoretical
uncertainty that has to be taken into account when
constraining the parameter space of such theories, which,
up to now, has been made using one of these prescriptions
at a time or no prescription at all. In this work, we provide
a first approximation for quantifying this uncertainty by
studying the nonresonant case of the elastic WZ scatter-
ing at the LHC.
To do so, we use the electroweak chiral Lagrangian or

Higgs effective field theory, which is the most appropriate
EFT if one assumes a strongly interacting EWSB system.
With this EChL, we study the violation of unitarity in the
WZ → WZ scattering and select the most relevant oper-
ators concerning it. These correspond to the ones controlled
by the chiral coefficients a4 and a5, which parametrize in
this context the anomalous interactions among four massive
electroweak gauge bosons. Furthermore, at this point, we
also analyze the relevance in the unitarization procedure of
each of the helicity channels participating in the scattering.
Although nowadays most unitarization studies assume that
the purely longitudinal scattering is sufficient to understand
the unitarity-violation processes, we consider it of much
importance to take into account the whole coupled system
of helicity states, since the unitarity conditions relate them.
Therefore, we implement this coupled system analysis in
our final results.
Having characterized our framework, we study the

predictions of different unitarization methods at the sub-
process level. We choose five of these methods, cutoff,
form factor, kink, K-matrix, and inverse amplitude method,
which are the most used ones in the literature, to illustrate
how different their predictions can be. Their concrete
implementation as well as a brief explanation of each of
them can be found in Sec. III. When analyzing each of these
methods’ predictions at the subprocess level, compared to
those of the raw effective theory and of the SM, one is
convinced that they lead to very different results and that
this fact should be taken into account at the time to impose
constraints on the parameter space of the effective theory.
Moving on to the LHC case, we use the effective W

approximation to give estimates of the predictions of the
various unitarization methods considered for the pp →
WZ þ X process. To be sure that the EWAworks properly
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for our purpose here, we first compared its predictions at
the LHC of the total cross sections and differential cross
sections with the invariant mass MWZ, both in the SM and
in the EChL case, with the corresponding full predictions
provided by MADGRAPH. In this comparison, we study
various probability functions available in the literature for
the massive electroweak gauge bosons and select the ones
that better reproduce the MADGRAPH simulation of the total
pp → WZ þ X process. Concretely, we find that the
improved EWA functions in Ref. [43] are the most accurate,
providing predictions that are in very good agreement with
the MADGRAPH result. Afterward, we employ these most
accurate EWA functions to obtain the predictions of the
invariant mass MZW distributions of the differential cross
section of the pp → WZ þ X events for the different
unitarization methods discussed in this work. We conclude
again that the various unitarization methods provide very
different predictions not only for the subprocess but also for
the total process at the LHC.
Finally, we construct, based on the ATLAS results forffiffiffi
s

p ¼ 8 TeV given in Ref. [16], the 95% exclusion regions
in the ½a4; a5� plane for the various unitarization schemes.
The main results of the work are contained in Fig. 8, from
which very interesting features can be extracted. The most
important of them is that it is indeed very clear that using
one unitarization method at a time to interpret experimental
data does not consider the full effective theory picture.
Since there are many unitarization prescriptions that lead to
very different constraints, one should take them all into
account in order to provide a reliable bound on the EFT
parameters. These different constraints can vary even in an
order of magnitude. As an example, the FF method leads to
bounds on ½a4; a5� of the order of approximately [0.8, 0.4],
whereas the pure EChL prediction, without unitarization,
leads to constraints of the order of approximately [0.04,
0.08]. Furthermore, the differences do not lie just in the

magnitudes of the bounds but also in the role of a4 and a5,
which can be seen in the shapes of the different exclusion
regions.
The main conclusion of this work is therefore that there

is a theoretical uncertainty present in the experimental
determination of effective theory parameters due to the
unitarization scheme choice. A first approximation to this
uncertainty has been quantified in the present work
analyzing the predictions of pp → WZ þ X events at the
LHC from the EChL in terms of a4 and a5 and with
different unitarization methods. We believe that it is
important to take these uncertainties into account when
relying upon experimental values of the constraints of
effective theory parameters, in order to consider the full
effective theory properties correctly.
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