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We construct a Lorentz-violating electrodynamics in (1þ 2) spacetime dimensions from the electro-
magnetic sector of the nonminimal standard model extension (SME) in (1þ 3) dimensions. Subsequently,
we study some of the basic properties of this framework. We obtain the field equations, the Green’s
functions, and the perturbative Feynman rules. Furthermore, the modified dispersion relations are
computed at leading order in Lorentz violation. We then remove the unphysical degrees of freedom
from the electromagnetic Green’s function that are present due to gauge invariance. The resulting object is
used to construct the general solutions of the uncoupled field equations with external inhomogeneities
present. This modified planar electrodynamics may be valuable to describe electromagnetic phenomena in
two-dimensional condensed-matter systems. Furthermore, it supports a better understanding of the
electromagnetic sector of the nonminimal SME.
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I. INTRODUCTION

Violations of Lorentz invariance have been hypothesized
to emerge from phenomena related to Planck-scale physics
such as strings [1], spin networks described by loop
quantum gravity [2], noncommutative spacetimes [3],
spacetime foam [4], nontrivial spacetime topologies [5],
and effects connected to UV completions of general
relativity with Hořava-Lifshitz gravity [6] as a prominent
example. The standard model extension (SME) [7] is a
well-established framework to parametrize possible devia-
tions from Lorentz invariance in vacuo. It is an effective
field theory in (1þ 3) spacetime dimensions including the
standard model fields and the Riemann curvature tensor
when gravity is taken into account.
Each Lorentz-violating contribution is composed of a

background field tensor contracted with a physical field
operator of the theory. The Lagrange density of the SME
transforms as a Lorentz scalar under coordinate changes

(observer Lorentz transformations). However, the back-
ground fields transform trivially under Lorentz transforma-
tions of an experimental apparatus (particle Lorentz
transformations), whereupon the theory is not invariant
under transformations of this kind. Each background field
involves preferred spacetime directions and controlling
coefficients describing the magnitude of Lorentz violation.
At the level of effective field theory, a violation of discrete
CPT symmetry implies a violation of Lorentz invariance
[8]. Therefore, a subset of the contributions in the SME is
CPT violating.
The minimal SME was constructed including renorma-

lizable field operators of mass dimensions 3 and 4 [7],
where Lorentz violation is controlled by a finite number
of coefficients. To date, quite a large number of these
coefficients has been tightly constrained by experimental
tests [9]. The nonminimal SME [10,11] was proposed as an
extension of the minimal version that involves higher-
dimensional operators. Because of that, the latter contains
an infinite amount of controlling coefficients that are con-
tracted with field operators of arbitrary mass dimension d.
The mass dimension of these field operators increases when
additional four-derivatives are included. The more four-
derivatives are present in a certain term, the more dominant
this particular term becomes with rising energy.
Contributions of the nonminimal SME were shown to be

generated in noncommutative field theories after applying
the Seiberg-Witten map [12]. They can also arise from
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quantum corrections when nonminimal couplings between
fermions and photons are present [13], as well as within
supersymmetric scenarios [14]. For the past several years
there has been a rising interest in improving our under-
standing of such nonminimal terms. For example, certain
operators that are part of the nonminimal electromagnetic
sector of the SME were proposed and studied in
Refs. [15,16]. Apart from that, alternative models incor-
porating higher derivatives were subject to recent inves-
tigations [17–22].
Lately, interest has also arisen in describing condensed-

matter systems based on the SME. Many prominent
phenomena in condensed-matter physics such as the
quantum Hall effect [23] or “relativistic effects” in gra-
phene [24] occur in planar systems. In this sense, studying
and applying a planar electrodynamics to real physical
systems can be seen as a suitable and sound investigation
proposal. One possibility of obtaining planar theories from
parent models defined in (1þ 3) spacetime dimensions is
by means of the procedure known as dimensional reduc-
tion. This method has been used before to derive the planar
version of the Maxwell-Carroll-Field-Jackiw Lagrangian
[25]. It was also employed to obtain the planar version of
the CPT-even electromagnetic sector of the SME [26].
In the current work, we propose a framework of an

electromagnetism modified by nonminimal Lorentz viola-
tion in (1þ 2) spacetime dimensions. To perform an
analysis as general as possible, we choose the broad
electromagnetic sector of the nonminimal SME [9] as the
parent theory. Our goal is to provide a nonminimal daughter
electrodynamics in (1þ 2) dimensions. The purpose of such
a procedure is twofold: First, a planar Lorentz-violating
electrodynamics can be valuable to describe condensed-
matter phenomena that occur in two-dimensional systems.
Second, a treatment of a (1þ 2)-dimensional field theory is
expected to be simpler than that of a (1þ 3)-dimensional
one from a technical perspective. Therefore, gaining under-
standing of the (1þ 2)-dimensional field theory might even
have impact on the parent theory.
The paper is organized as follows. In Sec. II, we apply

dimensional reduction to the electromagnetic sector of the
nonminimal SME. In this context, as well as in Sec. III, we
discuss some basic properties of the resulting planar theory.
These introductory considerations are followed by Sec. IV,
where the system of coupled field equations is obtained, in
general, as well as the modified planar Maxwell equations,
in particular. The Green’s functions for the scalar and
electromagnetic field are computed in Sec. V. Here, we also
determine the perturbative Feynman rules. Section VI is
dedicated to obtaining the dispersion relations of the scalar
and the electromagnetic field at leading order in Lorentz
violation. In Sec. VII, the previous results are employed to
eliminate the unphysical degrees of freedom (d.o.f.) from
the Green’s function of the electromagnetic field. The
resulting physical Green’s function serves as a base to

construct the inhomogeneous solutions of the Maxwell
equations in the presence of an external three-current. The
inhomogeneous solutions of the scalar field equations are
derived in an analog way, whereas in this case it is not
necessary to get rid of unphysical modes. Finally, the
findings are summarized and concluded on in Sec. VIII.
Technical details that may be of interest to some readers are
presented in the Appendix. Natural units are used with ℏ ¼
c ¼ 1 unless otherwise stated. Lorentz indices are denoted
by Greek letters, whereas we indicate spatial indices by
Latin letters.

II. DIMENSIONAL REDUCTION

The present work is based on the electromagnetic sector
of the nonminimal SME. In Ref. [11] it is formulated via
the Lagrange density

Lð1þ3Þ ¼ −
1

4
Fμ̂ ν̂Fμ̂ ν̂ þ 1

2
ελ̂ κ̂ μ̂ ν̂Aλ̂ðk̂AFÞκ̂Fμ̂ ν̂

−
1

4
Fκ̂ λ̂ðk̂FÞκ̂ λ̂ μ̂ ν̂Fμ̂ ν̂; ð1Þ

where Aμ̂ is the Uð1Þ gauge field and Fμ̂ ν̂ ¼ ∂ μ̂Aν̂ − ∂ ν̂Aμ̂

is the associated field strength tensor. All fields are defined
in (1þ 3)-dimensional Minkowski spacetime endowed
with the metric tensor ðημ̂ ν̂Þ ¼ diagð1;−1;−1;−1Þ.
Lorentz indices with hats refer to this spacetime, i.e.,
μ̂ ∈ f0…3g. Furthermore, ελ̂ κ̂ μ̂ ν̂ is the Levi-Civita symbol
in (1þ 3) dimensions, for which we use the conven-
tion ε0123 ¼ 1.
The first term in Eq. (1) is the standard Maxwell term.

The second is a CPT-odd extension of the electromagnetic
sector, where ðk̂AFÞκ̂ transforms as a four-vector under
coordinate changes. The third is CPT even and includes the
fourth-rank tensor ðk̂FÞκ̂ λ̂ μ̂ ν̂. The objects k̂AF and k̂F are
interpreted as sets of scalars under Lorentz transformations
of an experimental apparatus. They are background fields
that permeate the vacuum and give rise to preferred
spacetime directions. In the minimal SME, they are
introduced as controlling coefficients independent of the
spacetime coordinates. This assumption is usually taken to
guarantee that translation invariance is still a symmetry of
the theory, which implies energy-momentum conservation.
In this context, the second contribution of Eq. (1) is denoted
as the Maxwell-Chern-Simons (MCS) term, and the third is
sometimes called the modified Maxwell term. As we intend
to study the (1þ 2)-dimensional planar theory, we do not
introduce a gauge-fixing term at this level.
To arrive at the nonminimal SME, the minimal control-

ling coefficients are promoted to operators that include
additional four-derivatives. Now, each of these operators is
an infinite sum over controlling coefficients contracted with
a number of four-derivatives that successively increases
by 2. We will use the terms minimal and nonminimal in the
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same context within the modified planar electrodynamics to
be constructed.
There are several procedures to derive a field theory of

(1þ 2)-dimensional electromagnetism from a (1þ 3)-
dimensional parent theory. A first method could be a
simple projection—i.e., to set the third component of the
gauge field to zero and to disregard any dependence on
the third spatial coordinate, e.g., Aμ̂ðt;xð3ÞÞ ↦ Aμðt;xð2ÞÞ
with μ ∈ f0…2g. Indices without a hat refer to (1þ 2)-
dimensional Minkowski spacetime with the metric tensor
ðημνÞ ¼ diagð1;−1;−1Þ. As a shorthand notation, we
introduce the spatial coordinates xð2Þ ≡ ðx; yÞ and xð3Þ ≡
ðx; y; zÞ for two and three spatial dimensions, respectively.
An alternative, more sophisticated approach to construct-

ing a (1þ 2)-dimensional daughter theory from a (1þ 3)-
dimensional parent theory is to disconnect the third
component of Aμ̂ from the gauge field and to reinterpret
it as a scalar field ϕ, where the third spatial coordinate is
again omitted:

Aμ̂≠3ðt;xð3ÞÞ ↦ Aμðt;xð2ÞÞ; ð2aÞ

Aμ̂≠3ðt;xð3ÞÞ ↦ Aμðt;xð2ÞÞ; ð2bÞ

A3̂ðt;xð3ÞÞ ↦ ϕðt;xð2ÞÞ; ð2cÞ

A3̂ðt;xð3ÞÞ ↦ −ϕðt;xð2ÞÞ: ð2dÞ

This technique is sometimes called dimensional reduction
in the literature [25,26]. Its advantage is that it automati-
cally includes the first method simply for the choice ϕ ¼ 0.
Thus, the second method naturally gives rise to a scalar in
contrast to simply putting it in by hand. Due to emergent
couplings between the vector field in (1þ 2) dimensions
and the scalar field, a plethora of additional interesting
effects can emerge. If the scalar field is not suitable to
describe a physical system, it can always be set to zero.
Because of the presence of Lorentz violation, dimen-

sional reduction must also be applied to the background
fields and the Levi-Civita symbol. In particular,

ðk̂AFÞκ̂≠3ðt;xð3ÞÞ ↦ ðk̂AFÞκðt;xð2ÞÞ; ð3aÞ

ðk̂AFÞ3̂ðt;xð3ÞÞ ↦ k̂AFðt;xð2ÞÞ; ð3bÞ

ðk̂AFÞκ̂≠3ðt;xð3ÞÞ ↦ ðk̂AFÞκðt;xð2ÞÞ; ð3cÞ

ðk̂AFÞ3̂ðt;xð3ÞÞ ↦ −k̂AFðt;xð2ÞÞ; ð3dÞ

ελ̂μ̂ν̂3 ↦ ελμν; ð3eÞ

where ελμν is the Levi-Civita symbol in (1þ 2) dimensions.
Analog correspondences can be established for the
observer tensor ðkFÞμ̂ ν̂ ϱ̂ σ̂. Even though the coefficients

above have been written as functions of the spacetime
coordinates, we will omit such dependencies to avoid a loss
of translation invariance in the planar theory.
Carrying out this procedure for the individual terms of

the Lagrange density of Eq. (1), which are contained in the
nonminimal electromagnetic sector of the SME, leads to

−
1

4
Fμ̂ ν̂Fμ̂ ν̂ ↦ −

1

4
FμνFμν þ 1

2
∂μϕ∂μϕ; ð4aÞ

−
1

4
Fκ̂ λ̂ðk̂FÞκ̂ λ̂ μ̂ ν̂Fμ̂ ν̂ ↦ −

1

4
Fκλðk̂FÞκλμνFμν

− ∂κϕðk̂ϕÞκμ∂μϕ

þ Fκλðk̂ϕFÞκλμ∂μϕ; ð4bÞ
1

2
ελ̂ κ̂ μ̂ ν̂Aλ̂ðk̂AFÞκ̂Fμ̂ ν̂ ↦ −ελκμAλðk̂AFÞκ∂μϕ

−
1

2
ελμνAλðk̂AFÞFμν

− εμκνϕðk̂AFÞκ∂μAν; ð4cÞ

where we define a set of new operators via ðk̂ϕÞκμ ≡
ðk̂FÞκ3μ3 and ðk̂ϕFÞκλμ ≡ ðk̂FÞκλμ3. The rank-3 tensor oper-
ator obeys the property ðk̂ϕFÞκλμ ¼ −ðk̂ϕFÞλκμ inherited
from the symmetries of k̂F. In addition, it satisfies a
constraint that originates from the Bianchi identity holding
for k̂F:

ðk̂ϕFÞκλμ þ ðk̂ϕFÞμκλ þ ðk̂ϕFÞλμκ ¼ 0: ð5Þ

Here we see that only the CPT-even term in (1þ 3)
dimensions can generate a purely scalar contribution,
whereas the CPT-odd term does not do so. The planar
Lagrange density obtained after dimensional reduction has
the form

Lð1þ2Þ ¼ −
1

4
FμνFμν þ 1

2
∂μϕ∂μϕ −

1

2
ελμνAλðk̂AFÞFμν

−
1

4
Fκλðk̂FÞκλμνFμν − ∂κϕðk̂ϕÞκμ∂μϕ

þ ενκμ½ϕðk̂AFÞκ∂μAν − Aνðk̂AFÞκ∂μϕ�
þ Fκλðk̂ϕFÞκλμ∂μϕ: ð6Þ

The first and the second term describes the kinematics of
the electromagnetic and the scalar field, respectively, in
(1þ 2) dimensions. The third and fourth are the direct
successors of the CPT-odd and CPT-even modifications in
(1þ 3) dimensions. The fifth is a Lorentz-violating con-
tribution that involves the scalar field only. Note that this
term has a form analogous to the c-type modifications of
the (1þ 3)-dimensional scalar field theory introduced
recently in Ref. [27]. Hence, terms of an analog shape
in (1þ 2) spacetime dimensions follow naturally from the
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electromagnetic SME sector in applying dimensional
reduction. The a-type modifications of Ref. [27] cannot
be reproduced in this manner, though.
The remaining contributions describe mixings between

the planar electromagnetic field and the scalar field,
governed by the operators ðk̂ϕFÞκλμ and ðk̂AFÞκ. At the
level of perturbation theory, these terms can be interpreted
as vertices with an electromagnetic line and a scalar line
meeting (see the perturbative treatment of the theory
in Sec. V).
The structure of the modified Maxwell term remains

untouched in the planar theory. The tensor k̂F inherits its
symmetries from the parent tensor. Taking these into account,
there are six independent operators. Furthermore, getting rid
of the unobservable double trace of k̂F by a redefinition of the
electromagnetic fields leads to the condition

ðk̂FÞμν μν ¼! 0; ð7Þ

reducing the number of independent operators to five. They
will be chosen as ðk̂FÞ0101, ðk̂FÞ0202, ðk̂FÞ0102, ðk̂FÞ0112, and
ðk̂FÞ0212. The operator ðk̂FÞ1212 can be expressed by the first
two of the previous five.
In contrast, the successor of the MCS term is quite

different from its parent term. The vectorlike background
field in two spatial dimensions boils down to an observer
scalar k̂AF, which could simply be interpreted as a coupling
constant similar to the topological mass in a Chern-Simons
(CS) theory. For Lorentz violation of the minimal SME, the
latter cannot involve preferred directions in spacetime. This
finding agrees with the fact that there are genuine CS terms
in an odd number of spacetime dimensions. These CS terms
do not require vector- or tensorlike background fields for
their construction. It must be kept in mind, though, that in
the nonminimal SME, k̂AF contains preferred directions as
well as three-derivatives. Last but not least, the observer
three-vector ðk̂AFÞκ simply involves three independent
operators in (1þ 2) dimensions and now plays the role
of a coupling between the electromagnetic and the sca-
lar field.
The Lorentz-violating term for the scalar field exhibits

derivatives of this field. This makes sense, as the contri-
bution originates from the modified Maxwell term. The
scalar remains massless, as a mass term cannot be gen-
erated from the Lorentz-violating modifications.
The original operators ðk̂AFÞκ̂ and ðk̂FÞκ̂ λ̂ μ̂ ν̂ are under-

stood as infinite sums over sets of controlling coefficients
suitably contracted with a number of four-derivatives
successively increasing by 2. In this context it is important
to recall that the mass dimensions of the fields Aμ, ϕ, and
Fμν change in a lower-dimensional spacetime. In particular,

½Aμ� ¼ 1

2
; ½ϕ� ¼ 1

2
; ½Fμν� ¼ 3

2
: ð8Þ

From these results we directly obtain the mass dimensions
of the background fields:

½k̂F� ¼ 0; ½k̂AF� ¼ 1; ½k̂ϕ� ¼ 0; ½k̂ϕF� ¼ 0: ð9Þ

In principle, we can take over the SME notation for
the controlling coefficients of mass dimension d, but we
must keep in mind that d no longer corresponds to the
mass dimension of the field operator a controlling
coefficient is contracted with. Nevertheless, the mass
dimensions of the controlling coefficients follow the same
rules as the parent coefficients. Since we will only work
in momentum space later on, we express the decom-
positions of the background fields in terms of the three-
momentum as follows:

ðk̂AFÞκ ¼
X
d odd

ðkðdÞAFÞκα1…αðd−3Þpα1…pαðd−3Þ ; ð10aÞ

ðk̂FÞκλμν ¼
X
d even

ðkðdÞF Þκλμνα1…αðd−4Þpα1…pαðd−4Þ ; ð10bÞ

k̂AF ¼
X
d odd

ðkðdÞAFÞα1…αðd−3Þpα1…pαðd−3Þ ; ð10cÞ

ðk̂ϕÞκμ ¼
X
d even

ðkðdÞϕ Þκμα1…αðd−4Þpα1…pαðd−4Þ ; ð10dÞ

ðk̂ϕFÞκλμ ¼
X
deven

ðkðdÞϕFÞκλμα1…αðd−4Þpα1…pαðd−4Þ ; ð10eÞ

where pμ ¼ i∂μ. Each class of controlling coefficients has
mass dimension 4 − d.

III. CONNECTION TO PHYSICAL FIELDS

Let us briefly review the concepts of electrodynamics in
(1þ 2) dimensions [28] that are most essential in the
current context. The electromagnetic field strength tensor
has six independent components in (1þ 3) dimensions,
which amounts to three components for the electric field E
and another three for the magnetic flux density B. The
situation in (1þ 2) dimensions is quite different, though.
As an antisymmetric (3 × 3) matrix has a maximum of
three independent coefficients, the electric field in (1þ 2)
dimensions is simply a vector with two components,
E ¼ ðE1; E2Þ, whereas the magnetic flux density is not
even a vector at all, but is described by a scalar B. In an
analog manner, the electric displacement field D is a vector
with two components, D ¼ ðD1; D2Þ, and the magnetic
field strengthH is a simple scalar. Despite this mismatch of
components, it is possible to write up the constitutive
relations between E, B and D, H as a (3 × 3) matrix
equation as follows (compare to Eqs. (4) and (5) in
Ref. [29]):
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�
D

H

�
¼

�
12 þ κ̂ð2ÞDE κ̂ð2ÞDB

κ̂ð2ÞHE 1þ κ̂ð2ÞHB

��
E

B

�
; ð11Þ

where 12 is the (2 × 2) identity matrix. The counterparts of

the quantities κ̂ð2ÞDE, etc., in (1þ 3) dimensions are all (3 × 3)

matrices. Here, κ̂ð2ÞDE is a symmetric (2 × 2) matrix with

three independent coefficients, κ̂ð2ÞDB is a two-component

column vector, κ̂ð2ÞHE is a two-component row vector, and

κ̂ð2ÞHB is a scalar. In particular,

κ̂ð2ÞijDE ≡ −2ðk̂FÞ0i0j; ð12aÞ

κ̂ð2ÞHB ≡ 1

2
εpqεrsðk̂FÞpqrs; ð12bÞ

κ̂ð2ÞiDB ≡ εpqðk̂FÞ0ipq; ð12cÞ

κ̂ð2ÞiHE ≡ −ðκ̂ð2ÞiDB ÞT; ð12dÞ

where εij denotes the Levi-Civita symbol in two (spatial)
dimensions and T stands for the transpose of a vector. The
spatial indices simply run from 1 to 2. Now, the three

components of κ̂ð2ÞDE and the two components of κ̂ð2ÞDB

represent the five independent components of k̂F. The

object κ̂ð2ÞHB does not deliver anything new due to the
condition of Eq. (7), which translates to

Tr

�
κ̂ð2ÞDE þ 1

2
12κ̂

ð2Þ
HB

�
¼ 0: ð13Þ

With the nonzero operators inserted, we obtain explicitly

κ̂ð2ÞDE ¼ −2
� ðk̂FÞ0101 ðk̂FÞ0102
ðk̂FÞ0102 ðk̂FÞ0202

�
; ð14aÞ

κ̂ð2ÞDB ¼ 2

� ðk̂FÞ0112
ðk̂FÞ0212

�
; ð14bÞ

κ̂ð2ÞHE ¼ −2ððk̂FÞ0112; ðk̂FÞ0212Þ; ð14cÞ

κ̂ð2ÞHB ¼ 2ðk̂FÞ1212: ð14dÞ

Hence, in (1þ 2) dimensions, the number of electromag-

netic phenomena is quite restricted. The matrix κ̂ð2ÞDE can still
be interpreted as a permittivity tensor describing an optical
medium with a nontrivial refractive index.1 The connection
between the fields B and H is a simple scaling factor that is

made up of components of the previous permittivity tensor.
Hence, there are no coefficients that are only tied to
magnetic field effects. The electric and magnetic fields
can still mix with each other, and this mixing is described
by two operators only. Furthermore, we can also define an
isotropic operator in (1þ 2) dimensions as follows:

κ̂ð2Þtr ≡ 1

2
κ̂ð2ÞllDE ¼ −½ðk̂FÞ0101 þ ðk̂FÞ0202�

¼ −ðk̂FÞ1212; ð15Þ

due to Eq. (7). Hence, the latter operator is not independent
of the other operators, though—in contrast to the situation
in (1þ 3) dimensions. Finally, it is possible to construct
objects κ̃eþ, etc., in the same manner as in Ref. [11]. Since
these definitions do not provide new insight, we will omit
them here. It shall be mentioned that κ̃eþ, κ̃e− are (2 × 2)
matrices, whereas κ̃oþ and κ̃o− are two-component column
vectors. We find that κ̃o− ¼ 0, whereas all other objects
involve nonzero components exclusively.

IV. FIELD EQUATIONS

We intend to derive the field equations from the
Lagrange density of Eq. (6). As the theory involves higher
derivatives, the Euler-Lagrange equations must be adapted
accordingly. Based on the principle of least action, the
Euler-Lagrange equations2 for a field theory including up to
the nth derivative of a generic field ψ read

0 ¼ ∂L
∂ψ − ∂μ

� ∂L
∂ð∂μψÞ

�
þ ∂μ∂ν

� ∂L
∂ð∂μ∂νψÞ

�

− � � � þ ð−1Þn∂μ1…∂μn

� ∂L
∂ð∂μ1…∂μnψÞ

�
: ð16Þ

Computing the appropriate derivatives, the field equations
for the scalar and electromagnetic fields are given by

0 ¼ □ϕ − 2ðk̂ϕÞκμ∂k∂μϕ − εκμνðk̂AFÞκFμν

þ ðk̂ϕFÞμκλ∂μFκλ; ð17aÞ

0 ¼ ∂νFμν − εμνρðk̂AFÞFνρ þ ðk̂FÞμσνρ∂σFνρ

− 2εμνρðk̂AFÞν∂ρϕþ 2ðk̂ϕFÞμνρ∂ν∂ρϕ; ð17bÞ

with the d’Alembertian □≡ ∂μ∂μ. For zero Lorentz
violation, the field equations reduce to the standard
equation for a massless scalar field and the inhomogenous
Maxwell equations without external sources. The field
equation of the scalar field involves two kinetic terms,

1The momentum dependence that appears in the nonminimal
SME is capable of describing a dispersive medium.

2See Ref. [30] for a treatment in the context of classical
mechanics, and Ref. [31] for field theories of higher derivatives.
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whereas there are three kinetic terms for the electromag-
netic field due to the two distinct classes of operators.
Moreover, Eqs. (17a) and (17b) are coupled partial

differential equations of at least second order (for minimal
Lorentz violation). Higher than second derivatives can
appear for nonminimal contributions. The solutions of
the uncoupled scalar and electromagnetic field equations
for external inhomogeneities (a conserved current in the
electromagnetic case) will be determined later after deriv-
ing the corresponding Green’s functions.
The components of the field strength tensor in two

spatial dimensions have the following form:

F0i ¼ −Ei; Fij ¼ −εijB: ð18Þ

Hence, we see again that the electric field has two compo-
nents, whereas the magnetic flux density is a simple scalar.
The homogeneous Maxwell equations are Bianchi identities
that are not modified by Lorentz violation. In contrast to the
setting of (1þ 3) dimensions, there is only a single homo-
geneous Maxwell equation given by the Faraday law:

εij∂iEj ¼ − _B: ð19Þ

Nowwe investigate the inhomogeneous Maxwell equations
(without external charge and current densities). They
emerge as different components of the field equation (17b)
for vanishing couplings. First of all, we will keep the
couplings, though. The zeroth component of Eq. (17b)
provides

0 ¼ ∂νF0ν − ε0νϱðk̂AFÞFνϱ þ ðk̂FÞ0σνϱ∂σFνϱ

− 2ε0νϱðk̂AFÞν∂ϱϕþ 2ðk̂ϕFÞ0νϱ∂ν∂ϱϕ;

0 ¼ −∂iEi þ 2ðk̂AFÞBþ 2ðk̂FÞ0i0j∂iEj − 2ðk̂FÞ0i12∂iB

− 2εijðk̂AFÞi∂jϕþ 2ðk̂ϕFÞ0i0∂i
_ϕþ 2ðk̂ϕFÞ0ij∂i∂jϕ;

ð20Þ

where a dot on top of a field denotes a single time
derivative. The spatial components lead to

0 ¼ ∂νFiν − εiνϱðk̂AFÞFνϱ þ ðk̂FÞiσνϱ∂σFνϱ

− 2εiνϱðk̂AFÞν∂ϱϕþ 2ðk̂ϕFÞiνϱ∂ν∂ϱϕ;

0 ¼ _Ei þ εijð−∂jBþ 2ðk̂AFÞEjÞ − 2ðk̂FÞ0i0j _Ej

þ 2ðk̂FÞ0i12 _Bþ 2ðk̂FÞ0jil∂lEj − 2ðk̂FÞij12∂jB

þ 2εij½ðk̂AFÞ0∂jϕ − ðk̂AFÞj _ϕ�
þ 2ðk̂ϕFÞi00ϕ̈þ 2½ðk̂ϕFÞij0 − ðk̂ϕFÞ0ij�∂j

_ϕ

þ 2ðk̂ϕFÞiji∂j∂iϕþ 2ðk̂ϕFÞijj∂2
jϕ: ð21Þ

Here, the physical fields were introduced via Eq. (18). Note
that the index i in Eq. (21) is not summed over. This also

holds when it appears twice or more often in a single term.
From Eq. (20), we obtain a modified Gauss law by setting
the couplings to the scalar field equal to zero. In momentum
space, the latter reads

0¼piEi−2iðk̂AFÞB−2ðk̂FÞ0i0jpiEjþ2ðk̂FÞ0i12piB; ð22Þ

which for k̂AF ¼ 0 can be checked to agree with

0 ¼ piDi ¼ piEi þ κ̂ð2ÞijDE piEj þ κ̂ð2ÞiDB piB; ð23Þ

with the objects defined in Eq. (14). The latter is the
equivalent to the Gauss law formulated for the modified
electromagnetism in (1þ 3) dimensions [29]. All Lorentz-
violating operators are understood to be transformed to
momentum space, as well, which corresponds to replacing
all additional three-derivatives by three-momenta via
∂μ ¼ −ipμ [cf. the operators of Eq. (10)]. Furthermore,
from Eq. (21) we also obtain a modified Ampère law of the
form

0 ¼ p0Ei − εijðpjB − 2iðk̂AFÞEjÞ − 2ðk̂FÞ0i0jp0Ej

þ 2ðk̂FÞ0i12ðp0Bþ pjEiÞ þ 2ðk̂FÞ0jijpjEj

− 2ðk̂FÞij12pjB: ð24Þ

After discarding k̂AF, Eq. (24) agrees with the equivalent of
the modified Ampère law in (1þ 3) dimensions:

0 ¼ p0Di − εijpjH

¼ p0Ei − εijpjBþ κ̂ð2ÞijDE p0Ej þ κ̂ð2ÞiDB p0B

− εijκ̂ð2ÞkHE pjEk − εijκ̂ð2ÞHBpjB; ð25Þ

stated in Ref. [29] with the quantities of Eq. (14) inserted.
It is possible to eliminate the magnetic field from
Eq. (24) by inserting the Faraday law of Eq. (19) trans-
formed to momentum space: εijpiEj ¼ p0B. Doing so
leads to

0 ¼ ½Ei − 2ðk̂FÞ0i0jEj�p2
0 þ 2iðk̂AFÞεijp0Ej

þ ½ð1þ 2ðk̂FÞ1212Þεijpj þ 2p0ðk̂FÞ0i12�εmnpmEn

− 2½ðk̂FÞ0iijEi þ ðk̂FÞ0jijEj�p0pj: ð26Þ

It can be checked quickly that a contraction of the modified
Ampère law of Eq. (26) with pi is equivalent to the
modified Gauss law of Eq. (22) multiplied with p0 after
inserting the Faraday law. The modified Ampère law can
also be expressed in matrix form as follows:
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0 ¼ N̂abEb; ð27aÞ

N̂ab ¼ ½δab − 2ðk̂FÞ0a0b�p2
0 þ 2iðk̂AFÞεabp0

þ ½ð1þ 2ðk̂FÞ1212Þεajpj þ 2p0ðk̂FÞ0a12�εmbpm

− 2½ðk̂FÞ0aajδab þ ðk̂FÞ0jajδjb�p0pj: ð27bÞ

The latter has nontrivial solutions only for those p0 that
satisfy the condition that the determinant of the coefficient
matrix N̂ vanishes. This condition corresponds to the
modified dispersion equation of the theory. We will come
back to that point later.

V. GREEN’S FUNCTIONS AND
PERTURBATIVE EXPANSION

Gauge invariance prohibits a perturbative treatment of
the theory described by Eq. (6). Therefore, we add a gauge-
fixing term3 with the gauge-fixing parameter ξ to the latter.
By doing so, we define a new gauge-fixed Lagrange density
indicated by the superscript “gf”:

Lgf
ð1þ2Þ ≡ Lð1þ2Þ −

1

2ξ
ð∂ · AÞ2: ð28Þ

We now perform suitable partial integrations of the
Lagrange density of Eq. (6) to write each term as an
operator sandwiched by fields:

Lgf
ð1þ2Þ ¼

1

2
Aμð□gμν − ∂μ∂νÞAν −

1

2
ϕ□ϕ

− ελμνAλðk̂AFÞ∂μAν − Aλðk̂FÞλκμν∂κ∂μAν

þ ϕðk̂ϕÞκμ∂κ∂μϕþ 2Aλðk̂ϕFÞλκμ∂κ∂μϕ

þ ενκμ½ϕðk̂AFÞκ∂μAν − Aνðk̂AFÞκ∂μϕ�

þ 1

2ξ
Aμ∂μ∂νAν: ð29Þ

Partial integration must be carried out twice for some terms
to arrive at this result. Boundary terms can be neglected in
Minkowski spacetime when we assume that the fields go to
zero sufficiently fast at infinity. We transform the new
Lagrange density to momentum space, where it is written in
a suggestive form as follows:

Lgf
ð1þ2Þ ¼

1

2
ðA;ϕÞ

�
M̂ Û − iV̂

ðÛ þ iV̂ÞT Ŝ

��
A

ϕ

�
; ð30aÞ

in terms of the (3 × 3) matrix

M̂μν ¼ −p2Θμν þ K̂μν þ iL̂μν −
p2

ξ
Ωμν; ð30bÞ

the scalar

Ŝ ¼ p2 − D̂; ð30cÞ
the projectors

Θμν ≡ ημν −Ωμν; ð30dÞ

Ωμν ≡ pμpν

p2
; ð30eÞ

and the Lorentz-violating operators

K̂μν ≡ 2ðk̂FÞμκβνpκpβ; ð31aÞ

L̂μν ≡ 2ðk̂AFÞεμβνpβ; ð31bÞ

Ûμ ≡ 2ðk̂ϕFÞμκβpκpβ; ð31cÞ

V̂μ ≡ 2εμκνðk̂AFÞκpν; ð31dÞ

D̂≡ 2ðk̂ϕÞκμpκpμ: ð31eÞ

The operator L̂μν is antisymmetric, whereas K̂μν is sym-
metric. Now we would like to construct the tools necessary
for a perturbative treatment of this theory. Disregarding
the background fields ðk̂AFÞκ and k̂ϕF switches off the
mixing between the planar electromagnetic field and the
scalar field. After doing so, we derive the Green’s function
for the scalar and electromagnetic field, respectively. The
Lagrange density for the scalar field reads

Lϕ ¼ 1

2
ϕŜϕ; ð32Þ

with the scalar operator of Eq. (30c). The Green’s function
corresponds to the inverse of the latter operator, whose
result is readily obtained:

Δϕ ¼ 1

p2 − D̂
: ð33Þ

The treatment of the planar electromagnetic field is a bit
more involved. We consider the Lagrange density

LA ¼ 1

2
AμM̂

μνAν: ð34Þ

The inverse of the (3 × 3) matrix M̂μν can be expressed in
terms of the metric tensor and suitable contractions of the
original matrix. We find

3Note that the choice of an appropriate gauge fixing condition
in quantization is nontrivial when higher derivatives are present
(see, e.g., Ref. [32] for Podolsky’s extension of electrodynamics).
In the context of the current paper, this problem can be ignored, as
we do not carry out an explicit quantization of the planar
electrodynamics presented. The only concept of quantum physics
used is the propagator.
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Δμν ¼
1

R

�
1

2
½ðM̂α

αÞ2 − M̂αβM̂βα�ημν

−ðM̂α
αÞM̂μν þ M̂μβM̂

β
ν

�
; ð35aÞ

where the denominator R corresponds to

3!R¼ðM̂α
αÞ3−3ðM̂αβM̂βαÞðM̂γ

γÞþ2M̂αβM̂βγM̂
γ
α: ð35bÞ

The Cayley-Hamilton theorem of linear algebra adapted to
a pseudo-Euclidean space allowed us to arrive at this result.
Details are presented in Appendix A. In principle, it is
possible to generalize Eq. (35) to (1þD)-dimensional
Minkowski spacetime and even to curved spacetimes,
which will be discussed in Appendix A, too.
The two-tensors that appear in Eq. (35) can be totally

formulated in terms of observer Lorentz scalars formed of
the projectors of Eq. (30d) and observer two-tensor
operators of Eqs. (31a) and (31b):

M̂α
α ¼ −

�
2þ 1

ξ

�
p2 þ K̂α

α; ð36aÞ

M̂αβM̂βα ¼
�
2þ 1

ξ2

�
p4 − 2p2K̂α

α − L̂αβL̂βα

þ K̂αβK̂βα; ð36bÞ

M̂αβM̂βγM̂
γ
α ¼ −

�
2þ 1

ξ3

�
p6 þ 3p4K̂α

α

þ 3p2ðL̂αβL̂βα − K̂αβK̂βαÞ
þ 3ðiL̂αβK̂βγK̂

γ
α − L̂αβL̂βγK̂

γ
αÞ

þ K̂αβK̂βγK̂
γ
α − iL̂αβL̂βγL̂

γ
α: ð36cÞ

These observer scalars involve the operators K̂ and L̂ to first,
second, and third order, respectively. Due to the tensor
structureofΔμν, another observer two-tensor is indispensable:

M̂μβM̂
β
ν ¼ p4

�
Θμν þ

1

ξ2
Ωμν

�
− 2p2ðK̂ þ iL̂Þμν

þ ðK̂ þ iL̂ÞμβðK̂ þ iL̂Þβν: ð36dÞ
Now, the Feynman rules needed for a perturbative treatment
of the planar electrodynamics are given by

ð37aÞ

ð37bÞ

ð37cÞ

Here, Δϕ of Eq. (33) and Δμν of Eq. (35) must be employed
with the appropriate three-momentum inserted. The objects
iΔϕ and iΔμν correspond to the scalar and the electromag-
netic propagator, respectively. The momentum directions at
the vertex are understood as incoming.
Several remarks are in order. First, for vanishing Lorentz

violation, iΔϕ corresponds to the propagator of a massless
scalar field. Furthermore, iΔμν reproduces the standard
result for the electromagnetic propagator for our choice of
the gauge-fixing term:

iΔμνj k̂F¼0

k̂AF¼0

¼ −i
p2

�
ημν − ð1 − ξÞpμpν

p2

�
: ð38Þ

For the equivalent of the ’t Hooft-Feynman gauge in
(1þ 2) dimensions, ξ ¼ 1, the second term simply does
not contribute. The conventions have been chosen such that
the propagator without Lorentz violation matches the form
of the standard result in (1þ 3) dimensions stated in
Ref. [33]. Second, the denominator of Δμν in Eq. (35b)
is directly linked to the determinant of M̂. The equation
R ¼ 0 can be interpreted as the dispersion equation of the
modified planar electrodynamics. Therefore, its zeros with
respect to p0 provide the dispersion relations of electro-
magnetic waves in the plane. Third, the vertex involves the
full set of planar ðk̂AFÞκ operators, but only certain of the k̂F
[we already noticed this point before when discussing the
interaction terms below Eq. (6)]. The momentum depend-
encies of the operators have to be adapted appropriately to
the momenta of the incoming scalar and electromagnetic
field, respectively.

VI. MODIFIED DISPERSION RELATIONS

Asymptotic free plane-wave solutions are on shell and
satisfy some dispersion equation of the underlying theory.
For the scalar field, this means that p2 − D̂ ¼ 0, whereas
electromagnetic waves satisfy R ¼ 0 with R given by
Eq. (35b). Their zeros with respect to p0 correspond to the
dispersion relations of the sectors. We introduce the spatial
momentum p ¼ ðp1; p2Þ that the dispersion relations are a
function of. Let us first look at the scalar, which is easier to
treat. At leading order in the operator k̂ϕ, the positive-
energy solutions are given by

Eð�ÞðpÞ ¼ −2k̂0iϕpi � Ψðk̂ϕÞ
1 − 2k̂00ϕ

����
p0¼ω0ðpÞ

þ � � � ; ð39aÞ

Ψðk̂ϕÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðk̂0iϕpiÞ2þð1−2k̂00ϕ Þðp2þ2k̂ijϕp

ipjÞ
q

; ð39bÞ

where all additional p0’s are understood to be replaced by
the standard massless dispersion relation ω0ðpÞ≡ jpj.
Thus, at leading order, there are two dispersion relations,
and they approach the standard result ω0 for vanishing
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controlling coefficients. When next-to-leading-order effects
in nonminimal frameworks are taken into consideration,
there may be more than just two solutions. Furthermore, it
is known that nonminimal theories provide dispersion
relations that do not approach the standard result (ω0 in
this case) for vanishing Lorentz violation. We will come
back to this point below.
The next step is to discuss the dispersion relations of

modified planar electromagnetic waves. They will be
computed at leading order in Lorentz violation for the
cases k̂AF ¼ 0 and k̂F ¼ 0, respectively. As M̂ of the planar
electromagnetic theory in Eq. (34) is a (3 × 3) matrix,
where each coefficient involves at least two components of
the three-momentum (for the minimal case), R is a
polynomial of at least sixth degree in p0. In what follows,
we look at the positive dispersion relations, of which there
are three for the minimal framework. Inserting the back-
ground fields, the denominatorR can be written in the form

R ¼ p2

ξ

�
1

2
½K̂αβK̂βα − ðK̂α

αÞ2 − L̂αβL̂βα� − p2ðp2 − K̂α
αÞ
�

¼ −
p4

ξ
Rphys; ð40aÞ

with

Rphys ¼ p2 −
�
1þ 1

2
ðk̂FÞμνμν

�
K̂α

α

þ K̂μνðk̂FÞμκνκ − 4ðk̂AFÞ2: ð40bÞ

The latter decomposition has been derived by employing
the explicit forms of K̂μν and L̂μν. Using the condition of

Eq. (7), we can omit the double trace of k̂F. It is possible to
extract the gauge fixing parameter in Eq. (40a) such that the
physical dispersion relations do not depend on it.
Furthermore, the second form of R allows us to separate
two powers of p2 from the remaining expression Rphys.
Therefore, independently of the explicit choice of the
Lorentz-violating background field, the standard dispersion
relation in two spatial dimensions is a twofold zero of R
with respect to p0:

ωð1;2ÞðpÞ ¼ ω0: ð41Þ

The third dispersion relation involves the Lorentz-violating
operators. For the first case,we simply set L̂μν ¼ 0 and obtain

ωð3ÞðpÞjk̂AF¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

2
½K̂α

α þϒðK̂Þ�
r ���

p0¼ω0ðpÞ

þ � � � ; ð42aÞ

ϒðK̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K̂αβK̂βα − ðK̂α

αÞ2
q

: ð42bÞ

For the second case, we insert K̂μν ¼ 0, which leads to

ωð3ÞðpÞjk̂F¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4ðk̂AFÞ2

q
jp0¼ω0ðpÞ þ � � � : ð43Þ

Before we interpret these results, several remarks will be
made. First, all p0 components that are contracted with
controlling coefficients on the right-hand sides of Eqs. (42)
and (43) are understood to be replaced by the standard
dispersion relation ω0. Second, Eq. (42) involves the
operator k̂F at first order in Lorentz violation, whereas
Eq. (43) depends on k̂AF only at second and higher orders.
The latter property seems to be characteristic for (1þ 2)
dimensions, as for (1þ 3) dimensions, k̂AF enters the
dispersion relation at first order [34].
Third, as there is only a single modified dispersion

relation, birefringence does not occur. This property holds
for the minimal theory,4 but also for the nonminimal
framework at first order in Lorentz violation. For this
reason, there are no coefficients associated with birefrin-
gence, and it should be possible to parametrize the
complete tensor structure of k̂F by using an equivalent
of the nonbirefringent ansatz of Ref. [35]. We find that

ðk̂FÞμνϱσ ¼ ημϱ ˆ̃k
νσ − ημσ ˆ̃k

νϱ − ηνϱ ˆ̃k
μσ þ ηνσ ˆ̃k

μϱ
; ð44aÞ

ˆ̃k
μν ≡ ðk̂FÞαμαν; ð44bÞ

where ( ˆ̃k
μν
) is a symmetric and traceless (3 × 3) matrix. The

latter has five independent coefficients, whereupon Eq. (44)
can represent the full tensor operator k̂F indeed. In contrast
to the counterpart of Eq. (44) in (1þ 3) dimensions, a
global prefactor of 1=2 is not needed here.
Fourth, Eq. (42) has a form analog to one of the two

dispersion relations obtained for the theory of minimal
ðkFÞμνϱσ; cf. Eqs. (16)–(18) in Ref. [29]. Fifth, Eq. (43) is
the exact result for the minimal setting. This finding shows
that the daughter theory is simpler than the parent theory, as
the dispersion relation of MCS theory is more involved
[34]. Last but not least, the negative-energy solutions found
are related to the positive ones by reversing the signs of the
spatial momentum components and the global sign in front
of them. In particular, let ω−ðpÞ be the negative-energy
counterpart of a positive-energy dispersion relation ωþðpÞ.
We then observe that ωþðpÞ ¼ −ω−ð−pÞ. This finding
indicates that a quantization of the theory should lead to
photons that are their own antiparticles such as in (1þ 3)
dimensions. Note that the situation in the fermion sector is
different, and such correspondences do not necessarily hold
for all sets of operators. The explanation is that the C-odd
fermion coefficients have an opposite sign for antiparticles
in comparison to particles.

4Cf. Ref. [26], where it was observed, as well.
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An electromagnetic wave in (1þ 3) dimensions has two
physical d.o.f. and two unphysical ones. The former
correspond to the transverse polarizations, and the latter
to the scalar and longitudinal ones. The number of
unphysical d.o.f. remains in (1þ 2) dimensions, and the
standard dispersion relation of Eq. (41) is associated with
those. In (1þ 3) dimensions, the unphysical dispersion
relations can be eliminated by solving the modified Gauss
law for one of the components of the electric field and
eliminating this component from the modified Ampère law
(cf. the second paper of Ref. [7]). The physical dispersion
relations are identified in that manner. This procedure does
not seem to be necessary in (1þ 2) dimensions. The
determinant of the matrix N̂ in the modified Ampère
law [Eq. (27)] is given by

detðN̂Þ ¼ p2
0Rphys; ð45Þ

when Eq. (7) is employed. Hence, the physical dispersion
relations can be directly identified from the latter. The fact
that the unphysical dispersion relations are not affected by
Lorentz violation seems to be a property that holds in
general (cf. also Ref. [36]).
There is only a single polarization perpendicular to a

given propagation direction in two spatial dimensions.
Therefore, for the minimal theory, there can be a single
physical dispersion relation only. Further dispersion
relations may emerge in nonminimal theories that include
additional time derivatives. There are two classes of such
dispersion relations. The first class only comprises per-
turbations of the standard dispersion relation. At leading
order in Lorentz violation, these correspond to the
dispersion relations of Eqs. (42) and (43). The second
class involves dispersion relations that do not approach
the standard result for vanishing Lorentz violation [see,
e.g., Refs. [16,17] for examples in (1þ 3) dimensions].
Such dispersion relations are sometimes called spurious or
exotic. In principle, they are not necessarily unphysical,
but they may be associated with ghosts. Besides, they are
interpreted as Planck-scale effects, which means that they
decouple from the theory for small momenta. For exam-
ple, in Ref. [16] it was observed that some of these modes
do not propagate in this regime; i.e., their group velocities
go to zero. Explicit results must be determined on a case-
by-case basis.

VII. SOLUTIONS TO THE FREE
FIELD EQUATIONS

At this point, we have the necessary tools ready to deal
with the field equations (17). We consider the uncoupled
equations that originate from the latter by setting the
couplings equal to zero. Furthermore, we take inhomoge-
neities into account:

jðxÞ ¼ □ϕ − 2ðk̂ϕÞκμ∂κ∂μϕ; ð46aÞ

jμðxÞ ¼ □Aμ þ εμνϱk̂AFFνϱ − ðk̂FÞμσνϱ∂σFνϱ; ð46bÞ

where we use the Lorenz gauge condition ∂ · A ¼ 0 in the
second equation to fix the gauge. The inhomogeneity jðxÞ
is associated with the scalar field, and jμðxÞ is an external,
conserved three-current density coupled to the electromag-
netic field.
Let us first treat the scalar field. The general homo-

geneous solution is a superposition of plane-wave solutions
involving the modified dispersion relations:

ϕhomðxÞ ¼
Z

d2p
ð2πÞ2

X
k

1

2EðkÞðpÞϕ
ðkÞðxÞ; ð47aÞ

ϕðkÞðxÞ ¼ aðkÞðpÞ expð−ipðkÞ
α xαÞ

þ aðkÞ�ðpÞ expðipðkÞ
α xαÞ: ð47bÞ

Here, aðkÞ is an appropriate plane-wave amplitude, aðkÞ� its
complex conjugate, and ðpðkÞαÞ ¼ ðEðkÞ;pÞ with the appro-
priate dispersion relations of Eqs. (39). Note that all
dispersion relations EðkÞ must be summed over. Spurious
dispersion relations can, in principle, be omitted when the
theory is restricted to its low-energy regime, where the
spurious modes decouple. The inhomogeneous solution of
Eq. (46a) can be written as a contour integral in the
complex p0 plane:

ϕinðxÞ ¼ 1

ð2πÞ3
Z
CE

dp0

Z
d2pΔϕðpÞj̃ðpÞ expð−ipαxαÞ;

ð48Þ

with the Green’s function ΔϕðpÞ of Eq. (33), the Fourier-
transformed inhomogeneity j̃ðpÞ, and an appropriate con-
tour CE. By choosing retarded boundary conditions, the
contour encircles all poles of Δϕ in a counterclockwise
direction.
The treatment of the electromagnetic field is a bit more

challenging. The plane-wave homogeneous solutions of
Eq. (46b) involve the modified polarization vectors as wave
amplitudes:

Ahom
μ ðxÞ ¼

Z
d2p
ð2πÞ2

X
k

1

2ωðkÞðpÞA
ðkÞ
μ ðxÞ; ð49aÞ

AðkÞ
μ ðxÞ ¼ εðkÞμ ðpÞ expð−ipðkÞ

α xαÞ
þ εðkÞ�μ ðpÞ expðipðkÞ

α xαÞ: ð49bÞ

In the latter, εðkÞμ is the polarization vector of the kth

physical mode, εðkÞ�μ is its complex conjugated counterpart,
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and ðpðkÞαÞ ¼ ðωðkÞ;pÞ with the physical dispersion rela-
tion ωðkÞ. At leading order in Lorentz violation, the latter is
given by Eqs. (42) and (43) dependent on which subset of

operators is discarded. The polarization vectors εðkÞμ are
basis solutions of Eq. (46b) in momentum space for p0 ¼
ωðkÞ and vanishing external three-current. These vectors are
best computed for particular cases, as their form critically
depends on residual spacetime symmetries present. In the
minimal framework, there is only a single physical polari-
zation vector for this planar electrodynamics associated
with the physical dispersion relation. The physical modes
only must be summed over.
The inhomogeneous solution of Eq. (46b) for an exter-

nal, conserved current density jμ is obtained by means
of the Green’s function Δμν in Eq. (35). Therefore, it can
also be written as a contour integral in the complex p0

plane:

Ain
μ ðxÞ ¼

1

ð2πÞ3
Z
Cω

dp0

Z
d2pΔphys

μν ðpÞj̃νðpÞ

× expð−ipαxαÞ; ð50Þ

where j̃μ is the Fourier-transformed three-current density.
Again, Cω is an appropriate contour that encircles the
physical poles in a counterclockwise direction when
retarded boundary conditions are chosen (cf. Ref. [37]).
Physical solutions do not involve unphysical d.o.f., which
is why they must be constructed from the physical part
Δphys

μν of the Green’s function. To get rid of the unphysical
d.o.f. in Eq. (35), we decompose the latter into all observer
two-tensors available. Therefore, we make the ansatz

Δμν ¼ αημν þ βpμpν þ γðpμψν þ ψμpνÞ þ δðpμζν þ ζμpνÞ
þ ϵψμψν þ ιζμζν þ κεμναpα; ð51aÞ

where ψμ is a purely timelike and ζμ a purely spacelike
preferred direction:

ðψμÞ ¼

0
B@

1

0

0

1
CA; ðζμÞ ¼

0
B@

0

1

0

1
CA: ð51bÞ

The advantage of this form of the propagator is that it
clearly separates the physical from the unphysical d.o.f.
The unphysical ones are contained in terms that are
proportional to at least one three-momentum with a free
Lorentz index. These terms vanish when the propagator is
contracted with two conserved external three-currents due
to p · j̃ ¼ 0. In this sense, the final term including the Levi-
Civita symbol does not contribute to physics either. Hence,
the physical d.o.f. must be contained in the remaining
terms only.

Setting the ansatz equal to the propagator leads to a
system of equations for the parameters α…κ that can be
solved with computer algebra. To make the calculation
more feasible, we use the equivalent of a Feynman–’t Hooft
gauge in (1þ 2) dimensions; i.e., we set ξ ¼ 1. By doing
so, the physical part of the propagator can be cast into the
form

Δphys
μν ¼ −

1

p0p1Rphys

�
ðp0p1 þ K̂01Þημν

þ
�
p0

p2
K̂12 − K̂01

�
ψμψν

þ
�
K̂01 −

p1

p2
K̂02

�
ζμζν

	
; ð52Þ

with the physical dispersion equation of Eq. (40b). An
excellent cross check for the correctness of this result is that
the denominator p4 giving rise to unphysical dispersion
relations cancels completely from Δphys

μν , as expected.
Besides, it was checked that

j̃μðΔμν − Δphys
μν Þj̃ν ¼ 0: ð53Þ

Thus, a contraction of Δμν with two external, conserved
three-currents gets rid of all unphysical d.o.f., which is why
the result must be the same as contracting Δphys

μν with these
currents. Note that the same vector field must be obtained in
Eq. (50) by contracting Δμν with j̃μ from the left or with j̃ν

from the right. Another observation is that the numerator of
Eq. (52) involves Lorentz violation at first order only. This
is also the reason why k̂AF does not contribute to the
numerator, but just to the denominator Rphys.
As the unphysical poles have been eliminated, the

contour Cω in the complex p0 plane only encircles the
positive physical poles and their negative counterparts in a
counterclockwise direction. The contour integral over
p0 is usually evaluated with the residue theorem. We will
only consider the minimal case explicitly. Let ωð3Þ be the
physical dispersion relation. The denominator of Eq. (52)
can then be written as

Rphys ¼ Ξ½p0 − ωð3ÞðpÞ�½p0 þ ωð3Þð−pÞ�; ð54aÞ

Ξ ¼ 1 − 2½ðk̂FÞ0101 þ ðk̂FÞ0202�
þ 4fðk̂FÞ0101ðk̂FÞ0202 − ½ðk̂FÞ0102�2g: ð54bÞ

The residues are readily obtained from this form of the
denominator. We already mentioned that additional physi-
cal dispersion relations may arise for the nonminimal
case. Those must be taken into account in the contour
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integral. Finally, in the limit of zero Lorentz violation, we
obtain

iΔphys
μν j k̂F¼0

k̂AF¼0

¼ −iημν
p2

; ð55Þ

as expected from Eq. (38).

VIII. CONCLUSIONS

In the current paper, we have constructed the framework
of a Lorentz-violating extension of electrodynamics in
(1þ 2) spacetime dimensions including field operators
of arbitrary mass dimension by means of the method of
dimensional reduction applied to the nonminimal electro-
magnetic SME. The resulting modified planar electrody-
namics involves an additional scalar field that the
electromagnetic field can mix with. We obtained the set
of coupled field equations, the modified Maxwell equa-
tions, the Green’s functions for the electromagnetic and the
scalar field, and the perturbative Feynman rules of the
theory.
The modified dispersion relations for electromagnetic

waves were computed at leading order in Lorentz violation.
Finally, the general homogeneous solutions of the
uncoupled field equations were constructed, as well as
the inhomogeneous solutions, by means of the Green’s
functions. In the case of electromagnetic waves, the
unphysical d.o.f. had been removed from the Green’s
function before.
More sophisticated analyses of the properties of particu-

lar interesting sectors of this framework are planned to be
carried out in the future, including applications to planar
condensed-matter systems. Indeed, the framework devel-
oped can serve as a base for theoretical investigations of
electromagnetic aspects in such systems. Also, the structure
of the planar electrodynamics is simpler than that of the
parent theory in (1þ 3) spacetime dimensions. This
enabled us to perform certain computations that would
have been much more challenging for the parent theory,
such as the elimination of the unphysical d.o.f. from the
Green’s function of the electromagnetic field. With this
methodology and experience at hand, similar general
results are now within reach for the electromagnetic sector
of the nonminimal SME.
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APPENDIX: GENERAL PROPAGATOR
OF MODIFIED ELECTROMAGNETISM

IN (1 +D) DIMENSIONS

Here we would like to outline the construction of
Eq. (35). Inverse matrices can be obtained in a systematic
way via the Cayley-Hamilton theorem of linear algebra.
Note that in the mathematics literature, the corresponding
formulas are usually stated in Euclidean space. As we have
not found any text that discusses how to adapt these
formulas to a pseudo-Euclidean setting, we intend to
present these results here for a general purpose.
We consider a free theory of a vector field Aμ in

(1þD)-dimensional Minkowski spacetime described by
the Lagrange density

LA ¼ AμĤ
μνAν; ðA1Þ

where Ĥμν is a tensor operator in momentum space that can
contain arbitrary powers of the three-momentum. The
Lorentz indices run from 0 to D, and they are contracted
with each other via the (1þD)-dimensional Minkowski
metric ημν. The propagator can be obtained from the inverse
of the operator Ĥμν that is constructed in a general way as
follows:

Δμν ¼
detðηαβÞ

R

XD
k¼0

ð−1ÞDþk Ĥ
D−k
μν

k!
Λk; ðA2aÞ

Λk ¼ Bkðs1;−s2; 2!s3;…; ð−1Þk−1ðk − 1Þ!skÞ; ðA2bÞ
where Bk are the Bell polynomials. The latter are tabulated
(e.g., via the third and sixth columns of Table 24.2 in
Ref. [38]) with the first four given by

B0 ¼ 1; ðA3aÞ
B1ðx1Þ ¼ x1; ðA3bÞ

B2ðx1; x2Þ ¼ x21 þ x2; ðA3cÞ

B3ðx1; x2; x3Þ ¼ x31 þ 3x1x2 þ x3: ðA3dÞ

Hence, the Bell polynomial Bk is a function of k variables.
The matrices Ĥk

μν that appear in Eq. (A2) are contractions
of kmatrices Ĥμν such that the first index of the first matrix
and the second of the last one remain free:

Ĥ0
μν ¼ Iμν; ðA4aÞ

Ĥ1
μν ¼ Ĥμν; ðA4bÞ

Ĥ2
μν ¼ ĤμβĤ

β
ν; ðA4cÞ

..

.

Ĥk
μν ¼ Ĥμα1Ĥ

α1α2Ĥα2α3…Ĥαk
ν: ðA4dÞ
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The tensor components of I are defined via the inverse of
the metric tensor:

Iμν ≡ ðη−1Þμν: ðA4eÞ

Clearly, the inverse of the Minkowski metric reproduces
this metric. However, we will work with the general
definition to be able to generalize the results to arbitrary
spacetimes.
The variables sk are given by traces of the latter

contractions, i.e., sk ¼ ðĤkÞαα. The denominator R in
front of the sum in Eq. (A2a) corresponds to the determi-
nant of the matrix Ĥμν that can be expressed in the form

R ¼ detðημνÞ
ð1þDÞ!ΛDþ1: ðA5Þ

The characteristic polynomial that Ĥ satisfies is given as

pðĤÞ ¼ ĤDþ1 þ cDĤ
D þ � � � þ c1Ĥþ c0I ¼ 0; ðA6aÞ

where

cD−kþ1 ¼
ð−1Þk
k!

Λk: ðA6bÞ
The latter is the main ingredient used in the proof of the
general formula (A2) of the inverse.
It is worthwhile to notice that the formulas above have

been expressed in a covariant form. Thus, the inverse of
Eq. (A2) does not lose its validity for an electromagnetic
theory defined in a curved spacetime. In this case, all
occurrences of the Minkowski metric ημν must be replaced
by the corresponding pseudo-Riemannian metric gμν in
(1þD) dimensions.
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