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It is well known that one can define a consistent theory of extended, N = 2 anti-de Sitter (AdS)
supergravity (SUGRA) in D = 4. Besides the standard gravitational part (including a negative cosmo-
logical constant), this theory involves a single U(1) gauge field and a pair of Majorana vector spinors that
can be combined to form a pair of Dirac vector spinors (charged spin-3/2 gravitini). The action for N = 2
AdS, SUGRA is invariant under diffeomorphisms, SO(1,3) x U(1) gauge transformations, and under
local complex supersymmetry. We present a geometric action that involves two “inhomogeneous” parts: an
orthosymplectic OSp(4|2) gauge-invariant action quadratic in the gauge field strength and a supplementary
term invariant under the purely bosonic SO(2,3) x U(1) ~ Sp(4) x SO(2) sector of OSp(4]2), which
needs to be added for consistency. This action reduces to N = 2 AdS, SUGRA after suitable gauge fixing,
for which we use a constrained auxiliary field in the manner of Stelle and West. Canonical (9-constant)
deformation is performed by using the Seiberg-Witten approach to noncommutative (NC) gauge field
theory with Moyal star product. The NC-deformed action is expanded in powers of the deformation
parameter 6"*, up to the first order. We show that N =2 AdS; SUGRA has nonvanishing linear NC
correction in the physical gauge, originating from the additional, purely bosonic action term. For
comparison, simple N = 1 Poinacaré SUGRA can be obtained in the same manner from an OSp(4|1)
gauge-invariant action (without introducing additional terms). The first nonvanishing NC correction is
quadratic in the deformation parameter 8" and therefore exceedingly difficult to calculate. Under Wigner-
In6nti contraction, N =2 AdS superalgebra reduces to N =2 Poincaré superalgebra, and it is not
clear whether this relation holds after canonical NC deformation. We present the linear NC correction
to N =2 AdS,; SUGRA explicitly and discuss its low-energy limit and what remains of it after Wigner-

Inonii contraction.

DOI: 10.1103/PhysRevD.100.095019

I. INTRODUCTION

In our quest for the theory of “quantum gravity,” we must
be prepared to go beyond some deeply rooted assumptions
on which we are accustomed; in particular, at very short
distances (very high energies), we might have to abandon
the notion of a continuous space-time and the associated
mathematical concept of a smooth manifold that describes
it. One distinguished approach to the problem is non-
commutative (NC) field theory—a theory of relativistic
fields on noncommutative space-time, based on the method
of deformation quantization by the NC star product [1-3].
One speaks of a deformation of an object/structure when-
ever there is a family of similar objects/structures of which
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the “distortion” from the original, “undeformed” one can be
somehow parametrized. In physics, this so-called deforma-
tion parameter appears as some fundamental constant of
nature that measures the deviation from the classical (i.e.,
undeformed) theory. This way of “quantizing” space-time
is essentially different from the standard quantum field
theory (QFT) quantization procedure for matter fields.
Different space-time dimensions (the usual 3 4 1) are
regarded as being mutually “incompatible,” in the sense
that there exists a lower bound for the product of uncer-
tainties Ax*Ax” for a pair of two different coordinates. To
capture this “pointlessness” of space-time, one introduces
an abstract algebra of NC coordinates as a deformation of
the classical structure. These NC coordinates, denoted by
x#, satisfy some nontrivial commutation relations, and so it
is no longer the case that #x¥ = X*%*. Abandoning this
basic property of space-time leads to various new physical
effects that were not present in theories based on classical
space-time. The simplest case of noncommutativity is the
so-called canonical (or @-constant) noncommutativity,

(1.1)

£, 2] = i0" ~ Ak
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where 0" are components of a constant antisymmetric
matrix and Anc is the length scale at which NC effects
become relevant. The deformation parameter is a funda-
mental constant, like the Planck length or the speed of
light.

Instead of deforming the abstract algebra of coordinates,
one can take an alternative but equivalent approach in
which noncommutativity appears in the form of NC
products of functions (fields) of commutative variables
(coordinates). These products are called star products
(x-products). In particular, to introduce canonical non-
commutativity, we use the Moyal x-product,

~ ipuw_0_ 9
(F * 9)(x) = " 57 £ (x)g(y) |y (1.2)
The leading term in the expansion of the exponential is the
ordinary commutative product of functions, and the higher-
order terms represent nonclassical NC corrections.

To date, we still lack direct physical evidence of
supersymmetry (SUSY), at least in its simplest form.
Nevertheless, its beneficial influence on high-energy phys-
ics (improved renormalizability in QFT and a natural
resolution of the hierarchy problem), along with its
mathematical consistency and unification power [especially
the unification of gravity and the Standard Model within
supergravity (SUGRA) and an ultimate unification scheme
such as superstring theory], motivate us to seriously
consider SUSY as an integral part of our description of
nature. Since the pioneering work of Freedman et al. [4,5],
and Deser and Zumino [6], the theory of supergravity has
become a well-developed field of research. SUGRA pro-
vides a natural unification of gravity with other fields by
imposing the gauge principle on SUSY, the associated
gauge field being the spin-3/2 gravitino field described by
a Majorana vector spinor. It was demonstrated in Refs. [7,8]
that one can have a consistent theory of extended N = 2
AdS,; SUGRA with a complex [U(1)-charged] gravitino
field. In this paper, we propose a geometric way of
obtaining N =2 AdS; SUGRA action and perform its
NC deformation. The obtained NC correction can be
regarded as a low-energy signature of the underlying theory
of quantum gravity. We calculate the NC correction
explicitly and discuss some of its properties.

The results of this paper amount to a supersymmetric
extension of the theory of NC gravity of which the
various aspects have been treated extensively in the
literature [9-23]. In particular, an approach based on
NC-deformed anti-de Sitter (AdS) gauge group SO(2,3)
was developed in Refs. [24—27], building on the results of
MacDowell and Mansouri [28], Towsend [29], Stelle and
West [30], Chamseddine and Mukhanov [31,32], and
Wilczek [33]. One starts with a classical (undeformed)
action invariant under SO(2,3) gauge transformations.
To relate AdS gauge theory with general relativity (GR),
original SO(2,3) gauge symmetry has to be broken to

SO(1,3), by gauge fixing. For that matter, a constrained
auxiliary field is introduced, as in Ref. [30], to define
the physical gauge. Spin-connection and vierbein are
treated on equal footing, as components of the general
SO(2,3) gauge field. The SO(2, 3) gauge-invariant action
is deformed by introducing Moyal *-product and ex-
panded in powers of 9" via the Seiberg-Witten (SW) map
[34-37]. After symmetry breaking, one obtains NC corre-
ctions to classical gravity, invariant under SO(1, 3) gauge
transformations. The first-order NC correction vanishes,
as confirmed by Ref. [38]. The second-order NC correc-
tion to GR is found explicitly, and deformed equations of
motion are analyzed. It is argued that the apparent
breaking of diffeomorphism invariance stems from the
fact that, by introducing the canonical anticommutation
relations between space-time coordinates (1.1), we im-
plicitly set ourselves in a preferred coordinate system—
the Fermi inertial frame along a geodesic [39—41].

Similarly, one can establish NC SUGRA by gauging an
appropriate supergroup [42—50] and subsequently perform-
ing canonical deformation. Since pure gravity can be
obtained by gauging AdS group SO(2, 3), orthosymplectic
supergroup OSp(4|1) comes as a natural choice for pure
N =1 Poincaré SUGRA. The bosonic sector of 03p(4|1)
superalgebra—symplectic algebra 8p(4)—is isomorphic to
AdS algebra 80(2,3) that reduces to Poincaré algebra by
Wigner-Inonii contraction [51]. The subject of NC SUGRA
has been treated in Refs. [52,53]. Classical action for
OSp(4]|1) SUGRA presented in Ref. [53] is manifestly
invariant under OSp(4|1) gauge transformations, and we
will use it as a motivation. However, obtaining explicit NC
deformation of this action is exceedingly difficult because
the first nonvanishing NC correction is quadratic in 6**.
Taking a lesson from Refs. [54-56] that inclusion of Dirac
spinors coupled to U(1) gauge field produces (much
simpler) linear NC correction, we will make a transition
to OSp(4|2) SUGRA that involves a pair of Majorana
spinors that can be mixed into a pair of charged spin-3/2
gravitini coupled to U(1) gauge field. We present a geo-
metric action that consists of two “inhomogeneous” parts:
an OSp(4/2) gauge-invariant action quadratic in gauge field
strength and a supplementary action, invariant under the
purely bosonic SO(2,3) x U(1) sector of OSp(4]2), that
has to be included in order to obtain complete N = 2 AdS,
SUGRA at the classical level; this additional bosonic term
produces a nontrivial linear NC correction to N = 2 AdS,
SUGRA, after deformation.

In Sec. II, we introduce undeformed geometric action
for OSp(4|2) SUGRA and make comparison with the
similar action for OSp(4|1) SUGRA. In Sec. III, we
perform NC deformation by using the Seiberg-Witten
approach and study the first-order NC correction to
N =2 AdS,; SUGRA. Section IV contains discussion and
proposals for further investigation. Appendixes A and B
contain supplementary material.
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II. CLASSICAL ORTHOSYMPLECTIC SUGRA

We consider two classical (undeformed) SUGRA
models based on the orthosymplectic OSp(4|N) gauge
group: the simple N =1 AdS, SUGRA, describing pure
supergravity with the negative cosmological constant, and
the extended N =2 AdS,; SUGRA that involves also a
pair of charged gravitini fields coupled to U(1) gauge
field. We focus our attentions on the latter (N = 2), since
the former (N = 1) has been treated extensively in
Ref. [53], including its NC deformation, and we discuss
it just for comparison. Some significant differences of the
two models in question have been manifested already at
the level of their classical actions, and this reflects
drastically on the structure of their NC corrections after
deformation.

A. Classical OSp(4|2) SUGRA
Orthosymplectic group OSp(4/|2) has 19 generators, and
they are of two kinds: bosonic and fermionic. Ten bosonic
generators MAB = —MBA (A,B=0,1,2,3,5) span AdS
Lie algebra 80(2,3) (symmetry algebra of AdS,),

[MABa MCD]

= i(ﬂADMBc + WBCMAD - ﬂAcMBD - ﬂBDMAC)v

(2.1)

where 7745 is a flat five-dimensional (5D) metric with
signature (4, —, =, —, +). By splitting this set of generators
into six M, AdS rotatlon generators (a,b=0,1,2,3)and
four AdS translation generators M5, we can recast 80(2, 3)
algebra in a more explicit form:

[MaS MbS] = _iMaba
[Muh’ MCS] = i(nthaS - nach5)7
[Mab Mcd] = i(nadec + nbcMad - nachd - nbdMac)'

(2.2)

If we introduce a new set of generators (M, P,) defined
by My, = M,, and P, == 7'M s = aM s, where [ is a
length scale related to AdS radius and @ = [~ (we will use
both parameters in the following formulas), the algebra
(2.2) transforms into

[ P ,ﬁ ] = _iazMaba
[ ab> ] i(nbcﬁu - nac,}sh)7
[M M, 4= i(ﬂadec F MpeMag = HaeMpa —’deMac>-

(2.3)

In the limit @ —» 0 (or [ - o0), AdS algebra reduces to
Poincaré algebra; in particular, we obtain [P,,P,] =0

with all other commutators left unchanged. This is a
famous example of the Wigner-Inonii (WI) contraction,
the contraction parameter being « (or /). This Lie-algebra
contraction (or deformation) can be extended to AdS
superalgebra, and we will be interested, later on, in its
effect on the NC correction of N =2 AdS; SUGRA.

A representation of the AdS sector of 08p(4|1) super-
algebra can be obtained by using 5D gamma matrices 'y
satisfying Clifford algebra {['4,['z} = 2n45; the AdS
generators M,y are represented by 6 x 6 supermatrices,
which reduce to 4 x4 matrices Myp = 4[4, T'5] in
the AdS subspace; see Appendix A. One choice of I
matrices is I'y = (iy,ys,rs), where y, are the usual four-
dimensional y matrices. In this particular representation the
components of M,y are given by M, = {[14.75] = 50
and M5 = —17,.

The ten AdS bosonic generators M ,p are accompanied
by eight independent fermionic generators Qé, with spinor
indexa = 1,2,3,4and SO(2) index I = 1, 2, comprising a
pair of Majorana spinors, and one additional bosonic
generator 7 related to SO(2)~U(1) extension. Together,
they satisfy 03p(4/2) superalgebra (consistency requires
that fermionic generators Qa transform as components of
an AdS Majorana spinor),

(Mg, Mcp) = i(napMpc + nscMap
- ’YACMBD - ”BDMAC)7
{MABs QAQ] = _(MAB)aﬂQAév
{0L, Q/Ji} = —25”(MABC_1)aﬁMAB -
7. 04] = —ie" s,

iel! C oy,
(2.4)

with antisymmetric tensor &'/, £'> = 1. Matrix C~! is the
inverse of the charge-conjugation matrix (spinor metric)
for which we use the following representation given in
terms of Pauli matrices: C = —¢° ® io” and C,5 = —Cp,.
Numerically, we have C~! = —C, but the index structure of
the two is different since C,, (C~")"¥ = &). More visually,

0f-1

1

0252

C= (2.5)

0|1
O2x2 | ——T1—
—-110

An explicit matrix representation of 08p(4|2) superalgebra
is given in Appendix A.

By introducing a new set of (rescaled) generators
{Mab = Mabv,f)a = aMa57 Q{l = \/aéézv,j—:: CIT}, we
can recast the 08p(4|2) superalgebra (2.4) into the follow-
ing form:

095019-3



DRAGOLJUB GOCANIN and VOJA RADOVANOVIC

PHYS. REV. D 100, 095019 (2019)

{Mabﬂ 75C .(nbc,]sa - nacjjb)
[Mavacd (nadec +1pe Mg = aeMpa _”bdMaC)»
[7511’ Q )a Q/f’

= _( ab)aﬂQ;ﬁ

[’j\" Q - _lelj Qén

~26" a(M®C) y M

— 267 (MSC) Py — i€ Coy T

]
|=
|=
|=—a(M,
I=
]

—~
(o}
R~
=~
—
I

(2.6)

Under WI contraction o — 0, it reduces to N = 2 Poincaré
superalgebra.

Orthosymplectic supergroup OSp(2n|m) (the symplectic
sector is always even dimensional) consists of those
supermatrices U that preserve the graded metric

( Zaﬂ 02n><m>
G = )
0m><2n Aij

with some real 2n x 2n matrix X,; = —X5, and some
real m X m matrix A;; = Aj;. Considering only infinitesi-

mal transformations U = 1 + eM, generated by some
038p(2n|m)-valued supermatrix

(2.7)

where we have 80(2, 3) gauge field w, = §

~()p(C)" (@=1, 2,3, 4).

O Mas + (X)) QL + A

AB _ 1 ab as 1 a
wﬂ MAB—Ewﬂ Mab+a)/4 Mas—za)’u Gab_i
vector spinors y!, with components (y%),, and their Dirac-adjoints ¥} =

M A b 2.8
(bosonic blocks Ay, .», and D,,,, have ordinary commut-

ing entries, and fermionic blocks B,,,, and C,,.,, have
Grassmann-valued entries), the defining relation becomes

MSTG + GM = 0. (2.9)

The supertranspose, super-Hermitian adjoint and supertrace
are defined by imposing the standard rules (MN)5T =

NSTMST, (MN)" = N*M" and STr(MN) = STr(NM),
AT | T AT T
ST _ T —
M= (—BT DT>’ M= (B"' D"')’
STr(M) = Tr(A) — Tr(D). (2.10)

Now, the key observation is that a pair of Majorana fields
x4 (describing a pair of neutral spin-3/2 gravitini) con-
stitute the fermionic sector of the 03p(4|2) connection
supermatrix €2,. We can expand this superconnection over

the basis {M;,, M .5, O, T} with the corresponding gauge

fields {®,*",®,*. 7}. A}, as
we | 2
7 e (2.11)

Xo | —idu| 0

b 1 as H H
@®,*7 4, a pair of Majorana

—(x})TC™" with components (%})* =

Equ1valently, we can expand Q, over the rescaled basis {./\/lab, POl T }, but with a different set of gauge fields

0,0, ¢f = Lo 25 = L7 A, = 1A} s
1 1 1 1 we | Vawl Vay?

b 55 3 7 N .

Q, = —w @ Mab + awﬂa Pa + T Qa + EA“T = \/51@11 0 i Ay, ) (2.12)
vays | —iaA, | 0

where we again have 80(2,3) gauge field w, = v,
L), @6, —Lely,, two independent Maj i ¥, = : (2.13)

10,04, —5 e}y, two independent Majorana spinors ] w2

i

. and (dimensionless) U(1) vector potential A,. We
will use this particular representation because it makes WI
contraction more transparent.

The two Majorana spinors, y/,L and l//ﬁ, can be combined
into an SO(2) doublet,

It can be readily confirmed that the gauge supermatrix
(2.12) satisfies the defining relation for the elements
of 03p(4]2) superalgebra [C is the charge-conjugation
matrix (2.5)],
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0
0 Q,=0.

1

C
QfT 0
0 1

0 0 c | o
110 + 0 1
0 0 0

(2.14)

The field strength associated with AdS gauge field w, is

F,, =0,w,— 0,0, —ilw, o,
— (R”yab _ (wuaSwDbS _ wﬂwayaS)) %
57
- F,° ?” (2.15)
with [note that D% stands for the Lorentz SO(1,3)
covariant derivative]
b (2.16)

ab __ ab ab a cb a
R, =00, =0,0," + ®,* .0, —w,* .,

F,

,“° =DEw,” - Dtw,”. (2.17)

It was shown in the 1970s [28-30] that one can relate
AdS gauge field theory to gravity (GR in the first-order
formalism) by identifying a),,‘”’ with the Lorentz spin
connection and a)M"5 with the rescaled vierbein field
aey; vierbein is related to the metric tensor by nabe,‘jef =
9w and e = det(ej;) = \/=g. The geometric meaning of
this relation is thoroughly explained in Ref. [57]. By
extension, R,w“b can be identified with the curvature tensor,
and F,,* can be identified with rescaled torsion aT,,".
Therefore, in the AdS setting, we have a natural unification
of the vierbein and spin connection as components of a
general SO(2,3) gauge field; each transforms as a gauge
field and stands on equal footing. To establish this
identification, one has to break the original AdS gauge
|

Fu = 0,80 — 0,8, —i[Q,,Q,]

F,

symmetry to the Lorentz SO(1,3) gauge symmetry by
introducing an auxiliary field ¢ = ¢*T"4 [30]. This field
transforms in the adjoint representation of SO(2,3), and it
is constrained by 17, $® = I>. We can now start with an
action quadratic in AdS gauge field strength, originally
suggested by MacDowell and Mansouri [28], invariant
under SO(2,3) gauge transformations,

Tr / d*xe"P°F ,F o, (2.18)

l
S P—
AS T 647G,

where we have the AdS covariant derivative in the adjoint
representation,

D, = 0,¢ — i[w,. $).

We choose the physical gauge by setting ¢* =0 and
¢° = [ and thus obtain

(2.19)

1
SAdSlg.f. == 162Gy / d*x <3<R(€’CU) - 6/12)

2

+ R abRPGCdgﬂypgsabcd> ’ (220)

16

which is the standard GR action (written in the first-order
formalism) involving the Einstein-Hilbert term, negative
cosmological constant A = —3//> = —3a?, and the topo-
logical Gauss-Bonnet term that can be omitted.
Therefore, we can write the SO(2, 3) field strength as

1

a
F;w = Z(Rpwab - az(ezellj - eze;}))Gab _ET;wayuv

(2.21)
and we see that the vierbein and torsion terms vanish under
WI contraction.

By generalization, we introduce OSp(4/2) field strength
[, associated with the superconnection Q,,

| Va(Duh Do) ValDuyl - D)

=| VaDu, —Duiy)
Va(Duy — Do)

with extended AdS field strength F ,w (Summation over
I =1, 2 is implied)

F/w = F;w - la(l//;tl/_/{/ - l//LI/l/_/;IJ

1. a -~
= ZRW’"”GW —5 T, Y m, (2.23)

involving extended curvature tensor R,,™" and extended

torsion T,wm, given by

- (2.22)
0 i@fuu 9

—iaFu, | 0

D mn,_ mn 2(,m,n n
R, =R, —a’(e)e;—e

p nem) —ia(W,0mY,), (2.24)

TW"=T," +i(¥

W) (2.25)

Electromagnetic field strength is also modified by a bilinear
current term J (e)
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.7:,,,/ = F,u/ - j(e)m/ = aﬂAl/ - au-Ap - Lijuiaquv' (226)

Note that Pauli matrix ic>

components in 7).

In the fermionic sector of [,

mixes the two Majorana

we introduced

Dy, =Dy, + aAy;, (2.27)
Dﬂy/g = Dﬂl//,% —a ﬂy/}/, (2.28)

where D), stands for SO(2, 3) covariant derivative. The fact
that Majorana spinors y//ﬁ and wﬁ are not charged is
reflected in the manner in which they couple to the gauge
field A,. Using them, we can define two charged Dirac
vector spinors y; =y, =+ iy?Z, related to each other by C
conjugation, v, = y5" = Cy;f”, that do couple to A, in
the right way. Using the Pauli matrix ic®, we can unify
(2.27) and (2.28) as

DY, = (D, +aA,ic*)?,

ia ,
= (D,I; +ort aAﬂ162) ¥, (2.29)

Now, consider an action, similar to the one defined in
(2.18) for pure gravity, but now appropriately generalized
to be invariant under extended OSp(4|2) gauge trans-
formations,

Sy = STr / d4xemroF , (allgyg + bD?/P)F,,®.  (2.30)

The action is real, and we introduced a pair of free
parameters, a and b, that will be fixed later. The first part
of (2.30) is a MacDowell-Mansouri type of action, quad-
ratic in OSp(4|2) gauge field strength, and the second part
(b term) is necessary for having local SUSY after the
symmetry breaking.

Generalized auxiliary field @ is given by a supermatrix
(we now have two Majorana spinors 4; and 4, and additional
scalar fields 7z, m, and o), see also Refs. [45-47,53],

I i YaYs + P75 | A A
Y

—/\2 m o

T—=0 | m

(2.31)

In the physical gauge, A =4, =7 =0 =m = ¢* = 0,and
¢° = 1, yielding

lvs1 0 0
POlyf = 0 00 (2.32)
0 00

Field strength [, and the auxiliary field ® transform in
the adjoint representation of OSp(4/2), with infinitesimal
variations

8.F,, = ife.Fy).

e pv IR

5,® =ile,®, (2.33)

for some 08p(4|2)-valued gauge parameter ¢ given by a
supermatrix,

1 _AB
JeBMap | &6 &

€= £ ‘om

(2.34)

—ta | O

3 0

From (2.33), the invariance of the action (2.30) follows
immediately.

After the gauge fixing, field ®%//> that appears in the
second term of (2.30) becomes a projector that reduces any
08p(4|2) supermatrix to its 80(2,3) sector, and the
classical OSp(4/2) gauge-invariant action (2.30) reduces to

a+b)il - ~
S42|g.f. = /d4xgﬂl’/’0' (% R,uymnR/)(rrsgmnrs

- 4a(Dﬂ‘i’Dy5Dp‘Pg)>. (2.35)

The term that is quadratic in the Lorentz SO(1, 3) covariant
derivative Dﬁ can be transformed by partial integration,

/ d*xe"r?(DLW,ys DLW,
1 _
—1—6/d4xeﬂ”p"RW'""(‘P,,O"“P(,)emms, (2.36)

where we invoked the commutator of two Lorentz covariant
derivatives

1
i[DL, DY, = —R,,"™

4 Gmn"Pa'

(2.37)

A term of the same type appears in the first part of the
action (2.35). These two contributions have to cancel each
other in order to have SUSY, and this implies the constraint
b = —a/2. Moreover, to obtain the correct normalization of
the Einstein-Hilbert term, we set a = il/322Gy = il /4x?,
yielding
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1
Siler. = —ﬁ/d“x(e(R(e,a)) - 6a?)

mn S LHUPC
16 2R/w R emr Emnrs

+ e (2@;47/57/11(1)/) + aA/) iaz)qjﬁ
+ l}—”,,( L r5ic™Y,)
~3 (‘i‘ﬂiaz‘l’y)(‘i‘p% iaZ‘I’g)> > .

However, this is not the full N = 2 AdS, SUGRA action.
The gravity part is correct (we can omit the topological
Gauss-Bonnet term), and we also get the correct kinetic
term for the gravitino doublet. There are also two bilinear
source terms, electric and magnetic,

j(e)w = li’ﬂiaijy,

(2.38)

j’{% = ée"””"(‘i’pys ic’¥,).
But we are missing the contribution from the SO(2) part of
the bosonic sector, in particular, the kinetic term for U(1)
gauge field A,. The reason for this defect can be traced
back to the specific form that the auxiliary field assumes
in the physical gauge ®| of. (2.32); it completely annihilates
the SO(2) sector of any 08p(4|2) supermatrix. To restore
the missing terms, we must introduce an additional action,
supplementing (2.30). In Ref. [55], following the approach
of Ref. [58], we defined a classical action invariant under
SO(2,3) x U(1) gauge transformations [locally isomor-
phic to the bosonic sector of OSp(4|2)] that involves an
additional auxiliary field f=1%f"8M,p. Its role is to
produce the canonical kinetic term for U(1) gauge field
in the absence of the Hodge dual operator (this is, of course,
the crucial point; we are trying to construct a purely
geometrical action that does not involve the metric tensor
gy explicitly). This auxiliary field f is a U(1)-neutral 0-
form that takes values in 80(2, 3) algebra, and it transforms
in the adjoint representation of SO(2, 3).

The way to proceed is to employ this auxiliary field
method to include the modified U(1) field strength F uw
defined in (2.26). However, there seems to be no way to
construct an OSp(4]2) gauge-invariant action that is com-
patible with this procedure. Therefore, we will use an
action, analogous to the one in Ref. [55], invariant under
the purely bosonic SO(2.3) x U(1) sector of OSp(4|2)
involving the bosonic field strength f = F , T+ K'_l.7:
Fu+c " (Fu = T (o) of SO(2,3) x U(l). The action is
given by

(2.39)

S, ="Tr / d*xe? (cff,,D, D P

+ df*D,¢D, D, D) + c.c. (2.40)

Note that, by doing this, we lose the complete OSp(4/2)
gauge invariance of the undeformed action before the
symmetry breaking. Nevertheless, we will obtain the
correct action for N =2 SdS, SUGRA in the physical
gauge, and this is the only requirement that has to be
satisfied in order to perform NC deformation.

After calculating traces (see Appendix B), we obtain

SA _ /d4x€/4vp6 <%fABFﬂDCD(DP¢)E(DU¢)F

X ¢%(nrGeapcoe + 2Nap€BCEFG)
+ CK_IfABj:yv(Dp¢)E(Da¢>F¢G€ABEFG

id
= S I L an(Du)E (D) (D) (D)

X ¢R€EFGHR> + c.c. (241)

We conclude that parameter ¢ must be real; otherwise, the
second term, involving F uv» Would be purely imaginary
and would not contribute (and this term is the one that we
need to include). Therefore, assuming real c, the first term
(involving gravitational quantities like curvature tensor and
torsion) becomes purely imaginary and vanishes after
adding its complex conjugate (c.c.). Also, d must be purely
imaginary for the procedure to work.
Gauge fixing yields

Salgr. = / d*xe(=8lek™ o0 F , eteb + 24ildf*B f ).
(2.42)

By varying this gauge-fixed action over f* and f
independently, we obtain algebraic equations of motion
(EoM) for the components f,;, and f 5 of the auxiliary field
[, respectively, and they are given by

fas = 0. (2.43)

IC =~
_ H v
fab = _@fﬂyeaeb7

Inserting them back into the action (2.42), we obtain

2ilc? ~
SA|g,f_ :ﬁ/d“xe]ﬁ.

To get the consistent normalization, we set the prefactor to
(8x?)~!, yielding another constraint 16ilc> = 3d for the
parameters ¢ and d. To make the connection with the results
of Ref. [55], we take ¢ = 1/32] and d = i/192/, implying

(2.44)

far = —k1F, et (2.45)
Therefore, after imposing the physical gauge, the original
bosonic action (2.40), invariant under SO(2,3) x U(1)
gauge transformations, reduces to the SO(1,3) x U(1)
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gauge-invariant action containing the canonical kinetic
term for U(1) gauge field A, in curved space-time
and two additional terms involving gravitino current
T ey = Puic™¥,,

1
Salgr. = e / d*xeF?

d4xe(.7:2 —-2F- j(e) + J%e)). (2.46)

s

This is exactly the piece that was missing in (2.38). With
this result in hand, we have the complete classical N = 2
AdS, SUGRA action [43,44],

1
-3 2/d“xe(R 60>

+2¢7 e sy, (D, + aA,ic?)¥,
+2F Ty =T ) T(m)

(Sa2 + Sa)lgr. =

1
-2 (F?+ T, —2F - J(e))> . (2.47)

The most important characteristics of this SUGRA model
are the negative cosmological constant A = —3a? = —3//?
and the fact that U(1) coupling strength is equal to the WI
contraction parameter a. Under WI contraction (a — 0), the
N =2 AdS,; SUGRA action consistently reduces to the
N = 2 Poincaré SUGRA action.

In terms of charged Dirac vector spinors it =y =+ iy
(actually, we can use only one of them since they are related
to each other by C conjugation), the action becomes

1
7/ d*xe (R(e, w) — 6a*

+ 26_1‘5‘”%001;”/1 7571/( laA )
+ + 7+
25Ty =T () T (m)

(Sa2+Sa)lor. ==

1
—4972—2f:j;)+(jﬁgﬂ>, (2.48)

YWy ).

For later purposes, we note that action (2.48) contains a
masslike term for the charged gravitino (we absorbed the
parameter x~! into w, to obtain the canonical dimensions),

—ylyy) and T = & (lrsws —

i / d*xey oy, (2.49)

with masslike parameter equal to the WI contraction
parameter.

B. OSp(4/1) SUGRA

The OSp(4|1) supergroup has 14 generators: ten bosonic
AdS generators M, and four fermionic generators 0,
comprising a single Majorana spinor (describing a single
neutral gravitino). The supermatrix for the OSp(4|1) gauge
field €, is given by

|V, ) (2.50)

Dy
%_(ﬁm\ 0
Consider the following action invariant under OSp(4|1)
gauge transformations [52]:
Si =75 'IGN STr / d*xemroF,, <]ISX5 - %qﬂ) F 0.
(2.51)
The auxiliary field is

o - i s + s | AN et (15 0
- ) ‘ 7 ’

(2.52)

In the physical gauge, the OSp(4|1) gauge-invariant action
(2.51) exactly reduces to the N = 1 AdS, SUGRA action
[43,44,53],

Sulyr, = =5z [ d*r(e(Rle.0) = 6/P)
+ 28"””"(l/wsnD,,v/a))
= _ZLKZ d*xe(R(e, w) — 6a*
+2e7 e (W y 57, Dpw,) — 2ia(,0"y,)).
(2.53)

It contains the Einstein-Hilbert term with the negative
cosmological constant A = —3/[?, the Rarita-Schwinger
kinetic term for the neutral gravitino, and a masslike
gravitino term that is needed in the presence of the
cosmological constant to insure the invariance under local
SUSY (the gravitino actually remains massless). The
topological Gauss-Bonnet term is omitted. The cosmologi-
cal constant and the masslike term vanish under WI
contraction, yielding minimal N =1 Poincaré SUGRA.
Note that we do not need additional action terms in (2.51)
to obtain a consistent classical theory.

It is shown in Ref. [53] that linear (in 6**) NC correction
to (2.51) vanishes and that one has to calculate the second-
order NC correction in order to see NC effects, which is
exceedingly difficult. In the following section, we use the
Seiberg-Witten approach to NC gauge field theories, to
calculate linear NC correction to N = 2 AdS,; SUGRA, and
conclude that it is not equal to zero. The nonvanishing part
comes from the additional bosonic action, S,.

095019-8



CANONICAL DEFORMATION OF N =2 AdS; ...

PHYS. REV. D 100, 095019 (2019)

III. NC DEFORMATION

Canonical deformation of the orthoymplectic action
(2.30) is obtained by replacing ordinary commutative field
multiplication with Moyal x-product, yielding an NC
action (denoted by *) manifestly invariant under NC-
deformed OSp(4|2), gauge transformations,

il . N .
Si = mSTr/d“xe’””“ <[F,w * )y x @
1 . A oA A -
—ﬁ[FW*CI)*CD*[FPU*q)) (3.1)

Likewise, we have a canonically deformed version of the
bosonic action (2.40) with ¢ = 1/32] and d = i/1921,

A

1 A 2 ~ ~
Sh = ETr/d“xe"”P" (f * [y * Dyp * Dyp % ¢

AN . a A A oA
+gf*f*Dﬂgb*quﬁ*Dﬂqﬁ*Dﬁq’)*q’))+c.c.

(3.2)

We denote NC fields by a “hat” symbol. In the Seiberg-
Witten approach [3,34-37], NC gauge field theory is
completely defined by its commutative (classical) counter-
part. For some non-Abelian gauge group G with generators
T, satisfying Lie-algebra relations [T4,Tp] = ifs 5Tc,
the commutator of two infinitesimal gauge transformations
¢, and o, closes in the algebra,

[561 s 562] = 5—i[€1,€2]'

There is, however, difficulty, in general, concerning the
closure axiom for NC gauge transformations. Namely, for a
given pair of NC gauge parameters A, and A,, we would
like to find a third one, A3, such that

(3.3)

(67 2 83] = &3 (3.4)

Now, if NC gauge parameter A is supposed to be Lie-
algebra valued, A(x) = A%(x)T,, then, for some generic
NC field ¥ that transforms in the fundamental representa-
tion of the gauge group (although the argument holds in any
representation), we have

(524830 = (A *» Ay — Ay x A)) » W

1 A4 & A N
= E([A/?TAg]{TA’ Tp}+{ATIASHT A T)) » ¥

=ik« ¥ =510 (3.5)
The NC closure rule
1%,70%,) = 004,14, (3:6)

consistently generalizes its commutative counterpart.
However, Eq. (3.5) implies that the commutator of two
NC gauge transformations does not generally close in the

Lie algebra, because anticommutator {74, Tz} does not in
general belong to this algebra [except for the U(N) gauge
group]. To overcome this difficulty, we will apply the
universal enveloping algebra (UEA) approach. The envel-
oping algebra is “large enough” to ensure that closure
property of NC gauge transformations holds, provided that
NC gauge parameter A is UEA valued.
The NC covariant derivative (for a generic gauge group
@) in the fundamental representation is defined by
DY =09-iV, ¥, (3.7)
where \7,4 stands for the corresponding NC gauge field, and
it transforms as

53D,V = iA « D,¥. (3.8)

implying

SV, =0,A+i[ArV,)]. (3.9)
Therefore, the NC gauge field must also be UEA valued,
and it can be represented in its basis. But UEA has an
infinite basis, and it seems that by invoking it we actually
introduced an infinite number of new degrees of freedom
(new fields) in the NC theory, rendering it unrealistic. This
problem is resolved by the SW)\ map [34-37]. Essentially,
we assume that classical gauge transformations induce the
corresponding NC gauge transformations,

SNV, =V,(V,+6.V,)=V,(V,). (3.10)
This allows us to represent every NC field as a perturbation
series in powers of the deformation parameter 6** with
expansion coefficients built out of fields from the unde-
formed theory, e.g., Ae =e+ A 4+ A® ... At zeroth
order, NC fields reduce to their undeformed counterparts.
For example, the NC gauge parameter and potential can be
represented as

A 1
Ae=e=207{V,. 0.} + O@). (3.11)

. 1
V,=V, —Zefiﬂ{vﬂ, 0sVy+Fpt +0O(6%). (3.12)

After these general consigerations, we return to the NC
action (3.1). Field strength I, appearing in (3.1) is defined

in terms of OSp(4,2), gauge potential Qﬂ as

Fo =0, -0,Q,—iQ:Q,). (3.13)

It transforms in the adjoint representation of the OSp(4, 2),
supergroup as well as the NC auxiliary field o,

5iF, =i[AsF,),  sid=i[A:d] (3.14)
At this point, it would be tempting to proceed by directly
imposing the physical gauge. However, this operation
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would not yield an action with an appropriate symmetry
because gauge fixing does not commute with NC defor-
mation. A bypass is provided by the SW expansion.
Representing NC fields in terms of their undeformed
counterparts, we obtain a perturbative expansion of
OSp(4]2), gauge-invariant NC action (3.1) in powers of
the deformation parameter 6**. By construction, the SW
map ensures invariance of the expanded action under
ordinary OSp(4|2) gauge transformations, order by order.

We now present some relevant steps in the expansion
procedure of the NC action (3.1). The goal is to calculate
and analyze linear NC correction to the classical action

where DA” stands for the OSp(4|2) covariant derivative
(associated to Q). . .

Generally, for a pair of NC fields A and B, linear NC
correction to their product is

A« B)V = A0B 4 ABD +%6’””8/,A863. (3.17)

In particular, if both fields transform in the adjoint
representation of OSp(4(2),, we have

N | . SR
(A % B)) = =20"{Q,. (9, + D,)AB} + %eﬂ"DpADGB

(2.30). The SW expansions, up to the first order in the ADVE 4+ A(BDY 1
deformation parameter, of the NC auxiliary field ® and NC + ATV B+ABTY (3.18)
field strength [Iflw are given by For example, in (3.15) and (3.16), we have
A 1 X A
b= @ -207(Q,. (0, + D)@} + O, (3.15) @My =o. (3.19)
~ 1 A A1)\ 1 4
P = Fou = 10°(2,, (0, + D,)F) (F'Y = 30 {Fu-Fou (3:20)
1 Successive application of the rule (3.18) gives us the
~60°{F,,.F 0(6?), 3.16 pp ) 8
+ 2 {Fop Fou} + O (3.16) first-order NC correction to the classical action (2.30):
|
1) ior 4 yupo 1 [ A N 1 1
S42 = MSTr d*xe —Z{U:M., l]:/wl}:po'}cb +§D/1I]:/JDDT|F/70'(D+§{|Fl/t?l}:Tu}l]:pO'(I)_Fiﬂ:ﬂu{[Flp’ l]:‘to’}q)
1 1 i A N 1 i N N
Y (— 3 {Fs, [Fﬂydﬂ}[Fp(,(I) + ED,l[FWDT(Iﬂ[FpG@ + 3 {Fiu [Fw}dﬂ[FngI) + 3 F,.[D,®, D, ®|F,,®

O I
+ 5 Fu @D, 0D, ® + S F, 0HF,, F }@ ) ).

The correction is real and invariant under OSp(4,2) gauge
transformations. However, a careful examination shows
that after the gauge fixing (2.32) it vanishes completely,
1
S ler. = 0. (3.22)
But we still have the additional NC action § invariant

under purely bosonic NC-deformed SO(2,3), x U(1),
J

1 1 1
sy =50+ s,

(3.21)

|
gauge transformations. The only additional SW expansion
we need is that of f , and it is given by

Fogo %eﬂv{g (0, +Df}+O0@).  (323)

Before gauge fixing, the first-order term in the SW
expansion of (3.2) is

0" - 1 - - .-
=——Tr / d*xervro (_ifD/lf;wDT (DP¢DD‘¢¢) + E {fﬁr? f}fﬂUDp¢DU¢¢ - f{fﬂw fry}Dp¢Do¢¢

64/

- if}ﬂyDi(Dp¢Da¢)Dr¢ - lf}ﬂv(DiDp¢)(D1Da¢)¢ - f}uv{{}lpv DT¢}’ Do‘¢}¢
/1 _
+ % <2 {f/l'n fz}Dy¢Db¢D/)¢D6¢¢ - fz{[{f/l;u DT¢}’ Dv¢}v D[)¢D6¢}¢

- lfz (Dl(Dy¢Dy¢Dp¢Da¢)DT¢ =+ Dﬂ(Dﬂ(ﬁDud)D/}(b) (DTDO'¢)¢

+ D/l(Duquygb) (Der¢))Da¢¢ + (DlDﬂ(rb) (DTDD¢)D/)¢D0‘¢¢))) +c.c.,

(3.24)
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where we can distinguish the linear f part and the quadratic
f? part, and all terms are manifestly SO(2,3) x U(1)
invariant by the virtue of SW map.

After calculating traces and evaluating the gauge-fixed
action Sgl)|g.f. on the EoM of the components of the
auxiliary field f [as it turns out, to obtain the first-order
NC correction, we only need to insert zeroth-order

1 o -
SI(A.}EoMf.1|g.f. = _@/d‘].xe{fﬂyRﬂbab (Rarab
+ Froedel <RﬂmbRMCde’C’eZ -

T 0
+ F o€y R; (Rﬂym”e’,‘nez -

2 z 12
- 1_2]:,11 <R,w’"”ef,ﬁef, -7
(1) o
SA,EoMf.2|g.f. = % d*xe

(classical) EoM (2.43) in the gauge-fixed first-order NC
action Sil)|gif_], we obtain

- {+(D%R/wmc>(Dfezr))e?(‘fﬁz(ﬁaﬂef —Flel) + Flelen)

l - : L4
—l—zf/)”e'g(D%Tm‘ - eﬂbRrﬂbc) _l_zfu”(DLer (Dfe’")e‘,‘ne’,’

12

1 ~ ~ 1 -
7 (D,% e;)ee(eléfrﬂTﬂyc - elc/]:u”Tﬂrc) +55 T/lrrTyuC]:aDe(c’ellf

1 o _
+ 2 (Dken)ed (T, (Flem —FLewm) + Ty, F,Len)

AP

2 .
+ l—zf””eg(DLe’ (DEec)er

0 . 4
1 v am a,m
Sz(‘l-,)EoMf.3 |g‘f‘ - 32k / d4xe{—,7-"ﬂ Rovam (Rw 2 erey )

+ fpgR,w”meb"(eﬁefneieZ + ehegehel + 2ehel, (eheh — ehel))

gir
1 1
(SfA,iEoMf.4|g.f. + SI(A,BE()MﬁS‘g.f.) = —ﬁ/ d*xe

X {—f—le“b (D/%eZ’)(Dfeam)(j:’”eZeg + j:””eﬁez - 4?””6’362)

1

2

+ l_gTﬂua(foeg)(j:W(zelt;erb - egem) + 2-7:7”(6562 - e/b)eltjz)

- - 2 .
+ 2FPH(2ek ey, — €he.,) + 2F7 ehel) — l—sz’”TWCThde;efl

4

6
1 1 1
SI(A.L"OM|g.f. = S.S\,)E()Mf.j|g.f. + SEL)E()M.)".)‘"g.f.’ (325)
=1
with the individual terms
2
7 eﬁ’eé’)
2 R 4765 ( Rac R+ 2 R e
l—2 Arab + ep uvacM At €p + 1_2 ﬂ/lace‘r
12\ 2. .
l_2> =+ l_gfﬂDT/lra<T;wa - 2Tpumeileﬂ )
P .
L)) -
A%p H
202
1 -
+l—4.7:,11 , (3.27)
2 P ,o(7T bn T bn 2~;41/ a 8 Tu T T
_l_Zeneb<2]:ApRm- +~7:po‘Rﬁ‘r )+l—2]: Tﬁﬂ Tﬂ/a +p.7: .7'—/1”.7:,”/ s (328)
~ - ’ ~ 1 .~
- ﬁRﬂvah(fﬂyeﬁaerh + Fﬂﬂ:egez - 4]:”/1@’29117) - ﬁfﬂbnmn(D%e/T)(D”%elr/l)
- ~ 4 ~ ~ 6 -
+ _Tiua(Dfeg)ez(]:m,elg)l - Fﬁpeé) - l_zRﬂuace;j(fpyeﬂ:c - preZ) - l_4f/11}a (329)

12
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eﬂf
1 po ,d
SSQ,)EoMf.6|g‘f‘ ok /d“xe{]—'/ esebelet,

+72(¢/11],:.2

_ _ Tuv,a,pP b _
f € eb( pﬂaTllr

and, finally, the f? term,

T

1663

(1)

SA,EoMff|g.f. /d4xej’:,175’:2 (3.31)

Action (3.25) represents the first-order NC correction to
N =2 AdS,; SUGRA. It involves various new couplings
between U(1) gauge field, gravity, and gravitini fields that
appear due to space-time noncommutativity. As it stands,
this action seems too complicated to be analyzed in its
entirety. However, we can restrict ourselves to some
particular domain of parameters and work with an ap-
proximated NC action. In particular, we will derive a low-
energy approximation of (3.25), by taking into account
terms at most quadratic in the partial derivative. Therefore,
we include only terms linear in curvature and linear and
quadratic in torsion. Additionally, we assume that spin
connection a)ﬂ"b and the first-order derivatives of the
vierbeins are of the same order. Note also that the torsion

(R/I'rmnR/wab
—2FF 3, F ) + }""”

8 -
/MaTrpb - T/IpaTrﬂb) - _fﬂr}v

- 2Rﬂ/4 manab)

h b
R/lwh + f/lve eth/)u

(3.30)

(1 90+ -
SIO\)A/-energy - 16141</d4xe]:"”

96+

=168 /d‘bce(]—'w -¥,ic’¥,)

- / d*xe (s — ) + surface term

1674k YWy — ¥V

9

= T3Pk d*xe(r,f i©" ;") + surface term

K

(3.32)

This masslike term for charged gravitino vy, minimally
coupled to gravity, appears due to space-time noncommu-
tativity and “renormalizes” the corresponding term (2.49)
in the classical SUGRA action (2.48). If we again absorb
k~lin w, to obtain the canonical dimensions, the masslike
parameter is of the order of /,A%/I*, and it vanishes under

constraint 7, =0 (2.25) gives us T,,* = —i¥,y*¥,.  WI contraction.
These assumptions yield a very simple action, After WI contraction, the action (3.25) reduces to
WI 92 4 po Tuv po Tup vo
|g f. 64 d*xe :F RﬂupaRM -F Rpa;u/Rﬂr —4F R;wpo-Rﬂr
- ~ 16 ~
- ZFWR/IﬂpgRﬂ//JU + 8fperﬂ/4ﬂprw + -7: Rﬂrﬂ R - _-7:&1]:2 + Fﬂb]:ﬂ -7:

+8(DLR,,")(Dke?)

T v P
A uy eg(faﬂemef

+2Rﬂy”bnm(D/%e’)( )(f””epe —|—.7-7’”eae —4FHP el e )}

At this point, we are confronted with an interesting
question. The fact that N = 2 AdS, superalgebra contracts
to N = 2 Poinacaré superalgebra when [ — oo is consis-
tently reflected on the level of classical (undeformed)
action (2.47); classical N =2 AdS,; SUGRA reduces to
classical N =2 Poincaré SUGRA under WI contraction.
However, it is not a priori clear whether this relation holds
after NC deformation, that is, whether NC deformation and
WI contraction actually commute. For that matter, one
would have to explicitly compute the NC correction to

Frele, + F relen)

(3.33)

classical N = 2 Poincaré SUGRA and compare it to the
action (3.33).

IV. CONCLUSIONS

Let us emphasize the main points of this paper and
propose some further paths of investigation. At this stage,
our primary goal was to obtain explicit NC correction to
N =2 AdS SUGRA in D = 4. We stared from a classical
(undeformed) action (2.30) of the MacDowell-Mansouri
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type (already advocated in the literature), invariant
under orthosymplectic OSp(4]2) gauge transformations.
However, this action alone is not enough to obtain N = 2
AdS,; SUGRA after fixing the gauge (for which we use a
constrained auxiliary field). In particular, one has to add a

|

(OSp(4/2) invariant action) +

o l

(SO(1,3) x U(1) invariant action) +

supplementary action (2.40) endowed with SO(2,3) x
U(1) gauge symmetry [bosonic sector of OSp(4/2)] that
provides the missing terms in the classical SUGRA action
[e.g., the kinetic term for the U(1) gauge field]. Therefore,
we have the following relation:

(SO(2,3) x U(1) invariant action)

l i

(SO(1,3) x U(1) invariant action)

N=2 AdS SUGRA in D=4

This situation seems curious considering that a similar
OSp(4]1) gauge-invariant action (2.51) in the same gauge
reduces to the complete N = 1 AdS; SUGRA action. We
may conclude that extended N > 1 AdS; SUGRA cannot
be obtained simply by gauging the corresponding ortho-
symplectic group OSp(4|N) and subsequently fixing the
gauge. For N > 2, we would have to include an additional
term similar to (2.40) that involves a non-Abelian Yang-
Mills gauge field.

NC deformation is performed following the Seiberg-
Witten approach to NC gauge field theory that involves
universal enveloping algebra-valued gauge field and per-
turbative expansion of the NC-deformed action in powers
of the deformation parameter 6**. The expanded action
possesses gauge symmetry of the corresponding classical
action, order by order, and we focus only on the linear NC
correction that remains after the gauge fixing. For the
OSp(4]2) gauge-invariant part, linear NC correction van-
ishes. The reason why this result strikes us as curious is
related to some previously establish facts about canonical
NC deformation of the similar models. Namely, canonical
deformation of pure gravity, regarded as a gauge theory of
the SO(2,3) group, leads to quadratic NC correction
[25,26,38]. However, after including charged matter
(Dirac spinors) coupled to the U(1) gauge field, linear
NC correction appears [54-56]. Since we can take a pair of
Majorana vector spinors of OSp(4|2) SUGRA and form a
pair of U(1)-charged Dirac vector spinors, related to each
other by C conjugation, we expected to obtain a non-
vanishing first-order NC correction from the OSp(4[2)
action (3.1), as well.

However, the supplementary bosonic action provides a
nontrivial linear NC correction that is calculated explicitly
(3.25). It involves various new interaction terms that are
present due to space-time noncommutativity. The full
action is difficult to analyze, but we can restrict ourselves

|

to the low-energy sector of the theory by taking into
account only terms that are at most quadratic in partial
derivatives. This leaves us with a single masslike term for a
charged gravitino minimally coupled to gravity.

WI contraction eliminates many of these new interaction
terms, but not all of them (3.33). The ones remaining may
help us understand the relation between the canonical NC
deformation and WI contraction, at least in this particular
case. N = 2 AdS superalgebra reduces to N = 2 Poincaré
superalgebra under WI contraction, and the same holds for
their classical actions. Therefore, it may be the case that
the same relation pertains even after canonical NC defor-
mation. To confirm this assumption directly, we have to
calculate linear NC correction to N = 2 Poincaré SUGRA
and make the comparison.

Let us just mention that there are two additional terms
with OSp(4/2) gauge symmetry that we could include. We
denote them by S’ and S”, and they are given by

a o
= 4
S = mSTr/d xe!?°F,,D,®D,®P +c.c.,
ia" R ,\ A A
8" = —WSTr / d*xe"»°D,®D,®D,dD, 00,

with free dimensionless parameters a’, a”, and OSp(4/2)
covariant derivative DAﬂ. Their SO(2,3) gauge-invariant
counterparts were analyzed in Ref. [26]. After gauge fixing,
they modify the coefficients in the classical action but do
not introduce new terms. In particular, they give us a
freedom to eliminate the cosmological constant in the
classical action. NC deformation of S" and S” will certainly
change our final result, but their importance is not yet clear.
Analysis of these additional NC corrections remains to
be done.
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The bosonic generators of OSp(4/2) are

Map =

0
0 000

o Ol o o O
o Ol o O O

The imaginary unit in 7" is introduced for convenience.
The fermionic generators of OSp(4/2) are

0 0
1 0
04x4
@ vy
1 0 0 )
1 0 0 0 0
00 0 0|00
0
0
044
@Y "
T 1 0
0 0 1 0 0
00 0 0|0 O

APPENDIX A: MATRIX REPRESENTATION OF
osp(42) SUPERALGEBRA

Here, we present an explicit 6 X 6 matrix representation
of OSp(4|2) generators {M 5, Q%. T}. The AdS generators
are the same as for OSp(4|1), but for OSp(4|2), we have
an additional set of fermionic generators (comprising
another Majorana spinor) and additional bosonic generator
T of SO(2) ~U(1).

0 O
0 O
04><4
. 0 O
T= 0 o (A1)
0 0 0 =1
000 0|—2 O
-1 0
0 0
04><4
. 0 0
(@)2 = (A2)
0 0
01 0 0] 0 O
000 0] 0 O
0 0
0 0
O4xa
. 10
(Q)a= 0 0 (A3)
00 0 1|0 0
00 0 0]0O0

The second set of fermionic generators (Q?), (@ = 1,2, 3, 4) is obtained from the first one just by interchanging fifth and
sixth columns and fifth and sixth rows. One can readily check that supermatrices (A1), (A2), and (A3), along with the
second set of fermionic generators, satisfy the 08p(4|2) superalgebra (2.4).
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APPENDIX B: USEFUL IDENTITIES

Some basic Fierz identities involving Majorana spinors
v and y are

iy ==y
Wrsx = xrsw = —(ysx)’
Wra¥sx = Xra¥sy = (@rarsx)’
WYaX = =XVax = —(@7ra2)"

YO X = —XOupW = _(l/_/Gab)OT' <B1)
Also, we frequently use the following important identity,

valid in four dimensions. For any pair of Majorana spinors,
y and y, we can expand y ¥ in the Clifford algebra basis:

Some useful identities involving y matrices and ¢ matrices
are

Ya¥vb = Nab — ioab
OupYe = inbc},u - ir]ucYb =+ Eubch5J/d
YcOap = inacyb - irlchu + SubchSyd
i

_ cd
OubYs5 = Esabcda

CabOcd = Nacllbd = Naallpe + 1€abcal’s

+ i(nadgbc + MpcOad — (B4)

NacOpd — nbdaac) .

Identities with traces are

Tr(Ial'g) =
Tr([y) =Tr (FAFBFC) =0
Tr(Calgl'cl'p) = 4(napticp — Machsp + Maplics)
Tr(Callcl'pl'E) = —4iespcpE
Tr(MapMcpl's) = i€spcpE
Tr(MapMcp) = —tapfics + Nactisp
Tr(MpT el ) = 2eaperc
Tr(MpgMcplUeTrl'G) = i€apcpEtirG — i€aBcpriEG

+ i€apcpGNEF + 1€BCEFGNAD

I€BpEFGNIAC
(B5)

+ l€ApEFGYBC —

— lEACEFG!BD-

4wy = (w)ls + (r'w)ra + (rsw)ys + (2r'rsw)rsta
1, _
5 (200w, (82)
Some AdS algebra relations are'
M ap. Mcp] = i(napMpc + ncMap — HacMgp
—NgpMac)
i 1
{Mpp.Mcp} = EGABCDEFE + 3 (Macep = Naphsc)
{MABv FC} = ieABCDEMDE
(M ap.Tc] = i(npcTa — nacT's)
FI; = —Yol avo0, MZB = YoM apYo- (B3)
1 01235 +1 €0123 _|_1
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