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It is well known that one can define a consistent theory of extended, N ¼ 2 anti-de Sitter (AdS)
supergravity (SUGRA) in D ¼ 4. Besides the standard gravitational part (including a negative cosmo-
logical constant), this theory involves a single Uð1Þ gauge field and a pair of Majorana vector spinors that
can be combined to form a pair of Dirac vector spinors (charged spin-3=2 gravitini). The action for N ¼ 2

AdS4 SUGRA is invariant under diffeomorphisms, SOð1; 3Þ ×Uð1Þ gauge transformations, and under
local complex supersymmetry. We present a geometric action that involves two “inhomogeneous” parts: an
orthosymplectic OSpð4j2Þ gauge-invariant action quadratic in the gauge field strength and a supplementary
term invariant under the purely bosonic SOð2; 3Þ ×Uð1Þ ∼ Spð4Þ × SOð2Þ sector of OSpð4j2Þ, which
needs to be added for consistency. This action reduces to N ¼ 2 AdS4 SUGRA after suitable gauge fixing,
for which we use a constrained auxiliary field in the manner of Stelle and West. Canonical (θ-constant)
deformation is performed by using the Seiberg-Witten approach to noncommutative (NC) gauge field
theory with Moyal star product. The NC-deformed action is expanded in powers of the deformation
parameter θμν, up to the first order. We show that N ¼ 2 AdS4 SUGRA has nonvanishing linear NC
correction in the physical gauge, originating from the additional, purely bosonic action term. For
comparison, simple N ¼ 1 Poinacaré SUGRA can be obtained in the same manner from an OSpð4j1Þ
gauge-invariant action (without introducing additional terms). The first nonvanishing NC correction is
quadratic in the deformation parameter θμν and therefore exceedingly difficult to calculate. Under Wigner-
Inönü contraction, N ¼ 2 AdS superalgebra reduces to N ¼ 2 Poincaré superalgebra, and it is not
clear whether this relation holds after canonical NC deformation. We present the linear NC correction
to N ¼ 2 AdS4 SUGRA explicitly and discuss its low-energy limit and what remains of it after Wigner-
Inönü contraction.

DOI: 10.1103/PhysRevD.100.095019

I. INTRODUCTION

In our quest for the theory of “quantum gravity,”we must
be prepared to go beyond some deeply rooted assumptions
on which we are accustomed; in particular, at very short
distances (very high energies), we might have to abandon
the notion of a continuous space-time and the associated
mathematical concept of a smooth manifold that describes
it. One distinguished approach to the problem is non-
commutative (NC) field theory—a theory of relativistic
fields on noncommutative space-time, based on the method
of deformation quantization by the NC star product [1–3].
One speaks of a deformation of an object/structure when-
ever there is a family of similar objects/structures of which

the “distortion” from the original, “undeformed” one can be
somehow parametrized. In physics, this so-called deforma-
tion parameter appears as some fundamental constant of
nature that measures the deviation from the classical (i.e.,
undeformed) theory. This way of “quantizing” space-time
is essentially different from the standard quantum field
theory (QFT) quantization procedure for matter fields.
Different space-time dimensions (the usual 3þ 1) are
regarded as being mutually “incompatible,” in the sense
that there exists a lower bound for the product of uncer-
tainties ΔxμΔxν for a pair of two different coordinates. To
capture this “pointlessness” of space-time, one introduces
an abstract algebra of NC coordinates as a deformation of
the classical structure. These NC coordinates, denoted by
x̂μ, satisfy some nontrivial commutation relations, and so it
is no longer the case that x̂μx̂ν ¼ x̂νx̂μ. Abandoning this
basic property of space-time leads to various new physical
effects that were not present in theories based on classical
space-time. The simplest case of noncommutativity is the
so-called canonical (or θ-constant) noncommutativity,

½x̂μ; x̂ν� ¼ iθμν ∼ Λ2
NC; ð1:1Þ
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where θμν are components of a constant antisymmetric
matrix and ΛNC is the length scale at which NC effects
become relevant. The deformation parameter is a funda-
mental constant, like the Planck length or the speed of
light.
Instead of deforming the abstract algebra of coordinates,

one can take an alternative but equivalent approach in
which noncommutativity appears in the form of NC
products of functions (fields) of commutative variables
(coordinates). These products are called star products
(⋆-products). In particular, to introduce canonical non-
commutativity, we use the Moyal ⋆-product,

ðf̂ ⋆ ĝÞðxÞ ¼ e
i
2
θμν ∂

∂xμ
∂

∂yνfðxÞgðyÞjy→x: ð1:2Þ

The leading term in the expansion of the exponential is the
ordinary commutative product of functions, and the higher-
order terms represent nonclassical NC corrections.
To date, we still lack direct physical evidence of

supersymmetry (SUSY), at least in its simplest form.
Nevertheless, its beneficial influence on high-energy phys-
ics (improved renormalizability in QFT and a natural
resolution of the hierarchy problem), along with its
mathematical consistency and unification power [especially
the unification of gravity and the Standard Model within
supergravity (SUGRA) and an ultimate unification scheme
such as superstring theory], motivate us to seriously
consider SUSY as an integral part of our description of
nature. Since the pioneering work of Freedman et al. [4,5],
and Deser and Zumino [6], the theory of supergravity has
become a well-developed field of research. SUGRA pro-
vides a natural unification of gravity with other fields by
imposing the gauge principle on SUSY, the associated
gauge field being the spin-3=2 gravitino field described by
aMajorana vector spinor. It was demonstrated in Refs. [7,8]
that one can have a consistent theory of extended N ¼ 2
AdS4 SUGRA with a complex [Uð1Þ-charged] gravitino
field. In this paper, we propose a geometric way of
obtaining N ¼ 2 AdS4 SUGRA action and perform its
NC deformation. The obtained NC correction can be
regarded as a low-energy signature of the underlying theory
of quantum gravity. We calculate the NC correction
explicitly and discuss some of its properties.
The results of this paper amount to a supersymmetric

extension of the theory of NC gravity of which the
various aspects have been treated extensively in the
literature [9–23]. In particular, an approach based on
NC-deformed anti-de Sitter (AdS) gauge group SOð2; 3Þ
was developed in Refs. [24–27], building on the results of
MacDowell and Mansouri [28], Towsend [29], Stelle and
West [30], Chamseddine and Mukhanov [31,32], and
Wilczek [33]. One starts with a classical (undeformed)
action invariant under SOð2; 3Þ gauge transformations.
To relate AdS gauge theory with general relativity (GR),
original SOð2; 3Þ gauge symmetry has to be broken to

SOð1; 3Þ, by gauge fixing. For that matter, a constrained
auxiliary field is introduced, as in Ref. [30], to define
the physical gauge. Spin-connection and vierbein are
treated on equal footing, as components of the general
SOð2; 3Þ gauge field. The SOð2; 3Þ gauge-invariant action
is deformed by introducing Moyal ⋆-product and ex-
panded in powers of θμν via the Seiberg-Witten (SW) map
[34–37]. After symmetry breaking, one obtains NC corre-
ctions to classical gravity, invariant under SOð1; 3Þ gauge
transformations. The first-order NC correction vanishes,
as confirmed by Ref. [38]. The second-order NC correc-
tion to GR is found explicitly, and deformed equations of
motion are analyzed. It is argued that the apparent
breaking of diffeomorphism invariance stems from the
fact that, by introducing the canonical anticommutation
relations between space-time coordinates (1.1), we im-
plicitly set ourselves in a preferred coordinate system—
the Fermi inertial frame along a geodesic [39–41].
Similarly, one can establish NC SUGRA by gauging an

appropriate supergroup [42–50] and subsequently perform-
ing canonical deformation. Since pure gravity can be
obtained by gauging AdS group SOð2; 3Þ, orthosymplectic
supergroup OSpð4j1Þ comes as a natural choice for pure
N ¼ 1 Poincaré SUGRA. The bosonic sector of ospð4j1Þ
superalgebra—symplectic algebra spð4Þ—is isomorphic to
AdS algebra soð2; 3Þ that reduces to Poincaré algebra by
Wigner-Inönü contraction [51]. The subject of NC SUGRA
has been treated in Refs. [52,53]. Classical action for
OSpð4j1Þ SUGRA presented in Ref. [53] is manifestly
invariant under OSpð4j1Þ gauge transformations, and we
will use it as a motivation. However, obtaining explicit NC
deformation of this action is exceedingly difficult because
the first nonvanishing NC correction is quadratic in θμν.
Taking a lesson from Refs. [54–56] that inclusion of Dirac
spinors coupled to Uð1Þ gauge field produces (much
simpler) linear NC correction, we will make a transition
to OSpð4j2Þ SUGRA that involves a pair of Majorana
spinors that can be mixed into a pair of charged spin-3=2
gravitini coupled to Uð1Þ gauge field. We present a geo-
metric action that consists of two “inhomogeneous” parts:
an OSpð4j2Þ gauge-invariant action quadratic in gauge field
strength and a supplementary action, invariant under the
purely bosonic SOð2; 3Þ ×Uð1Þ sector of OSpð4j2Þ, that
has to be included in order to obtain complete N ¼ 2 AdS4
SUGRA at the classical level; this additional bosonic term
produces a nontrivial linear NC correction to N ¼ 2 AdS4
SUGRA, after deformation.
In Sec. II, we introduce undeformed geometric action

for OSpð4j2Þ SUGRA and make comparison with the
similar action for OSpð4j1Þ SUGRA. In Sec. III, we
perform NC deformation by using the Seiberg-Witten
approach and study the first-order NC correction to
N ¼ 2 AdS4 SUGRA. Section IV contains discussion and
proposals for further investigation. Appendixes A and B
contain supplementary material.
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II. CLASSICAL ORTHOSYMPLECTIC SUGRA

We consider two classical (undeformed) SUGRA
models based on the orthosymplectic OSpð4jNÞ gauge
group: the simple N ¼ 1 AdS4 SUGRA, describing pure
supergravity with the negative cosmological constant, and
the extended N ¼ 2 AdS4 SUGRA that involves also a
pair of charged gravitini fields coupled to Uð1Þ gauge
field. We focus our attentions on the latter (N ¼ 2), since
the former (N ¼ 1) has been treated extensively in
Ref. [53], including its NC deformation, and we discuss
it just for comparison. Some significant differences of the
two models in question have been manifested already at
the level of their classical actions, and this reflects
drastically on the structure of their NC corrections after
deformation.

A. Classical OSpð4j2Þ SUGRA

Orthosymplectic group OSpð4j2Þ has 19 generators, and
they are of two kinds: bosonic and fermionic. Ten bosonic
generators M̂AB ¼ −M̂BA (A; B ¼ 0, 1, 2, 3, 5) span AdS
Lie algebra soð2; 3Þ (symmetry algebra of AdS4),

½M̂AB; M̂CD�
¼ iðηADM̂BC þ ηBCM̂AD − ηACM̂BD − ηBDM̂ACÞ;

ð2:1Þ

where ηAB is a flat five-dimensional (5D) metric with
signature ðþ;−;−;−;þÞ. By splitting this set of generators
into six M̂ab AdS rotation generators (a, b ¼ 0, 1, 2, 3) and
four AdS translation generators M̂a5, we can recast soð2; 3Þ
algebra in a more explicit form:

½M̂a5; M̂b5� ¼ −iM̂ab;

½M̂ab; M̂c5� ¼ iðηbcM̂a5 − ηacM̂b5Þ;
½M̂ab; M̂cd� ¼ iðηadM̂bc þ ηbcM̂ad − ηacM̂bd − ηbdM̂acÞ:

ð2:2Þ

If we introduce a new set of generators ðM̂ab; P̂aÞ defined
by M̂ab ≔ M̂ab and P̂a ≔ l−1M̂a5 ¼ αM̂a5, where l is a
length scale related to AdS radius and α ¼ l−1 (we will use
both parameters in the following formulas), the algebra
(2.2) transforms into

½P̂a;P̂b� ¼−iα2M̂ab;

½M̂ab;P̂c� ¼ iðηbcP̂a−ηacP̂bÞ;
½M̂ab;M̂cd� ¼ iðηadM̂bcþηbcM̂ad−ηacM̂bd−ηbdM̂acÞ:

ð2:3Þ

In the limit α → 0 (or l → ∞), AdS algebra reduces to
Poincaré algebra; in particular, we obtain ½P̂a; P̂b� ¼ 0

with all other commutators left unchanged. This is a
famous example of the Wigner-Inönü (WI) contraction,
the contraction parameter being α (or l). This Lie-algebra
contraction (or deformation) can be extended to AdS
superalgebra, and we will be interested, later on, in its
effect on the NC correction of N ¼ 2 AdS4 SUGRA.
A representation of the AdS sector of ospð4j1Þ super-

algebra can be obtained by using 5D gamma matrices ΓA
satisfying Clifford algebra fΓA;ΓBg ¼ 2ηAB; the AdS
generators M̂AB are represented by 6 × 6 supermatrices,
which reduce to 4 × 4 matrices MAB ¼ i

4
½ΓA;ΓB� in

the AdS subspace; see Appendix A. One choice of Γ
matrices is ΓA ¼ ðiγaγ5; γ5Þ, where γa are the usual four-
dimensional γ matrices. In this particular representation, the
components of MAB are given by Mab ¼ i

4
½γa; γb� ¼ 1

2
σab

and Ma5 ¼ − 1
2
γa.

The ten AdS bosonic generators MAB are accompanied
by eight independent fermionic generators Q̂I

α, with spinor
index α ¼ 1, 2, 3, 4 and SOð2Þ index I ¼ 1, 2, comprising a
pair of Majorana spinors, and one additional bosonic
generator T̂ related to SOð2Þ∼Uð1Þ extension. Together,
they satisfy ospð4j2Þ superalgebra (consistency requires
that fermionic generators Q̂I

α transform as components of
an AdS Majorana spinor),

½M̂AB; M̂CD� ¼ iðηADM̂BC þ ηBCM̂AD

− ηACM̂BD − ηBDM̂ACÞ;
½M̂AB; Q̂

I
α� ¼ −ðMABÞαβQ̂I

β;

fQ̂I
α; Q̂

J
βg ¼ −2δIJðMABC−1ÞαβM̂AB − iεIJCαβT̂;

½T̂; Q̂I
α� ¼ −iεIJQ̂I

α; ð2:4Þ

with antisymmetric tensor εIJ, ε12 ¼ 1. Matrix C−1 is the
inverse of the charge-conjugation matrix (spinor metric)
for which we use the following representation given in
terms of Pauli matrices: C ¼ −σ3 ⊗ iσ2 and Cαβ ¼ −Cβα.
Numerically, we have C−1 ¼ −C, but the index structure of
the two is different since CαγðC−1Þγβ ¼ δβα. More visually,

ð2:5Þ

An explicit matrix representation of ospð4j2Þ superalgebra
is given in Appendix A.
By introducing a new set of (rescaled) generators

fM̂ab ≔ M̂ab; P̂a ≔ αM̂a5; Q̂
I
α ≔

ffiffiffi
α

p
Q̂I

α; T̂ ≔ αT̂g, we
can recast the ospð4j2Þ superalgebra (2.4) into the follow-
ing form:
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½P̂a;P̂b� ¼−iα2M̂ab;

½M̂ab;P̂c� ¼ iðηbcP̂a−ηacP̂bÞ;
½M̂ab;M̂cd� ¼ iðηadM̂bcþηbcM̂ad−ηacM̂bd−ηbdM̂acÞ;

½P̂a;Q̂
I
α� ¼−αðMa5ÞαβQ̂I

β;

½M̂ab;Q̂
I
α� ¼−ðMabÞαβQ̂I

β;

½T̂ ;Q̂I
α� ¼−iεIJQ̂I

α;

fQ̂I
α;Q̂

J
βg¼−2δIJαðMabC−1ÞαβM̂ab

−2δIJðMa5C−1ÞαβP̂a− iεIJCαβT̂ : ð2:6Þ

Under WI contraction α → 0, it reduces to N ¼ 2 Poincaré
superalgebra.
Orthosymplectic supergroup OSpð2njmÞ (the symplectic

sector is always even dimensional) consists of those
supermatrices U that preserve the graded metric

G ¼
� Σαβ 02n×m

0m×2n Δij

�
; ð2:7Þ

with some real 2n × 2n matrix Σαβ ¼ −Σβα and some
real m ×m matrix Δij ¼ Δji. Considering only infinitesi-
mal transformations U ¼ 1þ ϵM, generated by some
ospð2njmÞ-valued supermatrix

M ¼
� A B

C D

�
ð2:8Þ

(bosonic blocks A2n×2n and Dm×m have ordinary commut-
ing entries, and fermionic blocks B2n×m and Cm×2n have
Grassmann-valued entries), the defining relation becomes

MSTGþ GM ¼ 0: ð2:9Þ

The supertranspose, super-Hermitian adjoint and supertrace
are defined by imposing the standard rules ðMNÞST ¼
NSTMST , ðMNÞ† ¼ N†M† and STrðMNÞ ¼ STrðNMÞ,

MST ¼
� AT CT

−BT DT

�
; M† ¼

�A† C†

B† D†

�
;

STrðMÞ ¼ TrðAÞ − TrðDÞ: ð2:10Þ

Now, the key observation is that a pair of Majorana fields
χIμ (describing a pair of neutral spin-3=2 gravitini) con-
stitute the fermionic sector of the ospð4j2Þ connection
supermatrix Ωμ. We can expand this superconnection over
the basis fM̂ab; M̂a5; Q̂

I
α; T̂g with the corresponding gauge

fields fωμ
ab;ωμ

a5; χ̄Iμ; Aμg, as

ð2:11Þ

where we have soð2; 3Þ gauge field ωμ ¼ 1
2
ωμ

ABMAB ¼ 1
2
ωμ

abMab þ ωμ
a5Ma5 ¼ 1

4
ωμ

abσab − 1
2
ωμ

a5γa, a pair of Majorana
vector spinors χIμ with components ð χIμÞα, and their Dirac-adjoints χ̄Iμ ¼ −ð χIμÞTC−1 with components ð χ̄IμÞα ¼
−ð χIμÞβðC−1Þβα (α ¼ 1, 2, 3, 4).
Equivalently, we can expand Ωμ over the rescaled basis fM̂ab; P̂a; Q̂

I
α; T̂ g, but with a different set of gauge fields

fωμ
ab; eaμ ≔ 1

α ωμ
a5; ψ̄ I

μ ≔ 1ffiffi
α

p χ̄Iμ;Aμ ≔ 1
αAμg, as

ð2:12Þ

where we again have soð2; 3Þ gauge field ωμ ¼
1
4
ωμ

abσab − α
2
eaμγa, two independent Majorana spinors

ψ I
μ, and (dimensionless) Uð1Þ vector potential Aμ. We

will use this particular representation because it makes WI
contraction more transparent.
The two Majorana spinors, ψ1

μ and ψ2
μ, can be combined

into an SOð2Þ doublet,

Ψμ ¼
�
ψ1
μ

ψ2
μ

�
: ð2:13Þ

It can be readily confirmed that the gauge supermatrix
(2.12) satisfies the defining relation for the elements
of ospð4j2Þ superalgebra [C is the charge-conjugation
matrix (2.5)],
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ð2:14Þ

The field strength associated with AdS gauge field ωμ is

Fμν ¼ ∂μων − ∂νωμ − i½ωμ;ων�
¼ ðRμν

ab − ðωμ
a5ων

b5 − ωμ
b5ων

a5ÞÞ σab
4

− Fμν
a5 γa

2
; ð2:15Þ

with [note that DL
μ stands for the Lorentz SOð1; 3Þ

covariant derivative]

Rμν
ab ¼ ∂μων

ab−∂νωμ
abþωμ

a
cων

cb−ων
a
cωμ

cb; ð2:16Þ

Fμν
a5 ¼ DL

μων
a5 −DL

ν ωμ
a5: ð2:17Þ

It was shown in the 1970s [28–30] that one can relate
AdS gauge field theory to gravity (GR in the first-order
formalism) by identifying ωμ

ab with the Lorentz spin
connection and ωμ

a5 with the rescaled vierbein field
αeaμ; vierbein is related to the metric tensor by ηabeaμebν ¼
gμν and e ¼ detðeaμÞ ¼ ffiffiffiffiffiffi−gp

. The geometric meaning of
this relation is thoroughly explained in Ref. [57]. By
extension, Rμν

ab can be identified with the curvature tensor,
and Fμν

a5 can be identified with rescaled torsion αTμν
a.

Therefore, in the AdS setting, we have a natural unification
of the vierbein and spin connection as components of a
general SOð2; 3Þ gauge field; each transforms as a gauge
field and stands on equal footing. To establish this
identification, one has to break the original AdS gauge

symmetry to the Lorentz SOð1; 3Þ gauge symmetry by
introducing an auxiliary field ϕ ¼ ϕAΓA [30]. This field
transforms in the adjoint representation of SOð2; 3Þ, and it
is constrained by ηABϕ

AϕB ¼ l2. We can now start with an
action quadratic in AdS gauge field strength, originally
suggested by MacDowell and Mansouri [28], invariant
under SOð2; 3Þ gauge transformations,

SAdS ¼ il
64πGN

Tr
Z

d4xεμνρσFμνFρσϕ; ð2:18Þ

where we have the AdS covariant derivative in the adjoint
representation,

Dμϕ ¼ ∂μϕ − i½ωμ;ϕ�: ð2:19Þ
We choose the physical gauge by setting ϕa ¼ 0 and
ϕ5 ¼ l and thus obtain

SAdSjg:f: ¼ −
1

16πGN

Z
d4x

�
eðRðe;ωÞ − 6=l2Þ

þ l2

16
Rμν

abRρσ
cdεμνρσεabcd

�
; ð2:20Þ

which is the standard GR action (written in the first-order
formalism) involving the Einstein-Hilbert term, negative
cosmological constant Λ ¼ −3=l2 ¼ −3α2, and the topo-
logical Gauss-Bonnet term that can be omitted.
Therefore, we can write the SOð2; 3Þ field strength as

Fμν ¼
1

4
ðRμν

ab−α2ðeaμebν −ebμeaνÞÞσab−
α

2
Tμν

aγa; ð2:21Þ

and we see that the vierbein and torsion terms vanish under
WI contraction.
By generalization, we introduce OSpð4j2Þ field strength

Fμν associated with the superconnection Ωμ,

ð2:22Þ

with extended AdS field strength F̃μν (summation over
I ¼ 1, 2 is implied)

F̃μν ¼ Fμν − iαðψ I
μψ̄

I
ν − ψ I

νψ̄
I
μÞ

¼ 1

4
R̃μν

mnσmn −
α

2
T̃μν

mγm; ð2:23Þ

involving extended curvature tensor R̃μν
mn and extended

torsion T̃μν
m, given by

R̃μν
mn≔Rμν

mn−α2ðemμ enν −enμemν Þ− iαðΨ̄μσ
mnΨνÞ; ð2:24Þ

T̃μν
m ≔ Tμν

m þ iðΨ̄μγ
mΨνÞ: ð2:25Þ

Electromagnetic field strength is also modified by a bilinear
current term J ðeÞ,
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F̃ μν ≔ F μν − J ðeÞμν ¼ ∂μAν − ∂νAμ − Ψ̄μiσ2Ψν: ð2:26Þ

Note that Pauli matrix iσ2 mixes the two Majorana
components in J ðeÞ.
In the fermionic sector of Fμν, we introduced

Dμψ
1
ν ≔ Dμψ

1
ν þ αAμψ

2
ν; ð2:27Þ

Dμψ
2
ν ≔ Dμψ

2
ν − αAμψ

1
ν; ð2:28Þ

whereDμ stands for SOð2; 3Þ covariant derivative. The fact
that Majorana spinors ψ1

μ and ψ2
μ are not charged is

reflected in the manner in which they couple to the gauge
field Aμ. Using them, we can define two charged Dirac
vector spinors ψ�

μ ¼ ψ1
μ � iψ2

μ, related to each other by C
conjugation, ψ−

μ ¼ ψcþ
μ ¼ Cψ̄þT

μ , that do couple to Aμ in
the right way. Using the Pauli matrix iσ2, we can unify
(2.27) and (2.28) as

DμΨν ¼ ðDμ þ αAμiσ2ÞΨν

¼
�
DL

μ þ iα
2
γμ þ αAμiσ2

�
Ψν: ð2:29Þ

Now, consider an action, similar to the one defined in
(2.18) for pure gravity, but now appropriately generalized
to be invariant under extended OSpð4j2Þ gauge trans-
formations,

S42 ¼ STr
Z

d4xεμνρσFμνðaI6×6 þ bΦ2=l2ÞFρσΦ: ð2:30Þ

The action is real, and we introduced a pair of free
parameters, a and b, that will be fixed later. The first part
of (2.30) is a MacDowell-Mansouri type of action, quad-
ratic in OSpð4j2Þ gauge field strength, and the second part
(b term) is necessary for having local SUSY after the
symmetry breaking.
Generalized auxiliary field Φ is given by a supermatrix

(we now have twoMajorana spinors λ1 and λ2 and additional
scalar fields π, m, and σ), see also Refs. [45–47,53],

ð2:31Þ

In the physical gauge, λ1 ¼ λ2 ¼ π ¼ σ ¼ m ¼ ϕa ¼ 0, and
ϕ5 ¼ l, yielding

ð2:32Þ

Field strength Fμν and the auxiliary field Φ transform in
the adjoint representation of OSpð4j2Þ, with infinitesimal
variations

δϵFμν ¼ i½ϵ; Fμν�; δϵΦ ¼ i½ϵ;Φ�; ð2:33Þ

for some ospð4j2Þ-valued gauge parameter ϵ given by a
supermatrix,

ð2:34Þ

From (2.33), the invariance of the action (2.30) follows
immediately.
After the gauge fixing, field Φ2=l2 that appears in the

second term of (2.30) becomes a projector that reduces any
ospð4j2Þ supermatrix to its soð2; 3Þ sector, and the
classical OSpð4j2Þ gauge-invariant action (2.30) reduces to

S42jg:f: ¼
Z

d4xεμνρσ
�ðaþ bÞil

4
R̃μν

mnR̃ρσ
rsεmnrs

− 4aðDμΨ̄νγ5DρΨσÞ
�
: ð2:35Þ

The term that is quadratic in the Lorentz SOð1; 3Þ covariant
derivative DL

μ can be transformed by partial integration,

Z
d4xεμνρσðDL

μ Ψ̄νγ5DL
ρΨσÞ

¼ 1

16

Z
d4xεμνρσRμν

mnðΨ̄ρσ
rsΨσÞεmnrs; ð2:36Þ

where we invoked the commutator of two Lorentz covariant
derivatives

i½DL
μ ; DL

ν �Ψσ ¼
1

4
Rμν

mnσmnΨσ: ð2:37Þ

A term of the same type appears in the first part of the
action (2.35). These two contributions have to cancel each
other in order to have SUSY, and this implies the constraint
b ¼ −a=2. Moreover, to obtain the correct normalization of
the Einstein-Hilbert term, we set a ¼ il=32πGN ¼ il=4κ2,
yielding
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S42jg:f: ¼ −
1

2κ2

Z
d4x

�
eðRðe;ωÞ − 6α2Þ

þ 1

16α2
Rμν

mnRρσ
rsεμνρσεmnrs

þ εμνρσ
�
2Ψ̄μγ5γνðDρ þ αAρiσ2ÞΨσ

þ iF μνðΨ̄ργ5iσ2ΨσÞ

−
i
2
ðΨ̄μiσ2ΨνÞðΨ̄ργ5iσ2ΨσÞ

��
: ð2:38Þ

However, this is not the fullN ¼ 2AdS4 SUGRA action.
The gravity part is correct (we can omit the topological
Gauss-Bonnet term), and we also get the correct kinetic
term for the gravitino doublet. There are also two bilinear
source terms, electric and magnetic,

J ðeÞμν ≔ Ψ̄μiσ2Ψν;

J μν
ðmÞ ≔

i
2e

εμνρσðΨ̄ργ5iσ2ΨσÞ: ð2:39Þ
But we are missing the contribution from the SOð2Þ part of
the bosonic sector, in particular, the kinetic term for Uð1Þ
gauge field Aμ. The reason for this defect can be traced
back to the specific form that the auxiliary field assumes
in the physical gaugeΦjg:f: (2.32); it completely annihilates
the SOð2Þ sector of any ospð4j2Þ supermatrix. To restore
the missing terms, we must introduce an additional action,
supplementing (2.30). In Ref. [55], following the approach
of Ref. [58], we defined a classical action invariant under
SOð2; 3Þ ×Uð1Þ gauge transformations [locally isomor-
phic to the bosonic sector of OSpð4j2Þ] that involves an
additional auxiliary field f ¼ 1

2
fABMAB. Its role is to

produce the canonical kinetic term for Uð1Þ gauge field
in the absence of the Hodge dual operator (this is, of course,
the crucial point; we are trying to construct a purely
geometrical action that does not involve the metric tensor
gμν explicitly). This auxiliary field f is a Uð1Þ-neutral 0-
form that takes values in soð2; 3Þ algebra, and it transforms
in the adjoint representation of SOð2; 3Þ.
The way to proceed is to employ this auxiliary field

method to include the modified Uð1Þ field strength F̃ μν

defined in (2.26). However, there seems to be no way to
construct an OSpð4j2Þ gauge-invariant action that is com-
patible with this procedure. Therefore, we will use an
action, analogous to the one in Ref. [55], invariant under
the purely bosonic SOð2; 3Þ ×Uð1Þ sector of OSpð4j2Þ,
involving the bosonic field strength f̃μν ≔ F̃μν þ κ−1F̃ μν ¼
F̃μν þ κ−1ðF μν − J ðeÞμνÞ of SOð2; 3Þ × Uð1Þ. The action is
given by

SA ¼ Tr
Z

d4xεμνρσðcff̃μνDρϕDσϕϕ

þ df2DμϕDνϕDρϕDσϕϕÞ þ c:c: ð2:40Þ

Note that, by doing this, we lose the complete OSpð4j2Þ
gauge invariance of the undeformed action before the
symmetry breaking. Nevertheless, we will obtain the
correct action for N ¼ 2 SdS4 SUGRA in the physical
gauge, and this is the only requirement that has to be
satisfied in order to perform NC deformation.
After calculating traces (see Appendix B), we obtain

SA ¼
Z

d4xεμνρσ
�
ic
2
fABFμν

CDðDρϕÞEðDσϕÞF

× ϕGðηFGεABCDE þ 2ηADεBCEFGÞ
þ cκ−1fABF̃ μνðDρϕÞEðDσϕÞFϕGεABEFG

−
id
2
fABfABðDμϕÞEðDνϕÞFðDρϕÞGðDσϕÞH

× ϕRεEFGHR

�
þ c:c: ð2:41Þ

We conclude that parameter c must be real; otherwise, the
second term, involving F̃ μν, would be purely imaginary
and would not contribute (and this term is the one that we
need to include). Therefore, assuming real c, the first term
(involving gravitational quantities like curvature tensor and
torsion) becomes purely imaginary and vanishes after
adding its complex conjugate (c.c.). Also, d must be purely
imaginary for the procedure to work.
Gauge fixing yields

SAjg:f: ¼
Z

d4xeð−8lcκ−1fabF̃ μνeaμebν þ 24ildfABfABÞ:

ð2:42Þ

By varying this gauge-fixed action over fab and fa5

independently, we obtain algebraic equations of motion
(EoM) for the components fab and fa5 of the auxiliary field
f, respectively, and they are given by

fab ¼ −
ic
6κd

F̃ μνe
μ
aeνb; fa5 ¼ 0: ð2:43Þ

Inserting them back into the action (2.42), we obtain

SAjg:f: ¼
2ilc2

3κ2d

Z
d4xeF̃ 2: ð2:44Þ

To get the consistent normalization, we set the prefactor to
ð8κ2Þ−1, yielding another constraint 16ilc2 ¼ 3d for the
parameters c and d. To make the connection with the results
of Ref. [55], we take c ¼ 1=32l and d ¼ i=192l, implying

fab ¼ −κ−1F̃ μνe
μ
aeνb: ð2:45Þ

Therefore, after imposing the physical gauge, the original
bosonic action (2.40), invariant under SOð2; 3Þ ×Uð1Þ
gauge transformations, reduces to the SOð1; 3Þ ×Uð1Þ
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gauge-invariant action containing the canonical kinetic
term for Uð1Þ gauge field Aμ in curved space-time
and two additional terms involving gravitino current
J ðeÞμν ¼ Ψ̄μiσ2Ψν,

SAjg:f: ¼
1

4κ2

Z
d4xeF̃ 2

¼ 1

4κ2

Z
d4xeðF 2 − 2F · J ðeÞ þ J 2

ðeÞÞ: ð2:46Þ

This is exactly the piece that was missing in (2.38). With
this result in hand, we have the complete classical N ¼ 2
AdS4 SUGRA action [43,44],

ðS42 þ SAÞjg:f: ¼ −
1

2κ2

Z
d4xe

�
R − 6α2

þ 2e−1εμνρσΨ̄μγ5γνðDρ þ αAρiσ2ÞΨσ

þ 2F · J ðmÞ − J ðeÞ · J ðmÞ

−
1

4
ðF 2 þ J 2

ðeÞ − 2F · J ðeÞÞ
�
: ð2:47Þ

The most important characteristics of this SUGRA model
are the negative cosmological constant Λ ¼ −3α2 ¼ −3=l2
and the fact that Uð1Þ coupling strength is equal to the WI
contraction parameter α. Under WI contraction (α → 0), the
N ¼ 2 AdS4 SUGRA action consistently reduces to the
N ¼ 2 Poincaré SUGRA action.
In terms of charged Dirac vector spinors ψ�

μ ¼ ψ1
μ � iψ2

μ

(actually, we can use only one of them since they are related
to each other by C conjugation), the action becomes

ðS42þSAÞjg:f: ¼−
1

2κ2

Z
d4xe

�
Rðe;ωÞ− 6α2

þ 2e−1εμνρσψ̄þ
μ γ5γνðDρ− iαAρÞψþ

σ

þ 2F ·J þ
ðmÞ−J þ

ðeÞ ·J
þ
ðmÞ

−
1

4
ðF 2− 2F ·J þ

ðeÞ þ ðJ þ
ðeÞÞ2Þ

�
; ð2:48Þ

with J þ
ðeÞ ¼ 1

2iðψ̄þ
μ ψ

þ
ν − ψ̄þ

ν ψ
þ
μ Þ and J þ

ðmÞ ¼ 1
4e ðψ̄þ

μ γ5ψ
þ
ν −

ψ̄þ
ν γ5ψ

þ
μ Þ.

For later purposes, we note that action (2.48) contains a
masslike term for the charged gravitino (we absorbed the
parameter κ−1 into ψþ

μ to obtain the canonical dimensions),

iα
Z

d4xeψ̄þ
μ σ

μνψþ
ν ; ð2:49Þ

with masslike parameter equal to the WI contraction
parameter.

B. OSpð4j1Þ SUGRA

The OSpð4j1Þ supergroup has 14 generators: ten bosonic
AdS generators M̂AB and four fermionic generators Q̂α

comprising a single Majorana spinor (describing a single
neutral gravitino). The supermatrix for the OSpð4j1Þ gauge
field Ωμ is given by

Ωμ ¼
�

ωμ
ffiffiffi
α

p
ψμffiffiffi

α
p

ψ̄μ 0

�
: ð2:50Þ

Consider the following action invariant under OSpð4j1Þ
gauge transformations [52]:

S41 ¼
il

32πGN
STr

Z
d4xεμνρσFμν

�
I5×5 −

1

2l2
Φ2

�
FρσΦ:

ð2:51Þ
The auxiliary field is

Φ ¼
� 1

4
π þ iϕaγaγ5 þ ϕ5γ5 λ

−λ̄ π

�
¼g:f:

� lγ5 0

0 0

�
:

ð2:52Þ
In the physical gauge, the OSpð4j1Þ gauge-invariant action
(2.51) exactly reduces to the N ¼ 1 AdS4 SUGRA action
[43,44,53],

S41jg:f: ¼ −
1

2κ2

Z
d4xðeðRðe;ωÞ − 6=l2Þ

þ 2εμνρσðψ̄μγ5γνDρψσÞÞ

¼ −
1

2κ2

Z
d4xeðRðe;ωÞ − 6α2

þ 2e−1εμνρσðψ̄μγ5γνDL
ρ ψσÞ − 2iαðψ̄μσ

μνψνÞÞ:
ð2:53Þ

It contains the Einstein-Hilbert term with the negative
cosmological constant Λ ¼ −3=l2, the Rarita-Schwinger
kinetic term for the neutral gravitino, and a masslike
gravitino term that is needed in the presence of the
cosmological constant to insure the invariance under local
SUSY (the gravitino actually remains massless). The
topological Gauss-Bonnet term is omitted. The cosmologi-
cal constant and the masslike term vanish under WI
contraction, yielding minimal N ¼ 1 Poincaré SUGRA.
Note that we do not need additional action terms in (2.51)
to obtain a consistent classical theory.
It is shown in Ref. [53] that linear (in θμν) NC correction

to (2.51) vanishes and that one has to calculate the second-
order NC correction in order to see NC effects, which is
exceedingly difficult. In the following section, we use the
Seiberg-Witten approach to NC gauge field theories, to
calculate linear NC correction toN ¼ 2AdS4 SUGRA, and
conclude that it is not equal to zero. The nonvanishing part
comes from the additional bosonic action, SA.
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III. NC DEFORMATION

Canonical deformation of the orthoymplectic action
(2.30) is obtained by replacing ordinary commutative field
multiplication with Moyal ⋆-product, yielding an NC
action (denoted by ⋆) manifestly invariant under NC-
deformed OSpð4j2Þ⋆ gauge transformations,

S⋆42 ¼
il

32πGN
STr

Z
d4xεμνρσ

�
F̂μν ⋆ F̂ρσ ⋆ Φ̂

−
1

2l2
F̂μν ⋆ Φ̂ ⋆ Φ̂ ⋆ F̂ρσ ⋆ Φ̂

�
: ð3:1Þ

Likewise, we have a canonically deformed version of the
bosonic action (2.40) with c ¼ 1=32l and d ¼ i=192l,

S⋆A ¼ 1

32l
Tr

Z
d4xεμνρσ

�
f̂ ⋆ ˆ̃fμν ⋆ Dρϕ̂ ⋆ Dσϕ̂ ⋆ ϕ̂

þ i
6
f̂ ⋆ f̂ ⋆ Dμϕ̂ ⋆ Dνϕ̂ ⋆ Dρϕ̂ ⋆ Dσϕ̂ ⋆ ϕ̂

�
þ c:c:

ð3:2Þ
We denote NC fields by a “hat” symbol. In the Seiberg-
Witten approach [3,34–37], NC gauge field theory is
completely defined by its commutative (classical) counter-
part. For some non-Abelian gauge group G with generators
TA satisfying Lie-algebra relations ½TA; TB� ¼ ifACBTC,
the commutator of two infinitesimal gauge transformations
δϵ1 and δϵ2 closes in the algebra,

½δϵ1 ; δϵ2 � ¼ δ−i½ϵ1;ϵ2�: ð3:3Þ
There is, however, difficulty, in general, concerning the
closure axiom for NC gauge transformations. Namely, for a
given pair of NC gauge parameters Λ̂1 and Λ̂2, we would
like to find a third one, Λ̂3, such that

½δ⋆1 ;⋆ δ⋆2 � ¼ δ⋆3 : ð3:4Þ
Now, if NC gauge parameter Λ̂ is supposed to be Lie-
algebra valued, Λ̂ðxÞ ¼ Λ̂AðxÞTA, then, for some generic
NC field Ψ̂ that transforms in the fundamental representa-
tion of the gauge group (although the argument holds in any
representation), we have

½δ⋆1 ;⋆δ⋆2 �Ψ̂¼ ðΛ̂1 ⋆ Λ̂2 − Λ̂2 ⋆ Λ̂1Þ ⋆ Ψ̂

¼ 1

2
ð½Λ̂A

1 ;⋆Λ̂B
2 �fTA;TBgþ fΛ̂A

1 ;⋆Λ̂B
2 g½TA;TB�Þ ⋆ Ψ̂

¼ iΛ̂3 ⋆ Ψ̂¼ δ⋆3Ψ̂: ð3:5Þ
The NC closure rule

½δ⋆̂Λ1
;⋆δ⋆̂Λ2

� ¼ δ⋆−i½Λ̂1 ;⋆Λ̂2� ð3:6Þ

consistently generalizes its commutative counterpart.
However, Eq. (3.5) implies that the commutator of two

NC gauge transformations does not generally close in the

Lie algebra, because anticommutator fTA; TBg does not in
general belong to this algebra [except for the UðNÞ gauge
group]. To overcome this difficulty, we will apply the
universal enveloping algebra (UEA) approach. The envel-
oping algebra is “large enough” to ensure that closure
property of NC gauge transformations holds, provided that
NC gauge parameter Λ̂ is UEA valued.
The NC covariant derivative (for a generic gauge group

G) in the fundamental representation is defined by

DμΨ̂ ¼ ∂μΨ̂ − iV̂μ ⋆ Ψ̂; ð3:7Þ
where V̂μ stands for the corresponding NC gauge field, and
it transforms as

δ⋆ΛDμΨ̂ ¼ iΛ̂ ⋆ DμΨ̂; ð3:8Þ
implying

δ⋆ΛV̂μ ¼ ∂μΛ̂þ i½Λ̂ ;⋆ V̂μ�: ð3:9Þ
Therefore, the NC gauge field must also be UEA valued,
and it can be represented in its basis. But UEA has an
infinite basis, and it seems that by invoking it we actually
introduced an infinite number of new degrees of freedom
(new fields) in the NC theory, rendering it unrealistic. This
problem is resolved by the SW)\ map [34–37]. Essentially,
we assume that classical gauge transformations induce the
corresponding NC gauge transformations,

δ⋆ΛV̂μ ¼ V̂μðVμ þ δϵVμÞ − V̂μðVμÞ: ð3:10Þ
This allows us to represent every NC field as a perturbation
series in powers of the deformation parameter θμν with
expansion coefficients built out of fields from the unde-
formed theory, e.g., Λ̂ϵ ¼ ϵþ Λ̂ð1Þ þ Λ̂ð2Þ þ � � �. At zeroth
order, NC fields reduce to their undeformed counterparts.
For example, the NC gauge parameter and potential can be
represented as

Λ̂ϵ ¼ ϵ −
1

4
θρσfVρ; ∂σϵg þOðθ2Þ; ð3:11Þ

V̂μ ¼ Vμ −
1

4
θρσfVρ; ∂σVμ þ Fσμg þOðθ2Þ: ð3:12Þ

After these general considerations, we return to the NC
action (3.1). Field strength F̂μν appearing in (3.1) is defined
in terms of OSpð4; 2Þ⋆ gauge potential Ω̂μ as

F̂μν ¼ ∂μΩ̂ν − ∂νΩ̂μ − i½Ω̂μ ;⋆Ω̂ν�: ð3:13Þ
It transforms in the adjoint representation of the OSpð4; 2Þ⋆
supergroup as well as the NC auxiliary field Φ̂,

δ⋆ϵ F̂μν ¼ i½Λ̂ϵ ;⋆F̂μν�; δ⋆ϵ Φ̂ ¼ i½Λ̂ϵ ;⋆ Φ̂�: ð3:14Þ
At this point, it would be tempting to proceed by directly
imposing the physical gauge. However, this operation
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would not yield an action with an appropriate symmetry
because gauge fixing does not commute with NC defor-
mation. A bypass is provided by the SW expansion.
Representing NC fields in terms of their undeformed
counterparts, we obtain a perturbative expansion of
OSpð4j2Þ� gauge-invariant NC action (3.1) in powers of
the deformation parameter θμν. By construction, the SW
map ensures invariance of the expanded action under
ordinary OSpð4j2Þ gauge transformations, order by order.
We now present some relevant steps in the expansion

procedure of the NC action (3.1). The goal is to calculate
and analyze linear NC correction to the classical action
(2.30). The SW expansions, up to the first order in the
deformation parameter, of the NC auxiliary field Φ̂ and NC
field strength F̂μν are given by

Φ̂ ¼ Φ −
1

4
θρσfΩρ; ð∂σ þ D̂σÞΦg þOðθ2Þ; ð3:15Þ

F̂μν ¼ Fμν −
1

4
θρσfΩρ; ð∂σ þ D̂σÞFμνg

þ 1

2
θρσfFρμ; F σνg þOðθ2Þ; ð3:16Þ

where D̂μ stands for the OSpð4j2Þ covariant derivative
(associated to Ωμ).
Generally, for a pair of NC fields Â and B̂, linear NC

correction to their product is

ðÂ ⋆ B̂Þð1Þ ¼ Âð1ÞBþ AB̂ð1Þ þ i
2
θρσ∂ρA∂σB: ð3:17Þ

In particular, if both fields transform in the adjoint
representation of OSpð4j2Þ⋆, we have

ðÂ ⋆ B̂Þð1Þ ¼ −
1

4
θρσfΩρ; ð∂σ þ D̂σÞABg þ

i
2
θρσD̂ρAD̂σB

þ ðÂð1ÞÞ0Bþ AðB̂ð1ÞÞ0: ð3:18Þ
For example, in (3.15) and (3.16), we have

ðΦ̂ð1ÞÞ0 ¼ 0; ð3:19Þ

ðF̂ ð1Þ
μν Þ0 ¼ 1

2
θρσfFρμ; Fσνg: ð3:20Þ

Successive application of the rule (3.18) gives us the
first-order NC correction to the classical action (2.30):

Sð1Þ42 ¼ ilθλτ

32πGN
STr

Z
d4xεμνρσ

�
−
1

4
fF λτ; FμνFρσgΦþ i

2
D̂λFμνD̂τFρσΦþ 1

2
fF λμ; F τνgFρσΦþ 1

2
FμνfF λρ; F τσgΦ

−
1

2l2

�
−
1

4
fF λτ; FμνΦ2gFρσΦþ i

2
D̂λFμνD̂τΦ2FρσΦþ 1

2
fF λμ; F τνgΦ2FρσΦþ i

4
Fμν½D̂λΦ; D̂τΦ�FρσΦ

þ i
2
FμνΦ2D̂λFρσD̂τΦþ 1

2
FμνΦ2fF λρ; F τσgΦ

��
: ð3:21Þ

The correction is real and invariant under OSpð4; 2Þ gauge
transformations. However, a careful examination shows
that after the gauge fixing (2.32) it vanishes completely,

Sð1Þ42 jg:f: ¼ 0: ð3:22Þ
But we still have the additional NC action S⋆A invariant
under purely bosonic NC-deformed SOð2; 3Þ⋆ × Uð1Þ⋆

gauge transformations. The only additional SW expansion
we need is that of f̂, and it is given by

f̂ ¼ f −
1

4
θρσfΩρ; ð∂σ þDσÞfg þOðθ2Þ: ð3:23Þ

Before gauge fixing, the first-order term in the SW
expansion of (3.2) is

Sð1ÞA ¼ Sð1ÞAf þ Sð1ÞAff

¼ −
θλτ

64l
Tr

Z
d4xεμνρσ

�
−ifDλf̃μνDτðDρϕDσϕϕÞ þ

1

2
ff̃λτ; fgf̃μνDρϕDσϕϕ − fff̃λμ; f̃τνgDρϕDσϕϕ

− iff̃μνDλðDρϕDσϕÞDτϕ − iff̃μνðDλDρϕÞðDτDσϕÞϕ − ff̃μνfff̃λρ; Dτϕg; Dσϕgϕ

þ i
3!

�
1

2
ff̃λτ; f2gDμϕDνϕDρϕDσϕϕ − f2f½ff̃λμ; Dτϕg; Dνϕ�; DρϕDσϕgϕ

− if2ðDλðDμϕDνϕDρϕDσϕÞDτϕþDλðDμϕDνϕDρϕÞðDτDσϕÞϕ

þDλðDμϕDνϕÞðDτDρϕÞÞDσϕϕþ ðDλDμϕÞðDτDνϕÞDρϕDσϕϕÞ
��

þ c:c:; ð3:24Þ

DRAGOLJUB GOČANIN and VOJA RADOVANOVIĆ PHYS. REV. D 100, 095019 (2019)

095019-10



where we can distinguish the linear f part and the quadratic
f2 part, and all terms are manifestly SOð2; 3Þ ×Uð1Þ
invariant by the virtue of SW map.
After calculating traces and evaluating the gauge-fixed

action Sð1ÞA jg:f: on the EoM of the components of the
auxiliary field f [as it turns out, to obtain the first-order
NC correction, we only need to insert zeroth-order

(classical) EoM (2.43) in the gauge-fixed first-order NC

action Sð1ÞA jg:f:], we obtain

Sð1ÞA;EoMjg:f: ¼
X6
j¼1

Sð1ÞA;EoMf:jjg:f: þ Sð1ÞA;EoMffjg:f:; ð3:25Þ

with the individual terms

Sð1ÞA;EoMf:1jg:f: ¼ −
θλτ

64κ

Z
d4xe

�
F̃ μνRμνab

�
Rλτ

ab −
2

l2
eaλe

b
τ

�

þ F̃ ρσeaρebσ

�
RμνabRλτ

cdeμceνd −
2

l2
Rλτab

�
þ 4F̃ ρμecρ

�
RμνacRλτ

abeνb þ
2

l2
Rμλaceaτ

�

þ F̃ ρσe
ρ
aeσbRλτ

ab

�
Rμν

mneμmeνn −
12

l2

�
þ 2

l2
F̃ μνTλτ

aðTμνa − 2Tρνme
ρ
aemμ Þ

−
2

l2
F̃ λτ

�
Rμν

mneμmeνn −
12

l2
− 4

l2

κ2
F̃ μνF̃ μν

��
; ð3:26Þ

Sð1ÞA;EoMf:2jg:f: ¼ −
θλτ

8κ

Z
d4xe

×

�
þðDL

λRμν
mcÞðDL

τ erρÞeσcðeνmðF̃ σ
μeρr − F̃ σ

ρeμrÞ þ F̃ σ
νeμre

ρ
mÞ

−
1

l2
F̃ ρ

μeρcðDL
λ Tτμ

c − eλbRτμ
bcÞ − 4

l2
F̃ ν

μðDL
λ e

r
ρÞðDL

τ emμ Þeνmeρr

−
1

l2
ðDL

λ e
r
ρÞeρrðeνcF̃ τ

μTμν
c − eνcF̃ ν

μTμτ
cÞ þ 1

2l2
Tλτ

rTμν
cF̃ σ

νeσce
μ
r

þ 1

l2
ðDL

λ e
r
ρÞeνrðTμν

mðF̃ τ
μeρm − F̃ τ

ρeμmÞ þ Tτν
mF̃ μ

ρeμmÞ

þ 2

l2
F̃ σ

ρeσcðDL
λ e

r
ρÞðDL

τ ecνÞeνr þ
1

l4
F̃ λτ

�
; ð3:27Þ

Sð1ÞA;EoMf:3jg:f: ¼
θλτ

32κ

Z
d4xe

�
−F̃ μνRλνam

�
Rτμ

am −
4

l2
eaτemμ

�

þ F̃ ρσRλμ
amRτν

bnðeμaeνmeρbeσn þ eρaeσme
μ
be

ν
n þ 2eρneσmðeμaeνb − eνae

μ
bÞÞ

−
2

l2
eρneσbð2F̃ λρRτσ

bn þ F̃ ρσRλτ
bnÞ þ 2

l2
F̃ μνTλμ

aTτνa þ
8

κ2
F̃ μνF̃ λμF̃ τν

�
; ð3:28Þ

ðSð1ÞA;EoMf:4jg:f: þ Sð1ÞA;EoMf:5jg:f:Þ ¼ −
θλτ

32κ

Z
d4xe

×

�
þRμν

abðDL
λ e

m
ρ ÞðDL

τ eσmÞðF̃ μνeρaeσb þ F̃ ρσeμaeνb − 4F̃ μρeνaeσbÞ

−
1

l2
Rμν

abðF̃ μνeλaeτb þ F̃ λτe
μ
aeνb − 4F̃ μ

λeνaeτbÞ −
1

l2
F̃ μνηmnðDL

λ e
m
μ ÞðDL

τ enνÞ

þ 2

l2
Tμν

aðDL
λ e

b
ρÞðF̃ μνð2eρaeτb − eρbeτaÞ þ 2F̃ τ

μðeρaeνb − eρbe
ν
aÞ

þ 2F̃ ρμð2eνaeτb − eνbeτaÞ þ 2F̃ ρ
τe

μ
aeνbÞ −

2

l2
F̃ ρμTμνcTλτ

decρeνd

þ 4

l2
TλνaðDL

τ edρÞeaσðF̃ σνeρd − F̃ σρeνdÞ −
4

l2
Rλνa

ceaρðF̃ ρνeτc − F̃ ρ
τeνcÞ −

6

l4
F̃ λτ

�
; ð3:29Þ
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Sð1ÞA;EoMf:6jg:f: ¼
θλτ

32κ

Z
d4xe

�
F̃ ρσeaρebσe

μ
meνnðRλτ

mnRμνab − 2Rλμ
mnRτνabÞ

þ 8

κ2
ðF̃ λτF̃

2 − 2F̃ μνF̃ λμF̃ τνÞ þ
2

l2
F̃ μνeaμebνRλτab þ

4

l2
F̃ λνϵ

ν
ae

ρ
bRτρ

ab

−
4

l2
F̃ μνeaνe

ρ
bðTρμaTλτ

b − TμλaTτρ
b − TλρaTτμ

bÞ − 8

l4
F̃ λτ

�
; ð3:30Þ

and, finally, the f2 term,

Sð1ÞA;EoMffjg:f: ¼ −
θλτ

16κ3

Z
d4xeF̃ λτF̃

2: ð3:31Þ

Action (3.25) represents the first-order NC correction to
N ¼ 2 AdS4 SUGRA. It involves various new couplings
between Uð1Þ gauge field, gravity, and gravitini fields that
appear due to space-time noncommutativity. As it stands,
this action seems too complicated to be analyzed in its
entirety. However, we can restrict ourselves to some
particular domain of parameters and work with an ap-
proximated NC action. In particular, we will derive a low-
energy approximation of (3.25), by taking into account
terms at most quadratic in the partial derivative. Therefore,
we include only terms linear in curvature and linear and
quadratic in torsion. Additionally, we assume that spin
connection ωμ

ab and the first-order derivatives of the
vierbeins are of the same order. Note also that the torsion
constraint T̃μν

a ¼ 0 (2.25) gives us Tμν
a ¼ −iΨμγ

aΨν.
These assumptions yield a very simple action,

Sð1Þlow-energy ¼ −
9θμν

16l4κ

Z
d4xeF̃ μν

¼ −
9θμν

16l4κ

Z
d4xeðF μν − Ψ̄μiσ2ΨνÞ

¼ 9θμν

16l4κ

Z
d4xeðψ̄1

μψ
2
ν − ψ̄2

μψ
1
νÞ þ surface term

¼ −
9

8l4κ

Z
d4xeðψ̄þ

μ iΘμνψþ
ν Þ þ surface term:

ð3:32Þ

This masslike term for charged gravitino ψþ
μ , minimally

coupled to gravity, appears due to space-time noncommu-
tativity and “renormalizes” the corresponding term (2.49)
in the classical SUGRA action (2.48). If we again absorb
κ−1 in ψþ

μ to obtain the canonical dimensions, the masslike
parameter is of the order of lPΛ2

NC=l
4, and it vanishes under

WI contraction.
After WI contraction, the action (3.25) reduces to

Sð1ÞA jg:f: ¼WI −
θλτ

64κ

Z
d4xe

�
F̃ μνRμνρσRλτ

ρσ − F̃ μνRρσμνRλτ
ρσ − 4F̃ μρRμνρσRλτ

νσ

− 2F̃ μνRλμ
ρσRτνρσ þ 8F̃ ρσRλμ

μρRτν
νσ þ F̃ μνRλτ

μνR −
4

κ2
F̃ λτF̃

2 þ 16

κ2
F̃ μνF̃ λμF̃ τν

þ 8ðDL
λRμν

mcÞðDL
τ erρÞeσcðF̃ σ

μeνme
ρ
r − F̃ σ

ρeμreνm þ F̃ σ
νeμre

ρ
mÞ

þ 2Rμν
abηrsðDL

λ e
r
ρÞðDL

τ esσÞðF̃ μνeρaeσb þ F̃ ρσeμaeνb − 4F̃ μρeνaeσbÞ
�
: ð3:33Þ

At this point, we are confronted with an interesting
question. The fact that N ¼ 2 AdS4 superalgebra contracts
to N ¼ 2 Poinacaré superalgebra when l → ∞ is consis-
tently reflected on the level of classical (undeformed)
action (2.47); classical N ¼ 2 AdS4 SUGRA reduces to
classical N ¼ 2 Poincaré SUGRA under WI contraction.
However, it is not a priori clear whether this relation holds
after NC deformation, that is, whether NC deformation and
WI contraction actually commute. For that matter, one
would have to explicitly compute the NC correction to

classical N ¼ 2 Poincaré SUGRA and compare it to the
action (3.33).

IV. CONCLUSIONS

Let us emphasize the main points of this paper and
propose some further paths of investigation. At this stage,
our primary goal was to obtain explicit NC correction to
N ¼ 2 AdS SUGRA in D ¼ 4. We stared from a classical
(undeformed) action (2.30) of the MacDowell-Mansouri
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type (already advocated in the literature), invariant
under orthosymplectic OSpð4j2Þ gauge transformations.
However, this action alone is not enough to obtain N ¼ 2
AdS4 SUGRA after fixing the gauge (for which we use a
constrained auxiliary field). In particular, one has to add a

supplementary action (2.40) endowed with SOð2; 3Þ ×
Uð1Þ gauge symmetry [bosonic sector of OSpð4j2Þ] that
provides the missing terms in the classical SUGRA action
[e.g., the kinetic term for the Uð1Þ gauge field]. Therefore,
we have the following relation:

This situation seems curious considering that a similar
OSpð4j1Þ gauge-invariant action (2.51) in the same gauge
reduces to the complete N ¼ 1 AdS4 SUGRA action. We
may conclude that extended N > 1 AdS4 SUGRA cannot
be obtained simply by gauging the corresponding ortho-
symplectic group OSpð4jNÞ and subsequently fixing the
gauge. For N > 2, we would have to include an additional
term similar to (2.40) that involves a non-Abelian Yang-
Mills gauge field.
NC deformation is performed following the Seiberg-

Witten approach to NC gauge field theory that involves
universal enveloping algebra-valued gauge field and per-
turbative expansion of the NC-deformed action in powers
of the deformation parameter θμν. The expanded action
possesses gauge symmetry of the corresponding classical
action, order by order, and we focus only on the linear NC
correction that remains after the gauge fixing. For the
OSpð4j2Þ gauge-invariant part, linear NC correction van-
ishes. The reason why this result strikes us as curious is
related to some previously establish facts about canonical
NC deformation of the similar models. Namely, canonical
deformation of pure gravity, regarded as a gauge theory of
the SOð2; 3Þ group, leads to quadratic NC correction
[25,26,38]. However, after including charged matter
(Dirac spinors) coupled to the Uð1Þ gauge field, linear
NC correction appears [54–56]. Since we can take a pair of
Majorana vector spinors of OSpð4j2Þ SUGRA and form a
pair of Uð1Þ-charged Dirac vector spinors, related to each
other by C conjugation, we expected to obtain a non-
vanishing first-order NC correction from the OSpð4j2Þ
action (3.1), as well.
However, the supplementary bosonic action provides a

nontrivial linear NC correction that is calculated explicitly
(3.25). It involves various new interaction terms that are
present due to space-time noncommutativity. The full
action is difficult to analyze, but we can restrict ourselves

to the low-energy sector of the theory by taking into
account only terms that are at most quadratic in partial
derivatives. This leaves us with a single masslike term for a
charged gravitino minimally coupled to gravity.
WI contraction eliminates many of these new interaction

terms, but not all of them (3.33). The ones remaining may
help us understand the relation between the canonical NC
deformation and WI contraction, at least in this particular
case. N ¼ 2 AdS superalgebra reduces to N ¼ 2 Poincaré
superalgebra under WI contraction, and the same holds for
their classical actions. Therefore, it may be the case that
the same relation pertains even after canonical NC defor-
mation. To confirm this assumption directly, we have to
calculate linear NC correction to N ¼ 2 Poincaré SUGRA
and make the comparison.
Let us just mention that there are two additional terms

with OSpð4j2Þ gauge symmetry that we could include. We
denote them by S0 and S00, and they are given by

S0 ¼ a0

128πGNl
STr

Z
d4xεμνρσFμνD̂ρΦD̂σΦΦþ c:c:;

S00 ¼ −
ia00

128πGNl3
STr

Z
d4xεμνρσD̂μΦD̂νΦD̂ρΦD̂σΦΦ;

with free dimensionless parameters a0, a00, and OSpð4j2Þ
covariant derivative D̂μ. Their SOð2; 3Þ gauge-invariant
counterparts were analyzed in Ref. [26]. After gauge fixing,
they modify the coefficients in the classical action but do
not introduce new terms. In particular, they give us a
freedom to eliminate the cosmological constant in the
classical action. NC deformation of S0 and S00 will certainly
change our final result, but their importance is not yet clear.
Analysis of these additional NC corrections remains to
be done.
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APPENDIX A: MATRIX REPRESENTATION OF
ospð4j2Þ SUPERALGEBRA

Here, we present an explicit 6 × 6 matrix representation
of OSpð4j2Þ generators fM̂AB; Q̂

I
α; T̂g. The AdS generators

are the same as for OSpð4j1Þ, but for OSpð4j2Þ, we have
an additional set of fermionic generators (comprising
another Majorana spinor) and additional bosonic generator
T̂ of SOð2Þ ∼ Uð1Þ.

The bosonic generators of OSpð4j2Þ are

ðA1Þ

The imaginary unit in T̂ is introduced for convenience.
The fermionic generators of OSpð4j2Þ are

ðA2Þ

ðA3Þ

The second set of fermionic generators ðQ̂2Þα (α ¼ 1, 2, 3, 4) is obtained from the first one just by interchanging fifth and
sixth columns and fifth and sixth rows. One can readily check that supermatrices (A1), (A2), and (A3), along with the
second set of fermionic generators, satisfy the ospð4j2Þ superalgebra (2.4).

DRAGOLJUB GOČANIN and VOJA RADOVANOVIĆ PHYS. REV. D 100, 095019 (2019)

095019-14



APPENDIX B: USEFUL IDENTITIES

Some basic Fierz identities involving Majorana spinors
ψ and χ are

ψ̄ χ ¼ χ̄ψ ¼ ðψ̄ χÞ†
ψ̄γ5 χ ¼ χ̄γ5ψ ¼ −ðψ̄γ5 χÞ†

ψ̄γaγ5 χ ¼ χ̄γaγ5ψ ¼ ðψ̄γaγ5 χÞ†
ψ̄γa χ ¼ − χ̄γa χ ¼ −ðψ̄γa χÞ†
ψ̄σab χ ¼ − χ̄σabψ ¼ −ðψ̄σab χÞ†: ðB1Þ

Also, we frequently use the following important identity,
valid in four dimensions. For any pair of Majorana spinors,
ψ and χ, we can expand ψ χ̄ in the Clifford algebra basis:

−4ψ χ̄ ¼ ð χ̄ψÞI4 þ ð χ̄γaψÞγa þ ð χ̄γ5ψÞγ5 þ ð χ̄γaγ5ψÞγ5γa
þ 1

2
ð χ̄σabψÞσab: ðB2Þ

Some AdS algebra relations are1

½MAB;MCD� ¼ iðηADMBC þ ηBCMAD − ηACMBD

− ηBDMACÞ

fMAB;MCDg ¼ i
2
ϵABCDEΓE þ 1

2
ðηACηBD − ηADηBCÞ

fMAB;ΓCg ¼ iϵABCDEMDE

½MAB;ΓC� ¼ iðηBCΓA − ηACΓBÞ
Γ†
A ¼ −γ0ΓAγ0; M†

AB ¼ γ0MABγ0: ðB3Þ

Some useful identities involving γ matrices and σ matrices
are

γaγb ¼ ηab − iσab

σabγc ¼ iηbcγa − iηacγb þ εabcdγ5γ
d

γcσab ¼ iηacγb − iηbcγa þ εabcdγ5γ
d

σabγ5 ¼
i
2
εabcdσ

cd

σabσcd ¼ ηacηbd − ηadηbc þ iεabcdγ5

þ iðηadσbc þ ηbcσad − ηacσbd − ηbdσacÞ: ðB4Þ

Identities with traces are

TrðΓAΓBÞ ¼ 4ηAB

TrðΓAÞ ¼ TrðΓAΓBΓCÞ ¼ 0

TrðΓAΓBΓCΓDÞ ¼ 4ðηABηCD − ηACηBD þ ηADηCBÞ
TrðΓAΓBΓCΓDΓEÞ ¼ −4iϵABCDE

TrðMABMCDΓEÞ ¼ iϵABCDE

TrðMABMCDÞ ¼ −ηADηCB þ ηACηBD

TrðMABΓEΓFΓGÞ ¼ 2εABEFG

TrðMABMCDΓEΓFΓGÞ ¼ iεABCDEηFG − iεABCDFηEG

þ iεABCDGηEF þ iεBCEFGηAD

þ iεADEFGηBC − iεBDEFGηAC

− iεACEFGηBD: ðB5Þ
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