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It is important to obtain (nearly) massless localized modes for the low-energy four-dimensional effective
field theory in the brane-world scenario. We propose a mechanism for bosonic zero modes using the field-
dependent kinetic function in the classical field theory setup. As a particularly simple case, we consider a
domain wall in five dimensions and show that massless states for scalar (0-form), vector (1-form), and
tensor (2-form) fields appear on a domain wall, which may be called topological because of the robustness
of their existence (insensitive to continuous deformations of parameters). The spin of localized massless
bosons is selected by the shape of the nonlinear kinetic function, analogously to the chirality selection of
the fermion by the well-known Jackiw-Rebbi mechanism. Several explicitly solvable examples are given.
We consider not only (anti) Bogomol’nyi-Prasad-Sommerfield (BPS) domain walls in a noncompact extra
dimension but also non-BPS domain walls in a compact extra dimension.
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I. INTRODUCTION

A long time ago, Jackiw and Rebbi showed that massless
fermions are trapped by a topological soliton, namely a
domain wall [1]. As it turns out, this property is robust
since it depends on topological aspects of a given theory
alone, and it is otherwise insensitive to the details. This
idea has become ubiquitous within a vast area of modern
physics. Let us give several examples. Topological kinks
in polyacetylene are described by Su, Schrieffer, and
Heeger [2], and quantized solitons of the one-dimensional
Neel state are studied by Haldane [3]. Rubakov and
Shaposhnikov [4] studied the possibility that our (3þ 1)-
dimensional Universe is embedded in higher dimensions,
which is an early proposal of the so-called brane-world
scenario [5–8]. The Jackiw-Rebbi mechanism naturally
provides massless chiral fermions (leptons and quarks) on a
domain wall (a 3-brane) in five dimensions. The left- or
right-handed chirality is selected by the profile of the

domain wall (kink) background solution. The mechanism
has also been used to treat chiral fermions in lattice QCD,
the so-called domain wall fermion, in Refs. [9–11].
Furthermore, there is an intimate connection between the
Jackiw-Rebbi mechanism and a topological phase of matter
which is one of the highlights in the last decade. There, an
interplay between topology and massless edge (surface)
modes has revealed new, rich properties of matter [12,13].
These massless modes on edges are all fermionic states.

Thus, we are lead to a natural question: Do massless
bosons, especially gauge bosons, also robustly appear on
domain walls (edges)? In this paper, we answer this
question in the affirmative.
We arrived at this question not under the necessity of

application to some materials in condensed matter. Rather,
we have encountered it in our recent studies on a quite
different topic, the dynamical construction of brane-world
scenario by topological solitons [14–20]. A necessary
condition common to most brane-world models is that
all Standard Model particles, except for four-dimensional
gravitons, must be localized on the 3-brane.1 Namely,Published by the American Physical Society under the terms of
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1We are assuming the extra dimensions to be noncompact
or large.
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fermions, scalar, and vector bosons must be localized on the
3-brane. It is desirable for a localization mechanism not to
depend on details of the model. The Jackiw-Rebbi mecha-
nism is indeed a prime example of such a mechanism,2

providing chiral fermions on a domain wall (3-brane) [4].
How about bosons? The Standard Model also has bosonic
fields: the Higgs field and SUð3Þ × SUð2Þ ×Uð1Þ gauge
bosons. Unlike fermions, however, a robust localization
mechanism for bosons, especially non-Abelian Yang-Mills
fields, is not widely agreed on. There are many works so far
[21–45]. Among them, one of the most popular ideas relies
on strongly coupled dynamics: a domain wall in confining
vacua. A concrete model in four spacetime dimensions was
explicitly proposed [46]. Due to the so-called dual Meisner
effect, a (chromo)electric field cannot invade the bulk, so
that massless gauge fields are confined inside the wall. This
mechanism is clearly independent of the details. However,
since it is based on strong coupling dynamics, which are
not very well understood in four let alone five dimensions,
it is very hard to quantitatively deal with any physics related
to massless four-dimensional gauge fields. Therefore, in
practice the confinement in higher dimensions was simply
assumed to take place; see for example Refs. [47–53].
Alternatively, a phenomenological model with a field-

dependent kinetic term for gauge fields was considered in
six spacetime dimensions [5]. One does not need to assume
confinement in higher dimensions. Rather, it can be thought
of as an effective description of confinement in terms of
classical fields [54–60]. Hence, one can quantitatively
study phenomena involving the massless four-dimensional
gauge fields. A supersymmetric model has been con-
structed in five spacetime dimensions [61], and further
developments into unified theories beyond the Standard
Model followed [14–20]; see also [62,63]. A detailed study
of localization by the field-dependent gauge kinetic terms
was done earlier in [23], and another study for a non-
supersymmetric model with/without gravity was developed
in [33]; see also a recent review paper [64].
In this paper, we will reanalyze the localization of

massless gauge fields on a domain wall via the field-
dependent gauge kinetic term from a different viewpoint
where we do not need the speculative connection between it
and confinement. Instead, we find a common mathematical
structure and a mapping between our localization mecha-
nism of gauge fields and the Jackiw-Rebbi mechanism for
fermions. We call this underlying mathematical structure
for bosons the Jackiw-Rebbi-like mechanism for bosons.
As we will show explicitly, the presence of massless gauge
fields on a domain wall relies only on boundary conditions.

Thus, it is topological in the sense that it does not depend
on a precise form of the Lagrangian. Once we recognize the
massless gauge fields as topological, we will show that the
Jackiw-Rebbi-like mechanism for bosons works not only
for vector (1-form) fields but also for scalar (0-form) and
tensor (2-form) fields. Since there is no obvious reason for
massless 0- and 2-form tensor fields to be related to
confinement, the Jackiw-Rebbi-like mechanism for bosons
is a nice and concrete explanation alternative to the
confinement. We will work on domain walls in 5 dimen-
sions in this work. Similarly to the selection of chirality
of a four-dimensional fermion by the wall, we will show
the Jackiw-Rebbi-like mechanism selects the spin of loca-
lized massless bosons: It selects between four-dimensional
vector or scalar (tensor or vector) in the case of five-
dimensional vector (tensor) bosonic fields.
We wish to stress that our mechanism for localized

massless bosons is not of mere mathematical interest, even
though we focus and elaborate its topological significance
in this paper. We have already applied our mechanism to
construct several phenomenological models with a non-
compact (infinite) extra-dimension. For instance, we have
used the mechanism to construct a grand unified theory
model in five dimensions and explicitly showed that
SUð5Þ → SUð3Þ × SUð2Þ ×Uð1Þ symmetry breaking after
the moduli stabilization [17]. We call this phenomenon the
geometric Higgs mechanism, since the spontaneous sym-
metry breaking is induced by the splitting of five domain
walls into two and three coincident walls, whereas SUð5Þ is
unbroken for the five coincident walls. As for the Standard
Model, we have applied our mechanism to construct a five-
dimensional model, where the Higgs field serves as both an
agent for the localization of gauge fields and the con-
densation to break SUð2Þ ×Uð1Þ → Uð1Þem at the same
time [19]. We have pointed out a possible enhancement of
the Higgs boson decaying into two gamma’s. We have also
studied models with more extra dimensions [18,20].
Here, let us make the distinctions between this paper and

previous works clear. First of all, this work presents a
different point of view that the Jackiw-Rebbi-like mecha-
nism plays a main role for the localization. Admittedly, there
is a partial overlap between the models we study in Sec. IVA
and those in Ref. [33]. However, treatment of extra compo-
nents of bosonic fields (components perpendicular to the
domain wall; Ay for vector fields and θμy for tensor fields)
are clearly different. We do not take the axial gauge of
Ay ¼ 0 (We will explicitly show that the axial gauge is
inadequate to discover massless modes.). This is especially
important if we consider a pair of a wall and an antiwall in a
compact extra dimension since additional physical massless
bosons arise from Ay and θμy as we will show in Sec. V.
The organization of the paper is as follows. We briefly

describe well-known facts about domain walls in Sec. II.
Topological edge states are explained in Sec. III. In the
first subsection we review the Jackiw-Rebbi mechanism

2In 1þ 1 dimensions, a domain wall coupled to fermions may
be considered as degenerate fermionic-soliton states with frac-
tional fermion numbers [1]. On the other hand, we interpret a
localized fermion on a domain wall in higher dimensions, say
4þ 1 dimensions, as elementary fermionic particles, such as
quarks and leptons [4].
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for fermions, and the rest is devoted for scalar, vector,
and tensor bosonic fields. We provide several explicit
models in Sec. IV. Only in Sec. V, we consider a pair of
a wall and an antiwall with a compact extra dimension.
Phenomenological implications are also discussed.

II. DOMAIN WALLS: A BRIEF REVIEW

Let us consider a scalar model in noncompact flat five-
dimensional spacetime3 (D ¼ 5):

LDW ¼ ∂MT∂MT −W2
T; ðM ¼ 0; 1; 2; 3; 4Þ; ð1Þ

where we have expressed, for later convenience, a scalar
potential VðTÞ ¼ WTðTÞ2 in terms of a “superpotential”
WðTÞ which is an arbitrary function of a real scalar field T.
Hereafter we use the notation such as

WT ¼ dW
dT

; WTT ¼ d2W
dT2

: ð2Þ

We assume that there exist multiple discrete vacua
satisfyingWT ¼ 0. Let T ¼ TðyÞ be a domain wall solution
which interpolates adjacent vacua at y ¼ �∞ (y stands for
one of the spatial coordinates). The static equation of
motion reads

−T 00 þWTWTT ¼ 0; ð3Þ

where the prime denotes a derivative in terms of y. Let us
investigate the mass spectrum by perturbing T about the
background domain wall solution as TðyÞ → TðyÞ þ
τðxμ; yÞ with τ being a small fluctuation of the scalar field.
The linearized equation of motion is found as

ð□ − ∂2
y þW2

TT þWTWTTTÞτ ¼ 0; ð4Þ

where WT , WTT , and WTTT should be understood as those
evaluated at the domain wall solution T ¼ TðyÞ. Hence, the
mass spectrum is determined by solving the eigenvalue
problem in one dimension with the n-th eigenfunction gn
corresponding to the mass squared eigenvalue m2

n:

ð−∂2
y þW2

TT þWTWTTTÞgn ¼ m2
ngn: ð5Þ

Irrespective of the details of the superpotential W, there
always exists a normalizable zero mode. To see this, let us
differentiate Eq. (3) once by y:

ð−∂2
y þW2

TT þWTWTTTÞT 0 ¼ 0: ð6Þ

Thus, we find a solution with a zero eigenvalue (apart from
the normalization constant)

g0 ¼ T 0: ð7Þ

The presence of this normalizable4 zero mode is robust,
because it is nothing but the Nambu-Goldstone zero mode
associated with the spontaneously broken translational
symmetry.
Stability of the domain wall background is ensured by

topology. When a static configuration T is a function of y,
we can derive the well-known Bogomol’nyi completion
form for the energy density E as

E ¼ T 02 þW2
T ¼ ðT 0 ∓ WTÞ2 � 2T 0WT ≥ �2W0: ð8Þ

This Bogomol’nyi inequality is useful by choosing the
upper (lower) sign for W0 > 0 (W0 < 0). It is saturated by
solutions of the so-called Bogomol’nyi-Prasad-
Sommerfield (BPS) equation

T 0 ¼ �WT: ð9Þ

We call the upper sign the BPS while the lower sign the
anti-BPS.5 Tension of the domain wall is finite since we
have assumed a boundary condition with T 0 ¼ �WT → 0
as jyj → ∞. It is straightforward to verify that any solution
of the BPS equation solves the full equation of motion (3).
Tension of the BPS domain wall reads

σ ¼
Z

∞

−∞
dyE ¼ 2jWðTðþ∞ÞÞ −WðTð−∞ÞÞj: ð10Þ

This is a topological quantity. To see this, let us define a
conserved current by6

jα ¼ ϵαβ∂βWðTÞ; ðα; β ¼ 0; yÞ: ð11Þ

Then the topological charge q reads

q ¼
Z

∞

−∞
dyj0 ¼

Z
∞

−∞
dy∂yWðTÞ

¼ WðTðþ∞ÞÞ −WðTð−∞ÞÞ: ð12Þ

After being appropriately normalized, we find that the
(anti)BPS domain wall has the topological charge ð−Þ1.

3We will consider five dimensions in order to provide a brane-
world model by a dynamical compactification [65]. However, in
general, one can consider more (or less) dimensions without
significant changes.

4Since we are interested in finite tension walls it follows that
the zero mode is normalizable.

5The BPS solution often has the underlying supersymmetry.
Namely, the system allowing the BPS solution can usually be
embedded into a supersymmetric theory, and the BPS solution
preserves a part of supersymmetry.

6We temporarily disregard the Lorentz invariance in four-
dimensional world volume of the domain wall by treating the
time direction x0 separately from spatial directions x1, x2, x3.
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If the background configuration is a BPS or an anti-BPS
solution rather than a general solution of field equation
in Eq. (3), we can obtain more precise information as
follows. Using the BPS equation T 0 ¼ WT , the eigenvalue
equation (5) can be rewritten as

BPS∶ Q†Qgn ¼ m2
ngn; ð13Þ

where we have introduced 1st order differential operators

Q ¼ −∂y þWTTðTðyÞÞ; Q† ¼ ∂y þWTTðTðyÞÞ: ð14Þ

Similarly, for the anti-BPS solution (T 0 ¼ −WT), the
eigenvalue equation can be rewritten as

anti-BPS∶ QQ†gn ¼ m2
ngn: ð15Þ

The Hamiltonians Q†Q and QQ† are semipositive definite,
so there are no tachyonic instabilities. It is interesting to
note that the above system of equations constitutes super-
symmetric quantum mechanics [66] (SQM). The SQM
superpotential XðyÞ is defined as

Q ¼ −∂y þ X 0: ð16Þ

In this case of scalar field T for the BPS domain wall, the
SQM superpotential X is related to the “superpotential” W
in the D ¼ 5 field theory Lagrangian (1) as

XðyÞjðantiÞBPS ¼ � 1

2
logWTðTðyÞÞ2: ð17Þ

By using the (anti)BPS equation, the translational zero
mode g0 can be expressed as

g0ðyÞjðantiÞBPS ¼ WTðTðyÞÞ: ð18Þ

We emphasize that the SQM form is valid for the trans-
lational zero mode only if the domain wall satisfies the BPS
equation.

III. MASSLESS STATES ON DOMAIN WALLS

A. Domain wall fermions: A review
on the Jackiw-Rebbi mechanism

In addition to scalar fields in LDW, let us consider a five-
dimensional Dirac fermion Ψ in the form

LF ¼ iΨ̄ΓM∂MΨ −MðTÞΨ̄Ψ: ð19Þ

The gamma matrices inD ¼ 5 are related to those inD ¼ 4

by Γμ ¼ γμ and Γ4 ¼ iγ5. The field-dependent “mass”
MðTÞ is just a coupling function of scalar fields multi-
plying the term quadratic in fermion fields. It becomes a 5D
fermion mass only when it is a constant and independent of
any fields. We assume that the function MðTÞ is real.

When considering the Kaluza-Klein decomposition to
(infinitely many) 4D components, there is no reason for
massless 4D fermions to exist with a genericMðTÞ, except
for the well-known Jackiw-Rebbi mechanism [1]. The
mechanism ensures the existence of massless fermions
localized on a domain wall, and works in both even and odd
dimensions. The masslessness of the fermion resulting
from the Jackiw-Rebbi mechanism is stable against small
deformations of parameters. In this sense, the Jackiw-Rebbi
fermion is topological.
To see how the Jackiw-Rebbi mechanism works, let us

investigate mass spectra of the fermion around the domain
wall background TðyÞ.7 We assume that asymptotic values
of MðTðy ¼ �∞ÞÞ at left and right infinity are nonzero
and have the opposite sign, as in the typical kinklike
configuration; see Fig. 1.

MðTðy ¼ −∞ÞÞ ×MðTðy ¼ þ∞ÞÞ < 0: ð20Þ

Linearized equations of motion for fermionic fluctuations
Ψ (using the same character Ψ for the small fluctuation)
read

iγμ∂μΨ − γ5∂yΨ −MΨ ¼ 0: ð21Þ

Let us define a “Hamiltonian”:

H5 ¼ −γ5∂y −M: ð22Þ

A normalizable zero eigenstate of H5j0i ¼ 0 can be easily
found by multiplying γ5 from the left and considering
eigenstates of γ5j�i ¼ �j�i for which it holds

Qj−i ¼ 0; Q†jþi ¼ 0; ð23Þ

where the Q and Q† operators are defined by

Q ¼ −∂y þMðyÞ; Q† ¼ ∂y þMðyÞ: ð24Þ

In the coordinate representation, these states read

hyj−i≡ f0ðyÞ ¼ e
R

y dλMðTðλÞÞ;

hyjþi≡ f̃0ðyÞ ¼ e−
R

y dλMðTðλÞÞ; ð25Þ

up to normalization constants. Since the domain wall
connects different vacua with opposite signs for MðTðy ¼
−∞ÞÞ and MðTðy ¼ þ∞ÞÞ as in Eq. (20), MðTðyÞÞ must
vanish at a finite value of y, usually around the center of the
domain wall. When MðTðyÞÞ increasingly (decreasingly)
goes across zero, the right-handed (left-handed) fermion is
localized on the domain wall; see Fig. 1. This property does

7Here we do not restrict ourselves to the (anti)BPS domain
wall. The background can be non-BPS.
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not depend on any details of the solution, and it is the
heart of the Jackiw-Rebbi model [1]. In terms of a
modern terminology, the massless fermion is often called
the topological edge state [12]. As was mentioned in
the footnote 2, these fermions should be interpreted as
four dimensional fermionic particles confined inside the
domain wall.
Let us make our statement clearer. Hereafter, we use the

Jackiw-Rebbi mechanism for fermions for the following
meaning. When the field dependent “mass” MðTÞ defined
in Eq. (19) satisfies the condition (20), either a left- or
right-handed massless fermion appears around a point
where M vanishes. The chirality of the massless fermion
is determined by the sign of the asymptotic value
Mðy ¼ þ∞Þ: Left-handed for Mðy ¼ þ∞Þ < 0, and
right-handed for Mðy ¼ þ∞Þ > 0. We also define topo-
logical particles as those massless particles that remain
massless under continuous deformations of parameters, and
are not explained by symmetry reasons such as a sponta-
neously broken rigid symmetry. The domain wall fermion
is a typical topological particle8 which does not disappear
against any continuous changes without violating the
condition given in Eq. (20).
For later uses, let us give a complete analysis for the

mass spectra. Firstly, we decompose Ψ into ΨL and ΨR
which are the eigenstates of γ5 as γ5ΨL ¼ −ΨL and
γ5ΨR ¼ ΨR. We find

iγμ∂μΨR ¼ QΨL; iγμ∂μΨL ¼ Q†ΨR: ð26Þ

Eliminating ΨR (ΨL), we reach the following equations:

ð□þQ†QÞΨL ¼ 0; ð□þQQ†ÞΨR ¼ 0: ð27Þ

Thus, the physical spectra for ΨL;R are determined by
solving the 1D eigenvalue problems

Q†Qfn ¼ M2
nfn; QQ†f̃n ¼ M2

nf̃n: ð28Þ

We again encounter a 1D SQM problem with the super-
potential Q ¼ −∂y þ Y0ðyÞ given in (24),

YðyÞ ¼
Z

y
dλMðTðλÞÞ: ð29Þ

We would like to emphasize that this formula is correct
regardless of whether the background solution is (anti)BPS
or non-BPS. This is in contrast to the fluctuation of T field
given in Eqs. (13) or (15) which are valid only for the (anti)
BPS background solution. As before, the 1D Hamiltonians
are semipositive definite, so that there are no tachyonic
modes. Furthermore, due to the SQM structure, ΨL and ΨR
share the identical mass spectra except for possible zero
modes, in accordance with the fact that any modes with a
nonvanishing mass consist of both chiralities in even
dimensions.
We will now turn to massless bosons in subsequent

sections.

B. Domain wall scalars

Contrary to fermions, the protection mechanism for
masslessness of scalar fields is not known,9 except for
the symmetry reason associated with the spontaneously
broken rigid symmetry with a continuous parameter,
namely the Nambu-Goldstone boson. For example, we
found in Sec. II a normalizable scalar zero mode on the
domain wall background, whose existence is ensured by
the spontaneously broken translational symmetry.
Guided by the Jackiw-Rebbi mechanism for fermions,

one might be tempted to try considering a real scalar fieldΦ
whose coupling function for the quadratic term is given by
the same field-dependent “mass” MðTÞ as in Eq. (19):

LS ¼ 1

2
∂MΦ∂MΦ −

1

2
MðTÞ2Φ2; ð30Þ

FIG. 1. The field-dependent “mass” MðTðyÞÞ and the associated topological edge states (fermion zero modes). The solid curves are
M ¼ �ðtanh yþ 1

10
e−y

2=100 sin yÞ, and the broken red curves correspond to the mode functions of the fermion zero modes.

8For completeness, let us briefly mention here another known
physical reason to ensure masslessness of a fermion: the Nambu-
Goldstone (NG) fermion [67,68] as a result of the spontaneously
broken rigid fermionic symmetry such as supersymmetry. The
masslessness of the NG fermion is stable against small deforma-
tions of parameters, protected by a symmetry reason. In contrast,
instead of symmetry, the domain wall fermion realized by the
Jackiw-Rebbi mechanism is protected by a topological reason.

9We are aware of the fact that supersymmetry combined with
the chiral symmetry can protect the masslessness of the scalar
particle accompanied by the massless fermion [66,69,70]. This
idea has been extremely popular and productive, though it may be
regarded as somewhat indirect.
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in addition to the Lagrangians (1). Since MðTÞ2Φ2 is
semipositive definite, Φ remains inert as Φ ¼ 0, when T
takes the domain wall configuration as a solution of the
equation of motion. Since the 1D eigenvalue problem for
the fluctuation of Φ on this background has a positive
definite potential, MðTðyÞÞ2, it is obvious that there are
only massive modes. This illustrates that the naive attempt
does not work for bosons.
We now wish to propose a mechanism for a domain wall

scalar boson, namely a model with a massless scalar mode
whose existence is insensitive to a change of parameters.
Instead of tuning a scalar potential, we turn to use a
nonlinear kinetic term with a field-dependent kinetic
function. Let us assume the following simple Lagrangian
in addition to LDW:

L0 ¼ βðTÞ2∂MΦ∂MΦ: ð31Þ

A field-dependent “coupling” βðTÞ is a function of the
scalar field T multiplying the term quadratic in ∂MΦ. This
form is inspired by nonlinear kinetic functions for gauge
and form fields, which are described in subsequent sec-
tions. One can characterize the absence of a potential
for Φ as a result of a “shift” symmetry Φ → Φþ constant.
We do not consider a mixed term like gðTÞ∂MT∂MΦ in
this paper, since adding it is a large deformation in the
sense that it changes the structure of the Lagrangian
qualitatively. Alternatively, one can forbid it by imposing
the parity Φ → −Φ.
Vacuum condition is Φ ¼ const: and WT ¼ 0. As

before, we assume that there are several discrete vacua.
Then, T has a nontrivial domain wall configuration whereas
Φ ¼ const: as a background solution. As for the mass
spectra of fluctuations on the background domain wall
solution, the linearized equation for the T field is
unchanged from Eq. (4). Therefore, a normalizable trans-
lational zero mode always exists with the mode function
T 0ðyÞ and the massless effective field τ0ðxμÞ in 4D,
i.e., τðxμ; yÞ ¼ T 0ðyÞτ0ðxμÞ.
In the rest of this subsection, we will study mass spectra

of the scalar field Φ. The linearized equation for small
fluctuation Φ is given by (we will use the same notation Φ
for the fluctuation):

∂MðβðTÞ2∂MΦÞ ¼ 0: ð32Þ

First of all, we introduce a canonically normalized field φ

Φ ¼ φffiffiffi
2

p
β
: ð33Þ

This nonlinear field redefinition transforms Eq. (32) into

ð□þD†DÞφ ¼ 0; ð34Þ

where we defined

D ¼ −∂y þ Z0ðyÞ; D† ¼ ∂y þ Z0ðyÞ; ð35Þ

with a 1D SQM superpotential

ZðyÞ ¼ 1

2

Z
y
dλ

d
dλ

log βðTðλÞÞ2 ¼ 1

2
log βðTðyÞÞ2: ð36Þ

Note that this is valid for any background solution since
we have not used the (anti)BPS equation. Thus, we have
obtained another 1D eigenvalue problem with the SQM
structure

D†Dhn ¼ μ2nhn: ð37Þ

Unlike the fermionic case, the super partner DD† is absent
in the problem.
The solution with a zero eigenvalue is unique and is

given by

h0ðyÞ ¼ e
R

y dλZ0ðλÞ ¼ eZðyÞ ¼ βðTðyÞÞ: ð38Þ

This is a normalizable physical state whenever βðTðyÞÞ is a
square integrable. We will call the massless scalar boson
topological only in the limited sense that it is stable against
small changes of parameters in the nonlinear kinetic
function β. As is clear from the derivation, it is not the
NG boson for the spontaneously broken rigid symmetry
such as translation. We observe that the 1D eigenvalue
problem for mass spectra of the scalar field becomes
identical to that of the fermion by identifying the function
Z0ðyÞ ¼ d log βðTðyÞÞ=dy in the operator D with Y0ðyÞ ¼
MðTðyÞÞ in the operator Q:

Y0ðyÞ ¼ MðTðyÞÞ ↔ Z0ðyÞ ¼ d log βðTðyÞÞ
dy

: ð39Þ

We assume that the function Z0ðyÞ goes across zero as
MðyÞ in Fig. 1. Namely, the function Z0ðyÞ satisfies the
following condition as in the fermion case in Eq. (20):

Z0ðy ¼ −∞Þ × Z0ðy ¼ þ∞Þ < 0: ð40Þ

In the present case of the scalar field, we have to choose
Z0ðy ¼ þ∞Þ < 0 for h0 to be normalizable.10 In the
opposite case with Z0ðy ¼ þ∞Þ > 0, there are no normali-
zable massless modes.
We now come to a highlight of this work. We define

the Jackiw-Rebbi-like mechanism for bosons as follows:

10Aweaker boundary condition is allowed for normalizability.
The asymptotic value of Z0 can vanish, for instance Z0ðyÞ ∼
−α=y, α > 1=2 for y → ∞, instead of a nonvanishing constant
Z0ðy ¼ ∞Þ < 0. This weaker condition is also valid for M in
Eq. (20) for fermions.
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When the field-dependent “coupling” βðTÞ defined in
Eq. (31) satisfies the condition (40), a localized massless
scalar boson appears and is localized around a point
where dβðTðyÞÞ=dy vanishes. Similarly to the fermion
case, the massless boson is stable against any continuous
changes which do not violate the condition (40) for β0=β.
In short, the massless scalar field in Eq. (38) is a topological
edge state which is supported by the Jackiw-Rebbi-like
mechanism for bosons.
Let us make a comment on masslessness of the localized

modes. One might feel that the appearance of a massless
mode is not very surprising since the Lagrangian L0 in
Eq. (31) does not have manifest five-dimensional mass
terms. However, such intuition is not always correct when β
is a nontrivial function of y. As we will see in Sec. IV, a
typical asymptotic behavior of the square integrable func-
tion β is β → e−Λjyj ðjyj → ∞Þ with Λ being a parameter
with dimension of mass. Therefore, we find Z0 →∓ Λ, and
then D†D → −∂2

y þ Λ2. Thus, Λ can be regarded as a bulk
mass scale for various modes of Φ. Hence, both the
appearance of a massless mode and its localization on
the domain wall are nontrivial.

C. Domain wall vectors/scalars

In this section we consider (1-form) gauge fields. We
consider a gauge invariant Lagrangian similar to L0 in
Eq. (31),

L1 ¼ −βðTÞ2FMNFMN: ð41Þ

Here, we only consider an Abelian gauge fieldAM with the
field strength FMN ¼ ∂MAN − ∂NAM just for simplicity,
but it is straightforward to extend the following results to
Yang-Mills fields [18].
As was explained in the Introduction, the Lagrangian

(41) is a model for the localized gauge fields on domain
walls in the brane-world scenario. To localize gauge fields
on topological defects like domain walls, it was recognized
that the confining phase is needed in the bulk, and a toy
model in four spacetime dimensions was explicitly pro-
posed [46]. The field-dependent kinetic term for gauge
fields was considered together with a further explicit toy
model in six spacetime dimensions [5], and an explicit
model has been constructed in five spacetime dimensions
[61]. Another study for a nonsupersymmetric model with/
without gravity was developed in [33]. The coefficient β in
Eq. (41) can be considered as an inverse of the position
dependent gauge coupling after the scalar field T takes
nontrivial y-dependent values as the background. Bulk with
β ¼ 0 implies infinitely large gauge coupling, which is a
semiclassical realization of the confining vacuum [54–60].
Due to the so-called dual Meisner effect, the (chromo)
electric field cannot invade the bulk, so that massless gauge
fields are confined inside a finite region (for us it is inside
the domain wall) where β is not zero.

Leaving aside the above qualitative interpretation of
the model based on a somewhat speculative intuition of
confinement in dimensions higher than four, we will now
focus on the underlying mathematical structure of the
localization mechanism inherent in the model (41). It is
very close to the model of topological massless scalar
fields in Sec. III B. Namely, the massless gauge field
is supported by the Jackiw-Rebbi-like mechanism for
bosons. In order to see the relation clearly, let us inves-
tigate the mass spectrum of the gauge field about the
domain wall background TðyÞ. Firstly, we need to fix the
unphysical gauge degree of freedom. The most popular
gauge choice is the axial gauge Ay ¼ 0; see for example
Refs. [33,61]. However, one should be careful to deal
with a possible normalizable zero mode in Ay, since, if
it exists, it is gauge invariant and cannot be gauged
away. Therefore, one cannot fully remove Ayðx; yÞ before
confirming the absence of normalizable zero modes. To
clarify this point, we have developed a new gauge fixing
condition recently by adding the following gauge fixing
term [19,62,63]:

LGF ¼ −
2

ξ
βðTÞ2

�
∂μAμ −

ξ

βðTÞ2 ∂yðβðTÞ2AyÞ
�
2

; ð42Þ

where ξ is an arbitrary gauge fixing parameter. We call this
the extended Rξ gauge [19].
To study the mass spectra, let us consider small fluctua-

tions AM around the domain wall background, and we
define a canonically normalized fields in five spacetime
dimensions, which will make the analogy to the Jackiw-
Rebbi mechanism most explicit:

AM ¼ AM

2βðTÞ : ð43Þ

Then the linearized equations of motion in the generalized
Rξ gauge are given by [19]:

�
ημν□ −

�
1 −

1

ξ

�
∂μ∂ν þ ημνD†D

�
Aν ¼ 0; ð44Þ

ð□þ ξDD†ÞAy ¼ 0: ð45Þ

We again encounter D and D† defined in Eq. (35).
However, not only D†D but also DD† comes into play,
unlike the case of the scalar field. Thus, the 1D eigenvalue
problem for mass spectra exhibits the 1D SQM structure in
precise analogy with the Jackiw-Rebbi mechanism for
fermions

D†Dhn ¼ μ2nhn; DD†h̃n ¼ μ2nh̃n: ð46Þ

As before, the eigenvalue spectra of D†D and DD†

coincide except for the zero eigenvalue. We observe that
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the massive modes of Ay are unphysical, since their masses
depend on the gauge-fixing parameter ξ and will be can-
celed by the ghost fields with the same mass. However,

n ¼ 0 is special. Eq. (45) shows that the zero mode Aðn¼0Þ
y

of Ay is just a massless scalar field. The gauge fixing
parameter ξ disappears from Eq. (45), so that Ay of n ¼ 0 is
not a gauge-dependent degree of freedom. The observation
that the normalizable zero mode of Ay can be a physical
scalar field is missed in many previous works usingAy ¼ 0

gauge. For the zero mode n ¼ 0 of Aμ, Eq. (44) reduces to
the linearized equation for the massless photon in the usual
covariant gauge.
The mode functions with the zero eigenvalue are

explicitly given by

h0ðyÞ ¼ βðTðyÞÞ; h̃0ðyÞ ¼
1

βðTðyÞÞ : ð47Þ

Thus, as in the scalar case, the physical massless gauge
field appears on the domain wall whenever βðTðyÞÞ is a
square integrable. This is the case when the condition
Eq. (40) is satisfied with Z0ðy ¼ þ∞Þ < 0. On the other
hand, h̃0ðyÞ is not normalizable, as long as we consider
noncompact space −∞ < y < ∞. Hence Ay does not
supply a physical massless scalar field. Up to this point,
the final result turns out to be the same as that obtained in
the axial gauge Ay ¼ 0. However, there are two other
possibilities.
The first possibility is that the condition in Eq. (40) is

satisfied with Z0ðy ¼ þ∞Þ > 0. Then the physical mass-
less field localized on the domain wall is scalar, since
βðTðyÞÞ−1 is a square integrable. In this case, the massless
vector field becomes unphysical because it is no longer
normalizable. Thus, the spin of massless bosons is deter-
mined by the sign of the asymptotic value of the function
Z0ðy ¼ þ∞Þ: The massless boson is vector if Z0ðy ¼
þ∞Þ < 0 or is scalar if Z0ðy ¼ þ∞Þ > 0, similarly to the
selection of chirality in the case of the Jackiw-Rebbi
mechanism for fermions.
Another possibility is to consider compact space such as

the circle for the extra dimension y. We will discuss this
possibility in Sec. V.

D. Domain wall tensors/vectors

Let us now consider a two-form field in five dimensions
with the Lagrangian

L2 ¼ βðTÞ2HMNLHMNL: ð48Þ

Here, we consider a two-form field θMN ¼ −θNM with a
field strength HMNL ¼ ∂MθNL þ ∂LθMN þ ∂NθLM. The
above Lagrangian is invariant under the gauge transforma-
tion θMN → θMN þ ∂MΛN − ∂NΛM, where ΛM is an arbi-
trary Uð1Þ gauge field. To fix the gauge and clarify

unphysical degrees of freedom, we choose to add the
following gauge-fixing terms:11

LGF ¼
6

ξ
βðTÞ2

�
∂μθ

μν þ ξ

βðTÞ2 ∂yðβðTÞ2θνyÞ
�

2

−
6

η
βðTÞ2ð∂μθ

μ
yÞ2: ð49Þ

Similarly to the generalized Rξ gauge employed in the
previous section, these terms are devised in such a way as to
eliminate the mixing terms between extra-dimensional and
four-dimensional components. Notice that we have two
independent gauge-fixing parameters, namely ξ and η.
Let us investigate mass spectra of fluctuation fields of

θMN around the domain wall background. In terms of the
canonically normalized fields,

θμν ¼
hμν
βðTÞ ; θμy ¼

Bμffiffiffiffiffi
12

p
βðTÞ ; ð50Þ

the linearized equations of motion read

�
ημρηνσ□þ ημσ∂ρ∂ν þ ηνρ∂σ∂μ þ 2

ξ
ηνσ∂μ∂ρ

þ ημρηνσD†D

�
hρσ ¼ 0; ð51Þ

�
ημν□ −

�
1 −

1

η

�
∂μ∂ν þ ξημνDD†

�
Bν ¼ 0: ð52Þ

Thus, no new 1D eigenvalue problems arise as the differ-
ential operators D and D† are the same as for scalar (zero-
form) and vector (one-form) fields.
Similarly to the vector fields, existence of physical

massless modes is guaranteed by the condition in Eq. (40).
Namely, the spin of the physical massless bosons is
determined by the sign of the asymptotic value of the
function Z0ðy ¼ þ∞Þ: Only the tensor field θμν has a zero
mode if Z0ðy ¼ þ∞Þ < 0 since βðTðyÞÞ is a square
integrable, whereas only the vector field θμy has a zero
mode if Z0ðy ¼ þ∞Þ > 0 since β−1ðTðyÞÞ is a square
integrable.
Let us consider the case of Z0ðy ¼ þ∞Þ < 0, where we

have the massless mode hð0Þμν . From the four-dimensional
point of view of effective field theory, the massless mode
can be understood as a scalar field via a duality,

∂μh
ð0Þ
νρ þ ∂ρh

ð0Þ
μν þ ∂νh

ð0Þ
ρμ ¼ εμνρσ∂σϕ; ð53Þ

11Similar analysis but in the different gauge θμy ¼ 0 was done
in [33]. However, it will turn out that this gauge fixing misses the
possibility of the appearance of massless modes in the θμy
component.
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where ϕ is a massless scalar. On the other hand, the massive

states hðnÞμν can be interpreted as massive vector fields,

whereas all the massive states in the second tower BðnÞ
μ are

unphysical as their masses are proportional to ξ.
In contrast, if Z0ðy ¼ þ∞Þ > 0, the normalizable zero

mode Bð0Þ
μ now exists. It is easy to see that Bð0Þ

μ acts as a
gauge field under y-independent gauge transformations of
θMN , and, therefore, there is a localized Uð1Þ gauge field in
the spectrum.
In the case of Z0ðy ¼ þ∞Þ < 0 (β being square inte-

grable), the spectrum of localized particles for the two-form
field is a massless dual scalar ϕ and a tower of massive

vector fields dual to hðn≠0Þμν . This spectrum is identical to the

spectrum for the one-form field (Að0Þ
y and Aðn≠0Þ

μ ) in the case
of Z0ðy ¼ þ∞Þ > 0 (1=β being a square integrable), as
shown in the previous section.
Similarly, if Z0ðy ¼ þ∞Þ > 0 for the two-form field, we

have the spectrum of a massless gauge field Bð0Þ
μ and a

tower of massive vector fields dual to hðn≠0Þμν , which

precisely coincides with the spectrum (Að0Þ
μ and Aðn≠0Þ

μ )
for the one-form in the case of Z0ðy ¼ þ∞Þ < 0.
This correspondence can be easily understood via on-

shell duality between two-forms and one-forms in five
dimensions. Indeed, if we look at the full equation of
motion

∂Mðβ2HMNLÞ ¼ 0; ð54Þ

we can solve it by setting

HMNL ¼ β−2ðεMNLPQFPQÞ; ð55Þ

where FPQ ¼ ∂PAQ − ∂QAP andAM is some gauge field.
Note that the Bianchi identity

εMNLPQ∂NHLPQ ¼ 0 ð56Þ

translates into the equation of motion for the gauge field,
i.e., ∂Mðβ−2FMNÞ ¼ 0 which is the same equation of
motion as in the previous section, but it comes with β−2

in place of β2.

IV. SIMPLE MODELS

In this section we will give several exactly solvable
models for demonstration. They should be useful for a
model building, though we will not construct any concrete
phenomenologically viable models in this paper. We have
used the mechanism to construct phenomenological models
in various contexts. For those who are interested in concrete
applications, various model building can be found in a
number of papers by us and other authors [14–20,62,63].

A. A class of calculable models

As we have stressed so far, there are no strong constraints
for both MðTÞ and βðTÞ. However, it is extremely con-
venient to choose a particular form in order to gain a
calculability even in the case of a non-BPS background
solution. One of the simplest examples we choose is

MðTÞ ¼ ϵFWTTðTÞ; βðTÞ ¼ WTðTÞϵB ; ð57Þ

where ϵB;F is either þ1 or −1. With the choice of MðTÞ,
LDW þ LF is close to the Wess-Zumino SUSY model in
D ¼ 4. However, it is not our intention to stick to genuine
supersymmetric models in five spacetime dimensions.
Instead, we only use the model to gain calculability
hoping to get general qualitative features in a simple
and transparent manner without being constrained by
supersymmetry.
In the rest of this section, we will focus on the BPS

domain wall which satisfies T 0 ¼ WTðTÞ. The case of the
anti-BPS domain wall is straightforward, and non-BPS
cases will be studied in Sec. V. The translational NG boson
is given in Eq. (18).
The normalizable fermionic zero mode given in Eq. (25)

reads

f0ðyÞjBPS ¼ eϵF
R

y dλWTT ðTðλÞÞ ¼ WTðTðyÞÞϵF ; ð58Þ

f̃0ðyÞjBPS ¼ e−ϵF
R

y dλWTTðTðλÞÞ ¼ WTðTðyÞÞ−ϵF ; ð59Þ

where we have used the BPS equation. Thus, when
ϵF ¼ þ1ð−1Þ, the left-handed (right-handed) massless
fermion appears on the domain wall. Interestingly, the
normalizable mode functions for the NG boson (18)
coincides with that of the topological fermion. This is
due to the SUSY-like structure in LDW þ LF. Namely, the
normalizable bosonic and fermionic zero modes can be
regarded as “supersymmetric” partners.
The bosonic solutions with zero eigenvalue in Eq. (47)

for the choice of β in Eq. (57) read

h0ðyÞjBPS ¼ WTðTðyÞÞϵB ; h̃0ðyÞjBPS ¼ WTðTðyÞÞ−ϵB ;
ð60Þ

where we have not used the BPS equation. Thus, when
ϵB ¼ þ1, there exist a massless scalar Φ, vector Aμ, and a
tensor θμν gauge field on the domain wall for L0;1;2;,
respectively. On the other hand, when ϵB ¼ −1, no
normalizable zero modes exist for L0, and a scalar Ay

and vector θμy massless modes appear for L1;2, respec-
tively. Although there is no obvious hint of supersym-
metry between the nonlinear kinetic function in
Lagrangians L0;1;2, and LDW or LF, the mode function
of the topological bosons turns out to coincide with those
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of the translational NG boson and the topological
massless fermion. The only link that one can find is
the SQM structure common to all these fields in the case
of the BPS background solution. The mass spectra
coincide not only for the massless mode but also for
all the massive Kaluza-Klein states, since the 1D SQM
superpotentials which determine the mass spectra are
common to all fields for the BPS domain wall, i.e.,

XðyÞjBPS ¼ YðyÞjBPS ¼ ZðyÞjBPS ¼
1

2
logWTðTðyÞÞ2:

ð61Þ

Namely, the mass spectra of bosons with spin 0, 1, and 2
are identical to that of the fermion with spin 1=2 in this
simple model. Let us stress that this coincident spectra
for bosons and fermions are a mere consequence of our
simple choice of the kinetic function β in Eq. (57). For
other choices, their spectra can differ.

B. Sine-Gordon domain wall

The simplest example is the sine-Gordon model with the
superpotential

WðTÞ ¼ Λ3

g2
sin

g
Λ
T: ð62Þ

The BPS domain wall solutions satisfying T 0 ¼ WT are
given by

TðyÞ ¼ Λ
g

�
2 arctan eΛy −

π

2
þ 2nπ

�

→

( ð− π
2
þ 2nπÞ Λg y → −∞

ðπ
2
þ 2nπÞ Λg y → ∞

: ð63Þ

For these solutions, we have

WTðTðyÞÞ ¼
Λ2

g
sechΛy; WTTðTðyÞÞ ¼ −Λ tanhΛy:

ð64Þ

There are another set of the BPS solutions given by

TðyÞ ¼ Λ
g

�
2 arctan e−Λy þ π

2
þ 2nπ

�

→

( ð3π
2
þ 2nπÞ Λg y → −∞

ðπ
2
þ 2nπÞ Λg y → ∞

: ð65Þ

For these solutions, we have

WTðTðyÞÞ ¼ −
Λ2

g
sechΛy; WTTðTðyÞÞ ¼ −Λ tanhΛy:

ð66Þ

The fact that WTTðTðyÞÞ goes across 0 once ensures
presence of the topological massless states.
Since the background is BPS, all the 1D SQM super-

potentials agree. Therefore, the mass spectra are determined
only by WTT in the operator Q ¼ −∂y þWTTðTðyÞÞ. The
corresponding SQM Hamiltonians for both BPS solutions
are given by

Q†Q ¼ −∂2
y þ Λ2ð2tanh2Λy − 1Þ; QQ† ¼ −∂2

y þ Λ2:

ð67Þ

We have Q†Q ¼ Q†Q and QQ† ¼ QQ† for ϵF ¼ þ1,
while Q†Q ¼ QQ† and QQ† ¼ Q†Q for ϵF ¼ −1.
Similarly, we also have D†D ¼ Q†Q and DD† ¼ QQ†

for ϵB ¼ þ1, while D†D ¼ QQ† and DD† ¼ Q†Q for
ϵB ¼ −1. Therefore, there exist a unique discrete bound
state, which is nothing but the normalizable zero mode for
ϵF ¼ ϵB ¼ þ1,

g0 ¼ f0 ¼ h0 ∝ WT ∝ sechΛy; ð68Þ

the translational NG mode g0 for the field T, the JR
fermionic mode f0 for the fermion Ψ, and the bosonic
zero modes h0 with spin 0, 1, 2 for bosonic fields
Φ;AM;HMN , respectively. For the other choice of ϵF;B,
one should replace f0 (h0) by f̃0 (h̃0). There are no other
discrete states both in the Q†Q and QQ† sectors. All the
massive modes are continuum states (scattering in the
bulk) given as

fk ¼ Q†eiky ¼ ðik − Λ tanhΛyÞeiky; ð69Þ

f̃k ¼ eiky; ð70Þ

with the mass square

mðkÞ2 ¼ k2 þ Λ2: ð71Þ

Figure 2 (a1) and (a2) show the Schrödinger potentials and
the corresponding massless mode function.
In summary, there is one massless mode each for the

scalar field T (forming the domain wall), the fermion field
Ψ, and the bosonic fields Φ;AM;HMN together with the
continuum of massive modes separated from the massless
mode by the mass gap Λ.

C. T4 domain wall

Our second example is the T4 domain wall in the model
with cubic super potential
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WðTÞ ¼ Λ2

g
T −

g
3
T3: ð72Þ

The BPS domain wall solution is given by

TðyÞ ¼ Λ
g
tanhΛy: ð73Þ

For this background, we have

WTðTðyÞÞ ¼
Λ2

g
sech2Λy; WTTðTðyÞÞ ¼ −2Λ tanhΛy:

ð74Þ

The factor 2 appears compared to the sine-Gordon model.
The factor 2 corresponds to the number of the localized
modes as we will see below.
As before, it is enough to investigate Q†Q and QQ†

because the background is BPS. We have

Q†Q ¼ −∂2
y þ 2Λ2ð3tanh2Λy − 1Þ;

QQ† ¼ −∂2
y þ 2Λ2ðtanh2Λyþ 1Þ: ð75Þ

There is a unique normalizable zero mode in the Q†Q
sector:

f0 ∝ WT ∝ sech2Λy: ð76Þ

Also there exists a massive discrete state with the
mass

ffiffiffi
3

p
Λ:

f1 ∝ Q†sechΛ ∝ tanhΛysechΛy; ð77Þ

f̃1 ∝ sechΛy: ð78Þ

All the other states are continuum states (scattering in
the bulk). Figure 2 (b1) and (b2) show the Schrödinger
potentials and the corresponding massless mode function.
In summary, as before, there is one massless mode each

for the scalar field T (forming the domain wall), the fermion
field Ψ, and the bosonic fieldsΦ;AM;HMN . The difference

from the sine-Gordon model is that there is an additional
localized massive mode (discrete spectrum) before the
continuum of massive modes starts.

V. NON-BPS DOMAIN WALLS IN COMPACT
EXTRA DIMENSION

A. Quasi solvable example

So far, we have only considered models with a flat
noncompact extra dimension. In this section we will study
physical spectra about the domain walls in a compact extra
dimension. We will impose periodic boundary conditions
corresponding to the extra dimension y being S1 with a
radius R. Unlike the noncompact case, all the mode
functions are, of course, normalizable if they are regular.
Since the profile function TðyÞ should be periodic, the
background solution has to be non-BPS, which includes
both BPS and anti-BPS domain walls.
To be concrete, let us again consider the sine-Gordon

model with the superpotential given in Eq. (62). In this
section, we regard T as a coordinate of the compact target
space S1 by identifying gT=Λ ∼ gT=Λþ 2π, since it should
be a periodic variable as an argument of the sine function.
A non-BPS solution with multiple domain walls is known
[71] as

TðyÞ ¼ Λ
g
am

�
Λ
k
y; k

�
; ð79Þ

where amðx; kÞ denotes the Jacobi amplitude function with
a real parameter k. Since T can be regarded as an angular
variable with periodicity 2πΛ=g, we can identify the
compactification radius R as

2πR ¼ 4kKðkÞ
Λ

; ð80Þ

whereKðkÞ is the complete elliptic integral of the first kind.
Thus, the solution satisfies the periodic boundary condition
Tðyþ 2πRÞ ¼ TðyÞ. The solution has BPS and anti-BPS
domain walls alternatively sitting at antipodal points of S1.
Namely, the BPS domain wall sits at the origin y ¼ 0

(a1) (a2) (b1) (b2)

FIG. 2. The normalized mode functions of bound states. The black solid curves show the Schrödinger potentials appearing inQ†Q and
QQ†. (a1) and (b1) correspond to Q†Q in the sine-Gordon model and the T4 model, respectively. Similarly, (a2) and (b2) correspond to
QQ† in the sine-Gordon model and the T4 model, respectively. The red dashed curves are the mode functions of the corresponding zero
modes while the blue dotted curves are the lightest massive bound states.
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whereas the anti-BPS domain wall sits at y ¼ πR. The
background solutions with k < 1 and k > 1 are qualita-
tively quite different (k ¼ 1 corresponds to either BPS or
anti-BPS); see Fig. 3. For the k > 1 case, jgT=Λj never
goes across π=2 and returns to the original value of T as y
increases by 2πR. For the k < 1 case, on the other hand, T
increases (decreases) monotonically. Even though it is
monotonic, it satisfies the periodic boundary condition,
thanks to the identification gT=Λ ∼ gT=Λþ 2π for the
target space S1. Namely, the monotonically increasing
(decreasing) solution returns to the original point on S1

after one circle (gT=Λ increased by 2π), forming a winding
solution.
Since the above solution is non-BPS, the (anti)BPS

equation T 0 ¼ �WT is not satisfied. Therefore, mass
spectra of the translational NG bosons, the topological
fermions, and the topological bosons split. Let us start with
the fluctuation of T. Several light modes are explicitly
known as

g0 ∝ dn

�
Λy
k

; k

�
; m2

0 ¼ 0; ð81Þ

ĝ0 ∝ cn

�
Λy
k

; k

�
; m̂2

0 ¼
1 − k2

k2
Λ2; ð82Þ

g2 ∝ sn

�
Λy
k

; k

�
; m2

2 ¼
Λ2

k2
: ð83Þ

Note that g0 ¼ T 0 is a genuine translational Nambu-
Goldstone mode which is exactly massless. On the other
hand, ĝ0 is quasi Nambu-Goldstone mode which corre-
sponds to the relative distance (so-called radion). It is

tachyonic12 for k > 1 while it is massive for k < 1. The
reason why the quasi zero mode is lifted is that unlike for g0
there is no symmetric reasoning for relative distance
moduli. One can also say that the lifting proves that the
translational zero modes (genuine translational NG and
relative distance moduli) are not topologically protected. If
they were topological, both g0 and ĝ0 would have remained
as massless. These mode functions are depicted in the 2nd
column from the left of Fig. 3.
Next, let us see the fermions. We chose the coupling

function MðTÞ for fermions as

MðTÞ ¼ ϵFWTTðTÞ: ð84Þ

Then, normalizable zero modes can be explicitly found as

f0 ∝ eϵF
R

y dλWTTðTðλÞÞ ¼
�
dn

�
Λy
k

; k

�
− kcn

�
Λy
k

; k

��
−ϵF

;

ð85Þ

f̃0 ∝ e−ϵF
R

y dλWTT ðTðλÞÞ ¼
�
dn

�
Λy
k

; k

�
− kcn

�
Λy
k

; k

��
ϵF
:

ð86Þ

FIG. 3. Non-BPS domain wall solutions with the BPS and anti-BPS walls at y ¼ 0 and πR in the sine-Gordon model. The left-most
column shows the background configuration gT=Λ, and the other three columns show mode functions of the small fluctuations for the
case of ϵF;B ¼ þ1. In the figures, only the half period is shown. The case of ϵF;B ¼ −1 can be obtained by exchanging ðf0; h0Þ
by ðf̃0; h̃0Þ.

12The instability reflects the fact that the wall and antiwall in
this k > 1 case exhibit an attractive force favoring a pair-
annihilation, contrary to the walls in the winding solution
(k < 1). When k is larger than 1 but almost 1, the tachyon mass
typically behaves as m̂2

0 ≃ −Λ2e−4πRΛ. Therefore, the decay of
the unstable state is exponentially suppressed for moderately
large R, which can make the state live longer than the lifetime of
the Universe.
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As is well known, f0 is localized around the BPS domain
wall at y ¼ 0 while f̃0 is around the anti-BPS domain wall
at y ¼ πR for ϵF ¼ þ1; see the third column from the left of
Fig. 3. (The mode functions of zero modes are exchanged
for ϵF ¼ −1.) They are normalizable since the extra
dimension is compact. Note that unlike the translational
NG bosons, both f0 and f̃0 remain as genuine massless
modes since they are topological.
Finally, let us see the gauge bosons for the case

βðTÞ ¼ WTðTÞϵB : ð87Þ
We find the exact normalizable zero modes for the
topological bosons as

h0 ∝ β ¼ WϵB
T ¼ cn

�
Λy
k

; k

�
ϵB
; ð88Þ

h̃0 ∝ β−1 ¼ W−ϵB
T ¼ cn

�
Λy
k

; k
�

−ϵB
: ð89Þ

When k > 1, cnðx; kÞ never goes across 0. Therefore, both
h0 and h̃0 are normalizable. The mode function h0 for the
zero mode of Aμ is localized at the domain walls at y ¼ 0

and πR while h̃0 for Ay is localized between them when
ϵB ¼ þ1. If ϵB ¼ −1, the localized positions of h0 and h̃0
are exchanged. When k < 1, cnðx; kÞ goes across 0.
Therefore h̃0 (h0) is singular and non-normalizable for
ϵB ¼ þ1 (ϵB ¼ −1). We show h0 and h̃0 for ϵB ¼ þ1 in the
right-most column of Fig. 3.

B. Phenomenological implications

As is shown in Fig. 3, the localization positions of the
topological fermions and topological bosons are sharply
different. Interestingly, h0 (h̃0) for ϵB ¼ þ1 (ϵB ¼ −1) have
nonzero support around both the BPS and anti-BPS domain
walls. This leads to several interesting consequences.
Before going to explain this, however, one should be
careful about the mode functions: h0 and h̃0 are the mode
functions of the redefined fields φ, Aμ, Ay, hμν, and Bμ. The
mode functions for the original fields Φ, AM, and θMN are
those divided by β; see Fig. 4.

h0 →
h0
2β

¼ const:; h̃0 →
h̃0
2β

∝ β−2 ¼ W−2ϵB
T : ð90Þ

In the following, we choose the background solution
with k > 1 which is not afflicted by the problem like
non-normalizability of mode functions. For phenomeno-
logy in the brane-world scenario, let us concentrate on
the (1-form) gauge field in the following. Suppose that
the fermion is charged under the Uð1Þ gauge symmetry
with unit charge. The covariant derivative is given by
DMΨ ¼ ð∂M þ iAMÞΨ. We find the gauge interactions of
massless fermions as

Z
dyΨ̄ΓμDμΨ ∋

Z
dy

�
f20ψ̄

ð0Þ
L γμ

�
∂μ þ i

h0
2β

Að0Þ
μ

�
ψ ð0Þ
L

þ f̃20ψ̄
ð0Þ
R γμ

�
∂μ þ i

h0
2β

Að0Þ
μ

�
ψ ð0Þ
R

�

¼ ψ̄ ð0Þ
L γμð∂μ þ ie4A

ð0Þ
μ Þψ ð0Þ

L

þ ψ̄ ð0Þ
R γμð∂μ þ ie4A

ð0Þ
μ Þψ ð0Þ

R ; ð91Þ

where we have used the fact that h0 is proportional to β as
h0 ¼ 2e4β with

e−24 ¼ 4

Z
2πR

0

dyβ2: ð92Þ

It is important to notice that the effective gauge coupling
e4 is universal. It is also independent of the fermion mode
functions. Hence, the low energy effective theory is a
vectorlike gauge theory such as QED or QCD in which the
left- and right-handed fermions are coupled with the gauge
field with the same strength. In order to have a chiral gauge
theory like the Standard Model in our framework, we have
to consider the infinitely separated limit R ¼ ∞ (k ¼ 1).
One should note that focusing on one wall at the center, and
sending all other walls to infinity by taking R → ∞, we
automatically obtain a chiral fermion theory, since the
left-handed fermion mode function f0 is localized at a
wall different from the (neighboring) wall where the
right-handed fermion mode function f̃0 is localized. This
situation is in accordance with the usual notion of domain
wall fermions in lattice gauge theories.
In contrast to the gauge interactions in four-dimensions,

we have an interesting nonuniversality for the coupling of
the massless scalar coming from Ay. The induced Yukawa-

type coupling of the scalar Að0Þ
y is given as

Z
dyΨ̄ΓyDyΨ ∋ −gLA

ð0Þ
y ψ̄ ð0Þ

L γ5ψ
ð0Þ
L − gRA

ð0Þ
y ψ̄ ð0Þ

R γ5ψ
ð0Þ
R :

ð93Þ

where we used the fact that h̃0 ¼ 2ẽ4β−1 as

FIG. 4. The mode functions of the topological bosons for the
noncanonical fields Φ;AM; θMN around the non-BPS domain
wall solution. The case of ϵB ¼ 1ð−1Þ is shown in the left
(right) panel.
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ẽ−24 ¼ 4

Z
2πR

0

dyβ−2; ð94Þ

and defined

gL ≡
Z

2πR

0

dyf20
h̃0
2β

¼
Z

2πR

0

dy
ẽ4f20
β2

; ð95Þ

gR ≡
Z

2πR

0

dyf̃20
h̃0
2β

¼
Z

2πR

0

dy
ẽ4f̃

2
0

β2
: ð96Þ

Now, we find that gLðRÞ plays a role of effective Yukawa

coupling for scalar field Að0Þ
y . Firstly, since f0 (f̃0) and h̃0

are separately localized at different positions as shown in
Figs. 3 and 4 for ϵB ¼ 1, the overlap integrals for gLðRÞ are
exponentially small. This can help to explain the smallness
of the Yukawa couplings for the first and second generation

of quarks and leptons [72]. Secondly, the scalar field Að0Þ
y

can play a role of the Higgs field [73,74]. If Að0Þ
y enjoys a

nonzero vacuum expectation value (VEV), it immediately
means the fermions get masses. Since the Higgs field is
originated as the extra-dimensional gauge field, it is natural
to expect that quadratic divergences are suppressed thanks
to the gauge symmetry in the original five-dimensional
Lagrangian as advocated by the gauge-Higgs unification

scenario [75]. In order to verify if Að0Þ
y actually gets nonzero

VEV, one must examine an effective potential due to
quantum corrections such as fermion loop corrections.
We hope to report it in a separate work.
The results in this section are obtained by using a very

special simplified model in order to be able to compute
mode functions and other quantities in a closed form.
However, we wish to stress that all the qualitative features
should be valid even if we choose more general functions
for the coupling functions such as MðTÞ and βðTÞ. We
only need to use a numerical method to obtain various
quantities in the general setting.

VI. CONCLUDING REMARKS

Fermionic topological edge (surface) states are well
known in a vast area of modern physics, from high energy
physics to condensed matter physics. These fermionic
topological states on domain walls are robust and are
ensured by the Jackiw-Rebbi mechanism [1]. In this paper,
we showed that bosonic topological edge states also appear
on the domain wall by a quite similar mechanism which we
call the Jackiw-Rebbi-like mechanism for bosons. We
explicitly showed that it universally works for scalar
(0-form), vector (1-form), and tensor (2-form) bosonic
fields. They are topological, since their presence only
relies on the boundary condition. For the localization of
vector fields, it has been argued that confinement phe-
nomenon is necessary [5,61,65], but it is difficult to show

the confinement mechanism especially in higher-dimen-
sional field theory. On the contrary, the result of this work
offers another explanation related to topology. One of the
advantages is that it can be applied not only for vector but
also scalar and antisymmetric tensor fields, and we can be
sure that it works in any spacetime dimensions.
An interesting feature of the Jackiw-Rebbi(-like)

mechanism is that for fermions, the domain wall in five
dimensions selects four-dimensional chirality. On the other
hand, for four-dimensional bosons it selects spin. For
vector (tensor) fields, it selects between four-dimensional
vector or scalar (tensor or vector). This can only be seen
with the appropriate gauge-fixing terms in Eqs. (42)
and (49).
We also gave explicit models in Sec. IV which are useful

to see general qualitative features in a simple and trans-
parent manner. Furthermore, we studied massless particles
around the non-BPS background with a pair of a wall and
antiwall in compact extra dimension in Sec. V. There, we
manifestly showed that the translational zero modes,
topological fermionic edge modes, and topological bosonic
edge modes have all different mode functions as is shown
in Fig. 3. We also pointed out possible phenomenological
uses of our results. The universality of gauge charges is
automatically satisfied, the large hierarchy problem of
fermion masses of the Standard Model would naturally
be resolved, and Ay would play the role of the Higgs field as
in usual gauge Higgs unification models. In this model with
a compact extra-dimension, we encounter a phenomeno-
logically undesirable feature of vectorlike fermion. There
have been a number of possible remedies for this problem,
such as orbifold compactification or general boundary
conditions in a finite interval. In this study, however, we
are interested in forming a soliton background as a solution
of field equations (dynamical compactification) either in a
noncompact or S1 extra dimension. Hence we will put these
additional possibilities for a later study.
There are several interesting directions for further

studies. In this paper we restricted ourselves in five space-
time dimensions just for ease of presentation. If we go to
higher dimensions than five, higher antisymmetric tensor
(form) fields can appear. We should examine how the
selection rules by the domain wall are generalized. We can
also consider other solitons like vortex and monopole
whose codimensions are higher than one. As is the case
of domain wall, localization of topological fermions is well
known. We will study whether it is true for bosons or not.
On the other hand, it is also very interesting to go to lower
dimensions. If our bosonic topological states are found in
a real material, it is an indirect proof of localization of
all the Standard Model particles on a domain wall. Apart
from the brane-world perspective, it might be interesting
for revealing new properties of topological matters. The
domain wall fermions are known to be important in lattice
QCD, so we also wonder if the topological localization
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mechanism of bosons plays some role for improving
computer simulations of lattice QCD.
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