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We propose models for neutrino masses and mixing in the framework of low scale Uð1ÞLμ−Lτ
gauge

extension of the standard model. The models are designed to spontaneously break Uð1ÞLμ−Lτ
so that the

Uð1ÞLμ−Lτ
gauge boson acquires an MeV scale mass, which is required to solve the longstanding problem

of muon anomalous magnetic moment. Tiny neutrino masses are obtained by simultaneously invoking the
linear and the inverse seesaw mechanism, and we succeed in realizing two types of one-zero textures in the
active neutrino mass matrix. Both of the obtained textures favor inverted neutrino mass ordering and are
testable in next generation experiments of neutrinoless double beta decay. We also show that some of extra
scalar bosons can have MeV scale masses and would have significant impacts on observations of high
energy cosmic neutrinos.
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I. INTRODUCTION

The extension of the standard model (SM) is one of the
highest priority issues in modern particle physics; various
types of new physics models have been proposed in the
literature. In most cases, new physics is anticipated to exist
at an energy scale much higher than the electroweak scale,
because it is strictly constrained by low energy experi-
ments. Nevertheless, it may also be possible to consider
new physics at lower energy, if its interactions are suffi-
ciently weak so that the experimental constraints can be
evaded. One interesting possibility in that direction is
gauging the muon number minus the tau number, that is,
the so-called Uð1ÞLμ−Lτ

gauge extension [1–3]. This could
be one of the most natural extensions of the SM since it is
gauge anomaly free within the SM particle contents.

Furthermore, it was recently found, in Ref. [4] (see also
Refs. [5,6]), that the Uð1ÞLμ−Lτ

gauge boson, Zμτ, with an
MeV scale mass can settle the longstanding discrepancy of
muon anomalous magnetic moment (gμ − 2) [7–12] with-
out conflicting other experimental constraints. Then, this
result motivated many authors to study low scaleUð1ÞLμ−Lτ

extension of the SM in various contexts: for instance, it was
found that an MeV scale Zμτ can relax the tension between
the late time and the early time determination of the Hubble
constant [13], implications for the dark matter problem
were studied in Refs. [14–17], and the detectability of such
a light Zμτ was discussed in Refs. [18–25]. Moreover, it was
pointed out in Refs. [26–29] that an MeV scale Zμτ causes
significant attenuation in the flux of high energy cosmic
neutrinos and can explain the unexpected dip in the energy
spectrum of high energy cosmic neutrinos reported by the
IceCube Collaboration.
From a viewpoint of the lepton mixing, the Uð1ÞLμ−Lτ

symmetry is well known to naturally explain the observed
large atmospheric mixing angle [30–32]. However, it is also
well known that the exact Uð1ÞLμ−Lτ

symmetry forbids

many of entries in the neutrino mass matrix, and as a result
the solar and the reactor mixing angle are forced to be zero.
In order to remedy such a situation, extra scalars are often
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introduced to spontaneously break Uð1ÞLμ−Lτ
and to revive

some of the entries forbidden byUð1ÞLμ−Lτ
, which provides

us with an opportunity to realize zero textures in the neu-
trino mass matrix and testability of the model. Especially,
the type-C [33] two-zero texture or two-zero-minor struc-
ture is frequently obtained [34–42], and these structures
were consistent with experiments at that time. However, in
Ref. [42], it has been pointed out that the type-C two-zero-
minor structure is now driven into a corner by the combined
upper bound on the sum of neutrino masses placed by the
Planck Collaboration:

P
i mi < 0.12 eV [43]. Similarly, it

can be checked that the type-C two-zero texture is ruled out
by the Planck bound.1

In this work, we improve the previous studies mentioned
above and propose experimentally consistent models for
Uð1ÞLμ−Lτ

extension of the SM. For this purpose, we com-
bine the inverse and the linear seesaw mechanism and
succeed in realizing two types of one-zero textures [45–50].
Both of the obtained textures prefer inverted neutrino mass
ordering and are consistent with the Planck bound as well
as the bounds from neutrino oscillation experiments. We
calculate the effective mass of neutrinoless double beta
decay as our prediction and find that it is testable in next
generation experiments. In the models, extra scalars are
introduced to spontaneously breakUð1ÞLμ−Lτ

and to give an
MeV scale mass to Zμτ in order that the gμ − 2 problem and
the dip in the IceCube data can simultaneously be solved.
We show that some of the extra scalar bosons can have
MeV scale masses and can attenuate the flux of high energy
cosmic neutrinos, just as the Zμτ does.
The paper is organized as follows. In Sec. II, we describe

the particle contents and the charge assignments of the
models. Then, in Sec. III, we show that tiny neutrino
masses are obtained by combining the linear and the inverse
seesaw mechanism. The numerical calculations of neutrino
masses and mixing are given in Sec. IV. The scalar sector is
studied in Sec. V, in which we also show that some scalar
bosons can have MeV scale masses. In Sec. VI, we briefly
discuss whether the MeV scale scalar bosons can attenuate
the flux of high energy cosmic neutrinos. Finally, we
summarize our results in Sec. VII.

II. MODELS

We begin with Uð1ÞLμ−Lτ
extension of the SM and

introduce left- and right-handed SM gauge singlet
fermions, NL and NR. Although it may be natural to
introduce three generations of NR and NL and assign them
Uð1ÞLμ−Lτ

charges as ðNRðLÞe ; NRðLÞμ ; NRðLÞτÞ ¼ ð0; 1;−1Þ.
Nevertheless, in this work, we introduce only two

generations and aim at building a minimal model. In this
case, the following two possibilities can be considered, and
we refer to them as Model-A and Model-B:

Model-A‡ ðNRðLÞe ; NRðLÞμÞ ¼ ð0; 1Þ;
Model-B‡ ðNRðLÞe ; NRðLÞτÞ ¼ ð0;−1Þ:

Note that we omit the case of ðNRðLÞμ ; NRðLÞτÞ ¼ ð1;−1Þ
because it results in a neutrino mass matrix of

mν ¼

0
B@

0 0 0

0 0 m

0 m 0

1
CA; ð1Þ

which predicts unrealistic neutrino mass spectrum and
mixing. Note also that the other combinations give rise
to gauge anomalies, so we do not consider them in what
follows.
In addition to the SM Higgs doublet, H, the scalar sector

is also augmented with a new SUð2ÞW doublet scalar
having hypercharge 1=2 (Y ¼ 1=2), Φ, and two SM gauge
singlet scalars, SL and Sμτ. Here, Sμτ breaks the Uð1ÞLμ−Lτ

symmetry and gives an MeV scale mass to the Uð1ÞLμ−Lτ

gauge boson, Zμτ, after developing a vacuum expectation
value (VEV). As studied in Refs. [26,29], the gμ − 2

problem and the dip in the IceCube data can simultaneously
be solved withMZμτ

¼ 11 MeV and gμτ ¼ 5 × 10−4, where
MZμτ

is a mass of Zμτ and gμτ is the gauge coupling constant
of Uð1ÞLμ−Lτ

. We refer to these values in this work and
require Sμτ to develop

hSμτi ¼
MZμτ

gμτ
≃ 20 GeV: ð2Þ

Furthermore, we introduce a global lepton number
symmetry Uð1ÞL, which is explicitly broken in the scalar
potential, see Sec. V. The gauge singlet scalar SL and the
SUð2ÞW doublet scalar Φ are introduced to spontaneously
break Uð1ÞL and to generate tiny masses for neutrinos. In
Table I, we summarize the particle contents and the charge
assignments of the models.
The Lagrangian relevant to lepton masses is given by

−Ll ¼ yelLHlR þ yDlL H̃ NR þ yNlL Φ̃ðNLÞc
þ ySðNRÞcðNLÞcSμτ þ y0SðNRÞcðNLÞcS�μτ
þMSðNRÞcðNLÞc þ

yRR
2

ðNRÞcNRSL

þ yLL
2

NLðNLÞcS�L þ H:c:; ð3Þ

where lL stands for the SUð2ÞW doublet left-handed
leptons, lR is the SUð2ÞW singlet right-handed leptons,

1See Fig. 9 in Ref. [35] and Fig. 4 in Ref. [44]. We have done
the same calculation and obtained a similar conclusion that the
sum of neutrino masses is constrained to be larger than 0.14 eV
within 3σ error ranges of the neutrino oscillation parameters.
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H̃ðΦ̃Þ ¼ iτ2H�ðΦ�Þ with the second Pauli matrix τ2, and
the flavor indices are omitted. Note that lL H̃ðNLÞc and
lL Φ̃NR are forbidden by Uð1ÞL, and the charged lepton
Yukawa matrix, ye, is forced to be diagonal by Uð1ÞLμ−Lτ

.
After the scalars develop VEVs, the following Dirac and
Majorana type neutrino mass matrices arise:

mD ¼ yDhHi; mN ¼ yNhΦi;
mS ¼ MS þ ðyS þ y0SÞhSμτi;

mLL ¼ yLLhSLi; mRR ¼ yRRhSLi; ð4Þ

and they take the forms of

mD ¼

0
B@

mee
d 0

0 mμμ
d

0 0

1
CA; mN ¼

0
B@

mee
n 0

0 0

0 mτμ
n

1
CA; mS ¼

�
mee

s meμ
s

mμe
s mμμ

s

�
;

mLL ¼
�
mL 0

0 0

�
; mRR ¼

�
mR 0

0 0

�
; ð5Þ

in the case of Model-A, or

mD ¼

0
B@

mee
d 0

0 0

0 mττ
d

1
CA; mN ¼

0
B@

mee
n 0

0 mμτ
n

0 0

1
CA; mS ¼

�
mee

s meτ
s

mτe
s mττ

s

�
;

mLL ¼
�
mL 0

0 0

�
; mRR ¼

�
mR 0

0 0

�
; ð6Þ

in the case of Model-B. The differences between Model-A
and Model-B will be studied in more detail in Sec. IV.

III. NEUTRINO MASSES AND MIXING

The mass matrices in Eq. (4) compose the 7 × 7 neutrino
mass matrix

Mν ¼

0
B@

0 mD mN

ðmDÞT mRR mS

ðmNÞT ðmSÞT mLL

1
CA¼

�
0 MDN

ðMDNÞT M4×4

�
;

ð7Þ

where

MDN ¼ ðmD;mNÞ; M4×4 ¼
�

mRR mS

ðmSÞT mLL

�
: ð8Þ

In order to generate tiny neutrino masses, we invoke the
seesaw mechanism by assuming the hierarchy of

mS ≫ mD ≫ mN;mRR;mLL: ð9Þ

Then, one can approximately block-diagonalize Mν as

UT
2U

T
1

�
0 MDN

ðMDNÞT M4×4

�
U1U2 ≃UT

2

�
mν 0

0 M4×4

�
U2 ≃

0
B@

mν 0 0

0 M1 0

0 0 M2

1
CA; ð10Þ

with

TABLE I. The charge assignments of Uð1ÞLμ−Lτ
and Uð1ÞL for Model-A(B).

lLe
;lLμ

;lLτ
lRe

;lRμ
;lRτ

NRe
; NRμðτÞ NLe

; NLμðτÞ H Φ SL Sμτ

Uð1ÞLμ−Lτ
0; 1;−1 0; 1;−1 0; 1ð−1Þ 0; 1ð−1Þ 0 0 0 1

Uð1ÞL 1 1 1 1 0 −2 −2 0
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U1 ¼
�
13×3 − 1

2
Θ�ΘT Θ�

−ΘT 14×4 − 1
2
ΘTΘ�

�
; U2 ¼

0
B@

13×3 0 0

0 1ffiffi
2

p ðVSÞ� 1ffiffi
2

p ðVSÞ�

0 − 1ffiffi
2

p VS
1ffiffi
2

p VS

1
CA; ð11Þ

where the active neutrino mass matrix is given by

mν ≃ −ΘðMDNÞT; ð12Þ

the mixing parameter Θ is defined as

Θ ¼ MDNðM4×4Þ−1; ð13Þ

1n×n stands for the n × n unit matrix, and VS is a diagonal-
izing matrix of mS. Here, the inverse matrix of M4×4 is
approximately given by

ðM4×4Þ−1≃
�−ðmT

SÞ−1mLLðmSÞ−1 ðmT
SÞ−1

ðmSÞ−1 −ðmSÞ−1mRRðmT
SÞ−1

�
;

ð14Þ

which in turn leads to

Θ ¼ ð−mDðmT
SÞ−1mLLðmSÞ−1 þmNðmSÞ−1;

mDðmT
SÞ−1 −mNðmSÞ−1mRRðmT

SÞ−1Þ: ð15Þ

As a result, the active neutrino mass matrix is derived as

mν ≃ −mNðmSÞ−1mT
D −mDðmT

SÞ−1mT
N

þmDðmT
SÞ−1mLLðmSÞ−1mT

D; ð16Þ

where we ignore mNðmSÞ−1mRRðmT
SÞ−1mT

N due to Eq. (9).
We emphasize that the obtained mass matrix is twofold: the

first two terms stem from the so-called linear seesaw
mechanism, while the last term from the inverse seesaw
one. As will be discussed in Sec. IV, in order to reproduce
experimentally allowed neutrino mass spectrum and mix-
ing, both contributions are necessary. To this end, through-
out this paper, we suppose the following parameter setting:

hHi ¼ 246 GeV; hΦi ¼ Oð10−8Þ GeV;
hSLi ¼ Oð10−7Þ GeV; hSμτi ¼ 20 GeV; ð17Þ

MS ¼ Oð102Þ GeV; yD ¼ Oð10−2Þ;
yN; yS; yLL; yRR ¼ Oð1Þ; ð18Þ

which results in mν ¼ Oð10−10Þ GeV. We here note that H
serves as the SM like Higgs doublet, and hSμτi is deter-
mined to induce an MeV scale mass to Zμτ in Eq. (2). A
more detailed discussion of the scalar potential is given in
Sec. V.
Let us mention the active-sterile mixing and derive the

leptonic mixing matrix in our framework. The mixing
between the active neutrinos and the sterile ones is
described in Eq. (11). In view of the hierarchy Eq. (9),
we simplify Θ in Eq. (15) as

Θ ≃ ð0; mDðmT
SÞ−1Þ ¼ ð0; ηÞ; ð19Þ

leading to

0
B@

ðνLÞc
NR

ðNLÞc

1
CA ¼

0
BB@

13×3 − 1
2
η�ηT − 1ffiffi

2
p η�VS

1ffiffi
2

p η�VS

0 1ffiffi
2

p ðVSÞ� 1ffiffi
2

p ðVSÞ�

−ηT − 1ffiffi
2

p ½12×2 − 1
2
ηTη��VS

1ffiffi
2

p ½12×2 − 1
2
ηTη��VS

1
CA
0
B@

νc

N1

N2

1
CA; ð20Þ

and the leptonic mixing matrix is obtained as

N ≃
�
1 −

1

2
ηη†
�
VMNSP: ð21Þ

Here, P ¼ Diagð1; eiα212 ; eiα312 Þ includes the Majorana CP-violating phases, and VMNS is the MNS mixing matrix [51]
parametrized as

VMNS ¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

1
CA; ð22Þ
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where cij ¼ cos θij, sij ¼ sin θij and δ denotes the Dirac
CP-violating phase. In Eq. (21), the full mixing matrixN is
no longer a unitary matrix due to the presence of the second
term, and values of η’s are, at present, moderately con-
strained by flavor and electroweak precision experiments.
We use these constraints in numerically calculating neu-
trino masses and mixing in the next section.

IV. NUMERICAL CALCULATIONS

We here numerically diagonalize the active neutrino
mass matrix and check its consistency with experiments. In
the calculations, we place the 3σ constraints on the neutrino
oscillation parameters obtained in Ref. [52]:

sin2θ12 ¼ 0.275 − 0.350 ð0.275 − 0.350Þ;
sin2θ23 ¼ 0.418 − 0.627 ð0.423 − 0.629Þ;
sin2θ13 ¼ 0.02045 − 0.02439 ð0.02068 − 0.02463Þ;

Δm2
21=10

−5 ¼ 6.79 − 8.01 ð6.79 − 8.01Þ;
Δm2

31=10
−3 ¼ 2.427 − 2.625 ðΔm2

23=10
−3

¼ 2.412 − 2.611Þ;
δ ¼ 125° − 392° ð196° − 360°Þ; ð23Þ

for normal (inverted) mass ordering, and the 2σ upper
bounds on η’s derived in Ref. [53]:

ðηη†Þee < 2.5 × 10−3; ðηη†Þμμ < 4.4 × 10−4; ðηη†Þττ < 5.6 × 10−3;

ðηη†Þeμ < 2.4 × 10−5; ðηη†Þeτ < 2.7 × 10−3; ðηη†Þμτ < 1.2 × 10−3: ð24Þ

In terms of η, the active neutrino mass matrix in Eq. (16) is rewritten by

mν ¼ −mNη
T − ηmT

N þ ηmLLη
T; ð25Þ

and it takes the form of

mν ¼ −

0
B@

2mee
n ηee mee

n ημe mτμ
n ηeμ

mee
n ημe 0 mτμ

n ημμ

mτμ
n ηeμ mτμ

n ημμ 0

1
CAþmL

0
B@

ηeeηee ηeeημe 0

ημeηee ημeημe 0

0 0 0

1
CA; ð26Þ

for Model A, while it takes

mν ¼ −

0
B@

2mee
n ηee mμτ

n ηeτ mee
n ητe

mμτ
n ηeτ 0 mμτ

n ηττ

mee
n ητe mμτ

n ηττ 0

1
CAþmL

0
B@

ηeeηee 0 ηeeητe

0 0 0

ητeηee 0 ητeητe

1
CA; ð27Þ

for Model B. As can be seen, both the neutrino mass
matrices contain one zero,2 and thus one can predict two
observables. In the following subsections, we calculate the
effective mass of neutrinoless double beta decay, hmeei, as
a function of the sum of active neutrino masses,

P
i mi, and

check the consistency with the current bounds:

hmeei < 0.061 − 0.165 eV; ð28Þ
from the KamLAND-Zen Collaboration [55], where the
uncertainty comes from the nuclear matrix element calcu-
lation, and the combined upper bound

X3
i¼1

mi < 0.12 eV; ð29Þ

from the Planck Collaboration [43].

A. Inverted ordering

Let us first investigate the inverted ordering case. In view
of our parameter setting given in Eqs. (17) and (18), we
vary the active neutrino mass matrix within the following
ranges:

jηαβj ¼ 0.001 − 0.02; jmαβ
n j ¼ 10−9 − 10−8 GeV;

jmLj ¼ 10−8 − 10−7 GeV; ð30Þ

while imposing the constraints in Eqs. (23) and (24). Here,
we take a basis in which only ηee and ηeμðηeτÞ are complex

2There is another contribution to the neutrino mass term from
one-loop diagrams [54]. In our framework, the diagrams yield a
new contribution, which is proportional to mDmRRmT

D, to ðmνÞee
and do not break the obtained one-zero textures. Thus, by tuning
yRR in Eq. (3), we simply assume that the contribution is
negligibly small compared with Eqs. (26) and (27).
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and vary their phases within 0 − 2π. We vary these
parameters randomly with flat probability distributions in
each range. In Fig. 1, we plot hmeei as a function of

P
i mi

and find that there exist parameter regions (red crosses, ×)
in which all the constraints can be satisfied for both Model
A and Model B. Note that, in the figures, the density of
points has no statistical meanings; it shows the difficulty of
finding solutions. For instance, in the areas where the
density is low, it is difficult to find solutions because
relatively strong parameter tuning is necessary to satisfy
Eqs. (23) and (24), especially the small squared-mass-
differences. As a reference, we also show the current 3σ
upper and lower bounds (solid curves), which are derived
by calculating

hmeei ¼ jðc12c13Þ2m1 þ ðs12c13Þ2m2eiα21

þ ðs13e−iδÞ2m3eiα31 j; ð31Þ

with Eq. (23) while varying the Majorana phases within
0 − 2π. Also, full parameter regions of the models (dashed
curves) are shown by solving the condition ðmνÞττ ¼ 0:

ðs12s23−c12c23s13eiδÞ2m1þðc12s23þs12c23s13eiδÞ2m2eiα21

þðc23c13Þ2m3eiα31 ¼0; ð32Þ
for Model A, or ðmνÞμμ ¼ 0:

ðs12c23þc12s23s13eiδÞ2m1þðc12c23− s12s23s13eiδÞ2m2eα21

þðs23c13Þ2m3eα31 ¼ 0; ð33Þ
for Model B. Unfortunately, the current sensitivity on hmeei
is not enough to test the predicted regions. However, in next
generation experiments, the sensitivity is hoped to reach
hmeei ¼ Oð0.01Þ eV [56], so our models would be tested
in the near future.

B. Normal ordering

For normal mass ordering, we find that both of the one-
zero textures are now excluded by the Planck bound. In
order to show this conclusion, instead of investigating the
mass matrices in Eqs. (26) and (27), we calculate

P
i mi by

solving Eqs. (32) and (33) and check their consistency. In
Fig. 2, we show

P
i mi as a function of sin2 θ23 for the cases

FIG. 1. The effective mass of neutrinoless double beta decay, hmeei, as a function of the sum of active neutrino masses,
P

i mi, in the
case of inverted mass ordering, for Model A (left panel) and Model B (right panel). The solid curves display 3σ upper and lower bounds
corresponding to Eq. (23). The regions surrounded by the dashed curves are full parameter regions of the models, while the red crosses,
×, represent predicted points when varying the parameters as in Eq. (30). The horizontal solid lines indicate the tightest upper bound of
Eq. (28), and the vertical lines indicate Eq. (29).

FIG. 2. The sum of active neutrino masses,
P

i mi, as a function of sin2 θ23 in the case of normal mass ordering, for Model A (left
panel) and Model B (right panel). The horizontal solid lines correspond to Eq. (29), while the vertical lines are sin2 θ23 ¼ 0.627 (left
panel) and sin2 θ23 ¼ 0.418 (right panel) which are the upper and the lower bound in Eq. (23), respectively.
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of ðmνÞττ ¼ 0 (left panel) and ðmνÞμμ ¼ 0 (right panel). The
neutrino oscillation parameters are randomly scattered
within the 3σ ranges given in Eq. (23), while the
Majorana phases are varied within 0 − 2π. As can be seen
from the figures,

P
i mi is constrained to be ≳0.13 eV

(≳0.16 eV) by the upper (lower) bound of sin2 θ23 in the
case of ðmνÞττ ¼ 0 (ðmνÞμμ ¼ 0), which is clearly incon-
sistent with Eq. (29).

V. SCALAR SECTOR

The scalar potential invariant under GSM ×Uð1ÞLμ−Lτ
×

Uð1ÞL, where GSM denotes the SM gauge group, is given by

V ¼ m2
HjHj2 þm2

ΦjΦj2 þm2
LjSLj2 þm2

μτjSμτj2
þ μ½H†ΦS†L þ H:c:�
þ λ1jHj4 þ λ2jΦj4 þ λ3jHj2jΦj2 þ λ4ðH†ΦÞðΦ†HÞ
þ λ5jSμτj4 þ λ6jHj2jSμτj2 þ λ7jΦj2jSμτj2
þ λ8jSLj4 þ λ9jHj2jSLj2 þ λ10jΦj2jSLj2
þ λ11jSLj2jSμτj2: ð34Þ

Since the potential preserves the global Uð1ÞL symmetry, a
massless Nambu-Goldstone boson (NGB) appears after the
spontaneous symmetry breaking. In addition, as will be
seen later, an almost massless scalar boson appears in the
CP-even sector for our parameter setting given in Eq. (17).
The existence of the NGB and the almost massless scalar
boson has interesting implications for observations of high
energy cosmic neutrinos. In Sec. VI, we show that if these
particles have MeV scale masses, they would significantly
attenuate the flux of high energy cosmic neutrinos. In order
to give finite masses to them, we here introduce the
following Uð1ÞL breaking term:

V=L ¼ B2½H†Φþ H:c:�: ð35Þ

This breaking term becomes important also when we solve
stationary conditions of the potential: tiny VEVs can
naturally be obtained for jm2

Φj ≫ jB2j [57,58]. Note that
in the potential all the parameters are taken to be real.
We define components of the scalars and their VEVs as

H ¼
� hþ

1ffiffi
2

p ðvew þ hþ iηÞ
�
; Φ ¼

� ϕþ

1ffiffi
2

p ðvΦ þ ϕþ iξÞ
�
;

SL ¼ 1ffiffiffi
2

p ðvL þ sL þ iσLÞ; Sμτ ¼
1ffiffiffi
2

p ðvμτ þ sμτ þ iσμτÞ:

ð36Þ

Then, the stationary conditions are obtained as

vew

�
m2

H þ λ1v2ew þ λ3 þ λ4
2

v2Φ þ λ6
2
v2μτ þ

λ9
2
v2L

�

þ μffiffiffi
2

p vΦvL þ B2vΦ ¼ 0;

vΦ

�
m2

Φ þ λ2v2Φ þ λ3 þ λ4
2

v2ew þ λ7
2
v2μτ þ

λ10
2

v2L

�

þ μffiffiffi
2

p vewvL þ B2vew ¼ 0;

vL

�
m2

L þ λ8v2L þ λ9
2
v2ew þ λ10

2
v2Φ þ λ11

2
v2μτ

�

þ μffiffiffi
2

p vewvΦ ¼ 0;

m2
μτ þ λ5v2μτ þ

λ6
2
v2ew þ λ7

2
v2Φ þ λ11

2
v2L ¼ 0: ð37Þ

In the second and the third condition, for jm2
Φj; jm2

Lj ≫
v2ew; v2μτ; v2L; v

2
Φ, the conditions can be written as

vL ≃ −
μffiffiffi
2

p vew
m2

L
vΦ; vΦ ≃ −

B2vew

m2
Φ − μ2

2
v2ew
m2

L

: ð38Þ

Therefore, vΦ and vL can simultaneously be small for
jm2

Lj ≃ jμvewj and jm2
Φj ≫ jB2jð or jμvewj ≫ jB2jÞ. For

instance, vΦ ¼ Oð10−8Þ GeV and vL¼Oð10−7ÞGeV can
be realized for jm2

Φj¼Oð109ÞGeV2, jm2
Lj ¼ Oð106Þ GeV2,

jμj¼Oð105ÞGeVand jB2j¼Oð10−1ÞGeV2. In caseswhere
jB2j ≪ 10−6 GeV2, however, behavior of the stationary con-
ditions changes; in such cases, parameter tuning is necessary
to derive vL ¼ Oð10−7Þ GeV, vΦ ¼ Oð10−8Þ GeV, and
hence vew=vΦ ¼ Oð1010Þ.

A. Masses of charged scalars

In a basis of ðh�;ϕ�Þ, the squared mass matrix of the
charged components is given by

M2
� ¼

�
μffiffiffi
2

p vL þ B2 þ λ4
2
vewvΦ

� − vΦ
vew

1

1 − vew
vΦ

!
: ð39Þ

This mass matrix can easily be diagonalized, and one
obtains an eigenvalue of

m2
H� ¼ −

�
μffiffiffi
2

p vL þ B2 þ λ4
2
vewvΦ

��
vΦ
vew

þ vew
vΦ

�
; ð40Þ

and a zero eigenvalue corresponding to the NGB for the SM
W� gauge boson.
Charged scalar bosons are searched at the LHC experi-

ments; they can be produced via top quark decays,
t → H�b, or in association with a top and a bottom quark,
pp → H�tb. In our models, however, interactions between
H� and quarks are suppressed by the small vΦ (or large
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tan β ¼ vew=vΦ), so the LHC constraints are irrelevant
for our studies. In contrast, at the LEP experiments,
charged scalar bosons can be produced via the Drell-Yan
process eþe− → γ=Z → HþH−, which does not rely on
interactions with quarks and may be applicable to our
models. In Ref. [59], lower bounds on a charged scalar
boson mass are derived for several decay channels, in the
framework of two-Higgs-doublet-models. Since decays to
quarks are strongly suppressed in our models, we refer
to the bound for type-II two-Higgs-doublet-models with
BrðH� → τ�νÞ ¼ 1, i.e., mH� > 94 GeV, and that for
type-I models with BrðH� → W�AÞ ≃ 1 (tan β ¼ 100),
i.e., mH� > 84–89 GeV, where A denotes a lighter

CP-odd neutral boson. Also, in order to prevent mH� from
being tachyonic, we require j μffiffi

2
p vL þ B2j > j λ4

2
vewvΦj in

Eq. (40). As a consequence, we place a constraint of���� μffiffiffi
2

p vL þ B2

���� > Oð10−6Þ GeV2; ð41Þ

in what follows.

B. Masses of CP-even neutral scalars

In a basis of ðh;ϕ; sL; sμτÞ, the squared mass matrix of
the CP-even neutral components is given by

M2
even ¼

0
BBBBB@

2λ1v2ew − μffiffi
2

p vΦvL
vew

− B2 vΦ
vew

ðλ3 þ λ4ÞvewvΦ þ μffiffi
2

p vL þ B2 λ9vewvL þ μffiffi
2

p vΦ λ6vewvμτ

ðλ3 þ λ4ÞvewvΦ þ μffiffi
2

p vL þ B2 2λ2v2Φ − μffiffi
2

p vL
vΦ
vew − B2 vew

vΦ
λ10vΦvL þ μffiffi

2
p vew λ7vΦvμτ

λ9vewvL þ μffiffi
2

p vΦ λ10vΦvL þ μffiffi
2

p vew 2λ8v2L − μffiffi
2

p vΦ
vL
vew λ11vμτvL

λ6vewvμτ λ7vΦvμτ λ11vμτvL 2λ5v2μτ

1
CCCCCA: ð42Þ

Although the mass matrix is too complicated to diagonalize in a general way, one can see that the ðϕ; sLÞ block part is
dominated by the terms proportional to μ and an almost rank one matrix in case of B2 ¼ 0. Consequently, an almost
massless scalar boson inevitably appears in the absence of explicit Uð1ÞL symmetry breaking for our parameter setting
proposed in Eq. (17).
In order to simplify the diagonalization, in this work, we restrict ourselves to the parameter region of j μffiffi

2
p vL þ B2j <

Oð1Þ GeV2 so that the mass matrix can be simplified to

M2
even ≃

0
BBBBB@

2λ1v2ew 0 0 λ6vewvμτ

0 −
�

μffiffi
2

p vL þ B2
	

vew
vΦ

μffiffi
2

p vew 0

0 μffiffi
2

p vew − μffiffi
2

p vΦ
vL
vew 0

λ6vewvμτ 0 0 2λ5v2μτ

1
CCCCCA: ð43Þ

Note that μ and B2 are also constrained by the lower bound on the charged scalar boson mass:
j μffiffi

2
p vL þ B2j > Oð10−6Þ GeV2. Then, the diagonalization can easily be done by rotating

0
BBBBB@

h

ϕ

sL
sμτ

1
CCCCCA →

0
BBB@

c1 0 0 s1
0 1 0 0

0 0 1 0

−s1 0 0 c1

1
CCCA
0
BBB@

1 0 0 0

0 c2 s2 0

0 −s2 c2 0

0 0 0 1

1
CCCA
0
BBB@

h1
h2
h3
h4

1
CCCA; ð44Þ

where c1ð2Þ ¼ cos θ1ð2Þ and s1ð2Þ ¼ sin θ1ð2Þ. However, the
exact expressions for the mixing angles and the eigenvalues
are somewhat complicated. Thus, we refrain from showing
them and, instead, derive approximate expressions by
considering certain limits.
Let us first consider the ðh; sμτÞ block part. As we will

show later, the value of λ6 is restricted to be λ6 < Oð0.01Þ
to suppress invisible decays of the Higgs boson. Hence,

given vew ¼ 246 GeV and vμτ ¼ 20 GeV, one finds a
hierarchy of ðM2

evenÞ11 ≫ ðM2
evenÞ44 ≫ ðM2

evenÞ14 for λ1;5 ¼
Oð1Þ. In this case, the diagonalization can approximately
be done by

s1 ≃ −
λ6vμτ
2λ1vew

; c1 ≃ 1 −
1

2

�
λ6vμτ
2λ1vew

�
2

; ð45Þ
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which lead to

m2
h1
≃ 2λ1v2ew; m2

h4
≃ 2λ5v2μτ: ð46Þ

The mass of h1 is proportional to vew ≃ 246 GeV, and
thus we identify h1 as the SM Higgs boson, while the
mass of h4 is expected to be somewhat small, that
is mh4 ¼ Oð10Þ GeV.
Next, we tackle with the ðϕ; sLÞ block part for the

following two cases.
(i) j μffiffi

2
p vLj ≪ jB2j
By utilizing a hierarchy of ðM2

evenÞ22 ≫
ðM2

evenÞ23 > ðM2
evenÞ33, the mixing c2 and s2 are

derived as

s2 ≃
μvΦffiffiffi
2

p
B2

; c2 ≃ 1 −
1

2

�
μvΦffiffiffi
2

p
B2

�
2

; ð47Þ

which result in

m2
h2
≃ −

�
μffiffiffi
2

p vL þ
ffiffiffi
2

p
B2

�
vew
vΦ

≃ −
ffiffiffi
2

p
B2

vew
vΦ

;

m2
h3
≃ −

μffiffiffi
2

p vΦ
vL

vew þ μ2vewvΦffiffiffi
2

p ðμvL þ ffiffiffi
2

p
B2Þ

≃ −
μffiffiffi
2

p vΦ
vL

vew: ð48Þ

Given j μffiffi
2

p vLþB2j≃ jB2j and thusOð10−6Þ GeV2 <

jB2j < Oð1Þ GeV2, one obtains Oð102Þ GeV <
mh2 < Oð105Þ GeV. In contrast, the mass of h3 is
determined by μ; it is roughly given by m2

h3
≃ −μ ×

10 GeV2 with jμj ≪ Oð10Þ GeV and jμj ≪
Oð107Þ GeV for jB2j ¼ Oð10−6Þ GeV2 and jB2j ¼
Oð1Þ GeV2, respectively.

(ii) j μffiffi
2

p vLj ≫ jB2j
In this case, the mixings are approximately

given by

s2 ≃
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2
p ; c2 ≃

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

p ; ð49Þ

where R ¼ vΦ=vL ≃ 10−1, and the eigenvalues are
obtained as

m2
h2
≃ −

μffiffiffi
2

p vew
1þ R2

R
; m2

h3
≃ −

R2

1þ R2

vew
vΦ

B2:

ð50Þ

In Eq. (49), we ignore contributions from B2.
Given j μffiffi

2
p vLþB2j≃ j μffiffi

2
p vLj and thus Oð10Þ GeV <

jμj < Oð107Þ GeV, one obtains Oð102Þ GeV <
mh2 < Oð105Þ GeV. In contrast, the mass of h3 is
determined by the symmetry breaking parameter
B2; it is roughly given by m2

h3
≃ −B2 × 108 GeV2

with jB2j ≪ Oð10−6Þ GeV2 and jB2j ≪ Oð1Þ GeV2

for jμj ¼ Oð10Þ GeV and jμj ¼ Oð107Þ GeV,
respectively.

Here, we would like to stress the point that the
modestly large mixing R ≃ 10−1 can be gained
almost independently of B2. Thus, the mass of h3
can even be MeV scale while keeping R ≃ 10−1.
This feature becomes important when we discuss
attenuation of the flux of high energy cosmic
neutrinos in Sec. VI.

C. Masses of CP-odd neutral scalars

In a basis of ðη; ξ; σL; σμτÞ, the squared mass matrix of
the CP-odd neutral components is written as

M2
odd ¼

0
BBBBBB@

−
�

μffiffi
2

p vL þ ffiffiffi
2

p
B2
	

vΦ
vew

μffiffi
2

p vL þ ffiffiffi
2

p
B2 − μffiffi

2
p vΦ 0

μffiffi
2

p vL þ ffiffiffi
2

p
B2 −

�
μffiffi
2

p vL þ ffiffiffi
2

p
B2
	

vew
vΦ

μffiffi
2

p vew 0

− μffiffi
2

p vΦ
μffiffi
2

p vew − μffiffi
2

p vΦ
vL
vew 0

0 0 0 0

1
CCCCCCA
: ð51Þ

Here, σμτ neither mixes with the others nor acquires a nonzero mass; it is the NGB eaten by the Zμτ gauge boson. Omitting
σμτ, the diagonalization can approximately be done by

0
B@

η

ξ

σL

1
CA →

0
B@

1 − 1
2
r2 −r 0

r 1 − 1
2
r2 0

0 0 1

1
CA
0
B@

1 0 0

0 c2 s2
0 −s2 c2

1
CA
0
B@

ζ1

ζ2

ζ3

1
CA; ð52Þ

where r ¼ vΦ=vew. The mixing r block-diagonalizes the squared mass matrix into a zero eigenvalue and a 2 × 2 block part
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m2
ζ1
¼ 0;

M2×2 ≃

0
B@−

�
μffiffi
2

p vL þ ffiffiffi
2

p
B2
	

vew
vΦ

μffiffi
2

p vew
μffiffi
2

p vew − μffiffi
2

p vΦ
vL
vew

1
CA: ð53Þ

Note that the mass of ζ1 is exactly vanishing, and it is the
NGB eaten by the SM Z gauge boson. The 2 × 2 block part
M2×2 has the same form as the ðϕ; sLÞ block part of
Eq. (43), and it can be diagonalized in the same way as
demonstrated in the previous subsection.

D. Invisible decays of the Higgs boson

As we have seen in the previous subsections, there are
three scalar bosons whose masses can be smaller than half
of the Higgs boson mass, namely h3, h4, and ζ3; these
particles cause invisible decays of the Higgs boson h1. In
addition, the Higgs boson can decay into a pair of Zμτ

through the mixing between h1 and h4. We here formulate
those interactions as

Linv ¼ −Gh3h1h3h3 −Gh4h1h4h4 −Gh3h4h1h3h4

− Gζ3h1ζ3ζ3 − s1
M2

Zμτ

vμτ
h1ðZμτÞρðZμτÞρ; ð54Þ

where ρ denotes the Lorentz index and

Gh3 ¼
μffiffiffi
2

p c1c2s2 þ
λ3 þ λ4

2
vewc1s22 −

λ7
2
vμτs1s22

þ λ9
2
vewc1c22 −

λ11
2

vμτs1c22; ð55Þ

Gh4 ¼ 3λ1vewc1s21 − 3λ5vμτc21s1

þ λ6
2
½vewðc31 − 2c1s21Þ − vμτðs31 − 2c21s1Þ�; ð56Þ

Gh3h4 ¼ ðλ3 þ λ4 − λ7ÞvΦc1s1s2 þ ðλ9 − λ11ÞvLc1s1c2;
ð57Þ

Gζ3 ¼ Gh3 : ð58Þ

In the above equations, we have neglected r in Eq. (52).
Since Gh3h4 is suppressed by vΦ or vL in comparison with
the others, we will ignore h1 → h3h4 decay in the following
discussion.
The branching ratio of the Higgs boson invisible decays

is constrained by the LHC experiments, and it is defined as

BRinv ¼
Γex

ΓSM þ Γex
; ð59Þ

where

Γex ¼
X

X¼h3;h4;ζ3

Γðh1 → XXÞ þ Γðh1 → ZμτZμτÞ; ð60Þ

and ΓSM is the SM expectation. The partial decay widths of
h1 → XX and h1 → ZμτZμτ are calculated to be

Γðh1 → XXÞ ¼ G2
X

8πmh1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mX

mh1

�
2

s
; ð61Þ

Γðh1 → ZμτZμτÞ ¼
g2μτs21
8π

M2
Zμτ

mh1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
Zμτ

m2
h1

vuut

×

�
2þ m4

h1

4M4
Zμτ

�
1 −

2M2
Zμτ

m2
h1

�2�
; ð62Þ

respectively. Given the upper limit BRinv < 0.26 from the
ATLAS Collaboration [60] and ΓSM ¼ 4.1 MeV obtained
in Ref. [61], one finds Γex ≲ 1.44 MeV.
Let us first estimate constraints from h1 → h4h4 and

h1 → ZμτZμτ. By substituting Eqs. (45) and (46), contri-
butions from these decays can be solely expressed in terms
of λ6 as well as mh4 , gμτ, and MZμτ

. Then, by requiring that
their decay widths should be smaller than 1.44 MeV, one
finds λ6 < Oð0.01Þ for mh4 ¼Oð10ÞGeV, gμτ¼5×10−4,
and MZμτ

¼ 11 MeV.
Next, depending on μ and B2, the masses of h3 and ζ3

can also be smaller than half of the Higgs boson mass,
so they cause the Higgs boson invisible decays, too. We
are particularly interested in the case of j μffiffi

2
p vLj ≫ jB2j as

will be discussed in the next section. In this case, by
approximating the mixing with s1 ≲ 10−3, c1 ≃ 1, s2 ≃
10−1 and c2 ≃ 1, the constraint Γex ≲ 1.44 MeV results in
jμj < Oð10Þ GeV, λ9 < Oð10−2Þ, λ3, λ4 < Oð0.1Þ, and λ7,

FIG. 3. The branching ration of the Higgs invisible decay,
BRinv, as a function of λ6 for jμj ¼ 30, 21 GeV (a blue-solid,
an orange-dashed line) and jμj ¼ 6 GeV (a green-dotted line).
The other parameters are fixed to be λ3;4;9 ¼ 0, mh3 ¼
mζ3 ¼ 15.6 MeV,mh4 ¼ 28.3 GeV, gμτ ¼ 5 × 10−4, andMZμτ

¼
11 MeV.
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λ11 < Oð1Þ unless strong cancellation happens in Gh3 .
Especially, jμj < Oð10Þ GeV has a strong impact on μ:
it fixes the order of μ to jμj ¼ Oð10Þ GeV in the presence
of the lower bound on the charged scalar boson mass,
leading to mH� ; mh2 ; mζ2 ¼ Oð100Þ GeV.
In Fig. 3, we plot BRinv as a function of λ6 for jμj ¼ 30,

21 GeV (a blue-solid, an orange-dashed line) and jμj ¼
6 GeV (a green-dotted line); the other parameters are fixed
to be λ3;4;9 ¼ 0, mh3 ¼mζ3 ¼15.6MeV, mh4 ¼ 28.3 GeV,
gμτ ¼ 5 × 10−4, andMZμτ

¼ 11 MeV. From the figure, one
can see that jμj≲ 21 GeV as well as λ6 ≲ 0.01.

VI. NEUTRINO SECRET INTERACTIONS

Lastly, we briefly comment on the so-called neutrino
secret interactions. Soon after the discovery of high energy
cosmic neutrino events in the energy range between
Oð100Þ TeV and Oð1Þ PeV by the IceCube Collabora-
tion [62,63], several authors pointed out that if there exist
new light bosons having interactions with neutrinos, they
could cause significant attenuation in the flux of high
energy cosmic neutrinos by mediating resonant scattering
with cosmic neutrino background [26–29,64–66]. Inter-
estingly, one can indeed find a possible dip in the
energy spectrum of high energy cosmic neutrinos around
400 TeV–1 PeV in the IceCube data, see Ref. [67] for the
recent analysis. In our models, we have three candidates for
such light bosons, that is, the CP-even neutral scalar h3 and
the CP-odd one ζ3, as well as Zμτ. The detailed analysis for
Zμτ was already done in Refs. [26,29]. Thus, in this section,
we focus only on h3 and ζ3 and check whether they can
serve as the mediator of the resonant scattering, just as
Zμτ does.
Suppose the light boson is scalar and has Yukawa

interactions with active neutrinos, the interaction can be
formulated as

gνν̄νcχ þ H:c: ð63Þ

According to Ref. [29], in order for the scalar χ to signi-
ficantly attenuate the cosmic neutrino flux in the PeV
region, its mass and the coupling constant should satisfy

Mχ ¼ Oð1 − 10Þ MeV; gν > Oð10−4Þ: ð64Þ

As shown in Sec. V, both h3 and ζ3 can have an MeV scale
mass by suitably tuning the Uð1ÞL breaking parameters B2.
As for the Yukawa coupling gν, in our models, it arises from
the third term in Eq. (3), through the mixing in Eqs. (20)
and (49). In the case of h3, it arises as

yNνLðNLÞcϕ → −yN
��

1 −
1

2
ηη†
�
ηTR

�
ν̄νch3 ≡ gνν̄νch3;

ð65Þ

while for ζ3, it is described as

iyNνLðNLÞcξ → −iyN
��

1 −
1

2
ηη†
�
ηTR

�
1 −

1

2
r2
��

ν̄νcζ3

≡ g0νν̄νcζ3: ð66Þ
Given our parameter setting: η ¼ Oð10−2Þ, R ¼ vΦ=vL ¼
Oð10−1Þ, and r ¼ vΦ=vew ¼ Oð10−10Þ, one obtains gð0Þν ¼
Oð10−3Þ, which is presumably large enough to attenuate
the cosmic neutrino flux. A more detailed study will be
done elsewhere.

VII. SUMMARY

In summary, we propose models for an MeV scale
Uð1ÞLμ−Lτ

gauge boson, Zμτ, which is anticipated to exist
to resolve the gμ − 2 problem as well as the possible dip in
the energy spectrum of high energy cosmic neutrinos. We
introduce extra scalars to spontaneously break Uð1ÞLμ−Lτ

and to generate an MeV scale mass to Zμτ. Tiny neutrino
masses and mixing are obtained by simultaneously invoking
the linear and the inverse seesaw mechanism. Depending on
the Uð1ÞLμ−Lτ

charge assignment, the active neutrino mass
matrix enjoys two types of one-zero textures, which endows
the models with predictive power. Both of the textures prefer
inverted neutrino mass ordering and would be tested in next
generation experiments of neutrinoless double beta decay.
Furthermore, we find that two of the extra scalars can acquire
MeV scale masses while having interactions with active
neutrinos. We briefly confirm that they can serve as the
mediator of resonant scattering between high energy cosmic
neutrinos and cosmic neutrino background, and that they
could help us understand the existence of the unexpected dip
in the IceCube data.
Finally, we comment on kinetic mixing between

Uð1ÞLμ−Lτ
and the SM electromagnetic Uð1Þem gauge sym-

metry. In our framework, we do not introduce the kinetic
mixing term at the tree level, but it appears at the one loop
level. In Refs. [20,29], we studied implications of the loop-
induced kinetic mixing for solar neutrino measurements and
the detectability of Zμτ at eþe− colliders. In contrast to the
previous work, we here introduce extra fermions and scalars
charged under Uð1ÞLμ−Lτ

. Nevertheless, there are no mass
eigenstates that are charged under both Uð1ÞLμ−Lτ

and
Uð1Þem, except for the SM mu and tau leptons. Hence,
we expect that the same kinetic mixing as those in
Refs. [20,29] will also be obtained for the framework
proposed in this paper.
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