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Using lattice simulations, we show that there is a phase of thermal QCD, where the spectral density ρðλÞ
of the Dirac operator changes as 1=λ for infrared eigenvalues λ < T. This behavior persists over the entire
low energy band we can resolve accurately, over 3 orders of magnitude on our largest volumes. We propose
that in this “IR phase,” the well-known noninteracting scale invariance at very short distances (UV, λ → ∞,
asymptotic freedom), coexists with a very different interacting type of scale invariance at long distances
(IR, λ < T). Such dynamics may be responsible for the unusual fluidity properties of the medium observed
at RHIC and LHC. We point out its connection to the physics of the Banks-Zaks fixed point, leading to the
possibility of massless glueballs in the fluid. Our results lead to the classification of thermal QCD phases in
terms of IR scale invariance. The ensuing picture naturally subsumes the standard chiral crossover feature at
“Tc” ≈ 155 MeV. Its crucial new aspect is the existence of temperature TIR (200 MeV < TIR < 250 MeV)
marking the onset of the IR phase and possibly a true phase transition.
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I. INTRODUCTION

The study of strongly interacting matter as a function
of temperature and baryon density is an active area of
theoretical and experimental research (see [1] for recent
review). At high energies of colliding heavy nuclei, such as
those studied at LHC and the high end of RHIC, baryon
densities are small enough so that the results are generally
expected, among other things, to shed light on the nature
and properties of thermal QCD transition in the early
universe. In this regime, it has become widely accepted,
largely due to the matured power of lattice QCD [2], that
increasing temperature leads to a smooth crossover in
properties of thermal strongly interacting matter. On the
experimental side, results from RHIC [3–6] and LHC [7]
based on modeling the time evolution of collisions in terms
of relativistic hydrodynamics, produced a picture of a
strongly coupled liquidlike medium with extremely low
η=s (shear viscosity/entropy density) at high temperatures.
In parallel and initially independent developments, similar
values of η=s were obtained in highly symmetric and
strongly coupled gauge theories with a large number of
colors, studied by means of their holographic dual [8].

This sparked a flurry of attempts to model the medium
seen in the experiments via more refined descriptions of
this type.
However, the physics of thermal QCD transition(s) and

the nature of the discovered liquidlike state of matter are
far from settled, even in the limit of vanishing net baryon
density (μ ¼ 0), the setting of our interest. Among other
things, the currently favored scenario involving a single
feature (crossover at “Tc”) offers limited room for accom-
modating a dramatic change from a medium described as a
weakly interacting hadron resonance gas to a strongly
interacting near-perfect fluid. In this work, we propose a
hierarchy of thermal effects in QCD, based on scale
invariance properties at long distances, which adds new
detail to the existing picture, and ties with it in a natural
manner. A special role in our analysis will be played by glue
fields. In fact, one of our conclusions is that, from the
standpoint of scale invariance, the phase structure of pure
glue SU(3) gauge theory (pgQCD) and that of nature’s
strong interactions (QCD) are qualitatively the same.
Avoiding the complication of quark fields, we thus first
describe the proposed picture in the context of the former.
Since pgQCD is a theory of massless vector fields, it is

classically scale invariant. According to the standard
picture at zero temperature, this scale invariance is broken
by quantum effects, leading to a low energy scale and the
spectrum of massive bound states (glueballs). Yet, at
asymptotically short distances, the system can be effec-
tively described by perturbing noninteracting gluons
(asymptotic freedom [9,10]). This is sometimes rephrased
as scale invariance being broken at long distances (IR),

*aalexan@gwu.edu
†ihorv2@g.uky.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 094507 (2019)

2470-0010=2019=100(9)=094507(10) 094507-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.094507&domain=pdf&date_stamp=2019-11-22
https://doi.org/10.1103/PhysRevD.100.094507
https://doi.org/10.1103/PhysRevD.100.094507
https://doi.org/10.1103/PhysRevD.100.094507
https://doi.org/10.1103/PhysRevD.100.094507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


but present at asymptotically short distances (UV) in the
trivial noninteracting form.
Here we propose and support the following behavior of

thermal pgQCD. Turning the temperature gradually on, the
scale (non)invariance properties of a thermal state remain
similar to that of a zero-temperature vacuum, until the scale
of thermal agitation becomes comparable to the lowest
scale of broken scale invariance (“gluon condensate”). This
is characterized by the crossover temperature TA past
which the properties of the thermal medium change rapidly
toward the restoration of scale invariance in IR. The latter
then occurs at a well-defined temperature TIR > TA. In the
ensuing range TIR < T < TUV (IR phase), gauge fields
characteristic of a thermal state are scale invariant at
distances larger than ≈1=T. Unlike asymptotic scale
invariance in UV, present at all temperatures, IR invariance
emerges due to interaction that is still strong at long
distances. For T > TUV (UV phase), the field fluctuations
in the IR regime (λ < T) effectively disappear, and the
notion of IR scale invariance becomes trivial. The system
can then be described as weakly interacting gluon plasma.
This scenario is schematically shown in Fig. 1 (top,

middle). Note that the low-temperature region T < TIR
(B phase for “broken”) is split into two regimes B0 and BA
by TA. The relation to transition temperatures discussed
previously in the literature without invoking scale invari-
ance is also indicated. Temperature TIR coincides with the
well-known Tc of Polyakov line first order transition in
pgQCD [11]. In addition, we identify TUV with Tch of
chiral polarization transition [12–14]. Analog of TA has not
appeared in the context of pgQCD.1

Next, we present evidence that the above T pattern of
scale invariance in a gauge field is retained by QCD of
nature (Fig. 1, bottom). In other words, scaling properties
of QCD glue, which again enters as a nominally scale-free

entity, are driven by quantum nature of the theory like in
pgQCD, rather than quark mass effects. Thus, there is a
crossover temperature TA ≈ 150 MeV which we quali-
tatively associate with chiral “Tc” of the standard scenario.
However, here it is simply a characteristic temperature of
the B phase, marking the onset of changes toward IR scale
invariance. Note that the quark condensate now also plays
a role in determining the value of TA. The IR phase then
emerges at 200 < TIR < 250 MeV.
Before proceeding to lattice evidence, we address several

immediate questions.
(i) Since lattice offers good quantitative control over

QCD at μ ¼ 0, how did the IR phase escape the detection?
The answer is insufficient volumes. Indeed, the usual
expectation is that IR scales Λ < T contribute little to
physics for T > “Tc”. Our proposal not only contradicts
this but implies that, for TIR < T < TUV, it is the deep
infrared scales Λ ≪ TIR that drive a significant IR con-
tribution. Hence, we predict the existence of a “crossover
size” LIRðTÞ ≫ 1=TIR of the system past which the deep
infrared physics becomes readily reflected in thermal
observables. The systems of sufficiently large spatial sizes
L > LIRðTÞ are not commonly studied at present. This is
expanded upon in Appendix A.
(ii) Given (i), how is the existence of the IR phase

inferred from lattice simulations? At T ≳ TIR, we detect the
onset of scale invariant 1=λ behavior of Dirac spectral
density ρðλÞ (number of eigenmodes per unit volume and
spectral interval) for λ≲ T. We propose that this arises due
to the onset of effective IR scale invariance of glue fields
dominating the thermal state.2 While the two notions are
not equivalent a priori, they are consistent (Appendix B).
Moreover, in theories with IR scale invariant gauge fields,
such as those governed by Banks-Zaks fixed point, the
pure power law behavior of ρðλÞ is expected due to its

FIG. 1. Common thermal phase structure of pgQCD and QCD in terms of scale invariance. Since pgQCD is but a model of QCD
glue, setting its physical scales involves small arbitrariness. Temperatures in black appeared in literature without reference to scale
invariance.

1Transition with analogous physical meaning was in fact
discussed in Ref. [14] but, rather than being attributed to a
distinct dynamical effect, it was mistakenly identified with Tc in
pgQCD.

2The strict claim ρðλÞ ∝ 1=λ for λ≲ T seemingly entails
integrability issues, but these are superficial in light of regula-
rizations involved. For this discussion, one can simply assume
ρðλÞ ∝ 1=λ1−δ, 0 < δ ≪ 1.

ANDREI ALEXANDRU and IVAN HORVÁTH PHYS. REV. D 100, 094507 (2019)

094507-2



proposed connection to mass anomalous dimension
[15,16].3 This argument also suggests that, up to small
quark mass deformations, IR scale invariance of glue
extends to the quark sector in QCD, which was implicitly
assumed already.
(iii) Scale invariance in field theory is normally

addressed via the energy-momentum tensor. However,
such test should only include scales up to ΛIRðTÞ≲ T
(upper edge of 1=λ) in this case. In conjunction with (i), this
avoids the conflict with existing lattice results [17,18].
(iv) Given its perturbative nature, the UV phase

should only ensue when thermal agitation mostly engages
perturbative scales. In that vein, our expectation is that
TUV > 1 GeV (Fig. 1). Its precise determination in lattice
simulations is challenging in part because the minimal
system size needed to detect the IR phase grows with
temperature (Appendix A).

II. LATTICE EVIDENCE

Technical details of our simulations are summarized in
Appendix C. To discuss the results, we start with pgQCD
where needed volumes are more readily accessible. In
Ref. [19], a peak at the infrared end of Euclidean Dirac
spectral density has been observed in pgQCD above Tc.
Only recently it was shown [14] that this feature is not
a regularization artifact. Here we present evidence that
ρðλÞ ∝ λ−1 in IR which, together with ρðλÞ ∝ λ3 in UV,
generates a bimodal structure facilitating scale invariance at
both ends of the spectrum.
To that end, we study the spectrum of the overlap Dirac

operator on equilibrium backgrounds. A useful quantifier is
the volume density of eigenmodes in spectral range ½λ; T�,
namely

σðλ; TÞ≡
Z

T

λ
ρðωÞdω → cðTÞ lnT

λ
for ρðλÞ ¼ c

λ
: ð1Þ

If ρðλÞ ∝ λ−1 for λ < T, a straight line passing through
the origin is obtained in variable x ¼ lnT=λ ≥ 0. Note that
λ ¼ T corresponds to x ¼ 0 and IR is approached by
increasing x. If ρðλÞ ∝ λ−1 only for λ < ΛIRðTÞ < T, a
y-shifted linear segment appears for x > lnT=ΛIR.
In Fig. 2 we show σðxÞ in pgQCD on increasing volumes

(UV cutoff a ¼ 0.085 fm) at T ¼ 1.12Tc. Each case
involves an easily identifiable, approximately linear seg-
ment extending from origin to increasingly IR scales as the
IR cutoff L increases. Leveling off at larger x signals the IR
edge of the spectrum. On the largest volume (L ¼ 5.4 fm),
the 1=λ behavior persists over 3.5 orders of magnitude from
T down to deep infrared. The eye-guiding red line is the
same in each plot and corresponds to the fit for largest
volume, producing the value cð1.12TcÞ ¼ 0.0308ð3Þ fm−4

in Eq. (1). In Appendix D, we discuss a more direct
approach to exposing the 1=λ dependence of ρðλÞ over a
wide range of scales.
To assess the relationship of Polyakov line phase

transition in pgQCD to its IR phase, we simulate the
system at T ¼ 0.98Tc in the otherwise identical setup with
large volume. The resulting ρðλÞ is shown in Fig. 3 (top
left). Apart from saturation at the IR edge of the spectrum,
we find no linear segment in the corresponding σðxÞ (top
middle), in direct contrast to 1=λ behavior at T ¼ 1.12Tc
(top right). Thus, barely below Tc, the system is in the B
phase. Note also the characteristic difference in spectral
densities between B and IR phases (top left). Given the
above and the corroborating spectral evidence of Ref. [14]
at T ¼ 1.02Tc, we conclude that TIR coincides with Tc.
One consequence of this is that the B and IR phase of
pgQCD are separated by a first order phase transition.

FIG. 2. IR dependence ρðλÞ ∝ 1=λ emerging in pgQCD at T ¼ 1.12Tc and UV cutoff a ¼ 0.085 fm.

3Note that ρðλÞ ∝ 1=λ1−δ, 0 < δ ≪ 1 would imply very large
anomalous dimensions in those theories.
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An important feature of the Dirac spectrum at T ¼
0.98Tc is that ρðλÞ exhibits the IR peak even at T < TIR.
Indeed, there is a minimum of ρðλÞ at λm ≈ 120 MeV
(Fig. 3, top left). Such minimum at λm > 0 may exist even
at zero temperature due to the possible logarithmic diver-
gence at λ → 0 and/or the presence of positive power with
negative prefactor [20]. However, this has not yet been
confirmed in pgQCD simulations, implying that λmðTÞ is
very small or zero at low T. This leads us to propose that it
is meaningful to distinguish the T ≳ 0 and T ≲ TIR regimes
by a crossover characterized by temperature 0 < TA < TIR.
While the crossover point is a nonunique concept, here we
have in mind a commonly used approach based on the rate
of change. In other words, we define TA as the position of
maximum (peak) in dλm=dT. In physics terms, TA relates to
the point at which the gluon condensate becomes signifi-
cantly affected by thermal agitation. It splits the B phase
into regimes B0 and BA (Fig. 1) with the latter referred to as
anomalous, conforming to terminology of Ref. [14].
Standard expectations suggest that the IR phase, com-

mencing at TIR, ends at temperature TUV (Fig. 1) above
which scales λ ≈ T become amenable to perturbative
treatment. Since the IR peak is not featured in the weakly
coupled regime, we define TUV as a temperature at which
ρðλÞ becomes a nondecreasing function on λ ≥ 0 with
ρð0Þ ¼ 0. The associated disappearance of the IR peak has
been observed on moderate volumes in Refs. [12,13],
accompanied by the simultaneous loss of chiral polariza-
tion in low-lying Dirac modes. Since the latter effect
is characterized by temperature Tch, we propose that
TUV ¼ Tch as indicated in Fig. 1.
We now turn to overlap spectral densities in QCD. More

specifically, we study SU(3) gauge theory with Nf ¼ 2þ 1

quark flavors at physical masses (see Appendix C),
which is a very precise representation of real-world strong
interactions. To support the existence of TIR, we show in

Fig. 3 (bottom) the analog of the IR transition we described
in pgQCD. The clearly noninvariant behavior at T ¼
175 MeV is contrasted with that at T ¼ 250 MeV. The
latter exhibits characteristic features of the IR phase, both in
terms of ρðλÞ and σðxÞ. Regarding the latter, note also the
similarity to the pattern displayed by volume sequence in
Fig. 2. In Appendix D we present additional results at
T ¼ 200 MeV, featuring the behavior more marginally on
the BA side. This leads us to the following initial estimates:

200 MeV < TIR < 250 MeV; TA ≈ 150 MeV ⪅ “Tc”

ð2Þ

where “Tc” is the temperature of chiral crossover.
The estimate of TA follows from our analysis in
Ref. [14] (Fig. 5 of that work). There it was found that
λm becomes essentially undetectable at T ¼ 150 MeV
(simulated size L ¼ 5.3 fm) signaling either its significant
drop at lower temperatures, so that significantly larger
volumes are needed to reveal it, or its entire disappearance
(λm → 0). Both options entail the proximity of a dividing
point between B0 and BA regimes, namely TA.

III. IR-UV SEPARATION AND BANKS-ZAKS
FIXED POINT

The signature aspect of transition at TIR is a clean
separation of IR and UV scales in the gauge field, reflected
by almost perfectly bimodal ρðλÞ. Additional data illustrat-
ing the latter is presented in Appendix D. The analysis
of Refs. [13,14,21,22] revealed that, apart from increasing
the temperature, such IR-UV separation is also inducible
by decreasing the quark mass or increasing the number of
flavors in parameter space ðT;mi; NfÞ of SU(3) gauge
theories with fundamental quarks. Our aim is to integrate
the new element of IR scale invariance into these findings,

FIG. 3. Thermal transition to IR phase in pure glue QCD (top) and QCD (bottom).
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which promises a valuable insight into the nature of the IR
phase in thermal QCD.
We start in the corner of SU(3) theory space which is

native to IR scale invariance, namely the vicinity of the
conformal window [23] (Nf massless flavors, Nc

f < Nf <
16.5, T ¼ 0). In Refs. [13,14,21,22] it was found that small
mass dynamics atNf ¼ 12, believed by most researchers to
be near conformal, generates the pattern of IR-UV sepa-
ration closely mimicking that of QCD in the IR phase.
While originally interpreted as indicating an unexpectedly
large Nc

f, the revelation that ρðλÞmay be a pure power in IR
begs this to be reconsidered since ρðλÞ ∝ λp is exactly what
one expects near conformality. A consistent inference is
the split of the conformal window into a strongly coupled
part Nc

f ≡ NIR
f < Nf < NUV

f with p < 0, and the weakly
coupled partNUV

f < Nf ≤ 16.5with p > 0. The parametric
trends in IR-UV separation then lead us to propose that
strongly coupled regimes TIR < T < TUV of QCD and
NIR

f < Nf < NUV
f of the conformal window belong to a

single contiguous IR phase in SU(3) theory space, defined
by p < 0. In this sense, the observed elements of IR scale
invariance in thermal QCD descend from conformality of a
strongly coupled Banks-Zaks fixed point.
The above argument introduces an unconventional sce-

nario for dynamics in a strongly coupled conformal
window which requires more detail. Consider the T ¼ 0

system at NIR
f < Nf < NUV

f with varying degenerate quark
mass m. At large m, glue behaves as in pgQCD: there is
no scale invariance in IR and the gauge coupling runs
indefinitely. At asymptotically small m, the running stops
at dynamically generated ΛIR > 0, and scale invariance
ensues at larger distances: the interacting fixed point
entirely runs the IR, while the Gaussian one governs
UV. The evidence of Refs. [13,14,21,22] suggests that
the Banks-Zaks fixed point turns on in a sudden manner by
theory entering the IR phase (m < mIR) in mass. In more
detail, the sequence

m ¼ ∞⟶
B0 mA ⟶

BA mIR ⟶
IR

0 ð3Þ

produces B and IR phases as in the thermal case. With Nf

in a strongly coupled regime, the UV phase does not
materialize. Thus, the mass vicinity of theory in a strongly
coupled conformal window (its IR phase) is characterized
by ρðλÞ ∝ λp where4

p < 0; 0 < m < mIR;

0 < λ < ΛIR; lim
m→0

ΛIRðmÞ > 0: ð4Þ

Among appealing features of the above is that it naturally
explains the generation ofΛIR. Indeed, the degree of IR-UV
separation reflects the extent to which IR and UV fixed
points in Wilson theory space dominate the dynamics of the
given field theory in respective scale domains. The nearly
perfect scale separation in the IR phase suggests that these
domains are described by almost decoupled IR and UV
subtheories. SinceΛIR defines the domain of IR, integrating
out UV degrees of freedom (UV theory) only feeds into the
dynamics of IR (IR theory) in a trivial manner. This stops
the running since IR theory is scale invariant.
To see the relevance of this connection, consider the

m → 0 limit in SU(3) theory space.5 For Nf ¼ 2 (chiral
QCD) at T ¼ 0, this produces a massive physical spectrum
except for Goldstone pions. In contrast, for NIR

f < Nf <
NUV

f it leads to massless behavior in all channels due to the
approached conformality. Since the property of infinite
correlation length is stable within the contiguous IR phase,6

it extends from the strongly coupled conformal regime
(NIR

f < Nf < NUV
f , T ¼ 0) to the IR regime of chiral QCD

(Nf ¼ 2, TIR < T < TUV). Our approach thus predicts that
the lowest “screening masses” (spatial correlations) and
“quasiparticle masses” (timelike correlations) are zero in
the IR phase of chiral QCD. Note that we do not claim the
absence of excitations with masses larger than T. In fact,
additive contributions to correlators by masses larger than
ΛIRðT;NfÞ distinguish the low energy scale invariance of
the IR phase from strict conformality present only at T ¼ 0.
Strong interactions of nature turn on small m at Nf ¼ 2,

but the above picture of the IR phase only gets corrected
by light lowest masses in meson and baryon correlation
functions. The IR scale invariance of glue, inherent to the
IR phase, is expected to keep correlators of glue operators
long range, and the associated glueball-like excitations
massless.

IV. SYNTHESIS AND MAIN POINTS

We proposed the existence of a new phase in thermal
QCD, the IR phase TIR < T < TUV, featuring aspects of
scale invariance at distances larger than 1=ΛIR, where
ΛIRðTÞ ≲ T. In particular, our way of probing the system
suggests that glue fields dominating the thermal state in the
IR phase are statistically self-similar upon rescalings
involving such distances (Appendix B).
In the standard scenario, QCD matter enters the near-

perfect fluid regime above the chiral crossover temperature
“Tc” ≈ 155 MeV. However, given that scale invariance
underlies model descriptions able to mimic the observed
fluidity properties [8], we propose that this transition

4Note that conformality constraints on unitarity [24] and the
conjectured method [15] of extracting ψ̄ψ anomalous dimensions
then raise interesting questions on details of the m → 0 limit and
its relation to m≡ 0.

5We refer to theories defined as limm→0limL→∞ of those with
Nf mass-degenerate flavors.

6Due to the above monotonicity properties, the IR phase in this
restriction remains contiguous.
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actually occurs at TIR (200 < TIR < 250 MeV). In other
words, the strongly interacting near-perfect fluid is realized
by the IR phase. If glue fields continue to follow the
described patterns arbitrarily deep into IR, then TIR marks a
phase transition where the leading IR power in ρðλÞ
changes from p ¼ 0 to p ⪆ −1. This transition could be
consequential for the analysis of heavy ion experiments and
for modeling the thermal history of the universe.
The observed elements of IR scale invariance can be

understood by viewing thermal QCD in the larger context
of asymptotically free SU(3) gauge theories with funda-
mental quarks. To that end, we proposed the phase structure
in this space that can be summarized by

phase ¼
8<
:

B if p ¼ 0

IR if p < 0

UV if p > 0

where ρðλÞ ∝ λp for λ → 0

ð5Þ

with transitions occurring accordingly. For example,
increasing the temperature past TIR in QCD is expected
to eventually generate a transition from p ⪆ −1 to p > 1,
identifying TUV.

7 The connection to scale invariance stems
from the proposed existence of a contiguous IR phase in
SU(3) space, in which UV field fluctuations associated
with Gaussian fixed point ðAUV; ρ ∝ λ3Þ coexist with IR
fluctuations driven by strongly coupled Banks-Zaks fixed
point ðAIR; ρ ∝ λ−1þδÞ. The high T (TIR < T < TUV)
medium of QCD (near-perfect fluid) and low T (T ≳ 0)
medium of strongly coupled near-conformal theory (NIR

f <
Nf < NUV

f ) both belong to this phase and thus share
important dynamical features. This may prove useful in
guiding the analytic attempts to describe the near-
perfect fluid.
The conjecture that the IR phase of QCD realizes the

near-perfect fluid is expected to have phenomenological
consequences. For example, using the above connection to
the physics of a strongly coupled conformal window, we
have argued for a highly unusual spectrum of excitations
(quasiparticles and screening masses) in the fluid. The
fluctuations originating from a strongly coupled Banks-
Zaks fixed point generate a narrow IR band of massless
(glueball-like) and light (hadronlike) excitations. At the
same time, fluctuations tied to Gaussian fixed point
produce excitations in the UV band, creating a large gap
(>T). We hypothesize that the remarkable IR-UV separa-
tion, both in terms of fluctuating quantum fields
and the resulting physical excitations, is one of the key

ingredients driving the exotic properties of the strongly
coupled medium discovered at the RHIC and LHC.
The central point of this work, namely the existence

of new infrared dynamics in gauge theories (IR phase),
invites additional corroboration and further clarification.
For example, a large scale study confirming ρðλÞ ∝ 1=λ in
QCD at the level comparable to pgQCD (Fig. 2) is of
primary interest. Similar quantitative analyses in the
vicinity of a strongly coupled conformal window (e.g.,
Nf ¼ 12) are also very desirable. Studies examining the
proposed association of power law Dirac densities with
scale invariant gauge fields by direct means would solidify
and refine the interpretation of the IR phase. In the process,
such works may also clarify why 1=λ (rather than other
power) emerges in QCD.
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APPENDIX A: THE CROSSOVER SIZE

The IR phase of QCD is characterized by ρðλÞ ∝ 1=λ for
λ < ΛIR. Here ΛIR determines the minimal distance over
which scale invariance of glue fields applies. But what is
the minimal size of the system in which this behavior
affects an observable in a discernible manner? This role is
played by the “crossover size” LIR (Sec. I).8 Given that the
IR contribution is driven by deep infrared (≪ΛIR) rather
than the vicinity of ΛIR, it is clear that LIR ≫ 1=ΛIR for
standard observables. Moreover, the density of Dirac
eigenmodes in an R regime drops quickly with temperature
(see e.g., [13]), causing LIR to increase. Sensitivity to scale
invariant behavior of glue is then expected on systems of
size L satisfying

LðTÞ>LIRðTÞ>LIRðTIRÞ≫1=ΛIRðTIRÞ≳1=TIR ðA1Þ

where the last inequality is due to ΛIRðTÞ ≲ T. Hence,
LðTÞ ≫ 1=TIR applies to all standard observables and all
temperatures TIR < T < TUV. Since TIR is comparable

7The value of p in a thermal UV phase could be infinite if the
depletion of modes in the infrared proceeds faster than arbitrary
positive power, e.g., if a gap develops in the Dirac spectrum. Note
also that p ¼ 0 (B phase) includes the case of logarithmically
diverging density.

8LIR can be viewed as a size at which the associated finite
volume correction assumes its asymptotic form.
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to ΛQCD, the relevant sizes are larger than typically
considered sufficient for thermal QCD studies.
Lattice introduces a slight complication in that the Dirac

operator, serving as the detector of IR scale invariance, is
not a unique object: different discretizations capture aspects
of continuum behavior to varying degrees. Chirality plays a
relevant role here. Indeed, the bimodality in ρðλÞ was first
observed with an overlap operator that fully respects
chirality, while it was not seen by the staggered operator
on identical backgrounds [19]. However, the IR peak has
recently been identified by a staggered-type operator in
pgQCD on larger volumes [26], confirming that the
presence of this feature is discretization independent.
This is also consistent with bimodality of the overlap
operator persisting into the continuum limit, shown in
Ref. [14]. In addition, since LIR has physical origin (see
above), we expect that

lim
a→0

Llat1
IR ðT; aÞ ¼ lim

a→0
Llat2
IR ðT; aÞ ¼ LIRðTÞ ðA2Þ

i.e., that LIRðTÞ is universal for fixed definition of the
crossover point.
In lattice QCD, a Dirac operator defining the quark part

of the action obviously plays a special role. While the
existence of an IR peak in this “native” Dirac spectrum
appears more difficult to ascertain numerically, the studies
focusing on the UAð1Þ problem [27,28] already suggest that
the feature is present at physical light-quark masses, albeit
the studied volumes are small. Its absence would in fact be
very surprising. Indeed, the ensuing singularity in the space
of lattice Dirac operators with respect to (A2), as well as the
associated possibility of nonuniversality in topological
susceptibility, make such a scenario unlikely.

APPENDIX B: SCALE INVARIANCE AND
DIRAC SPECTRAL DENSITY

Our aim here is to illustrate how scale invariance of
gauge field A constrains the form of spectral density ρðλjAÞ
of the Euclidean Dirac operator D ¼ D½A�. This is easiest
to do in R4, the setup relevant for theories in a conformal
window, but the arguments can be modified to finite
temperature. We implicitly assume that AμðxÞ ∈ suðNÞ
although this is not important in the present context.
Thus, we are dealing with the eigenvalue problem on a
fixed “classical” background, defined by [AμðxÞ is anti-
Hermitian]

D½A�ψðxÞ≡X
μ

γμ

� ∂
∂xμ − AμðxÞ

�
ψðxÞ ¼ iλψðxÞ ðB1Þ

where λ ∈ R and ψ is an eigenmode. Let AðsÞ be the
gauge field obtained from A by the canonical scale trans-
formation. The following are the simultaneous eigensystem
triples:

ðA;ψ ; λÞ ↔ ðAðsÞ;ψ ðsÞ; sλÞ; AðsÞðxÞ≡ sAðsxÞ;
ψ ðsÞ ∝ ψðsxÞ; ðB2Þ

where the correspondence is one to one. Envisioning the
potentials singular at origin or infinity, we consider the
regularized eigenvalue problem on ½ϵ; L�4 with ϵ the ultra-
violet and L the infrared regulator.9 The relation (B2) is then
modified as

ðA;ψ ; λ; ϵ; LÞ ↔ ðAðsÞ;ψ ðsÞ; sλ; ϵ=s; L=sÞ: ðB3Þ

The standard (anti)periodic boundary conditions on A, ψ are
respected by the correspondence.
With the usual assumption that the spectrum on finite

volume is discrete, (B3) implies that the number of
eigenmodes in interval ½λ1; λ2� for setup on the left is the
same as that in ½sλ1; sλ2� for setup on the right. Focusing
on AðxÞ with no singularity at x → ∞ allows us to remove
the infrared cutoff (L → ∞) and to account for the number
of eigenmodes in terms of smooth spectral density. This
then leads to

Z
λ2

λ1

dλρðλjA; ϵÞ ¼ 1

s4

Z
sλ2

sλ1

dλρðλjAðsÞ; ϵ=sÞ

¼ 1

s3

Z
λ2

λ1

dλρðsλjAðsÞ; ϵ=sÞ ðB4Þ

for all λ1 and λ2. Consequently,

s3ρðλjA; ϵÞ ¼ ρðsλjAðsÞ; ϵ=sÞ ðB5Þ

which for scale invariant background AðsÞðxÞ ¼ AðxÞ
leads to

ρðλ; ϵÞ ¼ λ3fðλϵÞ ðB6Þ

where fðxÞ is an arbitrary non-negative function. Thus, for
scale invariant free field (AðxÞ≡ 0), with no singularity at
the origin, the density is ϵ independent and ρðλÞ ∝ λ3.
However, no leading infrared power, such as the behavior
1=ðλϵ4Þ, is excluded a priori. In quantum theory, the
diverging UV cutoff length scale is replaced by the
dynamically generated 1=ΛIR, and we thus have ρðλÞ ∝
Λ4
IR=λ. These considerations can be generalized to

self-similar (rather than strictly scale invariant) gauge
backgrounds, providing additional freedom to accommo-
date the 1=λ dependence.

9The more symmetric setup on ð½−L=2;−ϵ=2� ∪ ½ϵ=2; L=2�Þ4
proceeds in an analogous way.
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APPENDIX C: SUMMARY OF
TECHNICAL DETAILS

Our pgQCD simulations were performed using Wilson
gauge action with a scale setting based on reference value
r0 ¼ 0.5 fm. The volume dependence of Dirac spectra
was studied at β ¼ 6.054 which corresponds to UV cutoff
a ¼ 0.085 fm. The estimate of Tc involved the results of
Ref. [29]. The ensembles at T ¼ 1.12Tc (Nτ ¼ 7) contain
400, 400, 400, 200, 200, 100 gauge configurations for
N ¼ 16, 20, 24, 32, 48, 64 systems, respectively (1=T ¼
Nτa and L ¼ Na). The results at T ¼ 0.98Tc (Nτ ¼ 8,
N ¼ 64) are based on 94 configurations.
For QCD Dirac spectra, we utilized the gauge ensembles

of the Wuppertal-Budapest group described in Ref. [30].
More precisely, they were generated in Nf ¼ 2þ 1 theory
at physical light quark mass of ðmu þmdÞ=2, and the
physical “heavy” quark mass of ms. In terms of lattice
setup, the simulations used tree-level Symanzik-improved
gauge action and stout-improved staggered fermions. The
physical point (thus scale setting) was defined by fixingmπ ,
mK , and fK to their physical values at zero temperature.
Our analysis is based on 100 gauge configurations in each
case.
The main object of our interest is the 4-volume density

σðλ1; λ2Þ of Dirac eigenmodes from spectral interval ½λ1; λ2�
[convention set by Eq. (B1)]. This quantity is commonly
expressed in terms of the corresponding spectral density
ρðλÞ, namely

σðλ1; λ2Þ≡
Z

λ2

λ1

dλρðλÞ: ðC1Þ

Unless stated otherwise, exact zero modes are excluded
from counting. On finite 4-volume L3=T, the ensemble
average is implicitly assumed in (C1), although expressing
ρðλÞ in terms of δ functions makes it meaningful even for
single configuration.
In a numerical study, it is necessary to work with a

coarse-grained version of ρðλÞ. This is achieved by intro-
ducing the parameter δ > 0 and defining

ρðλ;δÞ≡σðλ−δ=2;λþδ=2Þ
δ

; ρðλÞ¼ lim
δ→0

ρðλ;δÞ: ðC2Þ

Only jλj > δ=2þ ϵ with suitably chosen ϵ > 0 to avoid
finite volume effects is shown or quoted in any given
ρðλ; δÞ. A Wilson-Dirac based overlap operator [31] with
parameters ρ ¼ 26=19 and r ¼ 1 was used in all Dirac
spectrum calculations.
Implicitly restarted Arnoldi method [32,33] was used to

compute the eigenvalues and eigenvectors of the overlap
operator. For all but one ensemble used in this study, it is
efficient to first compute the eigenvalues of D†D in a chiral
sector, and then reconstruct the eigenvalues of D using
standard techniques [34]. For the N ¼ 64 pgQCD lattice
at T ¼ 1.12Tc, it becomes problematic to distinguish the
eigenvalues of near-zero eigenmodes from those of exact
zero modes. To ensure the reliability of numerical results in
this case, we solved the eigenvalue problem for D directly,
utilizing a suitable polynomial spectral transformation to
accelerate the convergence.

APPENDIX D: ADDITIONAL DATA

In this appendix we present additional lattice data to
further support our conclusions.
A key to the proposed picture of thermal phases is the

emergence of a remarkable separation of IR and UV
physics at TIR. This signature aspect of the IR phase is
reflected in sharp bimodality of Dirac spectral density and
the resulting clear separation of scales (Sec. III). To convey
this feature explicitly, we show in Fig. 4 spectral densities
for both pgQCD and QCD in the IR phase. The data
suggests the presence of dynamics in which IR and UV
regimes act as separate independent “components” of the
theory.
The 1=λ behavior of ρðλÞ over a wide IR range of scales

can also be checked in a more direct manner, namely by the
process of zooming in toward the infrared. In Fig. 5 we
show this for pgQCD at T ¼ 1.12Tc on our largest lattice.
With the lower spectral edge fixed at 0.1 MeV to avoid
finite volume effects, we plot ρðλÞ up to 240, 24, and
2.4 MeV respectively, with bin sizes correspondingly

FIG. 4. The separation of IR and UV scales, manifested in a sharply bimodal overlap Dirac spectral density in pgQCD at T ¼ 1.12Tc
(left) and QCD at T ¼ 250 MeV.
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scaled. In each case we fit the data to 1=λ with bin size
taken into account in the procedure (solid line) to avoid the
finite bin distortion.
In addition to QCD data shown in Fig. 3 (bottom), we also

computed Dirac spectra at T ¼ 200 MeV. The relevant
comparison to spectral behavior in the IR phase (analog
of Fig. 3) is shown in Fig. 6. Note that σðxÞ is visibly
approaching the linear regime that is characteristic of the IR
phase. Together with the behavior of ρðλÞ (left), this suggests
that TIR > 200 MeV, thus leading to the estimate (2).
The scale ΛIR ⪅ T marks the upper edge of the spectral

region where ρðλÞ ∝ 1=λ applies. For considerations of the
thermodynamic limit, it is desirable to ask whether our
data also provides a hint of lower edge Λmin

IR , i.e., the point
where the 1=λ either softens up, or the negative power
behavior entirely disappears. A convenient indicator of this

is σð0þ; 1=LÞ, namely the 4-volume density of nonzero
Dirac modes smaller than the IR cutoff 1=L. Expressing
the lower edge of the Dirac spectrum at finite L as ϵðLÞ=L,
we have

σ

�
0þ;

1

L

�
¼ σ

�
ϵðLÞ
L

;
1

L

�
¼

Z
1=L

ϵðLÞ=L
dλρðλÞ ðD1Þ

which vanishes in the L → ∞ limit for all p > −1, where
λp is the leading IR behavior of ρðλÞ. Its 1=L behavior
in our pgQCD ensembles is shown in Fig. 7 (left). Since a
turn toward zero for 1=L → 0 is not observed, the available
data does not suggest the existence of Λmin

IR .
Since the proportionality constant c of 1=λ is stable with

changing L (see Fig. 2), and

FIG. 5. Overlap Dirac spectral density for pgQCD in the IR phase (T ¼ 1.12Tc) over spectral ranges (and bin sizes) scaled by factors
of 10. Dashed lines represent direct 1=λ fits, while the solid lines include the correction on finite bin size.

FIG. 6. Thermal transition to IR phase in QCD: TIR is between T ¼ 200 MeV and T ¼ 250 MeV.

FIG. 7. Left: plot of σð0þ; 1=LÞ for pgQCD ensembles. Right: plot of spectral edge parameter ϵðLÞ (see text) for the same ensembles.
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lim
L→∞

σ

�
0þ;

1

L

�
→ − lim

L→∞
cðLÞ ln ϵðLÞ for

ρðλÞ ¼ c
λ
; λ >

ϵ

L
ðD2Þ

the finite limL→∞ σð0þ; 1=LÞ > 0, conveyed by Fig. 7 (left),
implies finite limL→∞ ϵðLÞ > 0. This is an important detail
since ϵðLÞ controls the IR edge of the spectrum. To check
this explicitly, we estimate ϵðLÞ directly using the relation

ln ϵðLÞ ¼ −k
σð0þ; 1=LÞ

σðe−k=L; 1=LÞ ðD3Þ

which holds for arbitrary k > 0 under the assumptions
of (D2). The result for k ¼ 3, suitable for our range
of 1=L and the statistics, is shown in Fig. 7 (right),
confirming the trend toward a small positive value of ϵ in
the L → ∞ limit.
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