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The CPN−1 sigma model at finite temperature is studied using lattice Monte Carlo simulations on
S1s × S1τ with circumferences Ls and Lτ, respectively, where the ratio of the circumferences is taken to be
sufficiently large (Ls=Lτ ≫ 1) to approximate the model on R × S1. We show that the expectation value of
the Polyakov loop undergoes a deconfinement crossover as Lτ is decreased, where the peak of the
associated susceptibility gets sharper for larger N. We find that the global PSUðNÞ ¼ SUðNÞ=ZN

symmetry remains unbroken in different manners for small and large Lτ, respectively: in the small Lτ

region for finiteN, the order parameter fluctuates extensively with its expectation value consistent with zero
after taking an ensemble average, while in the large Lτ region the order parameter remains small with little
fluctuations. We also calculate the thermal entropy and find that the degrees of freedom in the small Lτ

regime are consistent with N − 1 free complex scalar fields, thereby indicating a good agreement with the
prediction from the large-N study for small Lτ.
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I. INTRODUCTION

The CPN−1 sigma model [1–4] is known to show up in
various aspects of physics. Originally, the CPN−1 models in
two dimensions were regarded as toy models of QCD, since
they share various common properties such as asymptotic
freedom, confinement, generation of a mass gap, and the
existence of topological charge. Recently, connections
between two dimensional CPN−1 models and four dimen-
sional gauge theories have been established: it appears as
the low-energy effective theory on the world volume of a
single non-Abelian vortex1 in the non-Abelian gauge-Higgs

model [5–10,10,11] as well as dense QCD [12–15], on a
long string of Yang-Mills theory [16], and of an appropri-
ately compactified Yang-Mills theory [17]. In condensed-
matter physics, the CP1 model plays an essential role in the
research on the low-energy behavior of antiferromagnetic
spin chains and their extensions [18], and it describes a
quantum phase transition known as deconfined criticality
[19,20], while the CPN−1 model appears as an SUðNÞ spin
chain [21] and also can be realized in ultracold atomic
gases [22,23].
Theoretically, nonperturbative properties of the CPN−1

model have been studied both analytically by the gap
equations with the large-N (mean field) approximation
[2–4] and by lattice simulations mainly on topological
aspects of the model defined onR2 [24–35]. These analyses
are consistent with the Coleman-Mermin-Wagner (CMW)
theorem [36,37] forbidding spontaneous breaking of a
continuous symmetry in two dimensions, while perturba-
tive analyses are not. Recently, the large-N analyses have
been extensively applied to the CPN−1 model at finite
temperature, or equivalently the model defined on R × S1

with periodic boundary conditions (PBC) [38,39] (see also
the earlier works [40,41]). However, these studies do not
reach a consensus for physical properties including sym-
metries at high temperature or at small compactification
radius [38,39,42,43] (see also [44–47]), while all studies
agree that the CMW theorem is valid at low temperature or
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1A single vortex in the UðNÞ gauge theory with N flavors of
Higgs scalar fields in the fundamental representation breaks the
SUðNÞ flavor symmetry down to SUðN − 1Þ × Uð1Þ. Hence the
emergent Nambu-Goldstone bosons are described by a SUðNÞ=
ðSUðN − 1Þ × Uð1ÞÞ ¼ CPN−1 nonlinear sigma model at low
energies.
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at large circumference. We also note that some of the
preceding works deal with an analogous case of the model
defined on a finite interval [43,48–55]. The questions can
be summarized as follows: (i) How the order parameter is
defined and how its expectation value depends on the
compactification period Lτ. (ii) How the global PSUðNÞ ¼
SUðNÞ=ZN symmetry is realized for finite N. One may
naively expect the global symmetry to be broken in the
deconfinement phase, where field variables are ordered.
It was suggested that the global symmetry is broken in the
“deconfinement” phase in the large-N limit [38,39]. On the
other hand, the CMW theorem forbids the continuous
symmetry breaking at least in finite N. (iii) How the high
temperature behavior changes for finite N. In the large-N
limit, an explicit high temperature behavior of the free
energy was calculated [38].
In this paper, we investigate the CPN−1 model at finite

temperature by lattice Monte Carlo simulations to address
the above questions. We calculate the Polyakov loop
expectation value, its susceptibility and the thermal entropy.
Our results can be summarized as follows: (1) We adopt the
absolute value of the expectation value of the Polyakov
loop as a confinement-deconfinement order parameter. We
find that its Lτ dependence exhibits a crossover behavior
and the peak of its susceptibility gets sharper with N
increases, implying a possible phase transition in the large-N
limit [38]. (2)We find that the global PSUðNÞ ¼ SUðNÞ=ZN
symmetry remains unbroken in different manners for small
and large Lτ, respectively. (3) We calculate the thermal
entropy in the small Lτ regime, where the weak-coupling
expansion is valid. We show that the result coincides with
that for N − 1 free complex scalar fields, which is in good
agreement with the analytical prediction [38] based on the
free energy in the large-N limit.
This paper is organized as follows. Section II describes

the model in the continuum limit and its lattice setup. The
results of the expectation value of the Polyakov loop are
shown in Sec. III. In Sec. IV, we focus on the global
PSUðNÞ ¼ SUðNÞ=ZN symmetry. In Sec. V, we measure
the thermal entropy in the small Lτ regime. Section VI is
devoted to a summary and discussions. In the Appendix,
we show the analytical calculation of the thermal entropy.

II. MODEL AND LATTICE SETUP

The continuum bare action of the CPN−1 ¼ SUðNÞ=
ðSUðN − 1Þ × Uð1ÞÞ sigma models (without the topo-
logical θ-term) is given in terms of an N-component
complex scalar field ϕ ¼ ðϕ1;…;ϕNÞ with the constraint
jϕj2 ¼ 1 as

S ¼ 1

g2

Z
d2x½∂μϕ̄∂μϕþ ðϕ̄∂μϕÞ2�: ð1Þ

This can be rewritten in terms of an auxiliary Uð1Þ gauge
field Aμ as

S ¼ 1

g2

Z
d2xDμϕ̄Dμϕ; ð2Þ

using the covariant derivative Dμϕ ¼ ð∂μ þ iAμÞϕ. Since
the gauge field has no kinetic term, the field equation of Aμ

gives Aμ ≡ i
2
ϕ̄ · ∂↔μϕ, and the action (2) reduces to (1) after

the elimination of the auxiliary gauge field Aμ. This model
has a PSUðNÞ ¼ SUðNÞ=ZN global symmetry, where the
ZN center is removed since it coincides with a subgroup of
U(1) gauge symmetry and is redundant.
On the lattice, the action (2) can be expressed as

[24,25,29,30,33]

S ¼ Nβ
X
n;μ

ð2 − ϕ̄nþμ̂ · ϕnλn;μ − ϕ̄n · ϕnþμ̂λ̄n;μÞ; ð3Þ

where ϕn is an N-component complex scalar field satisfy-
ing ϕ̄n · ϕn ¼ 1 and λn;μ is a link variable corresponding
to the auxiliary U(1) gauge field (λn;μ ¼ eiAμðnÞ). Here,
n ¼ ðnx; nτÞ labels the sites on the lattice and ðnx; nτÞ run as
nx ¼ 1;…; Ns and nτ ¼ 1;…; Nτ, respectively. We also
note thatNβ corresponds to the inverse of the bare coupling
1
g2. The choice of the lattice action and the over-heat-bath

algorithm may be crucial to the purpose of minimizing the
computational effort [25].
The spacetime geometry on the lattice is T 2 ¼ S1s × S1τ ,

where S1s and S1τ have the circumferences Ls ¼ Nsa and
Lτ ¼ Nτa, respectively. According to the renormalization
group, the following relation between the lattice parameter
β and the lattice spacing a holds ΛMSa ¼ ð2πβÞ2

Ne−2πβ,
where ΛMS is defined as a scale at which the renormalized
coupling in the MS scheme diverges. The lattice Λ scale
Λlat depends on the explicit form of the lattice action.
Comparing ΛMS in Ref. [25] and Λlat for Eq. (3), we find

Λlata ¼ 1ffiffiffiffiffi
32

p ð2πβÞ2
Ne−2πβ−

π
2N: ð4Þ

It gives a for a given β for each N with Λlat as a reference
scale. This relation is valid for β ≳ 1=ðπNÞ, which is
comfortably satisfied in this work.
We confirm that the Euclidean energy density hEi ¼

h2 − ϕ̄nþμ̂ · ϕnλn;μ − ϕ̄n · ϕnþμ̂λ̄n;μi in our numerical
calculations is consistent with the results based on the
strong-coupling expansion hEi ≈ 2ð1 − βÞ for low β
(β ≲ 0.4), while it agrees with the result based on weak-
coupling expansion hEi ≈ 1=ð2βÞ for high β (2.0≲ β).
By setting Ls ≫ Lτ, we can approximately simulate

the model on R × S1, where the compactified circum-
ference Lτ is interpreted as an inverse temperature 1=T.
We will mainly use Lτ in this paper, where smaller Lτ

(higher β with fixed Nτ) corresponds to higher T. The
lattice size in this work is mainly ðNs;NτÞ ¼ ð200; 8Þ.
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We also vary Ns between 40 and 200 to look into the finite-
volume effects. The thermodynamic limit corresponds to
theNs → ∞ limit. We adopt parameters asN ¼ 3, 5, 10, 20
and 0.1 ≤ β ≤ 3.9.

III. DECONFINEMENT AND POLYAKOV LOOP

The ground state expectation value of a Wilson loop
WðCÞ ¼ P expði HC AÞ is expected to exhibit the exponen-
tial area law and perimeter law for a large rectangle with
space R̂ and Euclidean time T̂

hWðCÞi ¼ Ce−σR̂ T̂ −ρðR̂þT̂Þ; ð5Þ

with the Abelian string tension σ ≥ 0, a constant ρ ≥ 0 of
the perimeter term, and a constant C. The confinement of
electrically charged particles is defined by the nonvanishing
σ. Actually, in lattice simulations with a large Ns ¼ Nτ, the
value of the string tension can be calculated by considering
large Wilson loops [25]. If we compactify the temporal
direction with a period Lτ ¼ Nτa and impose the PBC, the
Wilson loop becomes a correlator of Polyakov loops,
PðxÞ≡ P expði R Lτ

0 dτAτÞx at x,

hWðCÞi ¼ hPðR̂ÞP†ð0Þi: ð6Þ

Since the Wilson loop (5) satisfies the clustering property
hPðR̂ÞP†ð0Þi → jhPij2 in R̂ → ∞, the confinement σ ≠ 0
necessitates the vanishing Polyakov loop hPi ¼ 0. The
ground state expectation value of the Polyakov loop hPi is a
better observable for the confinement-deconfinement tran-
sition in the Lτ ≪ Ls system, where taking the large
Euclidean time is technically difficult. This picture is based
on the analogy to four-dimensional QCD. In the quenched
QCD where the Z3 center of gauge symmetry is exact, hPi
is an actual order-parameter of the confinement-deconfine-
ment. Even for QCD with fundamental quarks, where the
center symmetry is explicitly broken due to the fermion
action, hPi is often used as an approximate order-parameter
of the confinement-deconfinement. The CPN−1 model with
PBC has no exact center symmetry, and then the situation
here is analogous to four-dimensional QCD with funda-
mental quarks.
On the lattice, the Polyakov loop is expressed as the

product of link variables,

P≡ 1

Ns

X
nx

Y
nτ

λn;τ: ð7Þ

The results for jhPij as a function of β for N ¼ 3, 5, 10, 20
are summarized in the left panel of Fig. 1. Here, the lattice
parameters are fixed by ðNs; NτÞ ¼ ð200; 8Þ. It clearly
shows jhPij ≈ 0 for low β (large Lτ) and jhPij ≠ 0 for high
β (small Lτ). For intermediate β, the value of jhPij

gradually increases especially for small N, as is consistent
with a crossover behavior.
The corresponding susceptibility of hjPji has a peak, and

then we define the characteristic (crossover) length (or the
characteristic (crossover) inverse temperature) for each N
from the peak position of β. We here consider the
susceptibility for hjPji since the β dependences of jhPij
and hjPji are almost identical for PBC. We also investigate
the heat capacity, Cv ¼ hðE − hEiÞ2iN2

τ , where E denotes
the Euclidean energy density. The heat capacity for each N
has the peak at the same value of β as the one for the
susceptibility of hjPji.
To see the strength of the transition more clearly, we also

investigate the volume dependence of the peak value of the
Polyakov loop susceptibility, χhjPji ¼ VðhjPj2i − hjPji2Þ, by
varyingNs asNs ¼ 40, 80, 120, 160, 200withNτ ¼ 8 fixed.
We study the scaling with respect to volume, V ¼ Ns. We fit
the four data points with the large volume,Ns ¼ 80–200, by
a function χhjPji;max ¼ aþ cVp as shown in the right panel of
Fig. 1. The best fit values of the exponent are p¼0.056ð7Þ;
0.058ð7Þ;0.052ð7Þ, and 0.043(8) for N ¼ 3, 5, 10, and 20,
respectively. Since it is known that p ¼ 1 indicates the first-
order transition while 0 < p < 1 indicates the second-order
or crossover transitions [56]. Here, we also look into the ZN
symmetry of the present model. If we introduce the ZN
twisted boundary condition for the scalar fields, the ZN
symmetry, whose order parameter is the expectation value of
Polyakov loop, is exact [57–59].However, in the case ofPBC,
it is explicitly brokenboth at small and largeLτ regions.These
facts support our argument that the order of the transition is
crossover for finiteN. Furthermore, all results of the exponent
are consistent with each other within 2 − σ statistical error, so
that we conclude that there is no clear N-dependence for the
strength of the transition in these finite N analyses.
On the other hand, in the large-N limit, we first take the

large-N limit with a finite Lτ. To explore the N dependence
of the strength of the transition at a finite fixed-volume, the
susceptibility of hjPji as a function of a linear scale of 1=Lτ

is shown in Fig. 2. Here, the characteristic length (Lc) for
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FIG. 1. (Left) The absolute value of expectation value of the
Polyakov loop jhPij as a function of β. (Right) The volume
dependences of the maximal peak height of the Polyakov loop
susceptibility for each N by varying Ns as Ns ¼ 40, 80, 120, 160,
200 with Nτ ¼ 8. We fit the four data points with the large
volume, Ns ¼ 80–200, by a function χhjPji;max ¼ aþ cVp.
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each N is defined from the peak position of β with fixed
ðNs; NτÞ ¼ ð200; 8Þ simulations, and β is translated into the
length Lτ ¼ Nτa via Eq. (4). The N dependence of the
susceptibility indicates that the peak is quite broad for small
N but it gets sharper as N increases. This result suggests
that the order of transition is crossover for finite N while
it is possibly transformed into a phase transition in the
large-N limit as conjectured in Ref. [38].

IV. GLOBAL PSUðNÞ SYMMETRY

It was claimed in Ref. [38] that the deconfinement phase
transition is associated with the PSUðNÞ symmetry break-
ing in the large-N analysis while, at finite N, the PSUðNÞ
global symmetry is never broken in two-dimensions even at
finite temperature because of the CMW theorem. Now, we
found the confinement and deconfinement phases even for
finite N, then the questions arise: whether the PSUðNÞ
symmetry exists in the deconfinement phase and, if it
exists, how the symmetry is realized in the phase.
To look into this property, we calculate the following

N × N matrix quantity,

Pij ≡X
n

ϕ̄i
nϕ

j
n −

1

N
δij; i; j ¼ 1;…; N ð8Þ

whose expectation value serves as an order parameter of the
PSUðNÞ symmetry in the CPN−1 model. The distributions
of the diagonal components Pii (i ¼ 1, 2, 3) with N ¼ 3 for
the confinement phase (β ¼ 0.1) and the deconfinement
phase (β ¼ 3.9) are presented in Fig. 3. The horizontal
axis stands for the label number of configurations, where
we pick up one configuration per 5000 sweeps. In
the confinement phase, the values of jPiij are relatively
small for all the configurations and lead to hPiii ≈ 0 as
hP11i ¼ −2.80ð5808Þ × 10−5, hP22i ¼ 3.31ð553Þ × 10−4,
hP33i ¼ −3.03ð589Þ × 10−4. On the other hand, in the
deconfinement phase, the values of Pii for some of
configurations are far from zero and are distributed
broadly. The expectation values for this case is, however,
still consistent with zero, where hP11i ¼ −8.22 × 10−4,
hP22i ¼ 1.48 × 10−6, hP33i ¼ 8.21 × 10−4 with Oð10−2Þ

statistical errors. We can conclude that PSUðNÞ symmetry
is realized after taking an ensemble average in the decon-
finement phase where the field variables on each configu-
ration are ordered. It is in contrast to the confinement phase,
in which it is realized for each configuration.
We carry out a similar analysis also for N ¼ 5, 10, 20.

The variance of the Pij, which is given by the ensemble
average of

P
ijðPij − hPijiÞ2, fluctuates more in the

deconfinement phase as shown in Fig. 4. It is still an open
question whether or not this global symmetry is broken in
the large-N limit.

V. THERMAL ENTROPY DENSITY

Now, we numerically find that all N components of ϕi

are equivalent even in the deconfinement phase, but the
actual number of degrees of freedom (d.o.f.) must be N − 1

due to one constraint, jϕj2 ¼ 1. To show it manifestly, let us
study the thermal entropy density (s), which counts the
d.o.f. of the system, in the deconfinement phase.
In finite temperature (quenched) QCD, the thermal

entropy has been calculated in two independent ways;
from the energy-momentum tensor (EMT) and the free
energy. It has been confirmed that these approaches give
consistent results [60]. We first focus on the EMT before
considering the free energy. We define the following
quantities as a lattice EMT:
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FIG. 2. The susceptibility of the expectation value of absolute
value of Polyakov loop hjPji as a function of Lc=Lτ for N ¼ 3, 5,
10, 20 with ðNs; NτÞ ¼ ð200; 8Þ.
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FIG. 3. Pii (i ¼ 1, 2, 3) with N ¼ 3 for β ¼ 0.1 (confinement)
(left) and β ¼ 3.9 (deconfinement) (right) are shown. The
horizontal axis stands for the label number of configurations
and we pick up one per 5000 sweeps.

FIG. 4. The variance of Pij for N ¼ 3, 5, 10, and 20 as a
function of β are shown.
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Tττ ¼ 2Nβð2− ϕ̄nþτ ·ϕnλn;τ − ϕ̄n ·ϕnþτλ̄n;τÞ− ðtrace partÞ:
ð9Þ

Txx can be defined as well. The vacuum expectation value
of the trace part is subtracted, in a manner parallel to the
lattice EMT for the OðNÞ sigma model [61,62].
Although the renormalized coupling is required for

calculation of the renormalized EMT in principle, we
can use the bare coupling constant since it is a good
approximation in the weak coupling regime (see e.g.,
Eq. (6.12) in Ref. [61]). The thermal entropy density is
given by Txx − Tττ ¼ sT with T ≡ 1=Lτ in the thermody-
namic limit, where the divergent part of the EMT is
cancelled between the two terms.
The results of the thermal entropy density for single

scalar field forN ¼ 3, 5, 10, 20 as a function of β are shown
in Fig. 5. The thermal entropy density becomes nonzero
around a certain β corresponding to Lc and monotonically
grows in the deconfinement phase. For high-β regions, the
β dependence gets gentler for each N, where we fit them
by a function gðβÞ ¼ aþ b=β between 3.0 ≤ β ≤ 3.9.
The best fit values of a are aN¼3 ¼ 1.418ð27Þ, aN¼5 ¼
1.681ð26Þ, aN¼10 ¼ 1.889ð29Þ, aN¼20 ¼ 2.024ð30Þ. We
then find that the values in the β → ∞ limit are 1.2σ
consistent with 2πðN − 1Þ=ð3NÞ.
On the other hand, the free energy density for a free

massive complex scalar field at finite temperature
(T ¼ 1=Lτ) is given by

f ¼ 1

LτLs

X∞
n¼−∞

log 4sinh2
Lτωn

2
− f0 ð10Þ

from the analytical calculation (see Appendix). Here,
ω2
n ¼ ð2πnLs

Þ2 þm2 and f0 denotes the counterterm which
cancels the UV divergence. Then, the thermal entropy
density in the massless and thermodynamic limit (Ls → ∞)
is given by s=T ¼ − 1

T
∂f
∂T ¼ 2π

3
for a one-component com-

plex scalar field. Our numerical results indicate that the
actual d.o.f. of the CPN−1 model is (N − 1) massless free

complex scalar fields in the deconfinement phase.
Furthermore, the large-N limit of our results is consistent
with the prediction calculated from the free energy for the
large-N limit in the small Lτ regime, f ¼ − Nπ

3L2
τ
[38,63–65]

using similar calculations.

VI. SUMMARY AND DISCUSSION

In this paper, we have reported the results on nonper-
turbative aspects of the CPN−1 model on S1ðlargeÞ×
S1ðsmallÞ: We have found a confinement-deconfinement
crossover by calculating the Lτ dependence of the expect-
ation value of the Polyakov-loop, where the peaks of its
susceptibility get shaper as N increases. We have clearly
shown that the global PSUðNÞ ¼ SUðNÞ=ZN symmetry
remains unbroken in different manners for small and large
Lτ, although the CMW theorem is satisfied in both regions.
We have obtained the thermal entropy in the small Lτ

regime, which was shown to agree with the prediction from
the large-N study.
Our results give a new insight into the phase diagram of

the CPN−1 model. Furthermore, since some of the con-
jectures we have discussed originate in four-dimensional
gauge theories, our results also would give possible
implications to four-dimensional gauge theories.
As a future avenue, this work can be extended to the

model with different geometries and/or boundary condi-
tions, such as the model on R × S1 with ZN twisted
boundary conditions, where the ZN symmetry is exact
[57–59], and the model on a finite interval for which the
Casimir effect is extensively argued [43,48–55]. For the
former, whether it undergoes a first-order phase transition
or has adiabatic continuity of the vacuum structure [66],
and whether fractional instantons have physical conse-
quences [10,34,67–76] in the model, are questions attract-
ing a great deal of attention in terms of the resurgence
theory of the models [57,58,75–82].
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APPENDIX: THERMAL ENTROPY
OF A FREE MASSIVE SCALAR FIELD

In this Appendix, we calculate the thermal entropy of a
free massive scalar field

S ¼
Z

d2xðj∂μϕj2 þm2jϕj2Þ: ðA1Þ

On a torus with periods ðLs; LτÞ, this model can be
regarded as a collection of infinitely many 2D harmonic
oscillators with frequencies ω2

n ¼ ð2πnLs
Þ2 þm2 at temper-

ature T ¼ 1=Lτ, so that the partition function is given by

Z ¼
Y∞

n¼−∞

1

4 sinh2 Lτωn
2

: ðA2Þ

The free energy density f can be obtained from Z ¼
e−LτLsf as

f ¼ 1

LτLs

X∞
n¼−∞

log 4sinh2
Lτωn

2
− f0; ðA3Þ

where the last term denotes the counterterm which cancels
the UV divergence. In the infinite volume limit Ls → ∞,
the summation over the Kaluza-Klein momentum is
replaced by the momentum integration

f ¼ 1

Lτ

Z
dk
2π

log 4sinh2
Lτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p

2
− f0: ðA4Þ

The energy density can be calculated from this free
energy as

ϵ ¼ ∂
∂Lτ

ðLτfÞ

¼
Z

dk
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
coth

Lτ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
− f0: ðA5Þ

From these expressions, we find that the high temperature
(small Lτ) behavior of the thermal entropy density in the
infinite volume limit takes the form

s ¼ Lτðϵ − fÞ ¼ 1

Lτ

�
2π

3
þOðLτmÞ

�
: ðA6Þ

It is notable that s is independent of the choice of the
counterterm. Since the pressure in the infinite volume limit
can be written as

P ¼ −
∂

∂Ls
ðLsfÞ ¼ −f; ðA7Þ

the thermal entropy density can also be written as
s ¼ Lτðϵþ PÞ.
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