
 

hA2i asymmetry in lattice SUð2Þ gluodynamics at T > Tc

V. G. Bornyakov
Institute for High Energy Physics, NRC “Kurchatov Institute”, 142281 Protvino, Russia,

School of Biomedicine, Far East Federal University, 690950 Vladivostok, Russia,
and Institute of Theoretical and Experimental Physics, NRC “Kurchatov Institute”,

117259 Moscow, Russia

V. K. Mitrjushkin
Joint Institute for Nuclear Research, 141980 Dubna, Russia

R. N. Rogalyov
Institute for High Energy Physics, NRC “Kurchatov Institute”, 142281 Protvino, Russia

(Received 7 October 2016; revised manuscript received 21 May 2019; published 21 November 2019)

We study numerically the chromoelectric-chromomagnetic asymmetry of the dimension two A2 gluon
condensate at T > Tc in the Landau-gauge SUð2Þ lattice gauge theory with a particular emphasis on finite-
volume effects. We show that previously found so called symmetric point at which asymmetry changes sign
is an artifact of the finite volume effects. We find that with increasing temperature the asymmetry decreases
approaching zero value from above in agreement with the perturbative result.
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I. INTRODUCTION

Studies of the dimension-two gauge-boson condensate

hA2i ¼ g2
X4
μ¼1

X3
a¼1

hAa
μðxÞAa

μðxÞi ð1Þ

in the last 15 years were initiated by Ref. [1], where it was
shown that the nonperturbative part of hA2i is completely
determined by contribution of the topological defects
(monopoles) responsible for confinement in the compact
electrodynamics. Since monopole condensation is one of the
most popular scenarios of confinement also in non-Abelian
gauge theories, this observation suggested that the gluon
dimension-two condensate plays an important role in the
studies of infrared properties of Yang–Mills theories as well.
In spite of some earlier considerations of the composite

operator A2ðxÞ ¼ P
4
μ¼1

P
3
a¼1 A

a
μðxÞAa

μðxÞ ([2], etc.), for
long time it was disregarded in the operator product
expansion (OPE) approach because of its gauge
dependence.
In the Landau gauge, the operator A2ðxÞ is BRST

invariant (on mass shell) and multiplicatively renormaliz-
able, as was shown in [3,4] in the MS scheme. Later it was

argued [5] that the matrix element hA2i is gauge-invariant
in spite of gauge dependence of the respective operator, still
it does not appear in the expansions of products of gauge-
invariant composite operators [6].
The effective potential for hA2i was obtained in [3,7]

indicating nonvanishing value of hA2i and thus dynamical
gluon mass generation.
In the OPE approach, hA2i was used for the para-

metrization of soft nonperturbative contributions to the
Green functions, for a review see [8]. Thus it was extracted
from their high momentum behavior [9,10].
Itwas shown that, over themomentumrange2.5 ÷ 7 GeV,

ghost and gluon propagators evaluated on a lattice agreewith
the respective perturbative estimates only when corrections
due to hA2i condensate are taken into account [11,12].
In a series of papers (see, e.g., [8,13] and references

therein) hA2i was computed numerically from fits to lattice
data for the gluon and ghost propagators as well as 3-gluon
and ghost-gluon vertices. For example, in a specific MOM-
type renormalization scheme defined by a zero incoming
ghost momentum1 (μ ¼ 10 GeV), the following values for
the Nf ¼ 2þ 1þ 1 QCD were found [14]:

hA2i ¼ 2.8ð8Þ GeV2 (OPE up to 1
p4)

hA2i ¼ 3.8ð6Þ GeV2 (OPE up to 1
p6)

in order to obtain the QCD coupling constant
αMSðMZÞ ¼ 0.1198ð4Þð8Þð6Þ.Published by the American Physical Society under the terms of
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The hA2i condensate was also intensively studied in the
refined Gribov-Zwanziger (RGZ) approach [15–17]. Other
studies of this condensate include [18–20].
In Ref. [1] the hA2i was related to the confinement-

deconfinement transition in 4D compact Uð1Þ gauge
theory. In this theory the confinement and deconfinement
phases are separated by the phase transition at zero
temperature. It was found that the nonperturbative part
of the condensate drops at critical coupling. This obser-
vation raised hopes that the hA2i condensate might be also
of relevance for the finite temperature transition in the 4D
non-Abelian theories.
There are two A2 condensates at nonzero temperature,

electric hA2
Ei, and magnetic hA2

Mi:

hA2
Ei ¼ g2

X3
a¼1

hAa
4ðxÞAa

4ðxÞi;

hA2
Mi ¼ g2

X3
i¼1

X3
a¼1

hAa
i ðxÞAa

i ðxÞi: ð2Þ

The quantity of particular interest is the (color) electric-
magnetic asymmetry introduced in [21]:

hΔA2i≡ hA2
Ei −

1

3
hA2

Mi: ð3Þ

Later we will also use the dimensionless quantity

A ¼ hΔA2ðxÞi
T2

: ð4Þ

Within the OPE approach and in the p4 ¼ 0 approxi-
mation, it was shown [22] that the asymmetry contributes to
the quark propagator at nonzero temperatures.
The main interest in the asymmetry stems from its

possible relation to both the confinement-deconfinement
transition and dynamics in the deconfinement phase.
In [21] the asymmetry was computed for the first time in

lattice SUð2Þ gluodynamics for a wide range of temper-
atures in both confinement and deconfinement phases. It
was found that it peaks at the phase transition and
monotonically decreases with increasing temperature in
the deconfinement phase. Furthermore, it was found that
the asymmetry crosses zero at T ≈ 2.2Tc and becomes
negative at higher temperatures. The existence of this
symmetric point was one of the main results of Ref. [21].
In this paper we make a number of improvements in

computation of the asymmetry in comparison with
Ref. [21]. We take care of the finite-volume and Gribov-
copy effects. As a result we demonstrate that the asym-
metry is indeed monotonically decreasing function in the
deconfinement phase but it never turns zero. This result is
in a qualitative agreement with the perturbative calcula-
tions, see below. Thus we demonstrate that the asymmetry

cannot serve as an indicator of the boundary of the
postconfinement domain.
We introduce necessary notations and describe simula-

tion details in the next section. In Sec. III we reproduce
qualitatively results of Ref. [21] and demonstrate that
computation of the asymmetry in [21] suffers from large
finite volume effects. We also present results of our study of
the Gribov copy effects in this section. Section IV is
devoted to the temperature dependence of the asymmetry.
Finally, we conclude in Sec. V.

II. DEFINITIONS AND SIMULATION DETAILS

We study SU(2) lattice gauge theory with the standard
Wilson action

S ¼ β
X
x

X
μ>ν

�
1 −

1

2
TrðUxμUxþμ;νU

†
xþν;μU

†
xνÞ

�
;

where β ¼ 4=g2 and g is a bare coupling constant. The link
variables Uxμ ∈ SUð2Þ transform under gauge transforma-
tions ωx as follows:

Uxμ↦
ω
Uω

xμ ¼ ω†
xUxμωxþμ; ωx ∈ SUð2Þ: ð5Þ

Our calculations were performed on the asymmetric
lattices with lattice volume V ¼ Nt × N3

s , where Nt is
the number of sites in the 4th direction. The temperature T
is given by

T ¼ 1

aNt
; ð6Þ

where a is the lattice spacing. We employ the standard
definition of the lattice gauge vector potential2 Ax;μ [23]:

Ax;μ ¼
1

2iag
ðUxμ −U†

xμÞ≡
X3
a¼1

Aa
x;μ

σa
2
; ð7Þ

where a are color indices, σa are Pauli matrices.
The lattice Landau gauge fixing condition is

ð∇BAÞx ≡ 1

a

X4
μ¼1

ðAx;μ − Ax−aμ̂;μÞ ¼ 0; ð8Þ

which is equivalent to finding an extremum of the gauge
functional

2In perturbation theory, Axþμ̂=2;μ instead of Ax;μ provides a
more adequate designation; μ̂ is the unit vector in the μth
direction.
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FUðωÞ ¼
1

4V

X
x;μ

1

2
TrUω

xμ; ð9Þ

with respect to gauge transformations ωx. After replacing
U ⇒ Uω at the extremum the gauge condition (8) is
satisfied.
In terms of lattice variables, the asymmetry has the form

A ¼ 4a2N2
t

β

X3
b¼1

�
hAb

x;4A
b
x;4i −

1

3

X3
i¼1

hAb
x;iA

b
x;ii

�
: ð10Þ

It can be expressed in terms of the gluon propagators:

A ¼ 4Nt

βa2N3
s

�
3ðDLð0Þ −DTð0ÞÞ

þ
X
p≠0

�
3jp⃗j2 − p2

4

p2
DLðpÞ − 2DTðpÞ

��
ð11Þ

where DLðDTÞ is the longitudinal (transversal) gluon
propagators. In the continuum limit, the respective integral
is ultraviolet finite [21,24]; therefore, no additional renorm-
alization is needed and this formula holds true for renor-
malized quantities as well. Thus the asymmetryA, which is
nothing but the vacuum expectation value of the respective
composite operator, is multiplicatively renormalizable
and its renormalization factor coincides with that of the
propagator.3

The authors of [24] obtained one-loop perturbative
estimates of the asymmetry both at high temperatures

hΔA2i ≃ g2T2

4

�
1 −

g
3π

ffiffiffi
2

3

r �
ð12Þ

and at low temperatures

hΔA2i ≃ g2π2

10

�
1 −

85

522

g2

16π2

�
T4

M2
; ð13Þ

where

M2 ¼ −
13

54
hA2ðT ¼ 0Þi:

We have generated ensembles of Oð1500Þ independent
Monte Carlo lattice field configurations. Consecutive
configurations (considered as independent) were separated
by 100 ÷ 200 (for Ns ¼ 24 ÷ 88) sweeps, each sweep
consisting of one local heatbath update followed by
Ns=2 microcanonical updates. In Appendix A, we provide

information about the ensembles used throughout this
paper.
In the gauge fixing procedure we employ the Zð2Þ

transformation proposed in [25]. Zð2Þ flip in direction μ
consists in flipping all link variables Uxμ attached and
orthogonal to a 3d plane by multiplying them with −1.
Such global flips are equivalent to nonperiodic gauge
transformations and represent an exact symmetry of the
pure gauge action. The Polyakov loops in the direction of
the chosen links and averaged over the 3d plane obviously
change their sign. At finite temperature we apply flips only
to directions μ ¼ 1, 2, 3, thus we consider 8 flip sectors. In
the deconfinement phase, where the Zð2Þ symmetry is
broken, the Zð2Þ sector of the Polyakov loop in the μ ¼ 4
direction has to be chosen since on large enough volumes
all lattice configurations belong to the same sector, i.e.,
there are no flips between sectors in the Markov chain of
configurations. We choose the sector with positive
Polyakov loop. We begin simulations with the cold start
and at the temperature values and lattice sizes studied in this
paper we did not observe the flips to the negative Polyakov
loop sector with only one exception.4

Following Ref. [26] in what follows we call the com-
bined gauge fixing algorithm employing simulated
annealing (SA) algorithm (with finalizing overrelaxation)
and Zð2Þ flips for space directions the “FSA” algorithm.
We generated ncopy ¼ 2 gauge copies per flip-sector each
time starting from a random gauge transformation of the
Monte Carlo configuration, obtaining in this way Ncopy ¼
8 · ncopy Landau-gauge fixed copies for every configura-
tion. We take the copy with maximal value of the functional
(9) as our best estimator of the global maximum and denote
it as best (“bc”) copy. In order to demonstrate the Gribov
copy effect we compare with the results obtained from the
randomly chosen first (“fc”) copy and with the “worst”
copy (“wc”), i.e., copy with the lowest value of the gauge
functional [27]. The worst copy results are to demonstrate
that the Gribov copy effects within first Gribov horizon are
substantially stronger than the difference between our first
copy and best copy.

III. FINITE VOLUME AND
GRIBOV COPY EFFECTS

The asymmetry was introduced and studied numeri-
cally in [21] in a rather wide range of temperatures
(0.4Tc < T < 6Tc). The computations were made on the
lattices 163 × 4, 243 × 6, and 323 × 8. A nontrivial temper-
ature dependence was obtained. In particular, it was
found that the asymmetry is positive at T < 2.21ð5ÞTc
and negative at T > 2.21ð5ÞTc. This observation was

3We assume that DLðpÞ and DTðpÞ are renormalized with the
same factor.

4The flip happened on the 283 × 8 lattice corresponding to
lattice size 2 fm and T ¼ 1.16Tc. For this lattice we discarded
configurations with negative Polyakov loop.
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considered as an indication that at high temperatures
magnetic fluctuations begin to dominate. Comparing data
for three lattice spacings the authors concluded that finite
lattice spacing effects are small even for Nt ¼ 4. This
allows us to assume that our results obtained on lattices
withNt ¼ 8 are also free of substantial finite lattice spacing
effects.
Let us note that in [21] (as well as in this work) the

temperature was changed by variation of the lattice spacing
for fixed Nt. In Ref. [21] the finite volume effects were not
checked although the spatial lattice size was decreasing
with increasing temperature and at the highest temperature
T ¼ 6Tc it was as small as L≡ aNs ¼ 0.44 fm with the
corresponding minimal momentum pmin ≃ 2.8 GeV. In this
work we carefully study the finite volume effects using
lattices up to L ≈ 5 fm (the detailed information on lattices
used in this work is given in Appendix A). Furthermore, we
use Z2 flips which help to reduce finite volume effects as
was found in Ref. [28]. Here we again show that the effect
of flip sectors is very substantial on small volumes. We then
demonstrate that taking care about the finite volume effects
dramatically changes some of the conclusions made in [21].
First, we want to show that our first copy results

reproduce qualitatively well the results obtained in [21]
at high temperatures (2≲ T=Tc ≲ 6).
In Fig. 1 we show our results for A obtained on lattices

323 × 8 used in [21]. The lower data set shows our results
for the first copy (fc). These results are to be compared
with those obtained in [21]. The upper data set corresponds
to the best copy (bc). One can see that two data sets differ
dramatically and this difference grows with temperature.
To make explicit comparison with [21], we fit data points

corresponding to fc copy to the function

A ¼ b0 þ
b2
ξ2

; ð14Þ

used in [21]; here and below ξ ¼ T=Tc. This function does
not fit our data well, χ2=Ndof ¼ 8.1, but the parameters
obtained in our fit,

b0 ¼ −0.15ð1Þ; b2 ¼ ½0.959ð31Þ�2; ð15Þ

agree qualitatively well with those found in [21]:

b0 ¼ −0.164ð4Þ; b2 ¼ ½0.894ð14Þ�2: ð16Þ

Our value ξ ¼ 2.50ð22Þ at which Afc ¼ 0 is only a little
higher than the respective value ξ ¼ 2.21ð5Þ from [21]. We
conclude that our values of Afc come close to the values of
the asymmetry obtained in [21].
Now we turn to the upper data set. It differs significantly

from both the fc data set and the results of [21]. The main
qualitative difference is that Abc does not cross zero within
the range of temperatures under study. Since the difference
between the two procedures employed to obtain these two
data sets consists in the use of flips, we attribute the
observed difference to the flip effects. As was shown in [28]
the use of flips substantially reduces finite volume effects,
thus we expect that the observed difference increases with a
decrease of the lattice size.
For both bc and fc data sets we find that our data for

Ns ¼ 32 are much better fitted by the fit function

A ≃ b0 þ
b1
ξ
: ð17Þ

For the bc data, the fit parameters are

b0 ¼ −0.039ð5Þ; b1 ¼ 0.469ð14Þ; ð18Þ

and χ2=Ndof ¼ 0.91, whereas the alternative fit function
(14) gives χ2=Ndof ¼ 3.53 and thus should be disregarded.
We conclude that even ifAbc atNs ¼ 32 becomes negative,
this occurs at temperatures much greater than the upper
limit of the range under our consideration.
Next we proceed to the study of the finite-volume

dependence of the asymmetry and infinite volume extrapo-
lation at two values of temperature. In Fig. 2 we show
lattice-size dependence of the asymmetry at T=Tc ¼ 1.49
(filled symbols) and T=Tc ¼ 2.49 (empty symbols). As is
seen in Fig. 2, the volume dependence of Afc is very
significant (in the wc case situation is much worse) andAfc

even changes sign at L ≃ 1.3 fm for T=Tc ¼ 1.49 and at
L ≃ 1.0 fm for T=Tc ¼ 2.49. As expected the finite-size
effects for bc are much smaller than for fc and this is due to
flips. Our data indicate that to reduce the finite-size effects
below, say, 3% one needs the lattice size L≳ 2.5 fm in the
bc case, L≳ 4 fm in the fc case, and L≳ 5 fm in the wc

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2  2.5  3  3.5  4  4.5  5  5.5  6  6.5

Δ A
2  /

 T
2

T / Tc

bc
fc

FIG. 1. Asymmetry on lattices 323 × 8 as function of temper-
ature. Lower dataset shows our results for first copy and should
be compared with that obtained in [21]. Upper dataset was
obtained with the FSA algorithm (best copy). The curves show
results of the fits to Eq. (17).
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case. This holds true for both T=Tc ¼ 1.49 and
T=Tc ¼ 2.49. To extrapolate the asymmetry to the infinite
volume limit A∞ we begin with the polynomial fit of the
type5

AðLÞ ¼ Apol
∞ −

c2
L2

−
c4
L4

; ð19Þ

the results are shown in Table I.
To estimate systematic errors due to choice of the fitting

function, we also fitted the data to the following fit
functions with the same number of the fit parameters:

AðLÞ ≃Aexp
∞ − c expð−L=L0Þ ð20Þ

and

AðLÞ ≃Apow
∞ − cb=Lb: ð21Þ

The results of these fits are presented in Appendix B. One
can see that the function (20) provides a good fit for bc
results only, while the function (21) fits both data sets well.
In all cases when the fit is good we find the values of Apol

∞ ,
Aexp

∞ , and Apow
∞ to agree within 2σ. This implies that the

systematic error is of the same order as the statistical one.

Another observation following from Fig. 2 is that for all
three gauge fixing procedures (bc; fc, and wc) values for
the asymmetry agree well in the infinite volume limit. This
is in agreement with our results for the gluon propagator
obtained in 3D SUð2Þ gluodynamics [27]. This result
implies that effect of the Z2 flips used in our gauge fixing
procedure to obtain bc copies disappears in the infinite
volume limit while effects of two copies generated for
every Z2 sector are small on our volumes. These implica-
tions will be confirmed later in this section.
To study the Gribov copy effects quantitatively we

compute the following relative deviation [29]:

DGCE ¼ Abc −Afc

Abc
: ð22Þ

To consider the effects of Z2 flips and effects of Gribov
copies within a flip sector separately we also introduce

Dflip ¼
Abc1 −Afc

Abc1
; ð23Þ

and

DSE ¼ Abc −Abc1

Abc
; ð24Þ

where Afc is asymmetry for the first copy and Abc1 is
asymmetry for the best copy obtained with ncopy ¼ 1. In the
case when we do not consider Z2 sectors (as is usually done
by other authors) DGCE ¼ DSE. If, in opposite, we take
ncopy ¼ 1 then DGCE ¼ Dflip. In the general case the three
quantities satisfy the following relation:

DGCE ¼ Dflip þDSE −Dflip ·DSE: ð25Þ

This relation simplifies when both Dflip and DSE are small.
Then one can discard the last term to arrive at

DGCE ≈Dflip þDSE: ð26Þ
Our data indicate thatDSE decreases with volume and for

lattice size L > 1 fm it is substantially smaller thanDflip: for

L > 1 fm and T=Tc ∈ f1.49; 2.49g DSE
Dflip

< 1
6
. For this reason

in what follows we use the approximation DGCE ≈Dflip.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1  1.2

< 
Δ 

A
2  

> 
/ T

2

1 / L, fm-1

T/Tc=2.49, bc
T/Tc=2.49, fc

T/Tc=2.49, wc
T/Tc=1.49, bc
T/Tc=1.49, fc

T/Tc=1.49, wc

FIG. 2. Lattice size dependence of the asymmetry at T=Tc ¼
1.49 (filled symbols) and 2.49 (empty symbols). Results are
presented for bc (squares), fc (circles), and wc (triangles).
Curves show results of the fit to Eq. (20).

TABLE I. Results of fitting of the asymmetry to polynomial fit
Eq. (19).

ξ
Gauge fixing
algorithm Apol

∞
ffiffiffiffiffi
c2

p
, fm

ffiffiffiffiffi
c44

p
, fm

χ2

Ndof

1.49 bc 0.3983(32) 0.26(6) 0.71(4) 0.80
1.49 fc 0.3976(22) 0.54(3) 0.89(2) 0.74
2.49 bc 0.2114(26) 0.248(22) 0.35(4) 0.98
2.49 fc 0.2127(29) 0.402(15) 0.52(1) 1.26

5We found that the fit function AðLÞ ¼ Apol
∞ − c1

L − c2
L2 can also

produce good fits. It was discarded since it predicts for asym-
metry a change of decreasing to increasing with increasing 1=L at
1=L ≈ 0.2 fm−1, thus introducing an unexpected scale of the
order of 5 fm. Moreover, data obtained on even larger lattices
(L ∼ 8 fm, Nt ¼ 4, not presented in this paper) rule out this fit
function whereas the fit functions considered here provide good
fits for these large lattices too.
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It should be mentioned that the dependence of the
asymmetry on ncopy on large lattices is still to be inves-
tigated. Thus we cannot exclude thatDGCE is nonzero in the
infinite volume limit despite the equality between the bc
and fc results in this limit demonstrated in Fig. 2.
It is known that at high temperature the SUð2Þ gluody-

namics undergoes dimensional reduction and the correla-
tion lengths decrease with increasing temperature as 1=gT
or 1=g2T. This implies that for a fixed physical lattice size L
the finite volume effects should decrease with increasing
temperature. To observe this decreasing in our data we plot
in Fig. 3 the A values (only for bc copies) normalized by
the respective infinite volume limits:

R ¼ A=A∞: ð27Þ

One can see clearly decreasing of the finite volume effects
for T=Tc ¼ 2.49 in comparison with T=Tc ¼ 1.49 when
L≲ 2 fm. For lattice size L≳ 2 fm the finite volume
effects for both temperatures are of the same size within
statistical errors and are below 8%. We thus consider
physical lattice size L≳ 2 fm as sufficient to avoid large
finite volume effects in the temperature range studied in this
paper. In the next section we will use this observation in our
study of the temperature dependence.
We depict in Fig. 4 the relative deviation Dflip. One can

see that effect of the flips goes to zero in the infinite volume
limit for both temperatures shown in the figure. Another
observation is that similarly to the finite volume effects flip
effects decrease with increasing temperature for lattice size
up to L≲ 2.5 fm, and show temperature independence
(within our numerical precision) for L≳ 2.5 fm.
We checked finite size effects for the dimension two

electric hA2
Ei and magnetic hA2

Mi condensates separately.

We found that the electric condensate is constant within
error bars, whereas the magnetic one decreases with
increasing volume. Thus the finite size effects found in
the asymmetry are due to volume dependence of the
magnetic condensate.

IV. TEMPERATURE DEPENDENCE

In this section we consider the temperature dependence
of the condensate. The results were obtained for the fixed
lattice size L ¼ 2 fm in the temperature range 1.2 < ξ <
3.5 as well as for L ¼ 3 fm for reduced temperature
range 1.2 < ξ < 2.5
The results for bc; fc and wc on lattices with L ¼ 2 fm

and varying temperature are shown inFig. 5.We checked that
a good fit is provided by the function (14) for all three data
sets for ξ > 1.6. The respective fit parameters are shown in
Table II. It occurred that for L ¼ 3 fm the fit (14) does not
work in our range of temperatures (χ2=Ndof ¼ 5.13 for the
range 1.5 < T=Tc < 2.5).
Still, for both lattice sizes our results indicate that the

asymmetry is positive at all temperatures. This is in
agreement with the perturbative result (12). The expression
(14) disagrees with the perturbative result (12) in the limit
of infinite temperature where perturbation theory is
believed to be valid. For this reason, we find it useful to
fit the data to the function [motivated by (12)]

A ≃
zg2ðTÞ

4

�
1 −

gðTÞ
3π

ffiffiffi
2

3

r �
; ð28Þ

where the running coupling is taken in the two-loop
approximation [30],

 0.3
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 0  0.2  0.4  0.6  0.8  1  1.2
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T/Tc=1.49, bc
T/Tc=2.49, bc

FIG. 3. bc results for the asymmetry normalized by its infinite
volume value to compare finite volume effects at two temperatures,
T=Tc ¼ 1.49 and 2.49. Curves show results of the fit to Eq. (20).
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D
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FIG. 4. Relative deviation Dflip for asymmetry, see Eq. (23) for
definition. It demonstrates flip effects dependence on lattice size
and temperature.
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1

g2ðTÞ ¼
1

4π2

�
11

6
ln

�
T2

Λ2

�
þ 17

11
ln ln

�
T2

Λ2

��
; ð29Þ

z and Λ are the fit parameters.
The results of the fits for ξ > 1.2 for the two lattice sizes

are shown in Table III and depicted in Fig. 6. Note that this
fit works much better (smaller χ2=Ndof and/or wider range
of applicability) than the fit (14). In particular, the fit (14)
has very large χ2=Ndof (29 and 57 for L ¼ 2 fm and 3 fm,
respectively) for the range ξ > 1.2 used for fit (28).
Therefore, we arrive at a good agreement with perturbation
theory modulo the normalization factor of the propagator.
Similar agreement with perturbative behavior was found for
a screening mass, e.g., in Ref. [30]. In order to make
quantitative comparison with the perturbative result, we
should use the same normalization condition; however, the
MS scheme employed in [24] runs into difficulties beyond
perturbation theory.

One can see in Fig. 6 that the difference between results
for the two lattice sizes decreases with increasing temper-
ature and the results coincide within error bars for ξ > 2.3
in agreement with our findings that the finite volume effects
decrease with increasing temperature.
We compare temperature dependence of the asymmetry

on L ¼ 3 fm lattices for three gauge fixing procedures in
Fig. 7. We find that the Gribov copy effect measured by
DGCE does not change throughout the range of temper-
atures under study, in agreement with our findings pre-
sented in the previous section (see Fig. 4). Numerically
DGCE ≈Dflip ≳ 0.05. Note that the respective finite-volume
effects are estimated as 1 − R ≤ 0.03 (see Fig. 3).
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FIG. 5. Asymmetry as function of the temperature for the fixed
lattice size L ¼ 2 fm. The curves show the fit function (14)
for ξ > 1.6.

TABLE II. Parameters of the fit of the asymmetry to Eq. (14).
Lattice size 2 fm, T

Tc
> 1.6.

Gauge fixing algorithm b0 b2
χ2

Ndof

bc 0.112(2) 0.518(11) 0.71
fc 0.113(2) 0.344(11) 0.78
wc 0.113(2) 0.151(12) 0.92
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FIG. 6. A for bc for both L ¼ 2 fm and L ¼ 3 fm. Curves
show fits to the function (28).

TABLE III. Parameters of the fit of the asymmetry to Eq. (28).

L z Λ=Tc
χ2

Ndof
ξ > 1.24

2 fm 0.1356(6) 0.8331(27) 0.56
3 fm 0.1410(13) 0.8388(35) 1.30 FIG. 7. A for all gauge-fixing procedures at L ¼ 3 fm. Curves

show fits to the function (28).
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In contrast, for lattice size L ¼ 2 fm DGCE decreases
substantially with increasing temperature: from about 0.2 to
about 0.1. This is again in agreement with the results
presented in Fig. 4. Analogous quantity introduced for wc
decreases from about 0.5 to about 0.2.
Thus we infer that, contrary to the conclusions of

Ref. [21], the asymmetry never crosses zero in the
deconfining phase. Accordingly it cannot indicate the
boundary between two regions of the deconfining phase,
whose existence was discussed in [31–35].

V. CONCLUSIONS

We have presented the results of our study of the
asymmetry A in lattice SUð2Þ gluodynamics on lattices
with varying spatial size Ns and fixed Nt ¼ 8 in the range
of temperatures above Tc up to 3.3Tc. Our findings can be
summarized as follows:

(i) In contrast to the conclusions made in [21], the
asymmetry is positive at all temperatures under
consideration and its high-temperature behavior
qualitatively agrees with perturbation theory. The
data can be fitted to the function (28) motivated by
perturbation theory down to temperatures as low as
1.24Tc, see Figs. 6 and 7. The asymmetry thus
cannot be used as an indicator of the postconfine-
ment domain boundary.

(ii) The fallacy in the conclusions made in [21] stems
from using inadequately small lattices in that study.
For this reason we have performed a careful study of
finite volume effects at temperatures T=Tc ¼ 1.49
and 2.49. It was demonstrated that these effects are
indeed strong, see Figs. 2 and 3. Our results
presented in Fig. 2 indicate that, for our best copy,
the finite volume effects decrease with temperature
for lattice size L≲ 2 fm and show temperature
independence (within numerical precision) for big-
ger lattices. For our best copy the finite volume
effects are below 3% on lattices with L≳ 2.5 fm in
the range of temperatures ξ > 1.5. Finite volume
effects are much more dangerous for fc and wc
gauge fixing procedures, i.e., without use of Z2 flips.
For example, to decrease them below 3% for fc one
needs L > 5 fm.

(iii) The effect of Z2 flips (which we consider as a part of
Gribov copy effect) was estimated separately. We
found that it decreases to zero in the infinite volume
limit, as is shown in Fig. 4, in agreement with earlier
findings for the gluon propagator. Nevertheless it is
very substantial for finite volumes usually used in
computations. Thus the use of flips in the study of
the asymmetry is very effective. The temperature
dependence of the flip effect is similar to that of the
finite volume effects: for L≲ 2.5 fm they decrease
with temperature and we have not observed a
temperature dependence for bigger lattices.
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APPENDIX A: TABLE OF STATISTICS

TABLE IV. Values of β, lattice sizes, temperatures, number of
measurements, and number of gauge copies used throughout this
paper. To fix the scale we take

ffiffiffi
σ

p ¼ 440 MeV.

β Ns L (fm) a−1 (GeV) T (MeV) T=Tc ncopy nmeas

2.5574 28 2.00 2.7622 345.3 1.162 2 3240
2.5792 30 2.00 2.9595 369.4 1.245 2 3235
2.5996 32 2.00 3.1568 394.6 1.328 2 1530
2.6706 40 2.00 3.9460 493.3 1.660 2 2160
2.7011 44 2.00 4.3406 542.6 1.826 2 1584
2.7290 48 2.00 4.7352 591.9 1.992 2 1350
2.7788 56 2.00 5.5244 690.6 2.324 2 1209
2.8221 64 2.00 6.3136 789.2 2.656 2 2064
2.8604 72 2.00 7.1028 887.9 2.987 2 1740
2.8949 80 2.00 7.8920 986.5 3.319 2 810
2.8011 24 0.80 5.919 739.9 2.490 2 3924
2.8011 30 1.00 5.919 739.9 2.490 2 2408
2.8011 36 1.20 5.919 739.9 2.490 2 1620
2.8011 40 1.33 5.919 739.9 2.490 2 1410
2.8011 48 1.60 5.919 739.9 2.490 2 2139
2.8011 56 1.87 5.919 739.9 2.490 2 2072
2.8011 64 2.13 5.919 739.9 2.490 2 1805
2.8011 80 2.67 5.919 739.9 2.490 2 1050
2.7310 32 1.33 4.764 595.5 2.00 2 2136
2.7600 32 1.21 5.213 651.6 2.19 2 2160
2.7630 32 1.20 5.261 657.6 2.21 2 2160
2.8000 32 1.07 5.899 773.4 2.48 2 2160
2.9000 32 0.79 8.016 1002 3.37 2 2136
3.0000 32 0.58 10.86 1357 4.57 2 2136
3.1000 32 0.43 14.68 1835 6.17 2 1980
2.5421 40 3.00 2.6307 328.8 1.106 2 1980
2.5574 42 3.00 2.7622 345.3 1.162 2 1566
2.5721 44 3.00 2.8937 361.7 1.106 2 1620
2.5861 46 3.00 3.0253 378.2 1.106 2 1620
2.5996 48 3.00 3.1568 394.6 1.328 2 1335
2.7011 66 3.00 4.3406 542.6 1.826 2 1760
2.7788 84 3.00 5.5244 690.6 2.324 2 886
2.6370 24 1.33 3.5514 443.9 1.494 2 3520
2.6370 30 1.67 3.5514 443.9 1.494 2 2014
2.6370 36 2.00 3.5514 443.9 1.494 2 3570
2.6370 48 1.67 3.5514 443.9 1.494 2 2096
2.6370 54 3.00 3.5514 443.9 1.494 2 2643
2.6370 64 3.56 3.5514 443.9 1.494 2 1950
2.6370 72 4.00 3.5514 443.9 1.494 2 1626
2.6370 88 4.89 3.5514 443.9 1.494 3 647
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