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Building upon the PDFSense framework developed in Wang et al. [Phys. Rev. D 98, 094030 (2018)],
we perform a comprehensive analysis of the sensitivity of present and future high-energy data to a number
of quantities commonly evaluated in lattice gauge theory, with a particular focus on the integrated Mellin
moments of nucleon parton distribution functions, such as hxiuþ−dþ and hxig, as well as x-dependent quark
quasidistributions—in particular, that of the isovector combination. Our results demonstrate the potential
for lattice calculations and phenomenological quark distributions informed by high-energy experimental
data to cooperatively improve the picture of the nucleon’s collinear structure. This will increasingly be the
case as computational resources for lattice calculations further expand, and QCD global analyses continue
to grow in sophistication. Our sensitivity analysis suggests that a future lepton-hadron collider would be
especially instrumental in providing phenomenological constraints to lattice observables.
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I. INTRODUCTION

Owing to steady theoretical progress and the growing
availability of computational resources, the ability of
perturbative QCD (pQCD) to predict parton-level processes
at high energies has continued to improve in recent years,
with accuracies now reaching next-to-next-to-leading order
(NNLO) in many circumstances. Inevitably, however,
predictions for experiments involving hadronic collisions
require precise knowledge of the structure of initial-state
hadrons at comparatively small energy scales similar to the
nucleon mass, Λ ∼M, at which αsðΛÞ ∼ 1 is too large to
permit a converging diagrammatic expansion of the rel-
evant amplitudes. This general consequence of the negative
β-function of QCD is realized in the theory of spin-
averaged deeply inelastic lepton-nucleon scattering, for
example, in the factorization of physical cross sections into
perturbatively calculable short-distance matrix elements
and inherently nonperturbative long-distance parton dis-
tribution functions (PDFs), qðx; μÞ, of the quark-to-hadron
light-front momentum fraction x ¼ kþ=pþ and factoriza-
tion scale μ.

Given the nonperturbative nature of the collinear PDFs,
the prevailing recourse has traditionally been either to fit
them in comprehensive analyses of global data using
flexible parametric forms [1–5] or to calculate them in
the context of models or effective theories [6–15] that aim
to capture specific aspects of QCD—e.g., its pattern of
dynamical chiral symmetry breaking. Determination of
precise effective parametrizations of the collinear PDFs
in the MS factorization scheme from the global QCD
analysis of experimental measurements has grown into a
multifaceted research field—for reviews of its status see,
e.g., Refs. [16,17]. Parallel to these efforts, the past couple
of decades have seen a complementary effort founded in the
use of lattice gauge theory techniques to either indirectly
compute the x dependence of the PDFs themselves or, at
minimum, determine the integrated moments of the parton
distributions in Mellin space. (For a comprehensive review,
we refer the reader to the recent white paper, Ref. [18].)
By definition, the PDFs are intrinsically nonlocal corre-

lation functions constructed between parton fields with
lightlike spacetime separation along the ξ− direction at
fixed light-front time ξþ ¼ 0: viz., ∼hpjq̄ðξ−ÞÔqð0Þjpi.
Dynamically simulating such matrix elements on a
hypercubic lattice, however, is numerically problematic,
given the fact1 that x2 ¼ xþx− − x2⊥ ¼ 0 can only trivially
hold at the origin in a Euclidean spacetime, for which
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1In defining light-front variables, we assume a convention in
which the components of an arbitrary 4-vector aμ transform as
a� ¼ a0 � a3.
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x2E ¼ x21 þ � � � þ x24. In contrast, the integrated Mellin
moments of the quark distributions have a direct interpre-
tation in terms of the matrix elements of local operators and
can be accessed on a Euclidean lattice via an operator
product expansion (OPE). Moments computed in this
fashion are informative in the sense that they encapsulate
aspects of the nonperturbative dynamics responsible for a
hadron’s low-energy structure—for instance, the magnitude
of the nucleon’s collinear magnitude carried by its total
u-quark content,

hxiuþ ¼
Z

1

0

dx x½uþ ū�ðx; μFÞ: ð1Þ

Lattice calculations generally evaluate moments such as
Eq. (1) using a scheme and renormalization scale μlat chosen
to match the MS scheme usually employed by phenome-
nologists.Most often in the literature, this scale is taken to be
μlat ¼ 2 GeV, and in this analysis we shall for consistency
compute moments at a matching factorization scale,
μF ¼ μlat ¼ 2 GeV, unless otherwise indicated. Various
attempts have been made to determine the x dependence
of the PDFs by computing a sufficient number of moments
in Mellin space that the transform into PDF space can be
determined (typically with the help of some parametriza-
tion). In practice, however, the mixing among operators of
successively higher spin and the resulting signal-to-noise
issues become less controlled as additional covariant deriv-
atives are inserted to obtain PDFmoments of higher order. In
effect, only a small number of moments can be accessed on
the lattice—presently, up to the quark distributions’ third
moment, hx3iqþ (although there are recent suggestions that
perhaps several more may become available in the near
future). It should be noted that the uncertainties of the lattice
moments typically grow with increasing order.
Still, the ostensible ability of lattice gauge theory to

access even several moments of the PDFs has long
presented the possibility of determining (or at least con-
straining) the parton distributions directly from a first-
principles QCD calculation. Indeed, with a sufficiently
restrictive parametric form for the quark distribution of a
given flavor, the latter can be fully determined given
enough moments [19]; for example, if the PDF of the
u-quark distribution is taken to have a very simple x
dependence given by uðx;Q0Þ ¼ αxβð1 − xÞγ, knowledge
of three distinct moments would in principle be adequate to
parametrically determine (up to some uncertainty) the
above-noted distribution. At the same time, however, both
the diversity of the experimental data inputs and the
sophistication of modern QCD analyses are such that much
more flexible parametric forms are required, and lattice
calculations remain far below the requisite level of pre-
cision across the many flavors and moment orders needed
to be competitive in a complete determination of the PDFs
according to such a procedure.

More recently, a promising method which may allow the
calculation of the PDFs’ xdependence on the QCD lattice in
terms of parton quasidistribution functions (qPDFs) has
been introduced by Ji [20], as well as the more recent
pseudo-PDF concept first developed in Ref. [21] of
Radyushkin. Extracting information fromquasidistributions
requires an accompanying large momentum effective theory
(LaMET) for performing the necessary ultraviolet match-
ings that are realized as convolutional relations of the form

q̃ðx; Pz; μ̃Þ ¼
Z

dyZ

�
x
y
;
Λ
Pz

;
μ

Pz

�
qðy; μÞ þO

�
Λ2

P2
z
;
M2

P2
z

�
;

ð2Þ
which relate the quasidistribution q̃ to the traditional
phenomenological PDF q with the usual support over
x ∈ ½0; 1�.2 This matching depends critically upon the
pQCD-calculable ultraviolet matching function, Z. In
practice, the quasidistribution q̃ðx; Pz; μ̃Þ [i.e., the left-hand
side (LHS) of Eq. (2)] may be evaluated on the lattice for a
specific choice of the longitudinal hadron momentum Pz
and the usual PDF extracted by numerical inversion of
Eq. (2). This method therefore has the potential to yield
information on the x dependence of the PDFs themselves,
up to knowledge of dynamical and mass-dependent cor-
rections, the perturbative order of the matching kernel Z,
and technical details of the actual lattice calculation—for
instance, artifacts arising from the finite lattice spacing or
signal-to-noise problems. In addition, it should be pointed
out that limitations to this procedure remain, especially
given the fact that the lattice calculations and LaMET
procedure are in a relatively early stage of theoretical
development—much as there are limitations to the lattice
computed PDF moments as well.
For the reasons noted above, as computational resources

continue to grow, it will be necessary to reconcile
the output of lattice-based methods (especially, concerning
the PDF moments and quasidistributions) with work in the
context of QCD global analyses. This will necessarily go
both directions: benchmarking the lattice calculations with
knowledge of the PDFs from phenomenological analyses,
and constraining QCD analyses with the output of the
lattice. Laying the groundwork for this synergy will require
a comprehensive understanding of the relation between

2Traditional PDFs are correlations at a fixed light-front time
ξþ ¼ 0 and functions of the parton-to-hadron momentum fraction
x ¼ kþ=Pþ. The qPDFs, on the other hand, are analogous
fractions of longitudinal momentum x ¼ kz=Pz, which can be
matched in the context of LaMET via Eq. (2). In the subsequent
plots mapping the sensitivity of CTEQ-TEA data to qPDFs, we
compute the qPDF at a specific x ¼ kz=Pz by means of Eq. (2),
with the sensitivity computed on the basis of the variation of the
underlying PDF appearing inside the convolution. For this
reason, sensitivity plots are always shown as maps giving the
pull of data at a given, matched xi ∈ ½0; 1� and μi to the qPDF at a
specific x ¼ kz=Pz ∈ ð−∞;∞Þ.
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phenomenological constraints placed on the PDFs deter-
mined in fits (and, by extension, the x-weighted moments
computed therefrom) and information obtained from the
lattice.
In this analysis we systematically canvass these issues,

using the recently developed PDFSense framework of
Ref. [22] to present a comprehensive summary of the
differential impact modern data have upon knowledge of
the PDF Mellin moments evaluated from phenomenologi-
cal fits—as well as which data give the leading contribu-
tions to present understanding of one of the typical quasi-
distributions, that of the isovector combination, u − d. The
remainder of the paper is therefore as follows.
After a brief review of the formalism and a description

of the PDFSense methodology, in Sec. II we review the
constraints HEP data place on the lowest moments for
several light-quark q� distributions and the gluon. We also
discuss the degree of the agreement among the main
experiments that constrain the relevant PDF flavors at
x > 0.1. For this purpose, we introduce a new statistical
indicator, L2 sensitivity, which is especially convenient for
exploring the aggregate constraints of the individual experi-
ments on the PDFs, and the pulls they exert on the PDFs in
various momentum fraction intervals.
In Sec. III, we illustrate the constraints that the data place

on the u − d quasidistributions by computing them from the
CT14HERA2 NNLO PDFs [5] at several choices of the
momentum fraction, �x, and hadronic boost momentum,
Pz, using Eq. (2). Section IV demonstrates the sizable
potential impact future measurements at a high-luminosity
lepton-hadron collider will have on these quantities by
analyzing pseudodata generated from a combination of
Monte Carlo generated information with cross section
predictions based upon CT14HERA2 NNLO. Section V
contains a number of conclusions drawn fromour analysis of
the PDF moments and qPDFs regarding expected conse-
quences of implementing lattice information into future
global fits. In Sec. VI we provide a number of closing
observations, focusing on points that will allow this work to
be leveraged in the future. Last, Appendix collects several
tables—counterparts to Figs. 13 and 14—summarizing the
aggregated impact on lattice QCD observables of the HEP
experiments considered in this work.

II. THE SENSITIVITY OF HEP DATA
TO PDF MELLIN MOMENTS

A. Theory of PDF Mellin moments

The x-weighted moments of the PDFs have long been of
interest to practitioners of QCD analyses on the logic that
theymay provide the necessary input to either reconstruct or
at least constrain the PDFs determined in global fits. The
accessibility of these moments to lattice gauge techniques is
facilitated by the OPE [23–28], which allows an expansion
of the PDF moments in terms of matrix elements of

well-defined, local twist-2 operators which can be evaluated
in a discretized Euclidean spacetime. Subsequently, the
Mellin moments themselves may be derived via algebraic
relations from thematrix elements of these twist-2 operators.
In principle, it is possible to reconstruct a given PDF’s x
dependence via an inverse Mellin transform if its moments
hxniq are known to all orders, as noted in Sec. I.
The crucial relation that connects x-dependent parton

distributions qðxÞ to an n-dependent tower of integrals in
Mellin space is the inverse Mellin transform, which enables
one in principle to reconstruct integrated Mellin moments
of the PDFs. These PDF Mellin moments have the general
form

hxniq ¼
Z

1

0

dx xn½qðxÞ þ ð−1Þnþ1q̄ðxÞ�: ð3Þ

Using Eq. (3), it is possible to define a collection of PDF
moments hxniq� which are actually calculable on the QCD
lattice, such as hxiþu of Eq. (1). These are

hxniqþ ¼ hxniq for n ¼ 2l − 1; ð4aÞ

hxniq− ¼ hxniq for n ¼ 2l; ð4bÞ

where l ∈ Zþ such that the lattice may provide, for
instance, hxiuþ , hx2iu− , hx3iuþ . Moreover, the PDFs them-
selves can be unfolded from a complete set of Mellin
moments via the inverse Mellin transform,

qðxÞ þ ð−1Þnþ1q̄ðxÞ ¼ 1

2πi

Z
cþi∞

c−i∞
dn x−n−1hxniq: ð5Þ

In practice, however, lattice QCD techniques currently
enable the calculation of the few lowest PDFmoments.Once
the accuracy of these computations improves, theoretical
constraints in the form of lattice-calculated PDF moments
(or x-dependent information unfolded from parton quasi-
distributions, discussed in Sec. III) might eventually be
implemented as χ2 penalties in global QCD analyses—
essentially, taking lattice data as theoretical priors to con-
strain the likelihood function of a global fit. For example,
exploratory studies based on Bayesian profiling have
suggested that lattice calculations even with somewhat
sizable uncertainties can still provide powerful constraints
to PDFs in regions that are relatively unconstrained by
experimental data (see Ref. [18] and references therein).
In the remainder of this subsection, we review the
essential theory for accessing the integrated moments of
the PDFs, with a special focus on unpolarized distributions,
given their importance to high-energy phenomenology.
(Although it is worth noting that, given the comparative
paucity of spin-dependent data, it is reasonable to expect that
lattice calculations for the moments of helicity distributions
may more quickly become competitive against fitted
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spin-dependent PDFs; we defer such considerations, how-
ever, to future work.)
The OPE expands hadronic matrix elements of nonlocal

products of field operators in terms of local operator matrix
elements weighted by Wilson coefficients that obey
renormalization group evolution [24,29]. It is then possible
to calculate these coefficients in the context of QCD
perturbatively (i.e., they embody the relevant short-distance
dynamics), while the local operator matrix elements are
nonperturbative (depending on the details of the long-
distance physics). In the case relevant for the present study,
the matrix elements of twist-2 operators may be expanded
by the OPE as

1

2

X
s

hp;sjOq
fμ1;…;μnþ1gjp;si¼2vnþ1

q ½pμ1 � ��pμnþ1
− traces�;

ð6Þ

hp;sjO5q
fσμ1;…;μnþ1gjp;si¼

1

nþ2
anþ1
q ½sσpμ1 ���pμnþ1

− traces�;
ð7Þ

where p and s represent the nucleon 4-momentum and spin,
respectively, q indicates the flavor of the relevant quark
field, and fg stands for index symmetrization. Higher-twist
terms enter as power suppressed corrections in 1=Q2 [30],
so here we consider only the contribution of Mellin
moments from twist-2 operators. For the quark fields,
the twist-2 operators occurring in the OPE expressions
above are constructed from the usual bilinears as

Oq
fμ1;…;μnþ1g ¼

�
i
2

�
n
q̄ðxÞγfμ1D

↔

μ2 � � �D
↔

μnþ1gqðxÞ ð8Þ

and

O5q
fσμ1;…;μnþ1g ¼

�
i
2

�
nþ1

q̄ðxÞγfσγ5D
↔

μ1 � � �D
↔

μnþ1gqðxÞ; ð9Þ

where

D
↔

μ ¼
1

2
ðD⃗μ − D⃖μÞ; D⃗μ ¼ ∂⃗μ − igtaAa

μðzÞ;

D⃖μ ¼ ∂⃖μ þ igtaAa
μðzÞ ð10Þ

are the gauge covariant derivatives, Aa
μðzÞ denotes gluon

fields, and ta represents the eight standard generators of the
SU(3) color group. We note that f� � �g in the expressions
above denotes symmetrization over the enclosed indices. In
Eqs. (6) and (7), vnþ1

q and anq are identifiable with the nth-
order moments of the twist-2 PDFs of unpolarized and
longitudinally polarized nucleons, respectively [18,31]:

vnþ1
q ¼

Z
1

0

dx xnqðx; μÞ; ð11aÞ

anq ¼
Z

1

0

dx xnΔqðx; μÞ: ð11bÞ

Last, we note that analogous matrix elements are responsible
for moments of the gluon distribution, with the lowest lattice-
accessiblemoment hxig for the total gluonmomentumfraction
given by the insertion of a twist-2 operator constructed from
the gluon field strength as Og

μ1μ2 ¼ −TrðGμ1αGμ2αÞ.
Insofar as the LHS expressions of Eqs. (6) and (7) can be

formulated in terms of lattice gauge theory and evaluated
on a discretized Euclidean spacetime, the PDF moments in
Eq. (11) are themselves directly accessible on the QCD
lattice through the direct evaluation of nucleonic matrix
elements of twist-2 operators. For reasons that we sketch
below, however, the extraction of higher moments is
complicated by operator-mixing effects, and modern lattice
calculations can reliably extract only the lowest few
moments in practice [19,32,33]. Various systematic errors
in generic lattice calculations are reviewed and assessed in
Ref. [34], with the dominant systematic errors in evalua-
tions of Mellin moments arising from power-divergent
operator mixing and renormalization effects. Power-
divergent mixing is associated with an Oð4Þ symmetry
breaking inherent to the Euclidean spacetime discretization
of lattice calculations: the lattice regulator breaks Lorentz
symmetry, causing radiative divergences in operators of
different mass dimensions to mix together [35]. The
renormalization of nonlocal operators on a discretized lattice
induces another error: the renormalized fields that are
nonperturbatively determined on the lattice are power
divergent. In addition to these, a number of other systematic
effects generally enter lattice QCD calculations, including
corrections from the unphysically large quark (or pion)
masses often used as well as the associated chiral extrap-
olations to the physical pion mass. Moreover, details
involved in the extraction of lattice signals as a function
of lattice time contribute to the landscape of systematic
uncertainties. The effort to control these and other lattice
artifacts partially depends upon the ability of lattice practi-
tioners to benchmark their calculations against phenomeno-
logical knowledge. Exploring the capacity of high-energy
data to tighten these benchmarks is a primary motivation for
the present study.
As for the present status of lattice QCD calculations for

some of the lowest PDF moments, we present in Table I a
numerical comparison of several recent lattice extractions
(rightmost column) with the results of computing the same
moments from CT14HERA2 NNLO [5] (middle column).
Notably, despite significant improvements in recent years,
the uncertainties of modern lattice QCD calculations
remain considerably larger than the analogous errors for
the moments computed from fitted PDFs, which we quote

HOBBS, WANG, NADOLSKY, and OLNESS PHYS. REV. D 100, 094040 (2019)

094040-4



at 90% C.L. in Table I. There is also an apparent tendency
for the lattice-computed moments to overestimate the
phenomenologically determined ones, a behavior that is
likely especially driven by the effects of excited-state
contamination. Despite this, however, we typically find
reasonable alignment with lattice moments, partly owing to
their larger uncertainties. As continued improvements tame
the lattice effects described above, these uncertainties are
expected to contract, leading to growing utility to global fits
of unpolarized distributions. It is worth mentioning that,
due to a comparatively smaller set of experimental data, the
degree to which lattice calculations must improve to impact
QCD analyses for spin-polarized quantities via Eqs. (7),
(9), and (11b) is less pronounced.

B. Analysis procedure

1. Correlations Cf and sensitivities Sf
To explore the sensitivity of high-energy data to the PDF

Mellin moments and qPDFs accessible in lattice QCD, in
this work we extend the analysis of Ref. [22] that applied
the recently developed PDFSense framework to weigh the
impact of an extended amalgam of HEP experimental data
(the “CTEQ-TEA,” or “CT,” data, plotted in Fig. 1) as a part
of the preparation for the release of the CT18 PDF global
analysis [43]. In this case, special emphasis was placed on
the impact these data might have on the unpolarized

collinear PDFs themselves and on observables derived
directly therefrom, including the 14 TeV inclusive Higgs
production cross section, σH. We note that Fig. 1 is
reproduced from Ref. [22] and provided here for ease of
reference. Given the fact that a number of lattice QCD
observables are calculable from phenomenological PDFs
along the lines described in Secs. I, II A, and III below, we
repeat our analysis to illustrate the constraints a typical
experimental dataset can impose on our phenomenological
knowledge of such lattice observables.
We refer the reader to Secs. II and III of Ref. [22] for a

systematic presentation of the details of the PDFSense
framework. Still, it is worthwhile to summarize the partic-
ulars of a sensitivity analysis dedicated to the PDFmoments
hxniq� . Whereas in Ref. [22] we primarily concentrated on
the sensitivities of data to the local values of the collinear
PDFsqðxi; μiÞ at the typical xi and μi of the high-energy data
points (see Appendix A of the same reference), here we are
chiefly concernedwith the sensitivity toMellinmoments for
which the x dependence has been integrated away, and in
general at a scale μF ¼ μlat ¼ 2 GeV at which moments are
commonly computed in lattice QCD. Whether by a Hessian
or Monte Carlo error procedure, a PDF global analysis
typically produces a central PDF set and a finite ensemble
replicas of the error PDFs, qj∈f2Ngðx; μFÞ. Given this
ensemble, it is then possible to evaluate a respective error
set for values of integrated PDF moments. In the case of the
CT fitting approach, from the underlying Hessian error
sets—of which there are 2N for an N-parameter global fit
[leading to 1 (56) central (error) PDFs in the 28-dimensional
CT14HERA2 NNLO fit]—we directly compute error rep-
licas for the moments by integrating over the CT fitted
distributions. Namely,

qj∈f2Ngðx; μlatÞ ⟶ hxnij∈f2Ng
q�;μlat

¼
Z

1

0

dx xnðqðx; μlatÞ � q̄ðx; μlatÞÞj∈f2Ng: ð12Þ

In practice, we evaluate the integrals of Eq. (12) numerically
from grids in which the bounds of integration are chosen to
ensure stable convergence. For instance, we generally
evaluate

Z
xb

xa

dx xnðqðx; μlatÞ � q̄ðx; μlatÞÞj∈f2Ng; ð13Þ

where typically we choose xa ∼ 10−7 and xb ∼ 0.999. The
stability of our results against variations about these choices
has been explicitly verified. As can be seen in Fig. 1, the
lowest reach of data in the CTEQ-TEA set is x ∼ 5 × 10−5,
such that the very low-x contributions to the moments
analyzed here are to be regarded as parametrization depen-
dent. Generally, however, these contributions are heavily

TABLE I. The most recent PDF moment results obtained from
lattice QCD calculations (central column) compared to the
analogous results determined from fitted PDFs, here,
CT14HERA2 NNLO (rightmost column). For the former, many
reported results can be found in the recent community white
paper in Ref. [18], and we show here those lattice results that
were designated as having “benchmark” status, where possible.
Those lattice entries corresponding to single calculations are
given with the associated reference, whereas those which result
from an average of several lattice extractions are indicated with
“⋆.” In particular, the result for hxiuþ−dþ follows from averaging
the calculations in Refs. [36–38], while the corresponding result
for hx2iu−−d− is an average over the result in Ref. [39] and two
separate calculations reported in Ref. [40].

PDF moment Lattice CT14HERA2 NNLO

hxiuþ−dþ 0.184ð32Þ⋆ 0.159(6)
hx2iu−−d− 0.107ð98Þ⋆ 0.055(2)
hx3iuþ−dþ N/A 0.022(1)
hxig 0.267(35) [36] 0.415(8)
hxiuþ 0.453(75) [36] 0.351(5)
hxidþ 0.259(74) [36] 0.193(6)
hxisþ 0.092(41) [36] 0.031(8)
hx2iu− 0.117(18) [41] 0.085(1)
hx2id− 0.052(9) [41] 0.030(1)
hx2is− N/A � � �
h1id̄−ū � � � −0.367ð410Þ
κs 0.795(95) [42] 0.459(132)
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suppressed in moments, hxni, and the overall parametriza-
tion dependence is minimal.
With replica sets for lattice observables such as the

PDF Mellin moments as in Eq. (12), we may deploy the
statistical framework of Ref. [22], computing the Pearson
correlation between the residual riða⃗Þ of the ith measure-
ment of our CTEQ-TEA set [again, evaluated over the
1 (56) central (error) sets of CT14HERA2 NNLO] and the

corresponding ensemble for hxnij∈f2Ng
q�;μlat . The residual is

defined by

riða⃗Þ ¼
1

si
ðTiða⃗Þ −Di;shða⃗ÞÞ ð14Þ

as the difference between the theoretical prediction Tiða⃗Þ,
dependent on the PDF parameters a⃗, and central data value
Dsh

i ða⃗Þ that is shifted to accommodate systematic error

correlations. This difference is weighted by the total
uncorrelated uncertainty, si [44].
In practice, the correlation is computed using

Cfðxi; μiÞ ¼ Corr½f; riðxi; μiÞ�;

Corr½X; Y� ¼ 1

4ΔXΔY

XN
l¼1

ðXþ
l − X−

l ÞðYþ
l − Y−

l Þ; ð15Þ

in which f is a generic function of the PDFs [e.g., a PDF of
given flavor at the matched ðxi; μiÞ of the ith data point as in
Ref. [22], or a PDF moment computed from the PDFs], and
the N l� pairs of Eq. (15) may be identified with the 2N
Hessian error sets just described; the uncertainty quantities
in the denominator of Eq. (15) are evaluated from the
Hessian error sets as

FIG. 1. A graphical representation of the space of ðx; μÞ points probed by the full dataset treated in Ref. [22] as well as the present
analysis, designated “CTEQ-TEA.” It corresponds to an expansion of the CT14HERA2 NNLO data fitted in the most recent CT14
framework, including measurements from Run II of HERA. We stress that the x and μwhich define the axes in this and subsequent plots
represent the momentum fraction x and scale μmatched from empirical data as described in Appendix A of Ref. [22]. These ðx; μÞ values
are not to be confused with the x of the qPDF in Eq. (2) or μF used to evaluate PDF moments. We direct the reader to the footnote near
Eq. (2) for further clarification of this point.
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ΔX ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
l¼1

ðXþ
l − X−

l Þ2
vuut : ð16Þ

Equations (15) and (16) are motivated by the observation
that, given the approximately Gaussian dependence of the
probability distribution on the PDF parameters a⃗ in the
close vicinity of the global minimum of χ2, small displace-
ments of a PDF-dependent quantity X from its value for the
best-fit combination of PDF parameters can be computed

using the N-dimensional vector of the gradient ∇⃗X with
respect to a⃗ [44,45]. Therefore, we can write, using the

angle φ between ∇⃗X and ∇⃗Y,
ΔX ¼ j∇⃗Xj;

Corr½X; Y� ¼ cosφ ¼ ∇⃗X · ∇⃗Y
ΔXΔY

: ð17Þ

One of the principal results of Ref. [22] was the
demonstration that the Pearson correlation of Eq. (15)
cannot fully capture the phenomenological weight of
individual measurements, given the fact that it does not
explicitly depend upon the magnitudes of the PDF or
experimental uncertainties. For this reason, we introduced a
generalization of the correlation we call the sensitivity, Sf,
of the ith point in experiment E to PDF flavor (or PDF-
derived quantity) f:

Sf ¼
Δri
hr0iE

Cf: ð18Þ

Δri is calculated using Eq. (16), and hr0iE represents the
point-averaged residuals of each of the points of experi-
ment E computed with the central PDF set.
With the family of PDF error sets of CT14HERA2

NNLO and the statistical formalism and metric embodied
by Eq. (18), the sensitivities of data points shown in Fig. 1
may be assessed and mapped in a plane of typical partonic
momentum fraction xi and factorization scale μi at which a
PDF, qðxi; μiÞ, might be evaluated. As developed in detail
in Appendix A of Ref. [22], the matching of experimental
data to specific values of xi and μi is based upon a leading-
order identification of xi and μi with scales dictated by
external kinematics. For instance, in deeply inelastic
scattering (DIS), we match the partonic fraction xi with
Bjorken-xB: xi ≈ xBji. Similarly, the QCD factorization
scale associated with a specific DIS measurement is chosen
to be the corresponding virtuality of the exchanged γ,
μi ≈Qji. Analogous relations for data generated by the
other processes appearing in Fig. 1, such as high-mass
Drell-Yan scattering or jet production, appear in
Appendix A of Ref. [22]. By mapping sensitivities in this
fashion, we may isolate processes and individual datasets
with a strong phenomenological pull on lattice observables,
while also identifying the most constraining regions of

ðx; μÞ. The size of the absolute sensitivities jShxniq� j for
highlighted points (jShxniq� j > 0.25) are identified by the

“rainbow stripe” color palette: hot colors (red, orange)
correspond to strong sensitivities, and cool colors (yellow,
green) correspond to weak sensitivities. Unhighlighted
points—i.e., those with relatively minimal expected impact,
(jShxniq� j < 0.25), are represented with gray colors.

2. The L2 sensitivity

The quantity jSfj defined in Eq. (18) is a convenient
figure of merit that we will use to quantify the sensitivity of
experimental data point residuals to the PDF dependence of
select Mellin moments and qPDFs. It represents a normal-
ized variation of the data residual ri when the PDF
parameters are displaced along the direction of maximal

variation of fðx;QÞ, i.e., along ∇⃗f, by an amount corre-
sponding to the PDF error Δf.
To further elucidate the meaning of Sf, let us briefly

discuss a related quantity, defined by

Sf;L2ðEÞ≡ ∇⃗χ2E ·
∇⃗f

j∇⃗fj
¼ Δχ2EðâfÞ ¼ Δχ2E cosφðf; χ2EÞ: ð19Þ

In this equation,

χ2Eða⃗Þ ¼
XNpt

i¼1

r2i ða⃗Þ þ
XNλ

α¼1

λ̄2αða⃗Þ ð20Þ

is the log-likelihood function for experiment E, equal to the
quadratic sum (L2-norm sum) of Npt shifted data point
residuals ri and Nλ best-fit nuisance parameters λ̄α repre-
senting the sources of correlated systematic errors.
In accord with the discussion above, Sf;L2ðEÞ is equal to

Δχ2EðâfÞ, the variation of χ2E when the PDF parameters are

displaced by a unit vector âf ≡ ∇⃗f=j∇⃗fj along the gradient
of f. As before, the displacement âf from the best fit
changes fðx;QÞ by its PDF error Δf. But the respective
change Δχ2EðâfÞ is not equal to the PDF error Δχ2E on χ2E.
By applying Eqs. (17), one arrives at a different expression
shown as the last equality on the second line of Eq. (19),
i.e., a product of the PDF uncertainty Δχ2E estimated by
Eq. (16), and the correlation cosine between fðx;QÞ and χ2E
given by Eq. (15).
Thus, Sf;L2

ðEÞ measures the χ2 change for experiment E
when the PDF parameters are displaced from their best-fit
value so that fðx;QÞ at the chosen x and Q is increased by
its Hessian PDF error, which we take to correspond to the
68% probability level (p.l.) in this presentation. By com-
puting Sf;L2ðEÞ for every fitted experiment E, we can easily
compare the pulls of the individual experiments on fðx;QÞ,
solving essentially the same task as a Lagrange multiplier
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scan on fðx;QÞ [46], but extracting most of the same
information much faster, within the limits of the Hessian
approximation. This approach can explore the consistency
of individual experiments along much the same lines as the
Hessian dataset diagonalization technique [47], with the
advantage that it performs this analysis along multiple
directions in the Hessian PDF parameter space at once.
We may call Sf;L2ðEÞ as the L2 (norm) sensitivity, to
distinguish it from the L1 (norm) sensitivity Sf that is
constructed from the residuals themselves, rather than from
their squares.
Figure 2 illustrates the application of the L2 sensitivity to

the CTEQ-TEA experimental datasets that were selected
for the upcoming CT18 global fit. We compute the L2

sensitivity at the lattice scale μ ¼ 2 GeV for the isovector

combination uþðx; μÞ − dþðx; μÞ. Due to the dependence of
Sf;L2

on cosφðf; χ2EÞ, it concisely represents the competing
pulls of the CTEQ-TEA datasets. The respective Δχ2EðâfÞ
can be either correlated (Sf;L2

> 0) or anticorrelated
(Sf;L2

< 0) with uþðxÞ − dþðxÞ. Large experimental errors
or weak correlations correspond to Sf;L2

ðEÞ ≈ 0 and imply
vanishing pulls for a particular experiment on the PDF at a
given x.
In Fig. 2, we included only the curves for 12 experiments

with the highest L2 sensitivities, selected out of 40 eligible
experiments by the requirement that the shown experiments
must have jSf;L2

ðEÞj > 4 in some interval of x. Recall that
the textbook parameter-fitting criterion associates Δχ2E ¼ 1
(or 4) with the uncertainty at the 68% (or 95%) probability
level. The L2 sensitivity plots such as the one shown in
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FIG. 2. The L2 sensitivities of the CTEQ-TEAwith the strongest pulls on the isovector PDF combination, uþðxÞ − dþðxÞ, at the scale
μ ¼ 2 GeV as computed using Eq. (19). Here, we evaluate the L2 sensitivity using a subset of the CTEQ-TEA data prepared for the CT18
NNLO PDF fit [43], based on the implementation of LHC Run-1 data explored in Ref. [22]. The curves for the fitted experiments reveal a
number of competing pulls on the isovector qþ distribution: for instance, at x > 0.1, between the E866pp (204), combined HERA (160),
and CDHSW (109) datasets, on the one hand, and the NMC Fd

2=F
p
2 ratio measurements (104) and BCDMS Fd

2 data (102), on the other.
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Fig. 2 reveal far larger latent tensions between the experi-
ments in some x regions, evident as deviations in opposite
directions with magnitudes jSf;L2

ðEÞj > 5. That is, the χ2

value changes by more than five units when the PDFs are
varied by the 68% p.l. error along the respective direction.
In the region x > 0.1 that contributes the most to the Mellin
moments, Fig. 2 suggests that the sharpest positive pulls on
the uþðxÞ − dþðxÞ distribution come from the E866 pp
(204), combined HERA (160), and CDHSW (109) data,
whose χ2E are positively correlated with the isovector PDF,
and the opposite pulls by the NMC ratio measurements
(104) and BCDMS Fd

2 data (102), for which the L2

sensitivity is negative. Similar tensions exist at smaller
values of x as well.
The upshot of the figure is that a variety of DIS and

Drell-Yan experiments on nucleon and nuclear fixed targets
continue to play the prominent role in constraining the
isovector combination, surpassing in this regard the avail-
able LHC measurements that still are to grow in their
importance. Similar observations apply to the Mellin
moments and qPDFs that we will consider. The sensitivity
studies, as well as related methods such as the Lagrange
multiplier scan, reveal tensions among the miscellaneous
experiments in the CTEQ-TEA dataset that constrain the
PDFs at x > 0.1. The x-dependent L2 sensitivity shown in
Fig. 2 should be consulted in parallel with the Sf sensitivity
calculations shown for the moments and quasi-PDFs in the
sections below.

C. Structure of the presentation

In the next subsection, we will compute and investigate
the Sf sensitivity of the CTEQ-TEA dataset to the lowest
moments of the unpolarized light-quark and gluon distri-
butions, jShxniq� ;g

j, in the ðx; μÞ plane with the PDFSense

package [22]. We use the CT14HERA2 NNLO PDF set [5]
in the theoretical predictions and residuals of experimental
data. Our dataset measurements in the CT14HERA2NNLO
fit and the latest LHC jet, tt̄, W=Z production datasets.
The sensitivities from the existing experiments discussed

in this section can be further confronted by the projected
sensitivities to the same PDF-dependent quantities in
Sec. IV for a set of pseudodata for inclusive neutral-current
(NC) and charge-current (CC)-mediated e�pDIS at a future
EIC-like collider. The scientific program at an electron-ion
collider (EIC) or a similar machine is anticipated to
significantly complement lattice QCD in learning about
the three-dimensional structure of hadrons. The procedure
of the preliminary impact study in Sec. IV is broadly similar
to that for the analysis of the real CTEQ-TEA data, but is
based on the DIS pseudodata obtained by generating
Gaussian fluctuations about the CT14HERA2 NNLO theo-
retical prediction for the reduced cross sections according to
an assumed precision.

The flavor combinations primarily discussed in this
paper are u� − d�; u�; d�; sþ, and g in which qþ here
refers to the C-even combination of (anti)quark distribu-
tions, qþ q̄; correspondingly, we also consider C-odd
quantities, q− ¼ q − q̄, as defined in Eqs. (3) and (4).
The PDF moment(s) for the light flavor combinations
u� − d�, u�, d�, and sþ are computed on the lattice by
theOF

fμ1;…;μng operators noted above in Eq. (8), whereas for
the gluon distribution g, the operator noted immediately
after Eq. (11) is required. The present status of the lattice
QCD calculations of these parton moments is widely
varied, with some moments (especially for the isovector
combination u − d) evaluated by multiple groups with
various systematic treatments; on the other hand, lattice
information on the second moments of the individual light-
quark flavors hx2iq− , for instance, is comparatively sparse.
At the same time, the corpus of lattice computations is
growing, and the availability of calculations for the
moments considered here (and beyond) will increase.
We note that many numerical results for PDF moments

computed both on the lattice and from different QCD
global analyses are detailed in Appendixes B and C of the
recent white paper in Ref. [18].

D. Numerical results

We now present the calculated sensitivity maps for the
CTEQ-TEA data to each of the lowest moments of the
light-quark (u − d, u, d, s) distributions and the gluon. We
also examine the aggregated impact of the experiments in
the CTEQ-TEA set on each of these quantities and consider
the implications for unraveling the nucleon’s flavor struc-
ture and benchmarking lattice QCD output of the same
objects.

1. Moments of nucleon quark distributions

a. Moments of isovector flavor distributions.—Historically,
computation of isovector PDF combinations in SU(2)
isospin space has represented an especially fertile proving
ground for lattice gauge methods—particularly given that
gluon and singlet quark densities mix evenly with uþ and
dþ distributions under DGLAP evolution, such that uþ −
dþ has a nonsinglet scale dependence. A consequence
specific to lattice QCD is the fact that contributions from
disconnected insertions vanish in the difference (assuming
parton-level charge symmetry), and a much less computa-
tionally costly calculation based purely on connected
insertions is generally adequate. For this main reason,
the isovector combinations have been a focus of lattice
calculations for both the PDF Mellin moments—and, more
recently, the quasidistributions in both the nucleon [48–53]
and the pion [54–57].
We plot the sensitivity map of the CTEQ-TEA data to

two of the lower moments of the nucleon isovector
distribution in Fig. 3—namely, the sensitivities to the total
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isovector momentum hxiuþ−dþ (left panel) and the second-
order asymmetry moment hx2iu−−d− (right panel). These
plots have the same basic configuration as developed in
Ref. [22], with emphasis placed on specific measurements
of individual experimental datasets with particularly strong
pulls in the global analysis. The predicted pull of these
measurements as quantified by the sensitivity jSfj is
represented by the color scheme shown in the offset to
the right for each panel in Fig. 3. As in Ref. [22], we draw
attention to the most impactful data and physical processes
by imposing a highlighting cut, jSfj > 0.25, and selecting a
coloration scheme which suitably reveals the dependence
of data sensitivities on the kinematical matching parame-
ters. On the basis of our sensitivity analysis, we are in a
position to make a number of observations regarding the
empirical information that drives the current knowledge of
the lower hxniu−d Mellin moments.
The highlighted points emphasized in the panels of Fig. 3

often rather closely correspond to the CTEQ-TEA experi-
ments which enjoy the highest per-datum sensitivities,

hjSfji ¼
1

Npt

X
i∈Npt

jSifj: ð21Þ

In decreasing order, these are CMS7Masy2’14 (0.557),
E866rat’01 (0.365), CMS7Easy’12 (0.333), CCFR-F3’97
(0.307), and NMCrat’97 (0.212), where the quantity in
parentheses is the computed average of each experiment
per measured point.

For the purpose of enumerating this information, we
include only those experimental measurements with point-
averaged sensitivities exceeding the lower bound hjSfji >
0.2. On the other hand, by the total sensitivity metricP

i∈Npt
jSifj, we identify a somewhat different collection of

experiments with a leading impact on the first isovector
moment; viz. HERAIþ II’15 (37.8); CCFR-F3’97 (26.4);
NMCrat’97 (26.1); E866pp’03 (20.7); BCDMSp’89 (19.3).
We point out that the point-averaged and total sensitivities
for all CTEQ-TEA experiments are summarized in
Appendix using ranking tables, as well as in Figs. 13
and 14, which are further described below. Additional
numerical details can be found on the companion website,
Ref. [58]. In this context, there is a pronounced influence of
the combined HERAIþ II experiment due to the extremely
large number of measurements (Npt ¼ 1120) taken—and
despite the fact that only a minimal number of these exhibit
per-point sensitivities that exceed the highlighting cut
jSfj > 0.25 imposed on the impact maps in this analysis.
Continuing, the right panel of Fig. 3 also shows the

corresponding distribution of CTEQ-TEA sensitivities in
ðx; μÞ space for the second isovector moment hx2iu−−d− , for
which the constraints arising from individual experiments
fitted by CT are somewhat different. In this instance, we
find the distribution of point-averaged sensitivities within
the CTEQ-TEA dataset to be driven primarily by electro-
weak boson production measurements: CMS7Masy2’14
(0.492), D02Easy2’15 (0.416), CMS7Easy’12 (0.282),
LHCb7Wasy’12 (0.250), CCFR-F3’97 (0.224), and
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FIG. 3. Sensitivity of the CTEQ-TEA datasets to hxiuþ−dþ and hx2iu−−d− . The factorization scales of Mellin moments and PDFs are
μF ¼ μlat ¼ 2 GeV. As described in the text below, we colorize only those data points with significant individual sensitivity jSfj > 0.25,
so as to highlight the pulls of the most constraining measurements. Points falling below this highlighting threshold (i.e., with
jSfj < 0.25) are indicated in grayscale.
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D02Masy’08 (0.211). In contrast to the total isovector
momentum considered above, we therefore again find a
leading role for the 7 TeV CMS lepton asymmetry
measurements of AμðηÞ [CMS7Masy2’14] and AeðηÞ
[CMS7Easy’12], although the size of the sets (Npt ¼ 11)
is such that their aggregated pull on hx2iu−−d− is dominated
by larger fixed-target datasets identified by an analysis of
the summed sensitivities, as we point out below. In addition
to the CMS measurements, a number of other electroweak
boson sets evidently have a stronger pull on the hx2i
isovector moment, including the corresponding D0 meas-
urement of AeðηÞ (D02Easy2’15), which probes higher x,
as well as LHCb.
The evaluation according to the aggregated sensitivities

reveals a different hierarchy. In this case, fixed-target mea-
surements of DIS cross sections and structure functions—as
well as a couple Drell-Yan sets—are dominant, namely,
HERAIþ II’15 (36.5), BCDMSp’89 (33.1), E866pp’03
(22.2), CCFR-F3’97 (19.3), and NMCrat’97 (18.4), with a
rapid falloff in the aggregated sensitivity below

P jSfj beyond
these experiments. It should be noted, however, that were the
boson production datasets with especially strong per-datum
sensitivities indicated above combined into a single collection,
the resulting aggregated impact of this collection would
approach

P jSfj ∼ 34, placing this combination of 150 data
points just beyond the BCDMS Fp

2 data (Npt ¼ 337) and
only behind the HERAIþ II’15 set (Npt ¼ 1120) in total
sensitivity.

b. Moments of qþ distributions.—As we pointed out in the
discussion of the u − d moments at the start of Sec. II D 1
above, the fact that the disconnected insertions contribute
equally to u- and d-type distributions implies their vanish-
ing for isovector (τ3) charges. Unlike these combinations,
the moments of flavor-separated distributions such as
uþðx; μlatÞ and dþðx; μlatÞ receive contributions from both
connected and disconnected insertions. The disconnected
insertions arise from Wick contractions of quark fields
not explicitly present in interpolation operators used
to construct the 2-point function associated with the
nucleon propagator; disconnected insertions are therefore
essentially equally present in both u-type and d-type
flavor-separated moments. Unfortunately, evaluating dis-
connected insertions on the lattice is computationally
expensive and, historically, has proved challenging.
In the case of the higher moments, they are generally

quite small—e.g., Ref. [41] found hx2iu−;d− to be consistent
with zero, and, along these lines, the disconnected con-
tributions in these instances will themselves be fairly small.
In fact, even for the larger first moments hxiþq , the
differences between calculations with and without discon-
nected insertions are within uncertainties, suggesting that
these contributions may not be so large for the u- and
d-type distribution moments. Nucleon strangeness, on the

other hand, necessarily originates exclusively with dis-
connected insertions, since the proton possesses no valence
strange content, and, consequently, no strange quark fields
are explicitly present in the nucleon interpolation operators
from which two-point correlation functions are evaluated.
Precise lattice data involving each of these flavors as well
as for multiple Mellin moment orders would be instru-
mental in disentangling the interplay of connected vs
disconnected insertions and helping to resolve the under-
lying dynamics. This observation also motivates a com-
prehensive assessment of the same moments as computed
from phenomenological PDFs as well as a reckoning of the
various pulls from experimental data that act upon them.
uþ-quark moments. For hxiuþ, we consider the CTEQ-

TEA sensitivity contained in the map of the LHS panel of
Fig. 4; as is the case fairly generically for the leading
moments of the light-quark distributions, the most con-
centrated locus of high-sensitivity data is found in the
fixed-target sector in the lower right quadrant of the ðx; μÞ
plot—particularly for x≳ 0.01 and μ≲ 10 GeV. Upon
inspection, these points arise from measurements at
BCDMS (on the proton—BCDMSp’89—as well as the
deuteron, BCDMSd’90) and the E866 data. Empirical
information with especially larger per-datum sensitivities
can again be identified by listing the leading experiments in
descending order of their point-averaged sensitivities.
These are CCFR-F3’97 (0.337), E866rat’01 (0.277),
D02Masy’08 (0.250), CMS7Masy2’14 (0.248), and
NuTeV-nu’06 (0.221). While for the total sensitivities we
find HERAIþ II’15 (40.8), BCDMSp’89 (39.5), CCFR-
F3’97 (29.0), BCDMSd’90 (24.8), CDHSW-F2’91 (16.5),
CDHSW-F3’91 (15.1), and E866pp’03 (10.3).
dþ-quark moments. As an illustration of the flavor

dependence of the PDF moments, we compare the right
panel of Fig. 4 with the corresponding sensitivities for
hxidþ, shown in the right panel. Here we find again a strong
role for charged-current processes from lepton charge
asymmetry data and νA DIS, if the leading per-datum
sensitivities are considered: CMS7Masy2’14 (0.419),
NuTeV-nu’06 (0.238), CMS7Easy’12 (0.228), CCFR-
F3’97 (0.227), and CDHSW-F2’91 (0.225). On the basis
of the total sensitivities of these experiments, however, we
again find a hierarchy dominated by the combined HERA
dataset, for which the CC e�p channels show somewhat
enhanced sensitivity to moments of dðxÞ relative to uðxÞ
according to both the hjSfji and

P jSfj metrics illustrated
in Fig. 13; this is particularly true of the CC eþp HERAIþ
II information, for which the LO reduced cross section
σrðx;Q2Þ is closely driven by the behavior of d-type quark
distributions, especially at larger x. Beyond the HERA
measurements, the descending list of the experiments with
high total sensitivities has a trailing collection of fixed-
target measurements, namely, HERAIþ II’15 (54.2),
BCDMSd’90 (26.5), NMCrat’97 (22.6), CCFR-F3’97
(19.5), CDHSW-F2’91 (19.1), BCDMSp’89 (18.5), and
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E866pp’03 (14.8). In this instance, the second most
influential measurement is the deuteron target structure
function extractions from BCDMS (BCDMSd’90)—a fact
consistent with the traditional importance ascribed to
deuteron measurements for performing nucleon flavor
separations.
sþ-quark moments. The sensitivities to the moments of

the sþ distribution are presented in Fig. 5. For hxisþ, the

measurements with leading point-averaged sensitivities are
found to be NuTeV-nu’06 (0.429), CCFR SI nub’01
(0.344), CCFR SI nu’01 (0.313), NuTeV-nub’06 (0.302),
and D02Masy’08 (0.274); while those with the highest
predicted total impact based on aggregated sensitivity are
HERAIþ II’15 (31.4), NuTeV-nu’06 (16.3), CCFR SI
nub’01 (13.1), CCFR SI nu’01 (12.5), and NuTeV-
nub’06 (10.0). Across both the aggregated and the average
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FIG. 5. CTEQ-TEA sensitivity to the first- and third-order Mellin moments of the sþ distribution. As elsewhere, the factorization
scales of Mellin moments and PDFs are μF ¼ 2 GeV.
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FIG. 4. Sensitivity of the CTEQ-TEA datasets to hxiuþ (left panel) and hxidþ (right panel). As in Fig. 3, sensitivities are with respect to
moments evaluated at μF ¼ μlat ¼ 2 GeV.
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per-point sensitivities, the decisive role of neutrino scatter-
ing data is evident, despite the still leading role of the
combined HERA measurements—especially noting the
fact that the summed sensitivity of the four leading ν
experiments mentioned above is

P jSνfj ¼ 51.9, exceeding
the HERA accumulated impact by ∼65%.
In the CT14HERA2 NNLO PDF set, strangeness was

parametrized symmetrically (i.e., under the assumption
sðxÞ ¼ s̄ðxÞ; as a result, the moments of the s−-type
distributions, including hx2is− , are identically zero. For that
reason, we instead consider here the next highest moment of
the strangeness distribution, i.e., the third moment hx3isþ ;
for which we find the point-averaged sensitivities of the
leading experiments (again, cutting at hjSfji > 0.2) to be
NuTeV-nub’06 (0.568), CCFR SI nub’01 (0.387), and
NuTeV-nu’06 (0.269), clearly suggesting the very important
role of the NuTeV ν̄ dimuon production measurements
(NuTeV-nub’06), which show especially enhanced sensi-
tivity to the higher hx3isþ moment than was seen for the total
strange momentum hxisþ . For the total sensitivities, the
constraints imposed by the CTEQ-TEA dataset come
primarily from several experiments HERAIþ II’15
(20.3), NuTeV-nub’06 (18.7), CCFR SI nub’01 (14.7),
and NuTeV-nu’06 (10.2). Thus, for both Mellin moments
of the sþ distribution, the fixed-target ν DIS experiments
enjoy a clear advantage in their sensitivity compared to the
rest of the CT14HERA2 experimental datasets.

c. Moments of q− distributions.—At present, lattice deter-
minations for the next highest hx2iq moments of the light-
quark distributions have not matured to the level of extant
calculations of the first moments hxiq, particularly in the

sense that these have been computed thus far only in Ref. [41]
in the quenched approximation (i.e., excluding dynamical
quark loops). Nonetheless, such determinations are likely
forthcoming and can yield vital information regarding asym-
metric x dependence in the light-quark distributions.
We plot the sensitivity maps to the hx2iq− moments of the

u- and d-quark distributions in the left and right panels of
Fig. 6, respectively. As elsewhere, these panels examine the
sensitivity of the CTEQ-TEA set to moments evaluated at
the typical lattice scale μ ¼ μlat ¼ 2 GeV.
u−-quark moments. For the second moment of the u−

distribution, the leading point-averaged sensitivities are due
to fixed-target DIS experiments and the 7 TeV CMS lepton
charge asymmetries, led by CCFR-F3’97 (0.503); beyond
this, experiments with hjSfji > 0.2 are CMS7Masy2’14
(0.413), CDHSW-F3’91 (0.248), and CMS7Easy’12
(0.244). In this context, the fact that information on the
parity-odd structure function Fp

3—especially as provided
by CCFR-F3’97—shows such sizable influence over hx2iu−
is consistent with the leading-order ∼q − q̄ behavior of Fp

3

in the quark-parton model. As such, thorough knowledge of
the x dependence of xF3 facilitates an unraveling of the
C-odd distributions of the q− type and constrains their
higher moments. As was the case, however, for the hxiqþ
moments, consideration of the aggregated sensitivities
reveals a larger spread of experiments with the strongest
pulls belonging again to the combined HERA dataset
HERAIþ II’15 (43.9), the νDIS measurements of xF3

from CCFR [CCFR-F3’97 (43.2)] identified by the point-
averaged ranking above, BCDMSp’89 (39.2), and
E866pp’03 (32.7). Having somewhat diminished but still
significant pulls are several of the other fixed-target
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FIG. 6. Sensitivity of the CTEQ-TEA data to the v3u;d moments hx2iu− (left) and hx2id− (right), computed for μF ¼ 2 GeV.
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experiments involving both neutrino and μ DIS as well as
the Drell-Yan process; namely, these are CDHSW-F3’91
(23.8), E605’91 (18.4), BCDMSd’90 (13.6), and
NMCrat’97 (13.4).
d−-quark moments. As observed above for the lower

hxiqþ moments imaged in Fig. 4, there are evident
differences between the sensitivity maps for d- vs u-quark
moments, and this holds again for the explicit comparison
of hx2id−;u− illustrated in Fig. 6. In fact, these systematic
differences are especially marked for the hx2i moments, as
inspection of Fig. 6 attests. Especially notable in the right
panel of Fig. 6 is the very strong sensitivity jSfj≳ 0.75 for
a select subset of the gauge production data, particularly for
x≳ 10−4 and separately for x≳ 0.1. These especially
strong constraints to hx2id− originate from an amalgam
of electroweak datasets, among which we find the 8 TeV
forward W�, Z production cross section data of LHCb
(LHCb8WZ’16), the analogous information at 7 TeV
(LHCb7ZWrap’15), as well as the forward-backward
eþe− asymmetry in W�, Z production at Runs 1 and 2
of CDF, CDF1Wasy’96 and CDF2Wasy’05. Compared
with hx2iu− , on the other hand, for the second moment of
d−ðxÞ we find a substantially more restricted outlay of
individual high-impact measurements in the fixed-target
region, with significantly fewer data belonging to very high
x≳ 0.4 or x≲ 0.2 identified. Of these, the E605, NMCrat,
and CCFR-F3 points enjoy special prominence. Many of
these trends revealed by the sensitivity map in the right
panel of Fig. 6 are further confirmed by quantitative
ranking of the CTEQ-TEA experiments, especially based
on the per-point sensitivities. For the second moment
of the d− distribution, the point-averaged sensitivity
ranked experiments are D02Easy2’15 (0.519), CCFR-
F3’97 (0.381), LHCb7Wasy’12 (0.362), CMS7Masy2’14
(0.328), D02Masy’08 (0.293), CDF1Wasy’96 (0.252),
LHCb8WZ’16 (0.217), LHCb7ZWrap’15 (0.214), and
E605’91 (0.207).
For the aggregated sensitivities, here also we find the

knowledge of the d− second moment to be driven foremost
by xF3 data from CCFR and the combined HERA data,
CCFR-F3’97 (32.8) and HERAIþ II’15 (32.3), respec-
tively. We note, however, that the total sensitivity of these
leading experiments to the d− distribution is reduced
roughly ∼30% relatively to what was found for the
corresponding u-quark sensitivities. Beyond these leading
measurements, an assortment of μ and νDIS and Drell-Yan
experiments have the tightest pulls. Again in descending
order, these are E605’91 (24.7), CDHSW-F3’91 (18.5),
BCDMSd’90 (15.2), NMCrat’97 (14.8), BCDMSp’89
(14.4), E866pp’03 (13.8), and CDHSW-F2’91 (11.7).

2. The gluon momentum fraction

We can extend this program to the gluonic sector,
considering the total nucleon momentum carried by gluons

as characterized by the first moment of the gluon distri-
bution, hxig; for the time being, this is the only moment of
the gluon PDF which has been evaluated by multiple lattice
groups, and we therefore concentrate on it primarily.
Figure 7 illustrates the sensitivity to hxig of the CTEQ-
TEA data considered in the plots of the preceding section.
From our analysis of the sensitivities, we arrive to

perhaps not an entirely expected conclusion that a combi-
nation of DIS experiments holds the strongest cumulative
sensitivity to hxig, acquired through QCD radiative con-
tributions at NLO and higher orders. Indeed, while neither
the neutral-current DIS nor charged-current DIS probe the
gðx;QÞ at the Born level, the degree of the Bjorken scaling
violation in DIS cross sections at x > 0.1 is known to be
driven by the magnitude of the gluon PDF. Consequently
the extensive DIS data at high x provide the dominant
constraints on gðx;QÞ in the x region giving the largest
contribution to hxig.
In contrast, the hadron-hadron collider measurements

such as production of inclusive jets or tt̄ pairs, while
probing the gluon PDFs already at the lowest order in αs, do
not compete yet with DIS in their sensitivity to hxig. Thus,
unlike what was generally observed for the quark distri-
bution moments reported above, only two experiments
within the CTEQ-TEA set lie above the hjSfji > 0.2
ranking cut for hxig. Based on their point-averaged sensi-
tivities, these are both measurements of Fp

2 (albeit extracted
from nuclear data), specifically, CDHSW-F2’91 (0.312)
and CCFR-F2’01 (0.237). Immediately beyond these most
valuable “per-point” measurements of F2, several other
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FIG. 7. Sensitivity of the CTEQ-TEA datasets to hxig. The
factorization scale at which the moment is evaluated is
μF ¼ 2 GeV. Here we have only a single panel for hxig, given
that lattice computations thus far only exist for hGμνGμνi.
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experiments fall immediately below the cut with slightly
weaker averaged sensitivities, including the νDIS meas-
urement of F3ðx;Q2Þ recorded by CCFR-F3’97 (0.188),
the 7 TeV ATLAS high-pT Z production data of
ATL7ZpT’14 (0.184), and the 8 TeV tt̄ measurements
from ATLAS, ATL8ttb-mtt’16 (0.172).
Once again, in terms of the aggregated sensitivities, we

observe a distinctly important role for the combined HERA
dataset—HERAIþ II’15 (49.2)—a result consistent with
the significant precision and very wide coverage over x and
Q2 of these cross section data. This wide coverage inQ acts
as a crucial lever arm to constrain the QCD evolution in the
CT (or indeed any) parametrization, and thereby restricts
the phenomenological behavior of the singlet and gluon
distributions. After the reduced cross section measurements
of HERA, a cascading series of nucleon or deuteron
structure function Fp;d

2 measurements obtained on either
hydrogen or nuclear targets contain the greatest share of
information on the integrated gluon distribution. In
descending order, these are the ν − Fe DIS data of
CDHSW-F2’91 (26.5), followed by μ scattering data from
BCDMS, first on the deuteron, BCDMSd’90 (25.8), as well
as on a hydrogen target, BCDMSp’89 (24.9). Last, neutrino
data from CCFR on F2 [CCFR-F2’01 (16.3)] and xF3

[CCFR-F3’97 (16.2)] have comparable pull between these
two structure function measurement channels, and impor-
tant influence in the wider fit. It is intriguing to notice
that, while the aggregated pull of HERAIþ II’15 (49.2)
strongly dominates the spread of CTEQ-TEA experiments
considered in isolation, were the leading ν − Fe experi-
ments above regarded as a single experiment and their
accumulated sensitivities simply combined directly, the
result (59≳ 49.2) surpasses the very large combined
HERA dataset, which is based onNpt ¼ 1120 cross section
measurements. A similar observation holds for the
BCDMS data. We therefore again stress the observation
made above in the context of the aggregated CTEQ-TEA
sensitivities to, e.g., hx2iu−−d− : while the great extent
of the combined HERA dataset’s kinematical coverage
frequently awards it a leading role in terms of its aggregated
effect, agglomerations of much smaller, targeted datasets
can have a comparable or greater combined effect, in
principle.
Although they do not appear among the core of most

decisive experiments detailed above, some of the newer
LHC datasets canvassed in Ref. [22] are nonetheless
among the top ∼10 most sensitive experiments to hxig—
particularly the inclusive jet data found in Ref. [22] to
provide important constraints to the gluon distribution
overall. Specifically, these are the 8 and 7 TeV CMS
inclusive jet production data, CMS8jets’17 (7.1) and
CMS7jets’14 (6.1), respectively. The future potential
of the LHC jet data to constrain the gluon at large x
crucially depends on improvements in the understanding of
significant systematic errors in these measurements.

3. Flavor asymmetries of the nucleon sea

As a final consideration in this section, we examine the
sensitivities to linear combinations of the Mellin moments
that quantify breaking of flavor SUð3Þ symmetry of the
nucleon’s light-quark sea. The flavor structure of the
proton’s quark sea has for decades attracted sustained
focus, especially regarding the dynamical origin of the
observed charge-flavor asymmetry embodied by the break-
ing of the SUð3Þflavor PDF relation ūðxÞ ¼ d̄ðxÞ ¼ sðxÞ ¼
s̄ðxÞ often assumed in the earliest phenomenological QCD
global fits. Much formal interest in this topic attends to the
fact that the x-dependent breaking of the SU(2) symmetry
relation d̄ðx; μÞ − ūðx; μÞ ¼ 0 at low scales is principally
understood as a feature of nonperturbative QCD [59,60];
for instance, patterns of dynamical chiral symmetry break-
ing in QCD favor hadronic dissociations of the proton
having the form p → πþn at low energies, which are
thought to produce generic excesses of d̄ over ū in
contributing to the nucleon’s flavor structure [61–63].
It should be noted, however, that accounting for the detailed
x dependence of d̄ðxÞ − ūðxÞ (or, equivalently, of devia-
tions of the flavor ratio from d̄=ū ¼ 1) in the context of
meson-cloud models informed by this physical picture has
been challenging.
Historically, much of the empirical information on

parton-level flavor symmetry violation in the nucleon
sea has been garnered through examinations of the unpo-
larized DIS structure functions. Formally, the structure
functions can be described using well-established factori-
zation theorems in terms of which they may be separated
via convolution integrals over the long-distance PDFs and
the perturbative coefficient functions.
In this context, a crucial observable first measured

systematically by NMC [64,65] is the Gottfried sum rule
[66], which is sensitive to nonperturbative dynamics lead-
ing to the SU(2) flavor asymmetries in the light-quark sea
mentioned above. The canonical expression of the sum rule
can be obtained by applying the leading-order quark-parton
model (QPM) to the isovector structure function difference,

Z
1

0

dx
x
ðFp

2 − Fn
2ÞjQPM ¼ 1

3

Z
1

0

dxðuþ − dþÞ≡ 1

3
h1iuþ−dþ

¼ 1

3
−
2

3

Z
1

0

dxðd̄ − ūÞ; ð22Þ

wherewe have used isospin and the identities qþ ¼ q− þ 2q̄
and

R
dxðu− − d−Þ ¼ 1 to rearrange the first line into the

standard statement of the sum rule on the second. Most
importantly, we highlight the fact that the zeroth moment of
the isovector PDF, h1iuþ−dþ [the right-hand side (RHS) of the
first line of Eq. (22)], is directly related to the behavior of
d̄ − ū, deviating from unity when h1id̄−ū ≠ 0. While this
latter sea quark PDF moment appearing on the far RHS of
Eq. (22) is not directly accessible on the lattice as a zeroth
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unpolarizedmoment, we are nonetheless able to compute the
sensitivity of the CTEQ-TEA set to h1iuþ−dþ and the related
violation of the symmetric sea ū ¼ d̄ scenario formulated in
termsofMellinmoments; this connection cruciallymotivates
lattice measurement of the higher isovector moments
hx1;3iuþ−dþ treated in Secs. II D 1 and V, which would
constrain the behavior of the phenomenological isovector
distribution and inform its zerothmoment and analyses of the
Gottfried sum rule. Moreover, the x < 0 region of the
isovector quasidistribution presented in Sec. III is immedi-
ately related to d̄ðxÞ − ūðxÞ, again implying a complemen-
tary avenue for lattice sensitivity to the light-quark sea.
In Fig. 8, we map the calculated sensitivities of the

CTEQ-TEA high-energy dataset to the zeroth isovector
moment h1iuþ−dþ . While the general pattern of sensitivities
in Fig. 8 is consistent with what we observed for
the higher isovector moments illustrated in Fig. 3, the
sensitivity is especially substantial here for W� and Z
production and the E866 cross section ratio (E866rat’01).
To a lesser extent, we observe notable pulls from
an assembly of fixed-target measurements, including sev-
eral DIS experiments: the NMC structure function ratio
information (NMCrat’97), the CCFR measurements of xFp

3

(CCFR-F3’97), and the BCDMS Fp
2 data (BCDMSp’89).

These visible features of the PDFSense sensitivity map
are largely borne out by the point-averaged CTEQ-TEA
sensitivities to the zeroth isovector moment; as the

moments of the higher isovector moments and d� distri-
butions explored above, the list of leading experiments
ranked by this metric is again led by the 7 TeV μasymmetry
data recorded by CMS [CMS7Masy2’14 (0.645)], followed
closely by the deuteron-proton cross section ratios mea-
sured by E866 [E866rat’01 (0.600)]; for the latter, this
strong pull is notably consistent with E866’s aim of probing
the x dependence of d̄ðxÞ=ūðxÞ—a topic which continues to
motivate modern experiments such as SeaQuest. Following
these, the per-datum sensitivities of the CTEQ-TEA
data are dominated by an amalgam of electroweak
experiments represented by the rows of gauge boson data
shown in Fig. 8. Again in descending order, these
include LHCb7Wasy’12 (0.546), LHCb8WZ’16 (0.432),
CMS7Easy’12 (0.381), CMS8Wasy’16 (0.370),
LHCb7ZWrap’15 (0.351), D02Easy2’15 (0.323),
D02Masy’08 (0.252), and ATL7WZ’12 (0.219).
Ordered according to their aggregated impact, on the other

hand, only nine experiments exceed
P jSfj > 10. These now

include the usual DIS information from HERA and fixed-
target data from NMC, CCFR, and BCDMS, as well as the
E866 pp Drell-Yan cross section data—again owing to the
aggregated pull of these enlarged datasets. In order of total
sensitivity, these most decisive experiments are HERAIþ
II’15 (51.0), BCDMSp’89 (21.2), LHCb8WZ’16 (18.1),
CCFR-F3’97 (15.7), NMCrat’97 (15.2), E866pp’03 (14.8),
CMS8Wasy’16 (12.2), LHCb7ZWrap’15 (11.6), and
BCDMSd’90 (10.2). Of these, there is again a pronounced
effect fromDIS experiments led by the combinedHERAdata
which contribute by merit of their marginal per-datum
sensitivity ∼0.05–0.1 and the magnitude Npt of the datasets
to which they belong, much as we observed for many of the
other light-quark moments above.

III. SENSITIVITIES TO QUARK
QUASIDISTRIBUTIONS

In addition to the PDF Mellin moments we analyzed in
Sec. II, it has recently been proposed [20] that lattice QCD
may evaluate parton “quasidistributions” over the quark-
hadron longitudinal momentum fraction x ¼ kz=Pz by
evaluating matrix elements of the form

q̃ðx;Pz; μ̃Þ¼
Z

∞

−∞

dz
4π

eixPzzhPjψ̄ðzÞγzUðz;0Þψð0ÞjPi; ð23Þ

where Uðz; 0Þ is a gauge link along the longitudinal
z direction and the argument μ̃ represents the scales in the
regularization-independent momentum subtraction scheme
(RI-MOM) [67]; in practice, this involves the introduction
of the parameters pR

z and μR, which, for the purpose of this
analysis, we fix to the values given in Ref. [52], pR

z ¼
2.2 GeV and μR ¼ 3.7 GeV. Given its status as a matrix
element of correlation functions along a spacelike longi-
tudinal direction (unlike the ordinary MS PDFs), the quasi-
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FIG. 8. Sensitivity of the CTEQ-TEA data to the first moment
h1iðuþ−dþÞ. The factorization scale taken for the Mellin moment is
μ ¼ 2 GeV. We stress that, while this combination is not directly
calculable by the usual lattice methods, its appearance in the
Gottfried sum rule motivates its study, as well as a focus upon
higher moments.
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distribution of Eq. (23) can be computed on the lattice3 and
ultimately matched to the traditional phenomenological
PDFs via an inversion of the expression given in Eq. (2). On
the other hand, rather than inverting Eq. (2) to obtain the
MS PDF from the lattice qPDF output, it is also possible to
use Eq. (2) to compute the Pz-dependent qPDF from a
phenomenological MS PDF. Before lattice output matures
to a sufficient level to help specify the x dependence of
PDFs through the combination of qPDF calculations and
LaMET, it will be crucial to benchmark lattice calculations
against knowledge derived from the fitted PDFs,
and further improve perturbative matching and power-
correction formalism used to unfold PDFs from qPDF
calculations on the lattice. Practically, these improvements
are informed by direct comparisons of lattice-calculated
qPDFs and those matched from phenomenological MS-
PDFs computed according to Eq. (2). As such, if the PDF
uncertainty of matched qPDFs determined from Eq. (2)
could be further reduced by additional constraints from the
appropriate experimental data, the ability to test and refine
the LaMET formalism would be substantially enhanced.
This logic extends especially to an understanding of the Pz
dependence of the matched qPDFs, which can be

particularly sensitive to power corrections and the pertur-
bative order of the matching formalism.
Thus, to illustrate the current knowledge of qPDFs

predicted using Eq. (2), Fig. 9 displays the qPDFs derived
from the CT14HERA2 NNLO PDFs for Pz ¼ 1.5 and
3 GeV, together with the bands of current uncertainties on
these qPDFs estimated at the 90% probability level. The
uncertainties are computed according to the Hessian master
formula (16) from CT14HERA2 NNLO error sets. The
error bands for the collinear CT14HERA2 NNLO PDFs are
also shown, labeled as “MS PDFs.” In fact, a Hessian error
set for the qPDFs at a given Pz, μ̃, and μ can be obtained by
applying Eq. (2) to each error set of the CT14HERA2
NNLO ensemble. This algorithm is entirely analogous to
the calculation of the error ensemble for the Mellin
moments using Eq. (12). The qPDF Hessian set
q̃j∈f2Ngðx; Pz; μ̃Þ may then be used to compute the sensi-
tivities of the CTEQ-TEA set to the quark quasidistribu-
tions along the lines described in Sec. II B.

A. Sensitivity maps

For this purpose, we again deploy PDFSense, this time
to study in a proof-of-principle demonstration showing the
constraints from the present data on the Pz-dependent
quasidistributions computed according to Eq. (2) from the
underlying phenomenological PDFs, given the current
knowledge of the perturbative matching coefficient Z in
Eq. (23), computed using the one-loop formalism of
Ref. [52]. In the present section, we assume an MS
factorization scale of μF ¼ 3 GeV, as in Ref. [52].
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FIG. 9. The parton quasidistribution function ½ũ − d̃�ðx; Pz; μ̃Þ for x > 0 (left panel) and x < 0 (right panel), with the latter computed
from the MS PDF ū − d̄ as given by CT14HERA2 NNLO.

3While the expression appearing in Eq. (23) is standard in
the quasi-PDF literature, we clarify that in practice it can be
advantageous to compute matrix elements with the replacement
γz → γt [52]. While quasidistributions computed with γt have
similar limiting behavior for Pz → ∞ as those determined using
γz, lattice calculations carried out with γt enjoy greater stability
against operator mixing [68], and the numerical results shown in
this section therefore assume this procedure.
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Wewish to highlight both the dependenceuponx andPz of
the quasidistribution of the CTEQ-TEA sensitivities, and we
therefore plot in this section four panels in Fig. 10 showing
the behavior of the quasidistribution ½ũ − d̃�ðx; Pz; μ̃Þ at two
representative values at relatively large jxj: x ¼ −0.5, 0.85
forPz ¼ 1.5 and 3 GeV. For the quasidistributions evaluated
for x < 0, we note the implementation of the canonical

relation q̄ðxÞ ¼ −qð−xÞ, such that the negative x region of
the quasidistribution is related to the x dependence of the
phenomenological antiquark PDFs (with the logic that
backward-moving quarks with longitudinal momenta kz ¼
xPz < 0 are identifiable with forward-moving antiquarks).
The essential point that emerges from Fig. 10 is the fact

that a common cluster of experiments, mostly of higher x
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FIG. 10. The isovector quark quasidistribution at large values of �x ¼ kz=Pz, i.e., x ¼ −0.5 (left panels) and x ¼ 0.85 (right panels)
for a relatively fast moving proton, boosted to Pz ¼ 3 GeV (top panels), and comparatively slow protons boosted to 1=2 this
momentum, Pz ¼ 1.5 GeV (lower panels).
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fixed-target and W� production and asymmetry measure-
ments, represents the primary constraint to the ū − d̄
quasidistribution in a fashion that is largely independent
of the boosted hadron’s momentum Pz. Some intriguing Pz
dependence does begin to emerge, however, for the CTEQ-
TEA sensitivities to the highest x region of the isovector
quasidistribution, evident in Fig. 10 by comparing the
x ¼ 0.85 maps obtained for Pz ¼ 3.0 and 1.5 GeV in
the upper-right (b) and lower-right (d) panels. In particular,
the Pz dependence appearing in the jSfjðx; μÞ distributions
of Fig. 10 is signaled by the enhancement in the sensitivity
to ½ũ − d̃�ðx ¼ 0.85Þ of the highest x≳ 0.5 μp DIS points
of BCDMSp’89 and NMCrat’97 found for the Pz ¼
1.5 GeV [Fig. 10(d)] compared to the analogous calcu-
lation, for the sensitivities to the Pz ¼ 3 GeV quasidis-
tribution [Fig. 10(b)]. This relative increase of the
sensitivity of the high-x DIS information is offset by an
accompanying relative reduction in the general sensitivity
of the W�, Z production data, which for Pz ¼ 3 GeV
exhibited significant pulls on ½ũ − d̃�ðx ¼ 0.85Þ, especially
for the 7 TeV AμðηÞ asymmetry data taken by CMS,
CMS7Masy2’14. The implication of these observations
is the fact that a careful exploration of the nucleon structure
function at high x may provide crucial information for
constraining the Pz dependence of the quasidistributions
required for a robust application of LaMET. The qPDFs do
not have the usual x ∈ ½0; 1� support of the light-front PDFs
and are finite at x > 1. For Pz ¼ 1.5, 3 GeV, the isovector

qPDFs considered in this analysis are already rapidly
vanishing in the x > 1 region, however, and the sensitivity
maps for ½ũ − d̃�ðx≳ 1Þ are qualitatively similar to those
shown in Figs. 10(b) and (d).
In addition, one can examine the qPDF sensitivity for

shallower values of jxj ∼ 0, which we illustrate in Fig. 11 to
further explicate the sensitivity dependence on x of the
qPDF. In Fig. 11, we plot ½ũ − d̃�ðx ¼ 0.–05Þ (a) and
½ũ − d̃�ðx ¼ 0.05Þ (b), both for Pz ¼ 1.5 GeV. Compared
with ½ũ − d̃�ðx ¼ −0.5Þ shown in Fig. 10(c), we find a
significant enhancement in the sensitivity of the smaller-x
fixed-target and E866 ratio data to ½ũ − d̃�ðx ¼ −0.05Þ in
Fig. 11(a); this shift is accompanied by a moderate
redistribution in the sensitivity of the W-production data
about x ∼ 10−2 in ðx; μÞ space. On the other hand, in
moving from x ¼ −0.05 → 0.05, changes to the data pulls
on ½ũ − d̃�ðx ¼ 0.05Þ plotted in Fig. 11(b) occur mostly
for the W- and Z-production data, especially at larger
rapidities, corresponding to x≳ 10−1 and x≲ 10−3, while
the sensitivities of the data in the fixed-target region show
comparatively weaker dependence on x of the qPDF in
the jxj ∼ 0 region. The qPDF sensitivities of the full
CTEQ-TEA data therefore exhibit a complex dependence
upon x of the qPDF that implies the importance of
experimental information from diverse channels in improv-
ing phenomenological benchmarks for future qPDF lattice
calculations.
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FIG. 11. As Fig. 10 for the isovector quark quasidistribution, but now for comparatively small values of jxj, in this case, x ¼ −0.05
(left panel) and x ¼ 0.05 (right panel). Here, we plot jSfj maps only for the smaller boost scale, Pz ¼ 1.5 GeV, as we find the Pz

dependence of the sensitivities at these smaller values of jxj to be very mild.
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IV. MOTIVATION FOR FUTURE EXPERIMENTS

A number of futuristic machines have been either
proposed or planned with a stated aim (among other
physics motivations) of disentangling the collinear struc-
ture of hadronic states, including various futuristic hadron-
collider experiments such as the HL-LHC [69] and, e.g.,
the AFTER@CERN proposal [70]. Among these propos-
als, a number of lepton-hadron colliders have been advo-
cated, especially a future U.S.-based EIC [71–74] and a
lepton-nucleon/nucleus variant of the LHC, the Large
Hadron-Electron Collider (LHeC) [75]. An EIC, in par-
ticular, is most likely to serve the dedicated role of a hadron
tomography machine, given its high-luminosity coverage
of the crucial few-GeV quark-hadron transition region in
the kinematical parameter space. An EIC would enjoy
unprecedented facility in unfolding the nucleon’s collinear
and transverse structure at scales adjacent to the nucleon
mass, ≳M. The science output of an EIC would greatly
build upon the JLab12 program [76], while the kinematic
coverage of an EIC would be particularly favorable for
constraining the quantities accessible in next-generation
lattice QCD calculations.
As a simple illustration of the potential of a future DIS

program, we compute the sensitivity maps that result from
implementing a set of pseudodata into the PDFSense
framework and examining our impact metrics for the first
moment of the isovector distribution hxiuþ−dþ and the
high-x behavior of the Pz ¼ 1.5 GeV isovector quark

quasidistribution ½ũ − d̃�ðx; Pz; μ̃Þ. To avoid marrying our
predictions to the specifics of a particular experimental
proposal, we consider an archetypal machine that measures
the reduced cross sectionσrðx;Q2Þvia inclusivee� scattering
on an unpolarized proton target. For this example, cross
section pseudodata are produced in bins specified by a
realistic Monte Carlo event generator about the
CT14HERA2 NNLO theoretical prediction with a
Gaussian smearing function of standard deviation equal to
an assumed uncorrelated error taken from the Monte Carlo
simulation. Theoretical predictions are for the reduced cross
sectionmeasured in e�p scattering at

ffiffiffi
s

p ¼ 100 GeV in both
neutral- and charge-current interactions. For this illustration,
statistical uncertainties are based upon assumed integrated
luminosities of L ¼ 100 fb−1 in e−p scattering and L ¼
10 fb−1 for eþp events.
Figure 12 estimates the potential impact such a lepton-

nucleon collider might have on the above-noted lattice
computable quantities: in the left panel, the first moment,
hxiuþ−dþ , of the isovector quark distribution, and, in the
right panel, the large-x quasi-PDF matched from the
CT14HERA2 NNLO NNLO PDF set according to
Eq. (2). In both panels, physical channels for the inclusive
DIS process are explicitly represented by unique symbols;
these are NC e−p (disks); NC eþp (diamonds); CC e−p
(squares); CC eþp (triangles).
Figure 12 indicates that measurements at a high-lumi-

nosity lepton-nucleon collider can considerably improve
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FIG. 12. Sensitivity of pseudodata for the inclusive DIS of e� on unpolarized protons at
ffiffiffi
s

p ¼ 100 GeV to the first Mellin moment
of the isovector PDF combination hxiuþ−dþ (left) at an MS scale of μ ¼ 2 GeV. The right panel shows the sensitivity to the high-x
behavior of the quasidistribution for the same isovector PDF, ½ũ − d̃�ðx; Pz; μ̃Þ for Pz ¼ 1.5 GeV, μ ¼ 3 GeV, and μ̃ taken from
Ref. [52] computed according to Eq. (2). The plotted symbols characterize the specific channel as NC e−p (disks); NC eþp (diamonds);
CC e−p (squares); CC eþp (triangles).
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FIG. 13. A graphical representation of the sensitivity of each of the constituent experiments contributing to the CTEQ-TEA dataset.
The grids summarize the point-averaged (upper panel) and summed or total (lower panel) sensitivities of each experimental dataset to
each moment for several flavor combinations of strong interest; the color of the cell encodes the magnitude of the combined sensitivity
for that particular moment. In addition, we also include in the uppermost rows the sensitivities obtained for pseudodata consistent with a
future EIC-like lepton-nucleon collider experiment in the inclusive, unpolarized sector.

CHARTING THE COMING SYNERGY BETWEEN LATTICE QCD… PHYS. REV. D 100, 094040 (2019)

094040-21



FIG. 14. As Fig. 13, but in this case illustrating the per-datum (upper panel) and aggregated (lower panel) sensitivities of the
experiments within the CTEQ-TEA set to specific x regions (indicated at the bottom) of the isovector quasidistribution at Pz ¼ 1.5 GeV.
As in Fig. 13, we again show the evaluations for pseudodata corresponding to a future EIC-like machine at the top.
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the constraints on both quantities considered. In particular,
they supply very substantial sensitivities across the range of
x of the dataset, with especially large predicted impacts for
x≳ 0.1 as well as the x≲ 0.01 regions. A notable feature of
this information is the separation that emerges illustrating
the crucial role of both electron and positron probes: once
separated among channels, a prominent effect is the
important role of the CC-mediated positron-nucleon scat-
tering (eþp); this impact is very pronounced at large
x≳ 0.1. At the EIC, the sensitivities at x > 0.01 arise
from both the NC and CC channels, while at x < 0.001, the
sensitivities mainly come from NC eþp and e−p channels.

The jSfjðxi; μiÞ sensitivity maps appearing through-
out this analysis, including those in Fig. 12 for the EIC
pseudodata, are complemented by the companion plots
shown in Figs. 13 and 14. These figures integrate the
information displayed in the sensitivity maps for the PDF
moments (Fig. 13) and qPDFs (Fig. 14) experiment-by-
experiment, thereby summarizing the point-averaged sensi-
tivities hjSfji for all of the CTEQ-TEA experiments and EIC
pseudodata considered in this analysis, as well as the
corresponding aggregated sensitivities,

P
i∈Npt

jSifj. These
companion plots encapsulate the related information sum-
marized in Tables II–IV of Appendix. These tables sort the

TABLE II. Experimental datasets considered as part of CT14HERA2 NNLO and included in this analysis: deep-inelastic scattering.
We point out that the numbering scheme (Expt ID) included in this and subsequent tables follows the standard CTEQ labeling system
with, e.g., Expt. IDs of the form 1XX representing DIS experiments. The HERA combined dataset HERAIþ II’15 consists of both
neutral-current (NC) and charge-current (CC) scattering events.

Experiment name Expt ID Dataset details Npt

BCDMSp’89 101 BCDMS Fp
2 [77] 337

BCDMSd’90 102 BCDMS Fd
2 [78] 250

NMCrat’97 104 NMC Fd
2=F

p
2 [79] 123

CDHSW-F2’91 108 CDHSW Fp
2 [80] 85

CDHSW-F3’91 109 CDHSW Fp
3 [80] 96

CCFR-F2’01 110 CCFR Fp
2 [81] 69

CCFR-F3’97 111 CCFR xFp
3 [82] 86

NuTeV-nu’06 124 NuTeV νμμ SIDIS [83] 38
NuTeV-nub’06 125 NuTeV ν̄μμ SIDIS [83] 33
CCFR SI nu’01 126 CCFR νμμ SIDIS [84] 40
CCFR SI nub’01 127 CCFR ν̄μμ SIDIS [84] 38
HERAb’06 145 H1 σbr (57.4 pb−1) [85,86] 10
HERAc’13 147 Combined HERA charm production (1.504 fb−1) [87] 47
HERAIþ II’15 160 HERA1þ 2 Combined NC and CC DIS (1 fb−1) [88] 1120
HERA-FL’11 169 H1 FL (121.6 pb−1) [89] 9

TABLE III. Same as Table II, showing experimental data sets for production of vector bosons, single-inclusive jets, and tt̄ pairs.

Experiment name Expt ID Dataset details Npt

E605’91 201 E605 DY [90] 119
E866rat’01 203 E866 DY, σpd=ð2σppÞ [91] 15
E866pp’03 204 E866 DY, Q3d2σpp=ðdQdxFÞ [92] 184
CDF1Wasy’96 225 CDF Run-1 AeðηeÞ (110 pb−1) [93] 11
CDF2Wasy’05 227 CDF Run-2 AeðηeÞ (170 pb−1) [94] 11
D02Masy’08 234 D∅ Run-2 AμðημÞ (0.3 fb−1) [95] 9
LHCb7WZ’12 240 LHCb 7 TeV W=Z muon forward-η Xsec (35 pb−1) [96] 14
LHCb7Wasy’12 241 LHCb 7 TeV W AμðημÞ (35 pb−1) [96] 5
ZyD02’08 260 D∅ Run-2 Z dσ=dyZ (0.4 fb−1) [97] 28
ZyCDF2’10 261 CDF Run-2 Z dσ=dyZ (2.1 fb−1) [98] 29
CMS7Masy2’14 266 CMS 7 TeV AμðηÞ (4.7 fb−1) [99] 11
CMS7Easy’12 267 CMS 7 TeV AeðηÞ (0.840 fb−1) [100] 11
ATL7WZ’12 268 ATLAS 7 TeV W=Z Xsec, AμðηÞ (35 pb−1) [101] 41
D02Easy2’15 281 D∅ Run-2 AeðηÞ (9.7 fb−1) [102] 13
CDF2jets’09 504 CDF Run-2 incl. jet (d2σ=dpj

Tdyj) (1.13 fb−1) [103] 72
D02jets’08 514 D∅ Run-2 incl. jet (d2σ=dpj

Tdyj) (0.7 fb−1) [104] 110

ATL7jets’12 535 ATLAS 7 TeV incl. jet (d2σ=dpj
Tdyj) (35 pb−1) [105] 90

CMS7jets’13 538 CMS 7 TeV incl. jet (d2σ=dpj
Tdyj) (5 fb−1) [106] 133
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CTEQ-TEA experiments in descending order of their total
sensitivity (A, B, C) and point-averaged sensitivity (1, 2, 3).
The conventions that define these A-B-C, and 1-2-3 catego-
ries are defined in the caption of Table II. Information on the
PDF moments for additional flavor combinations, as well as
the numerical values for the total and aggregated sensitiv-
ities, can be found on the companion website, Ref. [58].
It is worth noting that there is often a closer correspon-

dence between experiments highlighted in sensitivity maps
such as Fig. 3 and those identified in the grid plots for the
point-averaged sensitivities hjSfji, i.e., the upper panels of
Figs. 13 and 14. For this reason, in discussing our numerical
results as illustrated by the following sensitivity maps, we
summarize the highest impact experiments according to
complementary considerations of those datasets that enjoy
sizable per-datum sensitivities to the PDF moments and
those that may not in general possess high-impact points
taken in isolation, but are nonetheless predicted to have a
large aggregated impact—often bymerit of the large number
of experimental data points Npt they have.
Our recurring observation in this article has been that, in

the CTEQ-TEA global analysis, the experimental data
involving nuclear targets affords critical and, in many cases,
leading, information on essentially all PDF moments ana-
lyzed in Sec. II. This is similarly true of the isovector qPDF
examined in Sec. III. Details of the nuclear binding at work
in the deuteron, for instance, are relevant for a number of the
CTEQ-TEA sets, including BCDMSd’90, NMCrat’97, and
E866rat’01. On the other hand, heavier nuclear systems
were probed in several other fixed-target experiments,
especially those involving νDIS; these include CDHSW
(both F2 and F3 sets, measured on Fe), the inclusive CCFR
and semi-inclusive dimuon data fromNuTeVand CCFR (all
also measured on Fe), and the E605 fixed-target pA Drell-
Yan measurements (Cu target). In multiple instances—for
example, in the impact plots for the strangeness moments

hx1;3isþ , the C-odd combinations hx2iu−;d− , and even the
gluon total momentum hxig—these experiments represent
the first, second, or third most influential information by the
aggregated or point-averaged sensitivity, or both.
Present phenomenological constraints, particularly at

large x, are therefore strongly dependent on data for which
nuclear corrections are an important consideration. These
corrections are imperfectly known, and often dependent on
model treatments or an assumption that nuclear correction
effects are simply absorbed into extracted PDF uncertain-
ties. An EICwould bewell poised to address these issues by
performing detailed studies of nuclear medium effects.

V. IMPLEMENTATION OF LATTICE DATA IN
QCD ANALYSES

In the foregoing sections we have analyzed various
empirical constraints upon individual lattice QCD observ-
ables which are either presently accessible or expected to be
in the foreseeable future. These experimental data were
taken either from the CTEQ-TEA high-energy dataset or
generated as hypothetical pseudodata recorded at an EIC-
like e�p DIS collider. The main purpose of this exploration
was to identify the experimental processes and measure-
ments that will impose the strongest constraints on the
lattice-calculable quantities dependent on the PDFs, and
that thus can serve as stringent phenomenological bench-
marks to help lattice calculations reach their maturity.
But to this latter point, is it possible to proceed in the

direction converse to the one taken by asking: how might
the multifaceted results of lattice QCD constrain the x
dependence of collinear PDFs fitted in future global
analyses? Given the complexity of the multichannel infor-
mation on the Mellin moments and qPDFs furnished by the
lattice, its inclusion in the upcoming PDF fits may produce
a plethora of nontrivial constraints on the underlying para-
metrizations. Rather than attempting to disentangle the

TABLE IV. Same as Table II, showing experimental datasets for production of vector bosons, single-inclusive jets, and tt̄ pairs that
were not incorporated in the CT14HERA2 NNLO fit but included in our augmented CTEQ-TEA set.

Experiment name Expt ID Dataset details Npt

LHCb7ZWrap’15 245 LHCb 7 TeV Z/W muon forward-η Xsec (1.0 fb−1) [107] 33
LHCb8Zee’15 246 LHCb 8 TeV Z electron forward-η dσ=dyZ (2.0 fb−1) [108] 17
ATL7ZpT’14 247 ATLAS 7 TeV dσ=dpZ

T (4.7 fb−1) [109] 8
CMS8Wasy’16 249 CMS 8 TeV W muon, Xsec, AμðημÞ (18.8 fb−1) [110] 33
LHCb8WZ’16 250 LHCb 8 TeV W/Z muon, Xsec, AμðημÞ (2.0 fb−1) [111] 42
ATL8DY2D’16 252 ATLAS 8 TeV Z (d2σ=djyjlldmll) (20.3 fb−1) [112] 48
ATL8ZpT’16 253 ATLAS 8 TeV (d2σ=dpZ

Tdmll) (20.3 fb−1) [113] 45
CMS7jets’14 542 CMS 7 TeV incl. jet, R ¼ 0.7, (d2σ=dpj

Tdyj) (5 fb−1) [114] 158
ATLAS7jets’15 544 ATLAS 7 TeV incl. jet, R ¼ 0.6, (d2σ=dpj

Tdyj) (4.5 fb−1) [115] 140
CMS8jets’17 545 CMS 8 TeV incl. jet, R ¼ 0.7, (d2σ=dpj

Tdyj) (19.7 fb−1) [116] 185
ATL8ttb-pt’16 565 ATLAS 8 TeV tt̄ dσ=dpt

T (20.3 fb−1) [117] 8
ATL8ttb-y_ave’16 566 ATLAS 8 TeV tt̄ dσ=dyht=t̄i (20.3 fb−1) [117] 5
ATL8ttb-mtt’16 567 ATLAS 8 TeV tt̄ dσ=dmtt̄ (20.3 fb−1) [117] 7
ATL8ttb-y_ttb’16 568 ATLAS 8 TeV tt̄ dσ=dytt̄ (20.3 fb−1) [117] 5
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many potential effects from the implementation of lattice
data into a global fit, we will use PDFSense to investigate
some general properties, such as the typical momentum
fractions constrained by including a specific Mellin
moment.
We again consider the moments of the SU(2) isovector

distribution u − d, in this case, contrasting the two lowest
moments of the qþ-type distribution, hxiuþ−dþ and
hx3iuþ−dþ , for which we plot the jSfjðx; μÞ sensitivity
map in the left and right panels of Fig. 15, respectively.
We clarify that in Fig. 3 of Sec. II D 1,we examined hxiuþ−dþ
and hx2iu−−d− , but here we directly examine the effect of
incrementing the order of the Mellin moment on a specific
flavor/charge combination for the purpose of showcasing
the relationship between the order and the associated
x dependence of the constraints imposed by data.
In moving from the first moment characterized in Fig. 3

and surrounding text to the third, we find a notable reduction
in the point-averaged sensitivity, hjSfji, of the leading
experiment, which remains CMS7Masy2’14 (0.342), but
is now immediately succeeded by D02Easy2’15 (0.307).
The other leading experiments by per-datum sensitivity also
remain E866rat’01 (0.225), CMS7Easy’12 (0.203), and
CCFR-F3’97 (0.187), but with significant decreases in their
values of hjSfji for hx3iuþ−dþ. By inspecting the total
sensitivities, an important reordering of the experimental
hierarchy becomes evident. In this case, BCDMSp’89
(39.4), with its large share of measurements at high x and
μ ∼ 10 GeV, displaces the combinedHERAdata,HERAIþ
II’15 (34.9), in terms of total pull. The important experi-
ments identified by their aggregated sensitivities to hxiuþ−dþ
continue to place strong constraints upon hx3iuþ−dþ , with

these being E866pp’03 (24.4), CCFR-F3’97 (16.1), and
NMCrat’97 (15.5). For these data, however, there is a salient
rightward shift toward higher x in the ðx; μÞ space displayed
in Fig. 15.
As a straightforward metric to quantify the distribution

over x of the sensitivities jSfjðx; μÞ plotted in Fig. 15, we
may evaluate an ensemble average

x̄jSf j ¼
P

ixijSifjP
ijSifj

; ð24Þ

where the sum i runs over data points in the CTEQ-TEA
set. On the basis of this metric and the panels of Fig. 15,
a relationship emerges between the order n of the PDF
moment hxniq� and the kinematics of the most constraining
data in the global analysis, with PDF moments of higher
order being constrained more strongly by data recorded at
higher x. For the first and third isovector moments plotted
in Fig. 15, we obtain a systematic increase in x̄jSf j as the
order of the moment is enlarged, finding a shift from x̄jSf j ¼
0.193 for hxiuþ−dþ to x̄jSf j ¼ 0.286 for hx3iuþ−dþ. Similar
relationships are observed between x̄jSf j as given by
Eq. (24) and the Mellin moments of other PDF flavors
and combinations.
It is possible to further unravel the observed x depend-

ence in jSfjðx; μÞ by considering the correlation defined in
Eq. (15). In Fig. 16, we plot the x-dependent correlation
between the PDF and its corresponding Mellin moment for
two examples—the lowest three lattice-accessible moments
of the dþ distribution (left panel) and the same information
for the isovector uþ − dþ. Across both panels, we observe
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FIG. 15. The two lowest lattice-accessible moments of the isovector PDF combination uþ − dþ.
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the same qualitative x dependence in the correlation as
the order n of the Mellin moment hxniqþ is increased.
Specifically, while the lowest n ¼ 1 moment is signifi-
cantly correlated with its PDF’s x dependence over a wide
range of x, peaking near x ∼ 0.1, this correlation vanishes
rapidly at highest x. On the other hand, the PDF correla-
tions with higher moments are rather different, in this case
being quite modest, especially for the highest n ¼ 5
moment, over most of the plotted range before becoming
very large, Cf ∼ 1, at x≳ 0.3. In fact, this behavior was
reflected in Fig. 15, which demonstrated the sensitivity
shift in jSfjðx; μÞ to favor many of the large-x data as the
Mellin moment is increased. Taken in conjunction with
the correlation results shown in Fig. 16, we may infer that
the sensitivity of high-x data to higher moments follows
from an underlying reciprocal relation that connects the
high-x behavior of PDFs to their higher-order Mellin
moments.
The observation that moments hxniq� of successively

higher order (n ≥ 1) are increasingly sensitive to the PDFs’
large-x behavior provides an impetus to seek alternative
moment-weighting functions which may be sensitive to low
x. One possible choice would be successively higher
moments of distributions smeared with polynomials in
the difference, ð1 − xÞn, i.e., hð1 − xÞniq� . In principle,
information on the hð1 − xÞniq� moments may be of use for
constraining PDFs in the region of small x, where they must
be integrable in the limit x → 0 to ensure hð1 − xÞniq are
well defined. In fact, since the polynomial expansion of
ð1 − xÞn is a linear combination in xn, i.e.,

hð1 − xÞniq ¼
Xn
k¼0

Cn
kð−1Þkhxkiq;

Cn
k ≡ n!

k!ðn − kÞ! ; ð25Þ

results for select moments, hxni, provided by the lattice
might not only help constrain PDF behavior at successively
larger x, but might also provide useful supplementary
information to assist efforts in the context of QCD global
analyses to determine PDF behavior at lower x. We clarify
this point with a specific example. As argued in Sec. II D 3,
the low-x behavior of the isovector difference uþðxÞ −
dþðxÞ in the integrand of Eq. (22) depends primarily upon
the sea-quark flavor asymmetry d̄ − ū. By the logic of
Eq. (25), a useful quantity with sensitivity to small-x
variations in uþðxÞ − dþðxÞ might be the weighted
moment,

hð1 − xÞ3iuþ−dþ
¼ h1iuþ−dþ − 3hxi⋆uþ−dþ þ 3hx2iuþ−dþ − hx3i⋆uþ−dþ ;

ð26Þ

in which the two “starred” hx1;3i terms above can in
principle be directly informed by lattice calculations.
While successively higher moments hxni are increasingly
correlated with PDF behavior at the largest x → 1, the right
panel of Fig. 16 suggests that, through the underlying
parametrization, the hxni moments may nonetheless have
significant correlation with the behavior of uþðxÞ − dþðxÞ

FIG. 16. The correlation between the Mellin moments and their corresponding PDFs for the dþ (left panel) as well as the isovector
uþ − dþ (right panel) moments plotted in Fig. 15. As done elsewhere for the Mellin moment calculations, these are shown for
μF ¼ 2 GeV. For each flavor, we plot the x-dependent correlation between the PDF and its integrated moment hxniqþ , for n ¼ 1,
3, and 5.
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for x≲ 10−2 or smaller—especially for n ¼ 1. As a result,
future PDF analyses seeking to unlock low-x densities may
benefit from lattice QCD constraints to select Mellin
moments, which, with sufficient precision, might help
reduce parametrization dependence and supplement fits
to low-x data.
We therefore stress that it will be crucial for future

phenomenological analyses to leverage a plurality of lattice
results to most strongly constrain their likelihood functions
or parameter spaces. The necessity of doing so is apparent
from our results on the moments of hxniuþ−dþ , in which
higher moments (n > 1) will be useful in coordination with
the leading total momentum fractions hxiuþ−dþ to maximize
constraints over wide reaches of x. We also emphasize the
fact that the jSfjðx; μÞ plots imply a synergistic relationship
between high-energy and lattice data, with, for example,
higher-order moments being especially valuable in inform-
ing fitted PDFs’ x dependence near x ≈ 1, where high-
precision data can be technically difficult to obtain. Similar
logic will place a high premium on lattice results obtained
using the quasi-PDF approach.

VI. CONCLUSION

As the number of observables accessible to lattice QCD
continues to grow, the necessity for PDF phenomenologists
to grapple with the resulting output will be increasingly
unavoidable. The chief message of this article is that this
represents an opportunity to form a potentially powerful
synergy between phenomenological PDF analyses and
lattice QCD. This synergy will be grounded in the ability
of PDF phenomenologists to drive improvements in lattice
calculations with benchmarks informed by high-energy
data, while the lattice provides informative constraints in
kinematical regions that are otherwise challenging to
constrain empirically. Before the envisioned relationship
can be fully realized, however, both communities must
establish a common basis for comparing results from lattice
QCD and global fits—a challenging undertaking given the
complex contemporary landscape of lattice calculations
and global fits, which involve a patchwork of theoretical
settings, systematic assumptions, and, in the case of QCD
analyses, empirical datasets. The PDFSense technology
deployed in this article provides a standardized framework
in which apples-to-apples evaluations of the pulls of
experimental information on lattice-calculable quantities
are possible. This fact suggests one avenue for assessing the
empirical origins of phenomenological predictions of
lattice data and a path forward for improving them.
While some studies have investigated the result of

selecting assortments of lattice data for inclusion into a
global analysis, in this work we have gone the other
direction and examined the constraints data place on
quantities which have been computed on the lattice. In
the process, we have established several primary findings:

(i) We have demonstrated the correspondence between
phenomenological predictions for specific physical
measurements and the importance of experimental
information for benchmarking lattice calculations.
Conversely, our impact study in the form of the
sensitivity maps for the various lattice observables
illustrates those regions of parameter space where
improved lattice data can be expected to have a
driving impact on PDF studies. For instance, precise
lattice data on hxidþ could improve knowledge of
dþðxÞ in the high-x region, given the sensitivity map
of Fig. 4 (right panel) and the correlations plotted in
Fig. 16. Similar logic applies to the moments of
other flavors.

(ii) In Sec. II, we found that most moments presently
accessible to the lattice are mainly constrained by a
small collection of high-impact experiments—for
many of the light-quark Mellin moments, for in-
stance, a combination of HERA and fixed-target DIS
data are especially decisive, as illustrated for the
uþ − dþ, uþ; dþ, and sþ moments appearing in
Figs. 3, 4, and 5, respectively. The overall sensitivities
of the CTEQ-TEA experiments to the quantities
considered in this analysis are summarized in Figs. 13
and 14, as well as Tables II–IV. The CTEQ-TEA data
pulls differ substantially for even vs odd Mellin
moments, due to the C-oddness vs evenness of the
associated quark distributions, seen by comparing the
sensitivity maps of Fig. 4 against those of Fig. 6.

(iii) We have also observed systematic tendencies in the
sensitivities of high-energy data to Mellin moments,
including a robust connection between the order n of
the Mellin moments hxniq� of quark distributions
and regions of x of the PDFs shown in Fig. 15. This
connection is “bidirectional” in the sense that ex-
perimental information at higher x are likely to exert
stronger pulls on higher-order Mellin moments,
while lattice information on the higher-order mo-
ments may potentially constrain the high-x behavior
of fitted PDFs. We conclude the eventual imple-
mentation of lattice data into QCD analyses will
benefit from the inclusion of Mellin moments
of various orders and parton flavors as well as
knowledge gained from qPDFs to constrain PDFs’
x dependence as widely as possible.

(iv) We have for the first time studied in Sec. III the
driving constraints from high-energy data on calcu-
lations of the Pz-dependent qPDFs. In so doing, we
have illustrated the direct link between qPDFs as
theoretical quantities and the empirical information
upon which calculations of the matched qPDFs from
phenomenological distributions depend. One in-
triguing consequence of this is the possibility of
more thoroughly constraining the Pz dependence of
the phenomenologically matched qPDFs with, e.g.,
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DIS measurements concentrated at large x shown in
Fig. 10. Reductions to the PDF uncertainties of the
high-x qPDFs could help drive theoretical improve-
ments in the LaMET formalism used to extract PDFs
from lattice data.

(v) We can assess the potential impact of future experi-
ments such as the high-luminosity lepton-nucleon
collider considered in Fig. 12, and we conclude that
data from such a machine would be extremely ben-
eficial for advancing the phenomenology of PDF
moments and matched qPDFs. The constraints on
Mellinmoments typically arise fromDISdata on fixed
nuclear targets, such that nuclear corrections may be
an important effect in PDF extractions involving these
data. As one example, Sec. II D 2 showed that the
gluon Mellin moment hxig receives its largest
constraints from DIS data measured on iron nuclei
(CCFR, CDHSW), which are known to have a differ-
ent preference for the large-x gluon than HERA DIS
information on the proton. A future lepton-nucleus
collider would enlighten such dependence of hxig and
other moments on the nuclear environment.

As gains continue to be made on the complementary
fronts of lattice theory and QCD analysis in the coming
years, the analysis carried out in this work will be of value
to guide phenomenologists and lattice practitioners in fully
leveraging the synergy between their fields to improve our

knowledge of hadron structure. Finally, we note that a
comprehensive set of results has been collected at the
public URL in Ref. [58]. While this collection includes
many of the calculations shown in this manuscript, a range
of other sensitivity maps and related computations omitted
here for brevity are also shown.
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APPENDIX: TABULATED SENSITIVITIES

Similar to Table VI of the PDFSense paper in Ref. [22],
the Appendix gives in Tables V, VI, and VII a series of
ranking tables of the Mellin moments hxni. Additional
tables for other moments and for the isovector quasi-PDF at
several values of x and Pz appear in the companion website
given as Ref. [58].

TABLE V. The aggregated and point-averaged sensitivities to moments of the u�-quark distributions of the experiments in the CTEQ-
TEA set, ranking according to the conventions of Ref. [22]. Here and in the subsequent tables, we arrange the CTEQ-TEA experiments
in descending order based on their summed sensitivity

P jSEj to each of the three moments displayed in the rightmost columns. For each
moment, we award especially sensitive experiments a rank A,B,C or 1,2,3 based on their total and point-averaged sensitivities,
respectively. These ranks are decided using the criteria: C ⇔ jSEf j ∈ ½4; 10�, B ⇔ jSEf j ∈ ½10; 20�, A ⇔ jSEf j ∈ ½20; 50�, and A� ⇔
jSEf j > 50 according to the total sensitivities for each flavor; and, analogously, 3 ⇔ hjSEf ji ∈ ½0.1; 0.25�, 2 ⇔ hjSEf ji ∈ ½0.25; 0.5�,
1 ⇔ hjSEf ji ∈ ½0.5; 1�, and 1� ⇔ hjSEf j > 1 according to the point-averaged sensitivities. Experiments with sensitivities falling below the
lowest ranks (that is, with jSEf j < 4 or hjSEf ji < 0.1) are not awarded a rank for that moment.

No. Expt ID Npt
P jSEj hP jSEji jShx1iuþ j hjShx1iuþ ji jShx2iu− j hjShx2iu− ji jShx3iuþ j hjShx3iuþ ji

1 BCDMSp’89 337 125.0 0.123 A 3 A 3 A 3
2 HERAIþ II’15 1120.0 122.0 0.0363 A A A
3 CCFR-F3’97 86 95.8 0.371 A 2 A 1 A 2
4 E866pp’03 184 69.3 0.125 B A 3 A 3
5 BCDMSd’90 250 55.3 0.0737 A B B
6 CDHSW-F3’91 96 52.7 0.183 B 3 A 3 B 3
7 CDHSW-F2’91 85 35.7 0.14 B 3 C 3 B 3
8 NMCrat’97 123 34.5 0.0934 C B 3 B 3
9 CCFR-F2’01 69 31.5 0.152 C 3 C 3 B 3
10 CMS7jets’13 133 27.5 0.0689 C C B
11 CMS8jets’17 185 25.3 0.0456 C C B
12 E605’91 119 24.0 0.0671 B 3
13 CMS7jets’14 158 19.5 0.0411 C C C
14 ATLAS7jets’15 140 16.2 0.0387 C C
15 NuTeV-nu’06 38 12.9 0.113 C 3
16 LHCb8WZ’16 42 12.5 0.0989 C 3

(Table continued)
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TABLE V. (Continued)

No. Expt ID Npt
P jSEj hP jSEji jShx1iuþ j hjShx1iuþ ji jShx2iu− j hjShx2iu− ji jShx3iuþ j hjShx3iuþ ji

17 CCFR SI nub’01 38 11.9 0.104 C 3
18 NuTeV-nub’06 33 11.8 0.119 C 3 3
19 CMS7Masy2’14 11 11.5 0.349 2 C 2 C 2
20 LHCb7ZWrap’15 33 11.4 0.115 3 C 3
21 ATL7jets’12 90 11.1 0.0412 C
22 ATL8DY2D’16 48 10.2 0.0706 C
23 D02jets’08 110 10.2 0.0308 C
24 E866rat’01 15 10.0 0.223 C 2 3 3
25 CCFR SI nu’01 40 9.71 0.0809 C 3
26 CDF2jets’09 72 8.51 0.0394
27 CMS8Wasy’16 33 7.18 0.0726
28 ATL7WZ’12 41 6.97 0.0567
29 CMS7Easy’12 11 6.81 0.206 3 3 3
30 D02Easy2’15 13 6.46 0.166 3 2
31 ATL8ZpT’16 45 5.21 0.0386
32 ZyCDF2’10 29 4.88 0.0561
33 ZyD02’08 28 4.61 0.0549
34 D02Masy’08 9 4.15 0.154 2 3
35 LHCb8Zee’15 17 3.32 0.065
36 HERAc’13 47 3.15 0.0224
37 CDF1Wasy’96 11 2.75 0.0835 3
38 LHCb7WZ’12 14 2.34 0.0557
39 ATL8ttb-mtt’16 7 1.2 0.0573
40 ATL8ttb-pt’16 8 1.17 0.0489
41 LHCb7Wasy’12 5 1.17 0.0781 3
42 ATL7ZpT’14 8 1.04 0.0435 3
43 CDF2Wasy’05 11 1.02 0.0311
44 ATL8ttb-y_ave’16 5 0.548 0.0365
45 HERA-FL’11 9 0.508 0.0188
46 ATL8ttb-y_ttb’16 5 0.495 0.033
47 HERAb’06 10 0.328 0.0109

TABLE VI. The sensitivities to moments of the d�-quark distributions of the CTEQ-TEA experiments in the CTEQ-TEA set.

No. Expt ID Npt
P jSEj hP jSEji jShx1idþ j hjShx1idþ ji jShx2id− j hjShx2id− ji jShx3idþ j hjShx3idþ ji

1 HERAIþ II’15 1120.0 116.0 0.0346 A* A A
2 CCFR-F3’97 86 70.3 0.272 B 3 A 2 B 3
3 BCDMSd’90 250 58.8 0.0784 A 3 B B
4 NMCrat’97 123 55.6 0.151 A 3 B 3 B 3
5 BCDMSp’89 337 53.8 0.0532 B B A
6 E866pp’03 184 44.2 0.08 B B B
7 CDHSW-F2’91 85 43.5 0.171 B 3 B 3 B 3
8 E605’91 119 37.3 0.105 C A 3 C
9 CDHSW-F3’91 96 36.2 0.126 C B 3 C
10 CCFR-F2’01 69 27.4 0.133 B 3 C 3 C 3
11 LHCb8WZ’16 42 16.4 0.13 C 3 C 3
12 CMS7jets’13 133 16.2 0.0405 C C C
13 CMS8jets’17 185 15.2 0.0273 C C
14 LHCb7ZWrap’15 33 14.0 0.141 C 3 C 3
15 CMS7jets’14 158 13.4 0.0283 C C
16 D02Easy2’15 13 12.0 0.309 3 C 1 2
17 NuTeV-nu’06 38 11.7 0.103 C 3
18 CMS7Masy2’14 11 10.2 0.308 C 2 2 3

(Table continued)
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TABLE VI. (Continued)

No. Expt ID Npt
P jSEj hP jSEji jShx1idþ j hjShx1idþ ji jShx2id− j hjShx2id− ji jShx3idþ j hjShx3idþ ji

19 ATLAS7jets’15 140 9.11 0.0217 C
20 ATL8DY2D’16 48 8.82 0.0612
21 CCFR SI nu’01 40 8.61 0.0718 C 3
22 E866rat’01 15 8.48 0.188 3 3 3
23 ATL7WZ’12 41 8.38 0.0681
24 CCFR SI nub’01 38 7.62 0.0668 C 3
25 CMS8Wasy’16 33 6.99 0.0706
26 NuTeV-nub’06 33 6.68 0.0674 C 3
27 ATL7jets’12 90 6.61 0.0245
28 D02jets’08 110 6.14 0.0186
29 CMS7Easy’12 11 5.72 0.173 3 3 3
30 CDF1Wasy’96 11 5.12 0.155 3 2
31 ATL8ZpT’16 45 4.99 0.037
32 D02Masy’08 9 4.35 0.161 3 2
33 ZyD02’08 28 3.8 0.0452
34 LHCb7WZ’12 14 3.77 0.0898 3
35 CDF2jets’09 72 3.58 0.0166
36 ZyCDF2’10 29 3.06 0.0352
37 LHCb7Wasy’12 5 2.78 0.185 2 3
38 ATL7ZpT’14 8 2.34 0.0976 3
39 HERAc’13 47 1.97 0.014
40 CDF2Wasy’05 11 1.86 0.0565
41 LHCb8Zee’15 17 1.63 0.032
42 ATL8ttb-pt’16 8 1.47 0.0614 3
43 ATL8ttb-mtt’16 7 1.37 0.0654
44 ATL8ttb-y_ave’16 5 0.776 0.0517
45 ATL8ttb-y_ttb’16 5 0.461 0.0307
46 HERA-FL’11 9 0.407 0.0151
47 HERAb’06 10 0.252 0.0084

TABLE VII. The sensitivities to moments of the u� − d� isovector quark distributions of the CTEQ-TEA experiments in the CTEQ-
TEA set.

No. Expt ID Npt
P jSEj hP jSEji jShx1iuþ−dþ

j hjShx1iuþ−dþ
ji jShx2iu−−d−

j hjShx2iu−−d−
ji jShx3iuþ−dþ

j hjShx3iuþ−dþ
ji

1 HERAIþ II’15 1120.0 109.0 0.0325 A A A
2 BCDMSp’89 337 91.9 0.0909 B A A 3
3 E866pp’03 184 67.3 0.122 A 3 A 3 A 3
4 CCFR-F3’97 86 61.9 0.24 A 2 B 3 B 3
5 NMCrat’97 123 60.0 0.163 A 3 B 3 B 3
6 CDHSW-F3’91 96 27.4 0.0953 B 3 C C
7 BCDMSd’90 250 25.5 0.034 C C C
8 LHCb8WZ’16 42 15.3 0.122 C C 3 C 3
9 CMS7Masy2’14 11 15.3 0.463 C 1 C 2 2
10 CCFR-F2’01 69 15.2 0.0733 C C C
11 E605’91 119 15.1 0.0423 C C
12 CMS8jets’17 185 14.1 0.0254 C C
13 LHCb7ZWrap’15 33 12.9 0.13 C 3 C 3 3
14 D02Easy2’15 13 11.6 0.298 3 C 2 2
15 CDHSW-F2’91 85 11.4 0.0449 C
16 E866rat’01 15 11.3 0.251 C 2 3 3
17 CMS7jets’13 133 11.2 0.0282 C
18 ATL8DY2D’16 48 11.1 0.0772 C
19 CMS7Easy’12 11 8.98 0.272 2 2 3

(Table continued)
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