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We consider the chiral Lagrangian for baryon fields with JP ¼ 1
2
þ or JP ¼ 3

2
þ quantum numbers as

constructed from QCD with up, down and strange quarks. The specific class of counterterms that are of
chiral order Q3 and contribute to meson-baryon interactions at the two-body level is constructed.
Altogether, we find 24 terms. In order to pave the way for realistic applications, we establish a set of 22 sum
rules for the low-energy constants as they are implied by QCD in the large-Nc limit. Given such a
constraint, there remain only two independent unknown parameters that need to be determined by either
lattice QCD simulations or directly from experimental cross section measurements. At subleading order,
we arrive at five parameters.
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I. INTRODUCTION

Still after many decades of vigorous studies, the out-
standing challenge of modern physics is to establish a
rigorous link of QCD to low-energy hadron physics as it is
observed in the many experimental cross section measure-
ments. After all, it is the only fundamental field theory there
is that leads to the emergence of structure as a consequence
of truly nonperturbative interactions in a quantum field
theory. On the one hand, the dataset has been extended
recently by LHCb, BES, COMPASS, and Belle with more
and more exciting new phenomena; on the other hand, there
is a huge dataset of pion- and photon-induced reactions in
the resonance region which still today are not understood
in terms of QCD dynamics [1,2]. Such reactions constitute
the doorway to understanding nonperturbative QCD, like
studies of the hydrogen atom paved the way to under-
standing QED.
While simulations of QCD on finite lattices made

considerable progress in the last decade, it is still not
feasible to derive cross sections systematically as measured
in the laboratory in the resonance region of QCD. Thus, at
present, it may be advantageous to resort to a well-
established method of modern physics—to derive the
implications of the fundamental theory by matching it to

effective field theory approaches that are formulated in
terms of the relevant degrees of freedom.
With the great advances of lattice QCD simulations, such

an approach is going through a revolution at present, since
the effective field theory can now be scrutinized system-
atically by QCD lattice data. In turn, the typically quite
large set of low-energy constants can be derived from QCD
prior to confronting the effective field theory with scatter-
ing data taken in the laboratory. This has been emphasized
and illustrated recently in Ref. [3]. Some results for sets of
low-energy constants have already been obtained from the
masses of baryons and mesons in their ground states with
JP ¼ 1

2
þ; 3

2
þ and JP ¼ 0−; 1− quantum numbers [3–7].

Since the majority of available lattice data were taken at
unphysical quark masses, it is mandatory to establish
reliable tools to translate such data back to the physical
case. We see the fact that lattice data are typically for
unphysical hadrons so far as a fortunate circumstance, since
this way information on QCD is provided that cannot be
inferred from the PDG or any experimental cross section so
easily. Moreover, the determination of large sets of low-
energy constants from lattice data on the hadron ground-
state masses at various unphysical quark masses appears to
be much easier and better controlled compared to their
extraction from the first few available phase shifts as
computed on QCD lattices at unphysical quark masses.
Here we wish to emphasize that our strategy to pave the

way toward the understanding of nonperturbative QCD
relies heavily on our recent claim that the chiral Lagrangian
properly formulated for the physics of up, down, and
strange quarks can be successfully applied to low-energy
QCD once it is set up in terms of on-shell meson and
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baryon masses. It was demonstrated that in that case, the
size of the physical strange quark mass does not prohibit
the application of the chiral Lagrangian. This is contrasted
by the conventional χPT approach, in which bare masses
are to be used inside any loop expression. Here any low-
order application to the flavor SUð3Þ case should be
avoided, being of no physical significance.
The purpose of the current study is to further prepare the

quantitative application of the chiral Lagrangian with three
light flavors tomeson-baryon scattering data.Our target is the
set of counterterms that carry chiral orderQ3 and contribute to
meson-baryon scattering at the two-body level. Such Q3

counterterms play a decisive role in the chiral dynamics of the
meson-baryon systems. As was pointed out already in
Ref. [8], only in the presence of such terms may it be feasible
to establish a universal set of Q2 counterterms that describe
pion, kaon, and antikaon nucleon scattering data. Though
there is a plethora ofworks [9–20] that fit theQ2 counterterms
to pion-nucleon, kaon-nucleon, or antikaon-nucleon scatter-
ing, the only so far to take a universal approach is documented
in Ref. [8]. In turn, there are various mutually noncompatible
sets of the Q2 counterterms available.
We would argue that there are also still some residual

deficiencies in Ref. [8] which may hamper the direct use of
the most comprehensive set of low-energy constants as
extracted from the published lattice dataset on the baryon
octet and decuplet masses in Ref. [5]. Most severe, we
would argue, are the particularities of the unitarization
schemes. Within the flavor SUð3Þ framework, so far, all
published works rely on neglect or improper treatment of
left-hand branch points. Though we do not expect this to
lead to huge qualitative issues, a quantitative and controlled
study of, in particular, p-wave phase shifts should consider
it in a reliable manner. We feel this to be an achievable
request owing to the fact that such a scheme exists by now
with Refs. [21–23]. So far, it was applied only to the flavor
SUð2Þ case with the πN and γN channels.
Within a flavor SUð3Þ context, such Q3 terms were first

used in Ref. [8]. Later, the complete order-Q3 Lagrangian
was constructed in Refs. [24,25] for the baryon octet fields.
To the best knowledge of the authors, such counterterms
have not been constructed so far involving the baryon
decuplet fields. We are aware of the recent Ref. [26], which,
however, provides partial results only. Since we wish to
derive sum rules for the Q3 low-energy constants from
large-Nc QCD [27,28], a reliable construction of the latter
terms is the target of the first part of our work in Sec. II. The
second part follows with Sec. III, in which we apply large-
Nc QCD in order to derive sum rules for the set of Q3 low-
energy constants. Here we follow the framework previously
established in Refs. [29–31]. In our case, we compute the
contributions of the Q3 counterterms to the correlation
function with two axial-vector currents and one vector
current in the baryon ground states. From a study of the
latter, the desired sum rules will be derived.

II. CHIRAL LAGRANGIAN WITH BARYON
OCTET AND DECUPLET FIELDS

We recall the conventions for the chiral Lagrangian as
used in the current work [5,8,32,33]. The hadronic fields as
decomposed into their isospin multiplets are

Φ¼ τ ·πð140Þþα† ·Kð494ÞþK†ð494Þ ·αþηð547Þλ8;ffiffiffi
2

p
B¼ α† ·Nð939Þþλ8Λð1115Þþ τ⃗ · Σ⃗ð1195Þ

þΞTð1315Þiσ2 ·α;

α†¼ 1ffiffiffi
2

p ðλ4þ iλ5;λ6þ iλ7Þ; τ⃗¼ðλ1;λ2;λ3Þ; ð1Þ

where the matrices λi are the Gell-Mann generators of the
SUð3Þ algebra. The numbers in the brackets recall the
approximate masses of the particles in units of MeV. Of
central importance is the covariant derivative

ðDμBÞij ¼ ∂μBi
j þ ðΓμÞihBh

j − Bi
hðΓμÞhj ; ð2Þ

as introduced in terms of the chiral connection Γμ. The
chiral connection with Γμ ¼ −Γ†

μ and other convenient
chiral building blocks are constructed in terms of the chiral
fields Φ in a nonlinear fashion such that all the chiral Ward
identities of QCD are recovered in systematic applications
of the chiral Lagrangian [32,34,35]. We write

Γμ ¼
1

2
u†½∂μ− iðvμþaμÞ�uþ

1

2
u½∂μ− iðvμ−aμÞ�u†;

Uμ ¼
1

2
u†ð∂μe

iΦfÞu†− i
2
u†ðvμþaμÞu

þ i
2
uðvμ−aμÞu†; u¼ ei

Φ
2f;

Hμν ¼DμiUνþDνiUμ; Dμν ¼DμDνþDνDμ; ð3Þ

where we emphasize the presence of the classical vector
and axial-vector source fields, vμ and aμ of QCD [34,35].
The important merit of all building blocks B, Uμ, Hμν, and
Dμν lies in their identical chiral transformation properties.
Thus, the action of the covariant derivatives is implied by
the example case of Eq. (2).
As derived first in Ref. [8], there are ten independent

symmetry-conserving Q3 terms that are needed in the
baryon octet sector. Such terms were studied in momentum
space properly projected onto the kinematics required in
meson-baryon scattering process. Initially, there were 20
terms considered. It was shown inRef. [8] that only ten terms
are independent. This result was established by an evalu-
ation of the s- and p-wave projections of their contributions
to the scattering amplitudes. Explicit expressions for how
such terms contribute to the meson-baryon interaction
kernel were provided in Appendix B of that work.
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This result was confirmed later in Refs. [24,25] based on a complementary strategy. In fact, initially the authors of
Ref. [25] claimed the relevance of 11 terms in Ref. [36], a result inconsistent with the original finding in Ref. [8]. This error
was corrected first in Ref. [24]. In the current work, we use the ten terms in the following representation:

Lð3Þ
½8�½8� ¼−u1trB̄γμB½Uν;Hμν�−−u2trB̄½Uν;Hμν�−γμB−

1

2
u3ðtrB̄UνγμtrHμνBþH:c:Þ

−
1

2
u4ðtrB̄γλðDμνBÞ½Uλ;Hμν�−þ trðDμνB̄ÞγλB½Uλ;Hμν�−Þ−

1

2
u5ðtrB̄½Uλ;Hμν�−γλðDμνBÞþ trðDμνB̄Þ½Uλ;Hμν�−γλBÞ

−
1

4
u6ðtrB̄Uλγ

λtrHμνðDμνBÞþ trðDμνB̄ÞUλγ
λtrHμνBþH:c:Þ−1

2
u7ðtrB̄σλμðDνBÞ½Uλ;Hμν�þ− trðDνB̄ÞσλμB½Uλ;Hμν�þÞ

−
1

2
u8ðtrB̄½Uλ;Hμν�þσλμðDνBÞ− trðDνB̄Þ½Uλ;Hμν�þσλμBÞ−

1

4
u9ðtrB̄Uλσ

λμðDνBÞHμν− trðDνB̄ÞUλσ
λμBHμνþH:c:Þ

−
1

2
u10ðtrB̄σλμðDνBÞtrUλHμν− trðDνB̄ÞσλμBtrUλHμνÞ: ð4Þ

We turn to the decuplet sector. The construction of the
chiral Lagrangian is straightforward following the rules
established by Krause in Ref. [32]. We use here the
conventional Rarita-Schwinger fields to interpolate to the
decuplet of the spin-3 half-states. The baryon decuplet field
Bijk
μ comes with three fully symmetric flavor indices, i, j,

k ¼ 1, 2, 3 as

B111
μ ¼Δþþ

μ ; B112
μ ¼Δþ

μ =
ffiffiffi
3

p
; B122

μ ¼Δ0
μ=

ffiffiffi
3

p
; B222

μ ¼Δ−
μ ;

B113
μ ¼Σþ

μ =
ffiffiffi
3

p
; B123

μ ¼Σ0
μ=

ffiffiffi
6

p
; B223

μ ¼Σ−
μ =

ffiffiffi
3

p
;

B133
μ ¼Ξ0

μ=
ffiffiffi
3

p
; B233

μ ¼Ξ−
μ =

ffiffiffi
3

p
;

B333
μ ¼Ω−

μ ; ð5Þ

where the components are identified with the states in the
particle basis for convenience. The covariant derivative
takes the form

ðDμBνÞijh ¼ ∂μB
ijh
ν þ Γi

μ;lB
ljh
ν þ Γj

μ;lB
ilh
ν þ Γh

μ;lB
ijl
ν ; ð6Þ

where again the chiral connection Γμ is needed. In order to
keep track of the various flavor index contraction in
the many terms of the chiral Lagrangian, we use here a
powerful notation already introduced by one of the authors
in Ref. [8]. The idea behind the notation is to introduce

a few auxiliary objects in terms ofwhich any interaction term
can be written down in terms of simple 3 × 3 matrix
products, as is the case in the baryon octet sector. Indeed,
this is achieved by the consideration of suitable “dot”
products of the decuplet fields. We need to discriminate
among the following three cases only:

ðB̄μ · BνÞij ¼ B̄μ
jklB

ikl
ν ; ðB̄μ ·ΦÞij ¼ ϵkliB̄μ

kmjΦm
l ;

ðΦ · BνÞij ¼ ϵkljΦl
mBkmi

ν ; ð7Þ

where any of such products yields a two-index object that
transforms as a flavor octet field again. Note that it takes a bit
of group theory, but indeed all our terms in the chiral
Lagrangian can be written down in such a notation. Given
this fact, it is, however, rather convenient to apply such a
notation, since the painful write-down of flavor-redundant
terms can be avoided to a large extent. In Refs. [8,33], all
terms at order Q2 that are relevant for meson-baryon scatter-
ing were written down for the first time. Such terms were
recently rediscovered in Refs. [26,37] using a less transparent
notation. The first partial list ofQ2 terms involving the baryon
decuplet field was published in Ref. [38].
We now turn to the symmetry-preserving Q3 terms that

involve a decuplet field. A complete list of 14 ¼ 8þ 6
terms is readily worked out with

Lð3Þ
½10�½10� ¼

1

2
v1ðtrðB̄τ ·UνÞγμðHμν ·BτÞ þH:c:Þ þ 1

2
v2ðtrðB̄λ ·UλÞγμðHμν ·BνÞ þH:c:Þ þ 1

2
v3ðtrðB̄ν ·UλÞγμðHμν ·BλÞ þH:c:Þ

þ 1

4
v4ðtrðB̄τ ·UλÞγλðHμν · ðDμνBτÞÞ þ trððDμνB̄τÞ ·UλÞγλðHμν ·BτÞ þH:c:Þ þ 1

2
v5ðtrðB̄τ · σλμðDνBτÞÞ½Uλ;Hμν�þ

− trððDνB̄τÞ · σλμBτÞ½Uλ;Hμν�þÞ þ
1

4
v6ðtrðB̄τ ·UλÞσλμðHμν · ðDνBτÞÞ− trððDνB̄τÞ ·UλÞσλμðHμν ·BτÞ þH:c:Þ

þ 1

2
v7ðtrðB̄τ · σλμðDνBτÞÞtrUλHμν − trððDνB̄τÞ · σλμBτÞtrUλHμνÞ þ

1

4
v8ðtrðB̄μ ·UλÞðHμν · ðDλBνÞÞ

− trððDλB̄μÞ ·UλÞðHμν ·BνÞ þH:c:Þ ð8Þ
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and

Lð3Þ
½8�½10� ¼

1

2
w1ðtrðB̄ν · ½Uλ; Hμν�þÞiσλμγ5Bþ H:c:Þ þ 1

4
w2ðtrðB̄λ · ½Uλ; Hμν�þÞiγμγ5ðDνBÞ

− trððDνB̄λÞ · ½Uλ; Hμν�þÞiγμγ5Bþ H:c:Þ þ 1

4
w3ðtrðB̄λ · ½Uμ; Hλν�þÞiγμγ5ðDνBÞ

− trððDνB̄λÞ · ½Uμ; Hλν�þÞiγμγ5Bþ H:c:Þ þ 1

2
w4ðtrðB̄ν · ½Uλ; Hμν�−Þiσλμγ5Bþ H:c:Þ

þ 1

4
w5ðtrðB̄λ · ½Uλ; Hμν�−Þiγμγ5ðDνBÞ − trððDνB̄λÞ · ½Uλ; Hμν�−Þiγμγ5Bþ H:c:Þ

þ 1

4
w6ðtrðB̄λ · ½Uμ; Hλν�−Þiγμγ5ðDνBÞ − trððDνB̄λÞ · ½Uμ; Hλν�−Þiγμγ5Bþ H:c:Þ: ð9Þ

We observe a significant mismatch with the number of
seven terms claimed in Ref. [26].

III. CORRELATION FUNCTION FROM THE
CHIRAL LAGRANGIAN

We consider QCD’s axial-vector and vector currents,

AðaÞ
μ ðxÞ¼ Ψ̄ðxÞγμγ5

λa
2
ΨðxÞ; VðaÞ

μ ðxÞ¼ Ψ̄ðxÞγμ
λa
2
ΨðxÞ;

ð10Þ
where we recall their definitions in terms of the Heisenberg
quark-field operators ΨðxÞ. With λa we denote the
Gell-Mann flavor matrices. Our target is an evaluation of
the following matrix elements:

CðabeÞ
μνλ ðq;q0Þ ¼

Z
d4xd4yeþiq·ðx−yÞeþiq0·y

× hp̄; χ̄jT AðaÞ
μ ðxÞAðbÞ

ν ð0ÞVðeÞ
λ ðyÞjp;χi ð11Þ

in the baryon ground states. Here the spin projections of the
initial and final baryon states we denote by χ and χ̄.
Similarly, the initial and final three-momenta of the states
are p and p̄. The flavor structure in Eq. (11) is incomplete,
since the initial and final baryon states also come in different
flavor copies. We return to this issue below in more detail.
Given the chiral Lagrangian, it is well defined how to derive
the contributions to such matrix elements in application of
the classical matrices of source functions, aμ and vμ.
The particular correlation function is chosen so as to

selectively probe our Q3 terms. This is so because any such
term in the chiral Lagrangian is linear not only in the Uλ

field but also in the Hμν field. Upon an expansion of those
building blocks in powers of the meson fields, one finds

iUμ ¼ aμþ�� � ; iHμν¼ ½vμ;aν�−þ½vν;aμ�−þ�� � : ð12Þ
From here we conclude that the tree-level evaluation of
the chiral Lagrangian is characterized by the symmetry-
conserving Q3 terms, as anticipated above.
The motivation for our study of this correlation function

is twofold. First, it serves as a convenient tool to verify

whether we use only independent sets of the symmetry-
conserving Q3 terms. We checked for the flavor octet case,
that any additional term leads to a contribution that can be
linear-combined in terms of the ten terms originally used in
Ref. [8] and confirmed later in Refs, [24,25]. An analogous
computation consolidates our claim about the smallest set
of independent terms in the decuplet sector. Second, such a
correlation function can be scrutinized also in large-Nc
QCD. This will lead to sum rules among the set of low-
energy constants introduced in this work. We will turn to
this issue in the next section.
We close this section with explicit results for the

correlation function. It suffices to evaluate the matrix
elements in the strict flavor SUð3Þ limit. In this case, a
baryon octet or a decuplet state,

jp; χ; ci; jp; χ; klmi; ð13Þ
is specified by its three-momentum p and the flavor indices
c ¼ 1;…; 8 or k, l, m ¼ 1, 2, 3. The spin polarization label
is χ ¼ 1, 2 for the octet and χ ¼ 1;…; 4 for the decuplet
states. In order to discriminate flavor structures from the
currents versus those from the baryon states, we introduce
the operator

OðabeÞ
ijh ðq; q0Þ ¼

Z
d4x d4y eþiq·ðx−yÞeþiq0·y

× T AðaÞ
i ðxÞAðbÞ

j ð0ÞVðeÞ
h ðyÞ; ð14Þ

by which the matrix elements in the baryon states [Eq. (13)]
are considered in the following. Note that in Eq. (14) we
already focus on the space components of the three
currents. From the study of such components, the antici-
pated large-Nc sum rules for the low-energy constants, the
main target of our work, can be derived.
Since we will encounter many flavor indices in our work,

which either run from 1 to 3 or from 1 to 8, we found it
useful to split the alphabet into two parts. We use the roman
small letters from a to g for flavor indices with a ¼ 1;…; 8
and the letters from h to z for indices with h ¼ 1;…; 3.
With this convention it is easily confirmed over which
range a given flavor index goes.
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We are now prepared to present results for the matrix elements introduced with Eq. (11). A somewhat tedious but
straightforward evaluation leads to the explicit results

hp̄; χ̄; djOðabeÞ
ijh ðq; q0Þjp; χ; ci ¼ ūðp̄; χ̄Þ 2g

ijγh þ gihγj þ gjhγi

4
uðp; χÞ

�
−ðu1 þ u2Þδabddce − 3ðu1 þ u2Þdabgdefgddcf

− ðu1 − u2Þδabifdce − 3ðu1 − u2Þdabgdefgifdcf þ ðu1 þ u2Þðδaedbdc þ δbedadcÞ

þ ðu1 − u2Þðδaeifbdc þ δbeifadcÞ −
1

2
u3ðδadifbec þ δbdifaec − δacifbed − δbcifaedÞ

�

þ ūðp̄; χ̄Þ g
ihγj − gjhγi

4
uðp; χÞ

�
ðu1 þ u2Þfabgfefgddcf þ ðu1 − u2Þfabgfefgifdcf

−
1

2
u3ðδadifbec − δbdifaec − δacifbed þ δbcifaedÞ

�

þ ūðp̄; χ̄Þ iσ
ihδjk þ iσjhδik

8
uðp; χÞðp̄þ pÞk

�
−ðu7 þ u8 − u9Þdabgifefgddcf

− ðu7 − u8Þdabgifefgifdcf −
1

2
u9ðδadifbec þ δbdifaec þ δacifbed þ δbcifaedÞ

�

þ ūðp̄; χ̄Þ 2iσ
ijδhk þ iσihδjk − iσjhδik

8
uðp; χÞ

�
−
�
4

3
u7 þ

4

3
u8 −

1

3
u9 þ 2u10

�
ifabeδdc

þ ðu7 þ u8 − u9Þðifaegdbgf − ifbegdagfÞddcf þ ðu7 − u8Þðifaegdbgf − ifbegdagfÞifdcf
−
1

2
u9ðδadifbec − δbdifaec þ δacifbed − δbcifaedÞ

�
ðp̄þ pÞk

þ ūðp̄; χ̄Þ p̄
iγj þ p̄jγi

2
uðp; χÞðp̄þ pÞh

�
−ðu4 þ u5Þδabddce − 3ðu4 þ u5Þdabgdefgddcf

− ðu4 − u5Þδabifdce − 3ðu4 − u5Þdabgdefgifdcf þ ðu4 þ u5Þðδaedbdc þ δbedadcÞ

þ ðu4 − u5Þðδaeifbdc þ δbeifadcÞ −
1

2
u6ðδadifbec þ δbdifaec − δacifbed − δbcifaedÞ

�

− ūðp̄; χ̄Þ p̄
iγj − p̄jγi

2
uðp; χÞ

�
ðu4 þ u5Þfabgfefgddcf þ ðu4 − u5Þfabgfefgifdcf

−
1

2
u6ðδadifbec − δbdifaec − δacifbed þ δbcifaedÞ

�
ðp̄ − pÞh: ð15Þ

Corresponding expressions for matrix elements in the
baryon decuplet states are collected in Appendix A. We
wish to emphasize that the computation of such matrix
elements serves as a powerful consistency check of whether
the terms of the chiral Lagrangian were constructed
properly. Our results (15) show that all terms shown are
independent—i.e., it is not possible to eliminate any term.

IV. CURRENT CORRELATION FUNCTION IN
LARGE-Nc QCD

Consider OQCD to be the time-ordered product of
any combination of local currents in large-Nc QCD,
where Eq. (14) may serve as a specific example for

Nc ¼ 3. The generic form of the large-Nc operator expan-
sion can be taken as

hp̄; χ̄jOQCDjp; χi ¼
X∞
n¼0

cnðp̄; pÞðχ̄jOðnÞ
staticjχÞ; ð16Þ

where it is important to note that unlike the physical baryon
states, jp; χi, the effective baryon states, jχÞ, do not depend
on the three-momentum p. All dynamical information in
Eq. (16) is moved into appropriate coefficient functions
cnðp̄; pÞ. Moreover, in the decomposition of Eq. (16), the
coefficients cnðp̄; pÞ depend on neither the flavor nor the
spin quantum number of the initial or the final baryon state.
The merit of Eq. (16) lies in the fact that the contributions
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on its right-hand side can be sorted according to their
relevance at large values of Nc.
The effective baryon states jc; χÞ and jklm; χÞ have a

mean-field structure that can be generated in terms of
effective quark operators. They correspond to the baryon
states already introduced with Eq. (13) for the particular
choice Nc ¼ 3. A complete set of color-neutral one-body
operators may be constructed in terms of the very same
static quark operators:

1¼q†ð1⊗1⊗1Þq; Ji¼q†
�
σi
2
⊗1⊗1

�
q;

Ta¼q†
�
1⊗

λa
2
⊗1

�
q; Ga

i ¼q†
�
σi
2
⊗
λa
2
⊗1

�
q; ð17Þ

with operators q ¼ ðu; d; sÞT introduced for the up, down,
and strange quarks. With λa we denote the Gell-Mann
matrices. While the action of any of the spin-flavor
operators introduced in Eq. (17) on the tower of large-
Nc states is quite involved at large Nc ≠ 3, matters turn
quite simple and straightforward at the physical value
Nc ¼ 3. For this physical case where there is a flavor
octet with spin 1=2 or a flavor decuplet with spin 3=2 only,
we recall the well-established results of Refs. [8,33] with

1jc;χÞ¼3jc;χÞ;

Jijc;χÞ¼
1

2
σðiÞχ̄χ jc; χ̄Þ; Tajc;χÞ¼ ifcdajd;χÞ;

Ga
i jc;χÞ¼σðiÞχ̄χ

�
1

2
dcdaþ

i
3
fcda

�
jd; χ̄Þ

þ 1

2
ffiffiffi
2

p SðiÞχ̄χΛklm
ac jklm; χ̄Þ;

1jklm;χÞ¼3jklm;χÞ;

Jijklm;χÞ¼3

2
ðS⃗σiS⃗†Þχ̄χ jklm; χ̄Þ;

Tajklm;χÞ¼3

2
Λa;nop
klm jnop;χÞ;

Ga
i jklm;χÞ¼3

4
ðS⃗σiS⃗†Þχ̄χΛa;nop

klm jnop; χ̄Þ

þ 1

2
ffiffiffi
2

p ðS†i Þχ̄χΛac
klmjc; χ̄Þ; ð18Þ

with the Pauli matrices σi and the spin-transition matrices
Si characterized by

S†i Sj ¼ δij −
1

3
σiσj; Siσj − Sjσi ¼ −iεijkSk;

S⃗ · S⃗† ¼ 1ð4×4Þ; S⃗† · S⃗ ¼ 2 1ð2×2Þ;

S⃗ · σ⃗ ¼ 0; ϵijkSiS
†
j ¼ iS⃗σkS⃗

†: ð19Þ

We recall some instrumental flavor structures,

Λklm
ab ¼ ½εijkλðaÞli λðbÞmj �symðklmÞ; δklmnop ¼ ½δknδloδmp�symðnopÞ;

Λab
klm¼ ½εijkλðaÞil λðbÞjm �symðklmÞ; Λa;klm

nop ¼ ½λðaÞkn δloδmp�symðnopÞ;

ð20Þ
that occur frequently in our previous and current
works [5,31,39].
In the sum of Eq. (16), there are infinitely many terms

one may write down. The static operators OðnÞ
static are finite

products of the one-body operators Ji, Ta, and Ga
i . In

contrast, the counting of Nc factors is intricate, since there
is a subtle balance of suppression and enhancement effects.
An r-body operator consisting of the r products of any of
the spin and flavor operators receives the suppression factor
N−r

c . This is counteracted by enhancement factors for the
flavor and spin-flavor operators Ta and Ga

i that are
produced by taking baryon matrix elements at Nc ≠ 3.
This leads to the enhancement factors [40]

Ji ∼ N0
c; Ta ∼ Nc; Ga

i ∼ Nc: ð21Þ
Together with the suppression factor N−r

c from the expan-
sion coefficients in Eq. (16), this implies the effective
scaling Ji∼1=Nc and Ta ∼Ga

i ∼ N0
c [31,40,41]. According

to Eq. (21), there are an infinite number of terms contrib-
uting at a given order in the 1=Nc expansion. Taking higher
products of flavor and spin-flavor operators does not reduce
the Nc scaling power. A systematic 1=Nc expansion is
made possible by a set of operator identities [31,40] that
allows a systematic summation of the infinite number of
relevant terms. As a consequence of the SUð6Þ Lie algebra,
any commutator of one-body operators can be expressed in
terms of one-body operators again. Therefore, it suffices to
consider anticommutators of the one-body operators
[31,40]. For instance, consider the following two identities
that hold in matrix elements of the baryon states:

dgab½Ta; Tb�þ ¼ −2Tg þ 2½Ji; Gi
g�þ;

dgab½Gi
a; G

j
b�þ ¼ 1

3
δij

�
9

2
Tg −

3

2
½Jk; Gk

g�þ
�

þ 1

6
ð½Ji; Gj

g�þ þ ½Jj; Gi
g�þÞ; ð22Þ

where we consider Nc ¼ 3 for simplicity. The relations in
Eq. (22) have been verified in Ref. [31] by the application
of Eq. (18).
Altogether, the expansion scheme is implied by two

reduction rules:
(1) All operator products in which two flavor indices are

contracted using δab, fabc, or dabc, or in which two
spin indices on G’s are contracted using δij or εijk,
can be eliminated.

(2) All operator products in which two flavor indices
are contracted using symmetric or antisymmetric
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combinations of two different d and/or f symbols
can be eliminated. The only exception to this rule is
the antisymmetric combination facgdbch − fbcgdach.

As a consequence, the infinite tower of spin-flavor oper-
ators truncates at any given order in the 1=Nc expansion.
We can now turn to the 1=Nc expansion of the baryon
matrix elements of our specific product of QCD’s axial-
vector and vector currents. In the application of the operator
reduction rules, the baryon matrix elements of time-ordered
products of the current operators are expanded in powers of
the effective one-body operators according to the counting
rule [Eq. (21)] supplemented by the reduction rules.

V. SUM RULES FOR THE LOW-ENERGY
CONSTANTS

As compared to previous works [5,29–31] that dealt with
correlation functions of one or two currents only, it turned
out that the systematic construction of the large-Nc operator
hierarchy for the correlation function of three currents is
considerably more involved. While it is straightforward to
write down a set of operators to a given order, almost any
single term cannot be matched to the matrix elements as

implied by the chiral Lagrangian. This is so because the role
of charge conjugation and parity invariances is not so
transparent in the given framework. We derived our oper-
ators by considering all possible combinations and then
performed the matching in application of a suitable com-
puter algebra code by using matrix elements presented in
Appendix B. This then generated the following leading-
order decomposition:

Oijh
abe¼ δ

ðijÞþ
h

�
ĝ1ðδabTe− ðδaeTbþδbeTaÞþ3dabgdefgTfÞ−

1

2
ĝ4fdaeg½Jl;ð½Tg;Gl

b�þ− ½Tb;Gl
g�þÞ�þþdbeg½Jl;ð½Tg;Gl

a�þ

− ½Ta;Gl
g�þÞ�þ−2dabg½Jl;ð½Tg;Gl

e�þ− ½Te;Gl
g�þÞ�þg

�

þðp̄þpÞqfðiϵijuδhqþδðijÞ−ðvqÞ− iϵ
huvÞ½ĝ2ðifaegdgbf− ifbegdgafÞGu

fþ ĝ5ifabeJuþ ĝ6ðifaegdbfg− ifbegdafgÞ½Ju;Tf�þ�
þδ

ðijÞþ
ðvqÞþiϵ

huv½ĝ3dabgiffegGu
fþ ĝ7dabgifefg½Ju;Tf�þ�g; ð23Þ

where the parameters ĝ1–3 and ĝ4–7 are relevant at leading
and subleading orders, respectively. In Eq. (23), we use the
notation

δðijÞ�ðmnÞ� ¼
1

2
ðδmiδnj�δmjδniÞ;

δðijÞ�h ¼ 1

2ðM̄þMÞðp̄
ip̄hþpiphÞðp̄þpÞj�ði↔jÞ: ð24Þ

Owing to the matching condition

ĝ2 þ ĝ3 ¼ 0; ð25Þ

there are two leading-order operators only. This is a
nontrivial result in view of the fact that one may write
down many more leading-order operators. For instance,
consider the particular term

δ
ðijÞþ
h ð2½½Ta; Tb�þ; Te�þ
− ð½½Ta; Te�þ; Tb�þ þ ½½Tb; Te�þ; Ta�þÞÞ; ð26Þ

for which the matrix elements can be shown to be propor-
tional to the matrix elements of the operator associated with
ĝ1. At subleading order, we find three additional operators
only. Here the matching condition

ĝ6 þ ĝ7 ¼ 0 ð27Þ
eliminates one term.
The number of independent coupling constants in the

chiral Lagrangian is 24. At leading order in the 1=Nc
expansion, all of them can be expressed in terms of ĝ1 and
ĝ2 as detailed in Table I. At subleading order, the additional
three parameters ĝ4, ĝ5, and ĝ6 enter. The desired sum rules
follow upon eliminating the parameters ĝn. There are 15
common sum rules applicable at LO and NLO:

u1;2;3 ¼ 0¼ u9; v1;2;3¼ 0¼ v6;8; w4;5;6¼ 0¼w1;

u5 ¼−u4; w3¼−w2: ð28Þ

They are supplemented by four and seven additional sum
rules at NLO and LO, respectively, as

TABLE I. Matching of the large-Nc operators to the LEC.

u1 ¼ 0 v1 ¼ 0 w1 ¼ 0

u2 ¼ 0 v2 ¼ 0 w2 ¼ −4ĝ2
u3 ¼ 0 v3 ¼ 0 w3 ¼ 4ĝ2
u4 ¼ 1

2
ĝ1 þ 1

2
ĝ4 v4 ¼ −3ĝ1 w4 ¼ 0

u5 ¼ − 1
2
ĝ1 − 1

2
ĝ4 v5 ¼ −3ĝ2 − 18ĝ6 w5 ¼ 0

u6 ¼ 3ĝ4 v6 ¼ 0 w6 ¼ 0

u7 ¼ 1
3
ĝ2 − 2ĝ6 v7 ¼ 2ĝ2 þ 3ĝ6 þ 12ĝ6

u8 ¼ 5
3
ĝ2 þ 2ĝ6 v8 ¼ 0

u9 ¼ 0

u10 ¼ − 4
3
ĝ2 − ĝ5

CONSTRAINTS FROM A LARGE-NC ANALYSIS ON … PHYS. REV. D 100, 094035 (2019)

094035-7



v5 ¼ 6u7 − 3u8; v4 ¼ 6u5 þ u6;

v7 ¼ −6u7 − 3u10; w3 ¼ 2ðu7 þ u8Þ; ð29Þ

and

v5 ¼ −9u7 ¼
9

4
u10; v4 ¼ 6u5; u6 ¼ 0;

v7 ¼ 6u7; w3 ¼ 12u7 ¼
12

5
u8: ð30Þ

VI. SUMMARY

In this work, we further prepared the ground for realistic
applications of the chiral Lagrangian with the baryon octet
and the baryon decuplet fields. For the first time, all
symmetry-preserving Q3 counterterms were constructed
as they are relevant for any two-bodymeson-baryon reaction
process. Altogether, we find 24 terms. In order to pave the
way toward applications of this set of low-energy param-
eters, we derived a set of sum rules. We considered matrix
elements of a correlation function with two axial-vector
currents and onevector current in the baryon ground states as

they arise in QCD at a large number of colors (Nc). From a
systematic operator expansion thereof, we deduced our set
of 22 sum rules valid at leading order in the 1=Nc expansion.
At subleading order, there remain 19 relations.
With our result we now deem it feasible to perform

significant coupled-channel studies of meson-baryon scat-
tering processes considering channels with the baryon octet
and decuplet fields on an equal footing as it is requested by
large-Nc QCD. Increasing the accuracy request by one order
from Q2 to Q3 involves only a few further independent
parameters once the constraints of large-Nc QCD are
imposed to subleading order. Of particular interest are the
sectors with two or three strangeness units, for which the
empirical dataset is quite limited.
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APPENDIX A: MATRIX ELEMENTS FROM THE CHIRAL LAGRANGIAN

hp̄; χ̄; nopjOðabeÞ
ijh ðq; q0Þjp; χ; klmi

¼ −
1

4
δnopxyz Λd;xyz

klm ð3dabgdedg þ δabδed − δaeδbd − δadδbeÞ
�
1

2
v1ūτðp̄; χ̄Þð2γhgij þ γighj þ γjghiÞuτðp; χÞ

þ 1

2
v2ðūiðp̄; χ̄Þγjuhðp; χÞ þ ūjðp̄; χ̄Þγiuhðp; χÞ þ ūiðp̄; χ̄Þγhujðp; χÞ þ ūjðp̄; χ̄Þγhuiðp; χÞÞ

þ 1

2
v3ðūiðp̄; χ̄Þγhujðp; χÞ þ ūjðp̄; χ̄Þγhuiðp; χÞ þ ūhðp̄; χ̄Þγiujðp; χÞ þ ūhðp̄; χ̄Þγjuiðp; χÞÞ

�

−
1

4
δnopxyz Λd;xyz

klm fabgfedg

�
1

2
v1ūτðp̄; χ̄Þðγighj − γjghiÞuτðp; χÞ − 1

2
v2ðūiðp̄; χ̄Þγjuhðp; χÞ − ūjðp̄; χ̄Þγiuhðp; χÞ

þ ūiðp̄; χ̄Þγhujðp; χÞ − ūjðp̄; χ̄Þγhuiðp; χÞÞ þ 1

2
v3ðūiðp̄; χ̄Þγhujðp; χÞ − ūjðp̄; χ̄Þγhuiðp; χÞ

þ ūhðp̄; χ̄Þγiujðp; χÞ − ūhðp̄; χ̄Þγjuiðp; χÞÞ
�

−
1

8
ūτðp̄; χ̄Þðiσihðp̄þ pÞj þ iσjhðp̄þ pÞiÞuτðp; χÞ

��
v5 þ

3

4
v6

�
dabgifefgδ

nop
xyz Λf;xyz

klm

−
3

8
v6δ

nop
rst ððΛa;rst

xyz ifbeg þ Λb;rst
xyz ifaegÞΛg;xyz

klm þ Λg;rst
xyz ðΛa;xyz

klm ifbeg þ Λb;xyz
klm ifaegÞÞ

�

−
1

8
ūτðp̄; χ̄Þð2iσijðp̄þ pÞh þ iσihðp̄þ pÞj − iσjhðp̄þ pÞiÞuτðp; χÞ

�
2

�
2

3
v5 þ

1

2
v6 þ v7

�
δnopklm ifabe

þ
�
v5 þ

3

4
v6

�
ðifbegdagf − ifaegdbgfÞδnopxyz Λf;xyz

klm

−
3

8
v6δ

nop
rst ððΛa;rst

xyz ifbeg − Λb;rst
xyz ifaegÞΛg;xyz

klm þ Λg;rst
xyz ðΛa;xyz

klm ifbeg − Λb;xyz
klm ifaegÞÞ

�
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−
1

8
δnopxyz Λf;xyz

klm ð3dabgdfeg þ δabδfe − δafδbe − δaeδbfÞ
�
1

2
v8ððūhðp̄; χ̄Þujðp; χÞ þ ūjðp̄; χ̄Þuhðp; χÞÞðp̄þ pÞi

þ ðūhðp̄; χ̄Þuiðp; χÞ þ ūiðp̄; χ̄Þuhðp; χÞÞðp̄þ pÞjÞ
�

−
1

8
δnopxyz Λf;xyz

klm fabgffeg

�
1

2
v8ððūhðp̄; χ̄Þujðp; χÞ þ ūjðp̄; χ̄Þuhðp; χÞÞðp̄þ pÞi

− ðūhðp̄; χ̄Þuiðp; χÞ þ ūiðp̄; χ̄Þuhðp; χÞÞðp̄þ pÞjÞ
�

þ 1

4
δnopxyz Λd;xyz

klm ð3dabgdedg þ δabδed − δaeδbd − δadδbeÞ
�
v4ūτðp̄; χ̄Þðp̄iγj þ p̄jγiÞuτðp; χÞðp̄þ pÞh

�

−
1

4
ūτðp̄; χ̄Þðp̄iγj − p̄jγiÞuτðp; χÞðp̄ − pÞhδnopxyz Λd;xyz

klm v4fabgfedg; ðA1Þ

and

hp̄; χ̄; nopjOðabeÞ
ijh ðq; q0Þjp; χ; ci

¼ 1

8
ffiffiffi
2

p ðūiðp̄; χ̄Þiσjh þ ūjðp̄; χ̄ÞiσihÞγ5uðp; χÞf−w1dabfifegf − w4ð3dabfdgef þ δabδge − ðδagδbe þ δbgδaeÞÞgΛnop
gc

þ 1

16
ffiffiffi
2

p ððūiðp̄; χ̄Þγj þ ūjðp̄; χ̄ÞγiÞðp̄þ pÞh þ ðūiðp̄; χ̄Þðp̄þ pÞj þ ūjðp̄; χ̄Þðp̄þ pÞiÞγhÞγ5uðp; χÞf−w2dabfifegf

− w5ð3dabfdgef þ δabδge − ðδagδbe þ δbgδaeÞÞgΛnop
gc

þ 1

16
ffiffiffi
2

p ððūiðp̄; χ̄Þγj þ ūjðp̄; χ̄ÞγiÞðp̄þ pÞh þ ūhðp̄; χ̄Þðγiðp̄þ pÞj þ γjðp̄þ pÞiÞÞγ5uðp; χÞf−w3dabfifegf

− w6ð3dabfdgef þ δabδge − ðδagδbe þ δbgδaeÞÞgΛnop
gc

þ 1

8
ffiffiffi
2

p ð2ūhðp̄; χ̄Þiσij − ðūiðp̄; χ̄Þiσjh − ūjðp̄; χ̄ÞiσihÞÞγ5uðp; χÞfw1ðifaefdbgf − ifbefdagfÞ − w4fabffgefgΛnop
gc

þ 1

16
ffiffiffi
2

p ððūiðp̄; χ̄Þγj − ūjðp̄; χ̄ÞγiÞðp̄þ pÞh þ ðūiðp̄; χ̄Þðp̄þ pÞj

− ūjðp̄; χ̄Þðp̄þ pÞiÞγhÞγ5uðp; χÞfw2ðifaefdbgf − ifbefdagfÞ − w5fabffgefgΛnop
gc

þ 1

16
ffiffiffi
2

p ð−ðūiðp̄; χ̄Þγj − ūjðp̄; χ̄ÞγiÞðp̄þ pÞh

þ ūhðp̄; χ̄Þðγiðp̄þ pÞj − γjðp̄þ pÞiÞÞγ5uðp; χÞfw3ðifaefdbgf − ifbefdagfÞ − w6fabffgefgΛnop
gc : ðA2Þ

APPENDIX B: MATRIX ELEMENTS AT Nc = 3

The matrix elements for one- and two-body operators are presented in Ref. [33]. Those for three-body operators
considered in this work are collected here.
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ðd; χ̄j½Ji; ½Ta; Jj�þ�þjc; χÞ ¼ δχ̄χδ
ijifacd;

ðd; χ̄j½Ji; ½Ta; G
j
b�þ�þjc; χÞ ¼

1

3
δχ̄χδ

ij

�
δabδdc − δadδbc − δbdδca þ 3dabedcde

þ 3

2
iðfcdedabe − fbcedade|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼þfacedbde

− fadedbceÞ
�
;

ðnop; χ̄j½Ji; ½Ta; Jj�þ�þjklm; χÞ ¼ 27

2

�
5

9
δij14 −

2

3

�
SiSj† þ SjSi† −

2

3
δij14

��
χ̄χ

δnopxyz Λa;xyz
klm ;

ðnop; χ̄j½Ji; ½Ta; G
j
b�þ�þjklm; χÞ ¼ 27

8

�
5

9
δij14 −

2

3

�
SiSj† þ SjSi† −

2

3
δij14

��
χ̄χ

δnoprst ðΛa;rst
xyz Λb;xyz

klm þ Λb;rst
xyz Λa;xyz

klm Þ;

ðnop; χ̄j½Ji; ½Ta; Jj�þ�þjc; χÞ ¼ 0;

ðnop; χ̄j½Ji; ½Ta; G
j
b�þ�þjc; χÞ ¼

1

4
ffiffiffi
2

p ðSiσj þ Sjσi þ 3iϵijkSkÞχ̄χð2ifaceΛnop
be − ifabeΛ

nop
ce Þ;

ðd; χ̄j½½Ta; Tb�þ; Te�þjc; χÞ ¼ δχ̄χ ½2δabifecd þ 3dabgðdcgfifdef − ddgfifcefÞ
− δbdifeca − δadifecb − δacifebd − δbcifead�;

ðd; χ̄j½½Gi
a; G

j
b�þ; Te�þjc; χÞ ¼

1

4
δχ̄χδ

ij

�
10

3
δabifecd − dabgðdgdfifecf − dgcfifedfÞ þ

8

3
dabgðfgdffecf þ fgcffedfÞ

þ 1

3
ðδadifebc þ δbdifeac − δacifebd − δbcifeadÞ

	

þ 1

4
iϵijkσkχ̄χ

�
δadifebc − δbdifeac þ δacifebd − δbcifead þ 2ifabgðdgdfifecf − dgcfifedfÞ

þ 5

3
ifabgðfgdffecf þ fgcffedfÞ

	
;

ðd; χ̄j½½Ta; Tb�þ; Gi
e�þjc; χÞ ¼

1

2
σiχ̄χ

�
2δabdecd þ

4

3
δabifecd þ 3dabgdfgddecf þ 2dabgdfgdifecf þ 3dabgdcgfdefd

þ 2dabgdcgfifefd − δacdebd − δbcdead − δbddeca − δaddecb −
2

3
δacifebd

−
2

3
δbcifead −

2

3
δbdifeca −

2

3
δadifecb

	
;

ðd; χ̄j½½Ta; Tb�þ; Ji�þjc; χÞ ¼ σiχ̄χ ½δabδcd − δacδbd − δadδbc þ 3dabgdcgd�;

ðd; χ̄j½½Gi
a; Gl

b�þ; Jl�þjc; χÞ ¼
1

4
σiχ̄χ

�
1

3
ð5δabδcd − δacδbd − δadδbcÞ − ddcgdabg þ

8

3
ifcdgdabg

	
;

ðnop; χ̄j½½Ta; Tb�þ; Te�þjklm; χÞ ¼ 27

8
δχ̄χδ

nop
rst fΛa;rst

xyz Λb;xyz
uvw Λe;uvw

klm þ Λe;rst
uvwΛa;uvw

xyz Λb;xyz
klm þ ða ↔ bÞg;

ðnop; χ̄j½½Gi
a; G

j
b�þ; Te�þjklm; χÞ ¼ 3

2
δnoprst

�
−
3

8
ðSiSj† þ SjSi† −

3

2
δij1ð4×4ÞÞχ̄χ ½Λa;rst

xyz Λb;xyz
uvw Λe;uvw

klm

þ Λe;rst
uvw Λa;uvw

xyz Λb;xyz
klm þ ða ↔ bÞ�

þ 3

16
iϵijk

0 ðS⃗σk0S⃗†Þχ̄χ ½Λa;rst
xyz Λb;xyz

uvw Λe;uvw
klm þ Λe;rst

uvwΛa;uvw
xyz Λb;xyz

klm − ða ↔ bÞ�

þ 1

16
ðSiSj† þ SjSi†Þχ̄χ ½Λrst

agΛ
bg
uvwΛe;uvw

klm þ Λe;rst
uvwΛuvw

ag Λbg
klm þ ða ↔ bÞ�

þ 1

16
iϵijk

0 ðS⃗σk0S⃗†Þχ̄χ ½Λrst
agΛ

bg
uvwΛe;uvw

klm þ Λe;rst
uvwΛuvw

ag Λbg
klm − ða ↔ bÞ�

�
;
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ðnop; χ̄j½½Ta; Tb�þ; Gi
e�þjklm; χÞ ¼ 27

16
ðS⃗σiS⃗†Þχ̄χδnoprst fΛa;rst

xyz Λb;xyz
uvw Λe;uvw

klm þ Λe;rst
xyz Λa;xyz

uvw Λb;uvw
klm þ ða ↔ bÞg;

ðnop; χ̄j½½Ta; Tb�þ; Ji�þjklm; χÞ ¼ 27

4
ðS⃗σiS⃗†Þχ̄χδnoprst fΛa;rst

xyz Λb;xyz
klm þ ða ↔ bÞg;

ðnop; χ̄j½½Gi
a; Gl

b�þ; Jl�þjklm; χÞ ¼ 3

2
ðS⃗σiS⃗†Þχ̄χδnoprst

�
13

8
Λa;rst
xyz Λb;xyz

klm −
1

12
Λrst
agΛ

bg
klm þ ða ↔ bÞ

�
;

ðnop; χ̄j½½Ta; Tb�þ; Te�þjc; χÞ ¼ 0;

ðnop; χ̄j½½Gi
a; G

j
b�þ; Te�þjc; χÞ ¼

1

8
ffiffiffi
2

p δnoprst

�
ðSiσj þ SjσiÞχ̄χ

�
ifecfðdafg þ ifafgÞΛrst

bg

þ 3

2
Λe;rst
uvw ðdacg þ ifacgÞΛuvw

bg þ ða ↔ bÞ
	

þ iϵijkSkχ̄χ

�
ifecf

��
dafg þ

2

3
ifafg

�
Λrst
bg þ 5

3
ðifafgΛrst

bg − ifabgΛrst
fg Þ

�

þ 3

2
Λe;rst
uvw

��
dacg þ

2

3
ifacg

�
Λuvw
bg þ 5

3
ðifacgΛuvw

bg − ifabgΛuvw
cg Þ

�
− ða ↔ bÞ

	�
;

ðnop; χ̄j½½Ta; Tb�þ; Gi
e�þjc; χÞ ¼

1

2
ffiffiffi
2

p Siχ̄χ

�
9

4
δnoprst ðΛa;rst

xyz Λb;xyz
uvw þ Λb;rst

xyz Λa;xyz
uvw ÞΛuvw

ec þ Λnop
ef ðδabδcf − δacδbf

− δafδbc þ 3dabgdcgfÞ
�
;

ðnop; χ̄j½½Ta; Tb�þ; Ji�þjc; χÞ ¼ 0;

ðnop; χ̄j½½Gi
a; Gl

b�þ; Jl�þjc; χÞ ¼
1

8
ffiffiffi
2

p Siχ̄χ

�
5ðdacg þ ifacgÞΛnop

bg þ 5ðdbcg þ ifbcgÞΛnop
ag − 3

�
dacg þ

2

3
ifacg

�
Λnop
bg

þ 3

�
dbcg þ

2

3
ifbcg

�
Λnop
ag − 5ðifacgΛnop

bg − ifbcgΛ
nop
ag − 2ifabgΛ

nop
cg Þ

�
; ðB1Þ

where Eq. (A.2) in Ref. [31] was used. We correct a typo with

ðnop; χ̄j½Gi
a; G

j
b�þjc; χÞ ¼

1

8
ffiffiffi
2

p iϵijkSkχ̄χ

��
dace þ

2

3
iface

�
Λnop
be þ 5

3
ðifaceΛnop

be − ifabeΛ
nop
ce Þ − ða ↔ bÞ

	

þ 1

8
ffiffiffi
2

p ðSiσj þ SjσiÞχ̄χ ½ðdace þ ifaceÞΛnop
be þ ða ↔ bÞ�: ðB2Þ
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