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We consider the chiral Lagrangian for baryon fields with J* = %Jr or JP = %Jr quantum numbers as
constructed from QCD with up, down and strange quarks. The specific class of counterterms that are of
chiral order Q® and contribute to meson-baryon interactions at the two-body level is constructed.
Altogether, we find 24 terms. In order to pave the way for realistic applications, we establish a set of 22 sum
rules for the low-energy constants as they are implied by QCD in the large-N, limit. Given such a
constraint, there remain only two independent unknown parameters that need to be determined by either
lattice QCD simulations or directly from experimental cross section measurements. At subleading order,

we arrive at five parameters.

DOI: 10.1103/PhysRevD.100.094035

I. INTRODUCTION

Still after many decades of vigorous studies, the out-
standing challenge of modern physics is to establish a
rigorous link of QCD to low-energy hadron physics as it is
observed in the many experimental cross section measure-
ments. After all, it is the only fundamental field theory there
is that leads to the emergence of structure as a consequence
of truly nonperturbative interactions in a quantum field
theory. On the one hand, the dataset has been extended
recently by LHCb, BES, COMPASS, and Belle with more
and more exciting new phenomena; on the other hand, there
is a huge dataset of pion- and photon-induced reactions in
the resonance region which still today are not understood
in terms of QCD dynamics [1,2]. Such reactions constitute
the doorway to understanding nonperturbative QCD, like
studies of the hydrogen atom paved the way to under-
standing QED.

While simulations of QCD on finite lattices made
considerable progress in the last decade, it is still not
feasible to derive cross sections systematically as measured
in the laboratory in the resonance region of QCD. Thus, at
present, it may be advantageous to resort to a well-
established method of modern physics—to derive the
implications of the fundamental theory by matching it to
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effective field theory approaches that are formulated in
terms of the relevant degrees of freedom.

With the great advances of lattice QCD simulations, such
an approach is going through a revolution at present, since
the effective field theory can now be scrutinized system-
atically by QCD lattice data. In turn, the typically quite
large set of low-energy constants can be derived from QCD
prior to confronting the effective field theory with scatter-
ing data taken in the laboratory. This has been emphasized
and illustrated recently in Ref. [3]. Some results for sets of
low-energy constants have already been obtained from the
masses of baryons and mesons in their ground states with
JP = %*,%* and J¥ = 07, 1~ quantum numbers [3-7].

Since the majority of available lattice data were taken at
unphysical quark masses, it is mandatory to establish
reliable tools to translate such data back to the physical
case. We see the fact that lattice data are typically for
unphysical hadrons so far as a fortunate circumstance, since
this way information on QCD is provided that cannot be
inferred from the PDG or any experimental cross section so
easily. Moreover, the determination of large sets of low-
energy constants from lattice data on the hadron ground-
state masses at various unphysical quark masses appears to
be much easier and better controlled compared to their
extraction from the first few available phase shifts as
computed on QCD Iattices at unphysical quark masses.

Here we wish to emphasize that our strategy to pave the
way toward the understanding of nonperturbative QCD
relies heavily on our recent claim that the chiral Lagrangian
properly formulated for the physics of up, down, and
strange quarks can be successfully applied to low-energy
QCD once it is set up in terms of on-shell meson and
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baryon masses. It was demonstrated that in that case, the
size of the physical strange quark mass does not prohibit
the application of the chiral Lagrangian. This is contrasted
by the conventional yPT approach, in which bare masses
are to be used inside any loop expression. Here any low-
order application to the flavor SU(3) case should be
avoided, being of no physical significance.

The purpose of the current study is to further prepare the
quantitative application of the chiral Lagrangian with three
light flavors to meson-baryon scattering data. Our target is the
set of counterterms that carry chiral order Q* and contribute to
meson-baryon scattering at the two-body level. Such Q3
counterterms play a decisive role in the chiral dynamics of the
meson-baryon systems. As was pointed out already in
Ref. [8], only in the presence of such terms may it be feasible
to establish a universal set of Q% counterterms that describe
pion, kaon, and antikaon nucleon scattering data. Though
there is a plethora of works [9—20] that fit the Q? counterterms
to pion-nucleon, kaon-nucleon, or antikaon-nucleon scatter-
ing, the only so far to take a universal approach is documented
in Ref. [8]. In turn, there are various mutually noncompatible
sets of the Q? counterterms available.

We would argue that there are also still some residual
deficiencies in Ref. [8] which may hamper the direct use of
the most comprehensive set of low-energy constants as
extracted from the published lattice dataset on the baryon
octet and decuplet masses in Ref. [5]. Most severe, we
would argue, are the particularities of the unitarization
schemes. Within the flavor SU(3) framework, so far, all
published works rely on neglect or improper treatment of
left-hand branch points. Though we do not expect this to
lead to huge qualitative issues, a quantitative and controlled
study of, in particular, p-wave phase shifts should consider
it in a reliable manner. We feel this to be an achievable
request owing to the fact that such a scheme exists by now
with Refs. [21-23]. So far, it was applied only to the flavor
SU(2) case with the zN and yN channels.

Within a flavor SU(3) context, such Q° terms were first
used in Ref. [8]. Later, the complete order-Q* Lagrangian
was constructed in Refs. [24,25] for the baryon octet fields.
To the best knowledge of the authors, such counterterms
have not been constructed so far involving the baryon
decuplet fields. We are aware of the recent Ref. [26], which,
however, provides partial results only. Since we wish to
derive sum rules for the Q3 low-energy constants from
large-N,. QCD [27,28], a reliable construction of the latter
terms is the target of the first part of our work in Sec. II. The
second part follows with Sec. III, in which we apply large-
N. QCD in order to derive sum rules for the set of Q3 low-
energy constants. Here we follow the framework previously
established in Refs. [29-31]. In our case, we compute the
contributions of the Q3 counterterms to the correlation
function with two axial-vector currents and one vector
current in the baryon ground states. From a study of the
latter, the desired sum rules will be derived.

II. CHIRAL LAGRANGIAN WITH BARYON
OCTET AND DECUPLET FIELDS

We recall the conventions for the chiral Lagrangian as
used in the current work [5,8,32,33]. The hadronic fields as
decomposed into their isospin multiplets are

®=17-7(140) +a' - K(494) + KT(494) - a +n(547)2s,
V2B =a'-N(939) + AgA(1115) 4 7-£(1195)
+E7(1315)i0, - a,

1
al =— (A4 +ilks,Ag+il7),
\/5(4 5,46 7)

where the matrices 4; are the Gell-Mann generators of the
SU(3) algebra. The numbers in the brackets recall the
approximate masses of the particles in units of MeV. Of
central importance is the covariant derivative

T= (/11’/127/13)’ (1)

(DMB)j‘ = aﬂB; + (HJ)ZB;Z - B;:l(Fﬂ);z’ (2)

as introduced in terms of the chiral connection [,. The

chiral connection with T', = —I'}, and other convenient
chiral building blocks are constructed in terms of the chiral
fields @ in a nonlinear fashion such that all the chiral Ward
identities of QCD are recovered in systematic applications
of the chiral Lagrangian [32,34,35]. We write

I, . 1 ) .
Fﬂ:Eu’[8,,—L(vﬂ—i—aﬂ)]u—i—iu[@”—l(vﬂ—aﬂ)]u‘,

Ly N
U"Ziu (0,eu —5U (v, +a,)u

+éu(vﬂ_all)l’ﬁa u:ei%’
Hﬂy:DﬂiUD—f—DyiUﬂ, DMD:DMDD—FDUD”, (3)

where we emphasize the presence of the classical vector
and axial-vector source fields, v, and a, of QCD [34,35].
The important merit of all building blocks B, U,,, H,,, and
D,, lies in their identical chiral transformation properties.
Thus, the action of the covariant derivatives is implied by
the example case of Eq. (2).

As derived first in Ref. [8], there are ten independent
symmetry-conserving Q3 terms that are needed in the
baryon octet sector. Such terms were studied in momentum
space properly projected onto the kinematics required in
meson-baryon scattering process. Initially, there were 20
terms considered. It was shown in Ref. [8] that only ten terms
are independent. This result was established by an evalu-
ation of the s- and p-wave projections of their contributions
to the scattering amplitudes. Explicit expressions for how
such terms contribute to the meson-baryon interaction
kernel were provided in Appendix B of that work.
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This result was confirmed later in Refs. [24,25] based on a complementary strategy. In fact, initially the authors of
Ref. [25] claimed the relevance of 11 terms in Ref. [36], a result inconsistent with the original finding in Ref. [8]. This error
was corrected first in Ref. [24]. In the current work, we use the ten terms in the following representation:

)
Ligg

1 _ -
_5”4 (trByl(DﬂyB) [U/l’H/w}— +tr(DWB)71B[UAvH/w]—) -

_ _ 1 _
=~u,wBy*B(U". H,,)_~u,uB[U*H,,] y*B~5us(wBU*y"twrH,, B+ H.c.)

1 _
Fus(B[U,.Hy |y (D" B) + (D" B) Uy, Hy ] y*B)

1 _ _ 1 _ i,
i (rBUy*trH,,,(D*B) +te(D*B)U,y*trH ,,B+H.c.) —§u7(trBa’1” (D'B)|U,;.H,,), —tw(D"B)c*B|U,.H,,).)

1

1 _ _
~5tui0(trBoH (D' B)wU;H,,, ~tx(DB)o* BuU,H,, ).

We turn to the decuplet sector. The construction of the
chiral Lagrangian is straightforward following the rules
established by Krause in Ref. [32]. We use here the
conventional Rarita-Schwinger fields to interpolate to the
decuplet of the spin-3 half-states. The baryon decuplet field
Bi,jk comes with three fully symmetric flavor indices, i, j,
k=1,2,3as

BIM=A;*. BY2=Af/V3, BP=AY/V3, BP2=A;.
B, :Z;”/\/i B)? :Zﬂ/\/g, B :Z;/\/§,
BI¥=E)/V3, B =E;/V3,

B3P =Q, (5)
where the components are identified with the states in the

particle basis for convenience. The covariant derivative
takes the form

(D,B,)"" = 9,B/" + T ,B" + T/ Bi" 4-Th B (6)

where again the chiral connection I, is needed. In order to
keep track of the various flavor index contraction in
the many terms of the chiral Lagrangian, we use here a
powerful notation already introduced by one of the authors
in Ref. [8]. The idea behind the notation is to introduce

|

- - 1 - -
—5Us (wrB[U;.H,,) c"*(D*B)—te(D*B)[U;.H,,] .c"B) —Zug(trBUpiﬂ (DB)H,,—tr(D*B)U,;6*BH,,+H.c.)

(4)

|

afew auxiliary objects in terms of which any interaction term
can be written down in terms of simple 3 x 3 matrix
products, as is the case in the baryon octet sector. Indeed,
this is achieved by the consideration of suitable “dot”
products of the decuplet fields. We need to discriminate
among the following three cases only:

(B 'Bu)j- _ Bf,‘»szikl’ (B - (1))‘1}. = ekliB’,jmjd)f”,

(®-B,); = €x; @B, (7)

where any of such products yields a two-index object that
transforms as a flavor octet field again. Note that it takes a bit
of group theory, but indeed all our terms in the chiral
Lagrangian can be written down in such a notation. Given
this fact, it is, however, rather convenient to apply such a
notation, since the painful write-down of flavor-redundant
terms can be avoided to a large extent. In Refs. [8,33], all
terms at order Q7 that are relevant for meson-baryon scatter-
ing were written down for the first time. Such terms were
recently rediscovered in Refs. [26,37] using a less transparent
notation. The first partial list of O terms involving the baryon
decuplet field was published in Ref. [38].

We now turn to the symmetry-preserving Q> terms that
involve a decuplet field. A complete list of 14 =8+ 6
terms is readily worked out with

1 _ 1 - 1 _
c® (tr(B, - U")p#(H,, - BY) + Hee) 4305 (tr(B, - UMy (Hy - BY) 4 Hee) 5 0 (ir(B* - UA)y* (H,, - B;) + Hic.)

[ojf10] ~ 5 V1

1 - - 1 -
+ 1114(“(31 : U/1>}//1(H;w : (DWBT)) + tr(<DWBT) : U/l)}//l(H/w : BT) + H'C'> + EUS (tr(Br : Glﬂ (DDBT>)[U/17HMD]+

- tr((DDBT) : GAﬂBT)[UbH/wL») +%U6(tr(BT : U/l)dlﬂ(Hm/ ’ (DDBT)) - tr((DUBT) ’ UX)GQ”(H;W ' BT) + HC)

1

1 _ i, _
) v7(te(B, - c*(D*B°))wU,H,,, — tr((D*B,) - 6*B")tU,H,,) + 1 vg(te(B* - U,)(H,, - (D*BY))

—u((D*B") - U,)(H,, - B") + H.c.)

094035-3



HEO, KOBDAJ, and LUTZ

PHYS. REV. D 100, 094035 (2019)

and

3 1 = . 1 - . )
Ligho =5 wi(w(B* - (U, Hy,), )io™ysB + Hee.) + w2 ((BY - (U Hy ] i"ys(D*B)

2

- . 1 - . B
—w((D*B*) - U, H,, ], )iy*ysB +H.c.) + 2" (e(B*- [U,. Hy,) . )iy*ys(D"B)

_ 1 _
—tw((DB*) - (U, H,,], )ir*ysB+H.c.) + W (te(B* - [U; H,)_)ic™ysB + H.c.)

1 = . - .
—|—ZW5(U’(BA : [UﬂﬂH;w]—)lyMyS(DbB) - tr(<DDB/I) : {Uﬂn H;w]—)ly”ySB + HC)

+ %"‘}6(tr(B/1 : [UwH}w]—)iyﬂy5<DDB) - U((DDB}L) ! [U/quv]—)iyﬂySB + HC) (9)

We observe a significant mismatch with the number of
seven terms claimed in Ref. [26].

III. CORRELATION FUNCTION FROM THE
CHIRAL LAGRANGIAN

We consider QCD’s axial-vector and vector currents,

AL () =@ W), VA () = By, (),

(10)

where we recall their definitions in terms of the Heisenberg
quark-field operators W(x). With 4, we denote the
Gell-Mann flavor matrices. Our target is an evaluation of
the following matrix elements:

C;(Zﬁe)(q,q/)—/d4xd4ye+iq'(x—y)e+iq’-y

x (x| TAL (AP OV Wpz) (1)

in the baryon ground states. Here the spin projections of the
initial and final baryon states we denote by y and j.
Similarly, the initial and final three-momenta of the states
are p and p. The flavor structure in Eq. (11) is incomplete,
since the initial and final baryon states also come in different
flavor copies. We return to this issue below in more detail.
Given the chiral Lagrangian, it is well defined how to derive
the contributions to such matrix elements in application of
the classical matrices of source functions, a, and v,,.

The particular correlation function is chosen so as to
selectively probe our Q3 terms. This is so because any such
term in the chiral Lagrangian is linear not only in the U,
field but also in the H,, field. Upon an expansion of those
building blocks in powers of the meson fields, one finds
iU,=a,+---, iH,=,a] +[v,.a,|_+---. (12)
From here we conclude that the tree-level evaluation of
the chiral Lagrangian is characterized by the symmetry-
conserving 03 terms, as anticipated above.

The motivation for our study of this correlation function
is twofold. First, it serves as a convenient tool to verify

|

whether we use only independent sets of the symmetry-
conserving Q3 terms. We checked for the flavor octet case,
that any additional term leads to a contribution that can be
linear-combined in terms of the ten terms originally used in
Ref. [8] and confirmed later in Refs, [24,25]. An analogous
computation consolidates our claim about the smallest set
of independent terms in the decuplet sector. Second, such a
correlation function can be scrutinized also in large-N.
QCD. This will lead to sum rules among the set of low-
energy constants introduced in this work. We will turn to
this issue in the next section.

We close this section with explicit results for the
correlation function. It suffices to evaluate the matrix
elements in the strict flavor SU(3) limit. In this case, a
baryon octet or a decuplet state,

p.xsc), \p.x. klm), (13)

is specified by its three-momentum p and the flavor indices
c=1,...,80rk,[,m=1,2, 3. The spin polarization label
is y = 1, 2 for the octet and y = 1, ...,4 for the decuplet
states. In order to discriminate flavor structures from the
currents versus those from the baryon states, we introduce
the operator

0 (q.q) = / d'xdty et ety

xTA (AP OV (). (14)
by which the matrix elements in the baryon states [Eq. (13)]
are considered in the following. Note that in Eq. (14) we
already focus on the space components of the three
currents. From the study of such components, the antici-
pated large-N . sum rules for the low-energy constants, the
main target of our work, can be derived.

Since we will encounter many flavor indices in our work,
which either run from 1 to 3 or from 1 to 8, we found it
useful to split the alphabet into two parts. We use the roman
small letters from « to g for flavor indices witha =1, ..., 8
and the letters from & to z for indices with A =1, ..., 3.
With this convention it is easily confirmed over which
range a given flavor index goes.
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We are now prepared to present results for the matrix elements introduced with Eq. (11). A somewhat tedious but

straightforward evaluation leads to the explicit results

2gi~i7h —I—gihyj +gjh)/i

- abe — = =
(b2 d|OG (4.4)lp.z. ) = (p.7) .

- (ul - u2)5abifdce

— 3(u1 —

u(pv)(){_(ul + u2)6abddce - 3(“1 + MZ)dubgdefgddcf

) apgepgif aer + (U1 + u2)(8gedpac + Opedaac)

: : 1 . . . .
+ (ul - u2)<6aelfbdc + 5belfadc) - E Uz (5adlfbec + 5bdlfaec - 5aclfbed - 5bclfaed)}

gty — gty
+a(p )

u(p,;(){(ul + u2)fabgfefgddcf + (Ml - MZ)fabgfefgifdcf

1 : : . .
- E us (5adlfbec - 5bdlfaec - 5aclfbed + 5bclfaed)}

- (l/t7 - MS)dabgifefgifdcf -

+a(p.7)

u\p

( ’Z)(p + p)k{_(u7 +ug — u9)dabgifefgddcf

1 : . . .
A Uo (5adlfbec + 5bdlfaec + 5aclfbed + 5bclfaed)}

_ 2i6Y8 4 ic™8; — ioiS;;

8

4 41 ,
u(p.y) {— (g u; + s — 3o + 2Mm) if abeSac

+ (u7 + ug — u9)<ifaegdbgf - ifbegdagf>ddcf + (”7 - ”8)(ifaegdbgf - ifbegdagf)ifdcf

1 : : . . _
- 5 Ug (5adlfbec - 5bdlfaec + 5aclfbed - 5bclfaed) } (p + p)k

__ P+ Py
+Ha(pg) =

- (l/t4 - u5)6abifdce

M(p,){)(i) + p)h{_(u4 + u5)5abddce - 3(“4 + MS)dabgdefgddcf

- 3(”4 - uS)dabgdefgifdcf + (u4 + MS)(ﬁaedbdc + 5bedadc)

. . 1 . . . .
+ (I,t4 - u5)(6aelfbdc + 5belfadc) — 5 Ue (6adlfhec + 6bdlfaec - 5aclfbed - 6bclfaed)}

P =P
—a(p.p) P

2

u<p’)(){(u4 + u5)fabgfefgddcf + (u4 - MS)fabgfefgifdcf

1 : : . . _
- 5”6(5adlfbec - 5bdlfaec - 5aclfbed + 5bclfaed>}(p - p)h' (15)

Corresponding expressions for matrix elements in the
baryon decuplet states are collected in Appendix A. We
wish to emphasize that the computation of such matrix
elements serves as a powerful consistency check of whether
the terms of the chiral Lagrangian were constructed
properly. Our results (15) show that all terms shown are
independent—i.e., it is not possible to eliminate any term.

IV. CURRENT CORRELATION FUNCTION IN
LARGE-N, QCD

Consider Ogcp to be the time-ordered product of
any combination of local currents in large-N. QCD,
where Eq. (14) may serve as a specific example for

N, = 3. The generic form of the large-N . operator expan-
sion can be taken as

px) = el p)ElOSclr).  (16)

n=0

(P ¥|Oqcp
where it is important to note that unlike the physical baryon
states, | p, ), the effective baryon states, |y), do not depend
on the three-momentum p. All dynamical information in
Eq. (16) is moved into appropriate coefficient functions
¢, (P, p). Moreover, in the decomposition of Eq. (16), the
coefficients ¢, (p, p) depend on neither the flavor nor the
spin quantum number of the initial or the final baryon state.
The merit of Eq. (16) lies in the fact that the contributions
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on its right-hand side can be sorted according to their
relevance at large values of N..

The effective baryon states |c,y) and |klm,y) have a
mean-field structure that can be generated in terms of
effective quark operators. They correspond to the baryon
states already introduced with Eq. (13) for the particular
choice N. = 3. A complete set of color-neutral one-body
operators may be constructed in terms of the very same
static quark operators:

=" 1®1®1)q. J,»—q*(%@l@l)cz,
la i j'a
Ta:qf<1®3®1>q, G?:qT<%®5®1>q, (17)

with operators ¢ = (u,d, s)” introduced for the up, down,
and strange quarks. With 1, we denote the Gell-Mann
matrices. While the action of any of the spin-flavor
operators introduced in Eq. (17) on the tower of large-
N, states is quite involved at large N_. # 3, matters turn
quite simple and straightforward at the physical value
N, = 3. For this physical case where there is a flavor
octet with spin 1/2 or a flavor decuplet with spin 3/2 only,
we recall the well-established results of Refs. [8,33] with

Te.x)=3lc.x),

1 .
Jile.x) =5 ollep), TOley) =if caald.y).

YA i _
G?‘C’){) = 0}()() (EdCda +§fcda> |d’)()
+7S”A';{m|klm,)()
Tklm,y)=3lklm,y),

3.2 _
Jilklm,y) :5(80i§)21|k1m,)(),

3Aa nop

Ta|klm’)() 2 klm

[nop.x).

a,nop

G“Iklm,ﬂr)——( a,§*> P lnop.j)

=+ F (ST );{){AZICm

c.7) (18)

with the Pauli matrices o; and the spin-transition matrices
S; characterized by

. 1 .
S}Sj = §;; 56,0'], Sio;— Sjo; = —ig;jx Sy,
E §T - 1(4><4), S:T . S - 21(2)(2),
S:6=0. €SS =iSeS". (19)

We recall some instrumental flavor structures,

m __ (b m
AZJ - [ tjklgz )/1 )]sym(klm) 5ﬁ£7p = [5kn5105mp]sym(nop)’
ab __ b aklm a
Ak;qm - [Sijk)“z('l uﬁ'n?]sym(klm)’ A"OP - Mgcn)(slaémp]sym(nop)’

(20)

that occur frequently in our previous and current
works [5,31,39].

In the sum of Eq. (16), there are infmitely many terms
one may write down. The static operators O.... are finite
products of the one-body operators J;, 7%, and G¢. In
contrast, the counting of N, factors is intricate, since there
is a subtle balance of suppression and enhancement effects.
An r-body operator consisting of the r products of any of
the spin and flavor operators receives the suppression factor
N_". This is counteracted by enhancement factors for the
flavor and spin-flavor operators 7¢ and G¢ that are
produced by taking baryon matrix elements at N, # 3.
This leads to the enhancement factors [40]

J;~N, T¢~N.,, G¢~N.,. (21)

Together with the suppression factor N.” from the expan-
sion coefficients in Eq. (16), this implies the effective
scaling J;~1/N_and T¢ ~ G¢ ~ N?[31,40,41]. According
to Eq. (21), there are an infinite number of terms contrib-
uting at a given order in the 1/N, expansion. Taking higher
products of flavor and spin-flavor operators does not reduce
the N. scaling power. A systematic 1/N, expansion is
made possible by a set of operator identities [31,40] that
allows a systematic summation of the infinite number of
relevant terms. As a consequence of the SU(6) Lie algebra,
any commutator of one-body operators can be expressed in
terms of one-body operators again. Therefore, it suffices to
consider anticommutators of the one-body operators
[31,40]. For instance, consider the following two identities
that hold in matrix elements of the baryon states:

dyub[Tm Th}+ - _2T,(] + 2[‘]i’ G.i/]Jr’
o 1 9 3
dgab [Ga’ Gﬂ+ = 3 767 (2 Tg - E [Jk Gk] )
Fha s @)

where we consider N, = 3 for simplicity. The relations in
Eq. (22) have been verified in Ref. [31] by the application
of Eq. (18).

Altogether, the expansion scheme is implied by two

reduction rules:

(1) All operator products in which two flavor indices are
contracted using O,p,, fapes OF dype, OF in Which two
spin indices on G’s are contracted using J;; or &;j,
can be eliminated.

(2) All operator products in which two flavor indices
are contracted using symmetric or antisymmetric
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combinations of two different d and/or f symbols

can be eliminated. The only exception to this rule is

the antisymmetric combination f,.,dpch = fpeqdach-
As a consequence, the infinite tower of spin-flavor oper-
ators truncates at any given order in the 1/N_. expansion.
We can now turn to the 1/N. expansion of the baryon
matrix elements of our specific product of QCD’s axial-
vector and vector currents. In the application of the operator
reduction rules, the baryon matrix elements of time-ordered
products of the current operators are expanded in powers of
the effective one-body operators according to the counting
rule [Eq. (21)] supplemented by the reduction rules.

V. SUM RULES FOR THE LOW-ENERGY
CONSTANTS

As compared to previous works [5,29-31] that dealt with
correlation functions of one or two currents only, it turned
out that the systematic construction of the large-N . operator
hierarchy for the correlation function of three currents is
considerably more involved. While it is straightforward to
write down a set of operators to a given order, almost any
single term cannot be matched to the matrix elements as

|

TABLE I. Matching of the large-N, operators to the LEC.
u; =0 vy =0 w =0
I/l2:0 ’U2:0 W2:—4§2
M3:0 1]3:0 W3:4§2
u4—%§1+%ﬂ4 vy = =37, wy =0
I,{S:—%gl—%A4 1}5:_3.@2_1896 WSZO
Ug = 304 v =0 we =0
U7 =49 — 206 v7 =23y + 396 + 1296
u8*%?]2+296 vg =0
Ug = 0

__4nr
U =-39—-9s

implied by the chiral Lagrangian. This is so because the role
of charge conjugation and parity invariances is not so
transparent in the given framework. We derived our oper-
ators by considering all possible combinations and then
performed the matching in application of a suitable com-
puter algebra code by using matrix elements presented in
Appendix B. This then generated the following leading-
order decomposition:

ij i | L,
Oa][flezaglj) {gl(é‘abTe_(5aeTb+5beTa)+3dabgdengf>_594{daeg[Jl7([Tvaé]+_[Tb’Glg]+)]++dbeg[Jl7([Tva£1]+

—[Ta,Géhm—Zdabg[ﬂ,aTg,Géh—[Te,Gimm}

+ (ﬁ + p)q{(ieijuéhq + 58])_ iehmz) [QZ(ifaegdgbf - ifbegdgaf)G? + QS ifabe*]u + gG(ifaegdbfg - ifbegdtlfg) []u’ Tf]-&-}

)q)_
8 i (3 g G+ S angif oyl T 11,1},

where the parameters §;_; and §,_; are relevant at leading
and subleading orders, respectively. In Eq. (23), we use the
notation

(i), _1
5(”11”131 _5(5}7115}1/ iémjéni)’
(i) Simh | i h\( 5 i (i
6, F=—em—— I+ . 24
h 2(M+M)(pp +p'p")(p+p)Y£(i<)). (24)
Owing to the matching condition
9 +39=0, (25)

there are two leading-order operators only. This is a
nontrivial result in view of the fact that one may write
down many more leading-order operators. For instance,
consider the particular term

S [T, Ty), T,

- ([[TavTe}Jr’Tb]Jr + [[Tb’Te]+’Ta]+)>’ (26)

(23)

|

for which the matrix elements can be shown to be propor-

tional to the matrix elements of the operator associated with

J1- At subleading order, we find three additional operators

only. Here the matching condition
96 +G7=0 (27)

eliminates one term.

The number of independent coupling constants in the
chiral Lagrangian is 24. At leading order in the 1/N,
expansion, all of them can be expressed in terms of §; and
§, as detailed in Table I. At subleading order, the additional
three parameters J4, Js, and gq enter. The desired sum rules
follow upon eliminating the parameters g,. There are 15
common sum rules applicable at LO and NLO:

uip3=0=uo, Wise=0=w,

(28)

V123=0=1¢g3,

Us = —Uy, W3 = —Wj.

They are supplemented by four and seven additional sum
rules at NLO and LO, respectively, as
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Uy = 61/[7 - 3”8, Vy = 6M5 + Ug,

v7 = —6u; — 3uyy, wy = 2(u7 +ug),  (29)
and
V3 = —91/[7 == Zulo, Vy = 61/[5, Ug = 0,
12
v7 = 6uy, wy = 12u; = = Us- (30)

VI. SUMMARY

In this work, we further prepared the ground for realistic
applications of the chiral Lagrangian with the baryon octet
and the baryon decuplet fields. For the first time, all
symmetry-preserving Q3 counterterms were constructed
as they are relevant for any two-body meson-baryon reaction
process. Altogether, we find 24 terms. In order to pave the
way toward applications of this set of low-energy param-
eters, we derived a set of sum rules. We considered matrix
elements of a correlation function with two axial-vector
currents and one vector current in the baryon ground states as

they arise in QCD at a large number of colors (V). From a
systematic operator expansion thereof, we deduced our set
of 22 sum rules valid at leading order in the 1/N . expansion.
At subleading order, there remain 19 relations.

With our result we now deem it feasible to perform
significant coupled-channel studies of meson-baryon scat-
tering processes considering channels with the baryon octet
and decuplet fields on an equal footing as it is requested by
large-N,. QCD. Increasing the accuracy request by one order
from Q2 to Q3 involves only a few further independent
parameters once the constraints of large-N, QCD are
imposed to subleading order. Of particular interest are the
sectors with two or three strangeness units, for which the
empirical dataset is quite limited.
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APPENDIX A: MATRIX ELEMENTS FROM THE CHIRAL LAGRANGIAN

kim)

- b
<p7)(7 noploz(';lh e) (q’ q/)

1 1no X 1
- - Z 5xyZpAZ}myz (3dabgdedg + 6ab5ed - 5u66bd - 5ad5he) {_

r . -
+§vz(u’(p,)()7’u (p.x)+w(p.jy)y'u

5 v1it (P ) (27" g7 + v g + i ")t (p.y)

"(p.x)+ @ (p. p)r"uw (p.y) + W (p. )y u (p.x))

F 3@ W p) + W) + WD p2) + (0.1 (p2)

1

+ @ (p. )y uw (p.y) — w (p.jo)r"u' (p.x)) + 5 v3

2

+@"(p.j)y'w (p.y) — (Py)?)yfu"(p,x))}

b.rst .
5;lxotp ( (Agv’;ﬂ lfbeq AX,VrzS[ lfaeg)Azl)/ZZ

<

0| == OOIL»J o0 | =—

3 . . nop s fxyz
+ <U5 + Z U()) (lfbegdagf - lfaegdbgf)éx}f/\{lm)

3 . borst - 2
- g U66:l;)tp((/\%’?tlfhey - AXS‘ZSZlfueq)AZl)rCz}Z + Az’VrZ‘[(

-1 Z’ff/\ff,iizfabgfedg{ 010t (P 7) (' g = ¥ g (p. ) — 5 v (@ (P i)/ u" (p.x) — w/ (p.g)y'u”

+ AL (A

(PR)Qic"(p+ p)* + ic™(p+ p)i — i (p + p)f)uf(p,;n{z(%

1

3 (p.x)

(@' (p.2)y"u(p.x) — w (p.2)r"u'(p.x)

o 3 :
()" (p+ )+ i+ p))u(p){ 05+ 5 0 ) o g PN

b,
£ e+ N )}

1 op.
3 Vs + 5”6 + 1}7> 621Zz)lfahe

a Xyz h XYZ -
wim L beg = Niim ’faeq))}
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1 no Xy 1 —hi= = i —ir= = — i
— g7 NG (3d g oy + Bapre — Buype — 5ae5bf){§ vs((@"(p.j)w (p.x) + @ (p.7)u"(p.x))(P + p)

(@ (P2 (po) + F (PP <p,x>><p+p>f>}

1 gnop p 1o T o o
~3 m”Ailnfzfabgffeg{ s((@"(p.p)uw (p.x) + w (p.jo)u"(p.x))(p + p)

(@ (5.7 (poy) + T (PP <p,x>><p+p>f>}

lno Xy I I T R N -
+ Zéx)’zl-)AZlm}z(Sdabgdedg + 5ab5ed - aaeébd - 5ad5h3){v4ur(p’){) (p 7/] + p]y )M (p’)() (p + p)h}

: (A1)

=38P D(PY = D (p.2)(P = PY' O&E AGin 04 f avyf ety

and

(p.7.n0p| 0% (4.4 .1 €)
= 8\1/— (@' (p,7)ic™ + @ (p.jr)ic™)ysu(p. ) {=widappifegr — Wa(3dupsdyer + SapSye = (8agOpe + SpgBac)) Y AGe"
+ ﬁ (@ (P + @ (p. )y )P+ p)' + (@ (p.2)(p+ p) + @ (p.jr) (P + p))r")rsu(p. ) {—wadapyif eqs
—ws(3duppdger + 405 — (84gBpe + OpgBac)) }AGe"

# (@ (p. )y’ +a (p.2)y")(p+ p)" + " (p.0)(r (P + p) + ¥ (P + p))rsu(p. x){—wsdupsif eqr

- W6(3dabfdgef + 6ab5ye - (6uq5bc + 517(] ae))}Anop

1 L o L . . no
‘f’—(zuh(lﬁ){)w” —(@'(p.x)i o/ — uj(p’)()lalh»ySu(va){Wl(lfaefdbgf - lfbefdagf) W4fabffgef}A g

8v2

+ﬁ<<ai<p,;z>w — @GP+ ) + @B+ p)

- L_‘j(l_?’)_()(l_? + p)i)yh)ySu(pv)(){w2(ifaefdbgf - ifbefdayf) WSfabffqef}Am)p
T f( (@' (p.x)y! = (p.2)y')(p+ p)"

+@"(p. ) (P4 p) =¥ (P + P))rsu(p. ) Aws(if aerdpgr = if pesdagr) = WoS avsf ger } Nac” -

APPENDIX B: MATRIX ELEMENTS AT N, =3

The matrix elements for one- and two-body operators are presented in Ref. [33]. Those for three-body operators

considered in this work are collected here.
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(d.x
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[ 27 R r. . T, W
(nop ZN[Ta: Ty) . G kim. ) = T2 (S0 S7), SIPAAGE LRI AG ™ + AN ALj™ + (a < b)),

— i 27 = =y nop a,rs Xy
(nop [T Tl 1, lkim.z) = 21 (So/S"),, 817 (AR + (a > D).

= i l 1 32 it nop 13 a.rst A b.xyz 1 rst A bg
(”0P7)(|HGWG17]+»J }+|klm,)() = E(S" S );z;(‘srst ?Axyz Ngim _EAagAklm +(a < b) ¢,

(nop. z|[[Ta: Tpls Tel e, ) = O,
1 no i i i . . rs
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3 e,rs . uvw
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P Al : 2 ; rs 5 : rs : rs
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— 840pc + 3dabgdcgf)},

07
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3oy 3 e ) N7 = SN = a7 200N | (B)
where Eq. (A.2) in Ref. [31] was used. We correct a typo with
o | 2. 5. .
(109, BI1GA G ) = 5 7108t | (a3 e )Y 3 (a2 = e NE2) = (0 <> )
b (S 4 5100, (e + iF )N + (> D)L (B2)
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