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Chiral susceptibility in the Nambu—Jona-Lasinio model:
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We estimate here chiral susceptibility at finite temperature within the framework of the Nambu—Jona-
Lasinio model (NJL) using the Wigner function approach. We also estimate it in the presence of chiral
chemical potential (u5) as well as a nonvanishing magnetic field (B). We use a medium separation
regularization scheme (MSS) in the precence of magnetic field to calculate the chiral condensate and
corresponding susceptibility. It is observed that for a fixed value of chiral chemical potential (u5), transition
temperature increases with the magnetic field. While for the fixed value of the magnetic field, transition
temperature decreases with chiral chemical potential. For a strong magnetic field, we observe non-
degeneracy in susceptibility for up and down type quarks.
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I. INTRODUCTION

In recent years, extensive efforts have been made to create
and understand strongly interacting matter in relativistic
heavy ion collision experiments, e.g., at the relativistic
heavy-ion collider and the large hadron collider. There are
mounting evidences which indicate formation of deconfined
quark gluon plasma (QGP) phase of QCD in the initial
stages of these experiments as well as the formation of
confined hadron phase in the subsequent evolution of QGP.
Ground state of QCD exhibits two main nonperturbative
features, color confinement and spontaneous breaking of
chiral symmetry. The dynamical breaking of chiral sym-
metry is the manifestation of the quark-antiquark conden-
sation in the QCD vacuum. Dynamical chiral symmetry
breaking characterizes the nonperturbative nature of QCD
vacuum at vanishing temperature and/or density. With
increase in temperature and/or baryon density, the QCD
vacuum undergoes a transition from a chiral symmetry
broken phase to a chiral symmetric phase. This transition
is characterized by the quark-antiquark scalar condensate,
the order parameter of the chiral phase transition. Although
for first order phase transition order parameter changes
discontinuously across the transition point, for second
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order phase transition or for a crossover transition the
variation of order parameter across the transition point is
rather smooth. In these cases, the fluctuation of this order
parameter and the associated susceptibilities are more
relevant for the characterization of the thermodynamic
properties of the system.

The characteristics of fluctuations and correlations are
intimately connected to the phase transition dynamics, e.g.,
fluctuations of all length scales are relevant at QCD critical
point where the first order quark-hadron phase transition line
ends. The study of fluctuations and correlations are essential
phenomenological tool for the experimental exploration of
the QCD phase diagram. In the context of heavy-ion
collisions by studying the net electric charge fluctuation,
it has been demonstrated that net electric charges are
suppressed in the QGP phase as compared to the hadronic
phase [1,2]. It has also been pointed out that the correlation
between baryon number and strangeness is stronger in the
QGP phase as compared to the hadronic phase [3,4]. The
quantity of interest here is the chiral susceptibility which
measures the response of the chiral condensate to the
variation of the current quark mass. Chiral susceptibility
has been calculated using first principle lattice QCD (LQCD)
simulations [5-10]. All these lattice results show a pro-
nounced peak in the variation of chiral susceptibility with
temperature at the transition temperature, which essentially
characterizes the chiral transition. Apart from these LQCD
studies which incorporate the nonperturbative effects of
QCD vacuum, complementary approaches, e.g., Nambu—
Jona-Lasinio (NJL) model [11,12], chiral perturbation theory
[13], Dyson-Schwinger equation [14], hard thermal loop
approximation [15], etc. have been considered to study the
chiral susceptibility.

Published by the American Physical Society
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An entirely new line of investigations has been initiated
to understand the QCD phase diagram due to the possibility
of generation of extremely large magnetic field in non-
central relativistic heavy ion collision experiments. In the
early stages, the magnetic field in QGP can be very large, at
least of the order of few m2 [16-24]. While such fields
rapidly decay in the vacuum, in a conducting medium they
can be sustained for a longer time due to induced current
[21-24]. Strong magnetic field can affect dynamical chiral
symmetry breaking. It has been shown that external
magnetic field acts as catalysis for chiral condensation;
the value of chiral condensation or the constituent mass of
quarks is larger than vanishing magnetic field case. It is
important to mention that the effect of magnetic field on the
order parameter is not unique to QCD medium. In fact, in
condensed matter systems, e.g., superconductors magnetic
field can play a significant role. A striking contrast of
the effect of magnetic field on the chiral condensate
contrary to superconductors is that the magnetic field helps
to strengthen the chiral condensate. Naively one can
understand this in the following way. Unlike the electrically
charged superconducting condensate, chiral condensate is
an electrically neutral spin zero condensate. Hence, for the
chiral condensate, the magnetic moment of the fermion and
the antifermion point in the same direction. Hence, in the
presence of magnetic field, both magnetic moments can
align themselves along the direction of the magnetic field
without any frustration in the pair [25]. It has also been
pointed out that in the presence of magnetic field dimen-
sional reduction can play an essential role in the pairing of
fermions [26].

Magnetic catalysis has been explored extensively in
(2+1) and (3 + 1)-dimensional models with local four
fermion interactions [27—-46], supersymmetric models [47],
quark meson models [48,49], chiral perturbation theory
[50,51], etc. Such a strong magnetic field can also introduce
some exotic phenomenon, e.g., chiral magnetic effect
(CME), chiral vortical effect (CVE), etc. in a chirally
imbalanced medium [52]. Underlying physics of the chiral
imbalance is the axial anomaly and topologically nontrivial
vacuum of QCD, which allows topological field configu-
rations like instantons to exist. An asymmetry between the
number of left- and right-handed quarks can be generated
by these nontrivial topological field configurations due
to Adler-Bell-Jackiw anomaly. Such an imbalance can lead
to observable P and CP violating effects in heavy ion
collisions. In the presence of magnetic field, chirally
imbalance quark matter can give rise to chiral magnetic
effect where a charge separation can be produced. Effects
of a chiral imbalance on the QCD phase diagram can be
studied within the framework of grand canonical ensemble
by introducing a chiral chemical potential x5, which enters
the QCD Lagrangian via a term usiy°y y. Chiral phase
transition has been discussed extensively. These studies
include NJL type models [53-59], quark linear sigma

model [53,60], lattice QCD studies [61,62], etc. Although
the effect of chiral chemical potential has been explored
extensively, contradicting results have been reported in
various literature, e.g., Refs. [53-58] predict that chiral
transition temperature decreases with chiral chemical poten-
tial. On the other hand, in Ref. [59], it has been argued that
with a specific regularization method chiral transition
temperature increases with chiral chemical potential, which
is in agreement with lattice results in Refs. [61,62]. In this
context, in a recent interesting work, the Winger function
in the presence of nonvanishing magnetic field and chiral
chemical potential has been evaluated in a nonperturbative
manner using explicit solutions of the Dirac equation in a
magnetic field and chiral chemical potential [63]. This has
been later used for pair production in the presence of
electromagnetic field [64].

To probe the medium produced in relativistic heavy ion
collisions, generally thermodynamic or hydrodynamic
model has been used, which assumes local thermal equi-
librium. However, due to the short timescales associated
with the strong interaction, the medium produced in the
heavy ion collision is rather dynamical in nature and lives
for a very short time and nonequilibrium as well as
quantum effects can affect the evolution of the medium
significantly. These effects can be considered within the
framework of nonequilibrium quantum transport theory. It
is important to point out that in the case of interacting field
theory of fermions and gauge bosons, transport theory
should be invariant under local gauge transformation. Such
a gauge covariant quantum transport theory for QCD has
been developed in [65-67]. Classical kinetic theory is
characterized by an ensemble of pointlike particles with
their single particle phase-space distribution function. The
time evolution of single particle phase-space distribution
function governed by the transport equation encodes the
evolution of the system. Similar to the single particle
distribution in classical kinetic theory, Wigner function,
which is the quantum mechanical analogue of classical
distribution function, encodes quantum corrections in the
transport equation [68]. Equation of motion of Winger
function can be derived from the equation of motion for
the associated field operators, e.g., for fermions, evolution
equation of Wigner functions can be derived using the
Dirac equation [69,70]. In the case of local gauge theories,
the Wigner function has to be defined in a gauge invariant
manner [71]. The covariant Wigner function method for
spin-1/2 fermions has already been explored extensively in
the context of heavy ion collisions to study various effects
including the CME, CVE, polarization-vorticity coupling,
hydrodynamics with spin, dynamical generation of mag-
netic moment, etc. [63,72-83].

In this investigation, we study the chiral phase transition
and chiral susceptibility in the presence of magnetic field
and chiral chemical potential in quantum kinetic theory
framework using NJL model [84-89]. Our work is based on
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the spinor decomposition of the Wigner function using
formalism of Refs. [63,90]. In this investigation, we limit
ourselves to mean field or classical level of the quantum
kinetic theory, since the chiral symmetry breaking and
generation of dynamical mass of fermions take place at
mean field level [90]. The formulation of transport theory of
NJL model has been studied in Refs. [90-93]. In this work,
we have used the formalism given in Ref. [90] to calculate
the chiral condensate and the chiral susceptibility using the
Wigner function. Wigner function in general is used for
deriving dynamical equations for the out of equilibrium
system [90]. In the present study, we limit ourselves to use
the Wigner function for an extended system in global
thermal equilibrium, i.e., at constant temperature and chemi-
cal potentials to calculate chiral susceptibility.

In this context, some comments regarding chiral tran-
sition in the presence of a of chiral chemical potential (u5)
may be in order. In Ref. [54], this was investigated within
Polyakov loop extended NJL (PNJL) model. It was
observed that the chiral transition temperature decreases
with chiral chemical potential. To eliminate artifacts of a
sharp three momentum cutoff, in Ref. [54] a smooth cutoff
for the three momentum modeled through a form factor was
used. Further, it was observed that with increasing us the
chiral transition becomes a first order transition. In fact, the
phase diagram in ps — T plane for the chiral transition
becomes similar to the same in 4 — T plane. This was also
the conclusion in Refs. [54,60,94]. On the contrary, non-
local version of the NJL model was further analyzed in
Ref. [95] with the result that the chiral transition temper-
ature increases with chiral chemical potential and the chiral
transition is second order. Similar conclusion was also
drawn in Refs. [96,97] using a Schwinger Dyson approach.
Further, NJL. model with chiral chemical potential was
analyzed in Ref. [59] with a novel “medium separation
scheme” (MSS) for regulating divergent integrals, and the
conclusion was that the chiral transition temperature
increases with 5 and such conclusions are also in accor-
dance with some lattice calculations [61,62]. However, it
ought to be mentioned here that the lattice data have not
been obtained in the chiral limit and some of the results are
for N, =2 QCD, e.g., [62]. A further careful analysis of
NJL model was done in Ref. [57] to examine dependence
of chiral transition temperature on different regularization
scheme. It was observed that chiral transition temperature
decreases with chiral chemical potential with a smooth
cutoff and shows a first order transition at large us. In
the present investigation, we use a medium separation
scheme in the presence of magnetic field and chiral
chemical potential. Such a scheme was introduced in
Refs. [59,98,99]. As we will see later, we also do not
see a first order transition at large chiral chemical potential
as in the analysis in Ref. [95]. However, we observe that
chiral transition temperature decreases with chiral chemical
potential as in Refs. [54,57].

We organize the paper in the following manner. In
Sec. II, for the sake of completeness, we recapitulate
the results of Ref. [90] to study chiral condensate in
NJL model using Wigner function approach. Then in
Sec. III we introduce the Winger function in the
presence of magnetic field as well as chiral chemical
potential and calculate the chiral condensate for two
flavor NJL model. In Sec. IV, we discuss the chiral
susceptibility for two flavor NJL model in the presence
of magnetic field (B) as well as chiral chemical
potential (us). In Sec. V, we present the results and
discussions. Finally, in Sec. VI, we conclude our results
with an outlook on it.

II. WARM UP: WIGNER FUNCTION AND CHIRAL
CONDENSATE IN NJL. MODEL

In this section we first briefly discuss the salient features
of the formalism of Wigner function in NJL model for
single flavor fermion having vanishing current quark mass
as given in Ref. [90]. Once we get the representation of
scalar condensate in terms of Wigner function, we can
generalize it to a more realistic situation with nonvanishing
current quark mass. For a single flavor NJL model, we start
with the following Lagrangian [90]:

L =iy + G(fy)* + (Fiysy)?), (1)

where y is the Dirac field, G is the scalar coupling. The
first term is the usual kinetic term, and the second term
represents the four Fermi interaction. One can define
composite field operators 6 and 7 as
6 =-2Gpy,  &=-2Gyirsy. (2)
Using Eq. (2), the Lagrangian given in Eq. (1) can be
recasted as [90]

&+
4G

L=yiy — 6@y — 2y iysy — 3)
In the mean field approximation, the operators 6 and 7
are replaced by their mean field values
6>0=(6)=Tr(ps6), #—-n={()=Tr(pr), (4)
where p is the density matrix operator and “Tr” denotes
trace over all physical states of the system. For a non-
equilibrium transport theory, in mean field approximation,

the fundamental quantity is the Green function, which is
defined as

Go(x,y) = (Wp(y)ya(x)). (5)
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The mean field values of the operators é and #, i.e., o(x)
and 7(x) can be determined in terms of the Green function
G=(x,y) as follows:

o(x) = =2GTrG=(x, x), 7(x) = =2GTriysG=(x, x).

(6)

The Wigner function for fermion is defined as [90]

X X' X'
W (X, p)= =ip X" g X+ W X==
ot = [ e o5 (53
d4X/ o X’ X’
_/(27[)4(3 PuX ;ﬁ<X+E,X—7>. (7)

It is important to mention that in NJL model there are no
gluons; hence, the SU(3), gauge invariance of the Wigner
function does not appear in NJL model. Again, in this case,
we are not considering background magnetic field. Hence,
there is no U(1),,, gauge field associated with the NJL
model. However, in the presence of gauge field, one has to
introduce a gauge link in Wigner function for a gauge
invariant description [100].

Since the Wigner function (W (X, p)), as given in Eq. (7),
is a composite operator made out of the Dirac field
operators y and wy, it is convenient to decompose
W(X, p) in terms of the generators of the Clifford algebra.
The Wigner function W(X, p), in terms of the conventional
basis of Clifford algebra 1,iys,y", y"ys, and ¢, can be
written as

1 , 1
W= 1 F+iysP+ vV, +y"rA, + 5(;WSW . (8)

Here the coefficients F, P, VM,Aﬂ, and S,w are the
scalar, pseudoscalar, vector, axial vector, and tensor
components of the Wigner function, respectively, also
known as Dirac-Heisenberg-Wigner (DHW) functions.
The scalar, pseudoscalar, vector, axial vector, and tensor
Dirac-Heisenberg-Wigner functions can be, respectively,
expressed as

F(X.p) =TrW(X. p). ©9)
P(X.p) = —iTrysW(X. p), (10)
Vi(X, p) = T W(X, p), (11)
A*(X, p) = Try’P*W(X. p). (12)
S (X, p) = Tra™ W(X, p). (13)

Using Egs. (6) and (7), the scalar and pseudoscalar
condensates as given in Egs. (9) and (10) can be written in
terms of Wigner function in the following manner:

6(X) = —2G / & pTIW (X, p) = —2G / & pF(X, p),
(14)

and

x(X) = —ZG/ d*pTriysW(X, p) = ZG/ d*pP(X,p).
(15)

Using Egs. (2) and (14), one can express the scalar
condensate as

() = / d*pF(X. p). (16)

In the above description, we have briefly mentioned the
relation between the different mean fields with the Wigner
function. It is important to mention that by the virtue of the
Dirac equation for the field operator y and y the Wigner
function, W(X, p), also satisfies a quantum Kinetic equa-
tion. However, in this investigation, we have not focused on
the kinetic equation of the Wigner function. For a detailed
discussion on the kinetic equation for the components of
Wigner function, kinetic equation for quark distribution
function, and related topic, see Ref. [90]. In this inves-
tigation, we rather focus on the estimation of chiral
condensate, as given in Eq. (16), and associated chiral
susceptibility in two flavor NJL. model.

The Wigner function can be calculated by inserting the
Dirac field operators in Eq. (7). The Dirac field operators in
the absence of magnetic field can be written as [101]

1 1 >

w(x) = ﬁ; N [a(k, s)u(k, s)e=kx

+ (K. 5)o(E. s)eﬂm} , (17)

"x:L ;a*qsﬁqseik‘x
() mzm[ (k. 5)a(k. 5)

+ b(k. 5)3(k, s)e-ikx}, (18)

where Q is the volume and s = +1 denotes the spin states.
Using the field decomposition as given in Eqs. (17) and
(18), the Wigner function of a fermion with mass M can
be shown to be [101]
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Wa/i(X’p) = ( 1)
+0(=p°)>_(1

N

where the creation and the annihilation operators of the
particle satisfy (a'(p.s)a(p.s)) = frp(Eop — ps). On the
other hand, the creation and the annihilation operators of
the antiparticle satisfy (b (—p.s)b(—=p.s)) =frp(Eop+Hs)-
Here frp(z) = 1/(1 + exp(z/T)) is the Fermi Dirac dis-
tribution function at temperature 7', and g, is the chemical
potential for the spin state s. £, = 1/ p? + M3 is the single
particle energy, and M, is the mass of the Dirac fermion. Itis
important to note that the space time dependence in the
|

F(p) = Mod(p* = M3) [@i) SO0 ro(Enp = ) = 6-")(1 = Fr(Eoy + mm} .

— frp(Eop + 1s))

(P —M2 [ ZfFD 50p fs)Ut (ﬁ,s)ﬁﬁ(ﬁ,s)

Va(=P.5)Vp(=P.5)| (19)

|
Wigner function W(X, p) is hidden in the space time
dependence of the temperature and chemical potential.
However, for a uniform temperature and chemical potential,
i.e., for a system in global equilibrium the Wigner function is
independent of space time. In this investigation, we con-
sidered a global thermal equilibrium. Hence, from now
onward, we will omit the space time dependence in the
Wigner function. Using Egs. (9) and (19), the scalar DHW
function can be expressed as [101]

(20)

Using the scalar DHW function as given in Eq. (20), the scalar condensate for a single fermion species of mass M, given

in Eq. (16) can be recasted as

) = [ dpM(p? - My [ S

o dPMo
X/ s,

fFD((gOp _:us)

PO fro(Eop — ) — 9(—P°)(1—fm(50p+/4s)))]

In a situation where the chemical potential is independent of the spin of the state,

(py) = = frp(&op

d3P Mo
- / @) &

The factor of N, appears in Eq. (22) due to the “Tr” over all
the degrees of freedom (d.o.f.).

Next, we shall consider two flavor (u, d quarks) NJL
model for vanishing magnetic field and chiral chemical
potential, with the Lagrangian given as [102-104], along
with a 't Hooft determinant interaction

L‘,:EO—FE] +E2, (23)
where the free part is
Lo =w(i —my. (24)

and the interaction parts are given as

3
Ly =G Y [(Frw)? + (
a=0

wiysty)?]

= fro(Eop + Hy))- (21)
— 1) = frp(&op + 1)l with Moy = -2G(py). (22)
|
and
Ly = Gol(py)* = (W 7w)* = (Firsy)* + (Fiystw)?].
(26)
where v = (y,,w,)T is the quark doublet, m =

diag(m,,my) is the current quark mass with m, = m,.
" =1,., and 7 are the Pauli matrices. The above
Lagrangian as given in Eq. (23) is invariant under
SU(2), xSU(2)g x U(1),, transformations. £; has an
additional U(1), symmetry. £, is identical with "t Hooft
determinant interaction term which breaks the U(1),
symmetry explicitly. £, interaction term introduces mixing
between different flavors. It is also important to emphasize
that since we are considering only the scalar condensates of
the form (w,w,) and (@, ), so we can safely ignore the
pseudoscalar condensate as well as the scalar condensates
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of the form (y,yw ), (Waw,) etc. Using these approxima-
tions at the mean field level, the Lagrangian of the two
flavor NJL model as given in Eq. (23) can be expressed as

L =y,(i — Mo, )y, +wa(id — Mg, )w,
=26 (Ww.)* + Wawa)?) — 4G (Frw) (W aw a).
(27)

where u and d quark condensates are given as () and
(Wawq), respectively. The constituent quark masses of u
and d quarks in terms of the chiral condensates are given as

MOM =my = 4'Gl <l/_/ul//u>
M, = my = 4G (W q)

— 4G, (Wawa),
— 4Gy (W) (28)

One can easily generalize the scalar condensate as given
in Eq. (22) for single flavor NJL model to multiflavor NJL
model. Hence, for NJL model of N, quark flavor and N,
color, the chiral condensate can be written as

Nf
_ =0 _ =0
)5 =D )i
=

with

e &p Mo
<Wfl//f>,;3:00 = _2N / (271')3 gOpf[ fFD(SOPf /‘)

— frp(Eops + 1)) (29)

The chiral condensate for N flavor NJL. model as given in
Eq. (29) can also be obtained by first calculating the
thermodynamic potential using the mean field Lagrangian
as given in Eq. (27) and then calculating the gap equation
using the minimization of thermodynamic potential.

III. WIGNER FUNCTION AND CHIRAL
CONDENSATE IN NJL MODEL FOR
NONVANISHING MAGNETIC FIELD AND
CHIRAL CHEMICAL POTENTIAL

In the presence of magnetic field (B) and chiral chemical
potential (us), the Wigner function has been explicitly
written down in Ref. [63], using solutions of the Dirac
equation for fermions in magnetic field and finite chiral
chemical potential. We shall use them to calculate chiral
condensate. For the sake of completeness, we write down
the relevant expressions for the Wigner function. In the
presence of background magnetic field, the Wigner func-
tion given in Eq. (7) gets modified to a gauge invariant
Wigner function as [63]

ax oo/ X’
Waﬂ(X,p):/(zﬂ)4e(_lp”X )<l//ﬂ (X—F?)
X' )¢ X'
A X+ X-= X-=
xU( X+ 2>1//(,< 2>> (30)

where U(A, X + 4 X’ X=X %) is the gauge link between two

space time points (X 2) and (X + XT) for the gauge field
A#. The gauge link has been introduced to make the
Wigner function gauge invariant. In the presence of
homogeneous external magnetic field along the z direction,
the gauge link is just a phase. In this case, the Wigner
function simplifies to

X g ] - X'

ol X))

where A#(X) = (0, —By,0,0) is a specific gauge choice of
the external magnetic field. ¢ is the charge of the particle,
and it has been taken to be positive. Analogous to the case
of vanishing magnetic field, Wigner function can be
calculated for nonvanishing magnetic field by using the
Dirac field operator in a background magnetic field. The
Wigner function in a background magnetic field at finite
temperature (7)), chemical potential (u), and finite chiral
chemical potential (15) has been shown to be [63]

W(p)= Z [ FD(E(P )S

+ (1= Frp (B + u)8(po + 1+ Ep ) WEL(F)|,
. (32)

—W)3(po+u—Ey )WL (5)

where the functions W(i")s( p) denote the contribution of

fermion/antifermion in the nth Landau level. The single
particle energy at the lowest Landau level and higher

Landau level is given as E(O) =/M?+ (p, — pus)* and

\/M2 VP24 2ngB—sps)?,
—in Eq (32) denote contributions of positive and negative
energy solutions, respectively. In the lowest Landau level,
fermions can only be in a specific spin state. On the other
hand, for higher Landau levels (n > 0), both spin states
contribute.
(n)

The functions W 1.(P) in Eq. (32) can be expressed in
terms of Dirac spinors in the following manner [63]:

respectively. + and

n - . n y/
Wi (p) = 2n)? / dy' exp(ip,y)En)" (px, Pz 5) 7°
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In Eq. (33), r = £ denotes positive energy and negative energy solutions, respectively. The Dirac spinors (fﬁo) and (f(,_?),
where r = £ denotes positive and negative energy states and s denotes the spin of the state, are defined as

(0)
0 1 r\/EPz _r(pz_/’tS)
& (pepoy) = 5 5 ® 1 (pry). (34)
V2ES \ VED 1 rp. — us)
(n) 1 r\/EE,n)S + rps — rs\/pg + 2ngB
& (Pre Peny) = ——— ® 1" (P pvy)s 1 >0, (35)
Y, 2E)p_s \/E;")s — rus + rs\/p? + 2ngB
where the normalized eigen spinors y are
(0) !
27(pey) = ) | Po(Px-y). (36)
and
1 \/ V' P?+2ngB + 5pu(pr.y)
g = 0 37
Xs (px’pz’y)_ ’ n>u, ( )
2V/pi + 2nqB S\/ V' p? +2ngB = sp.gp,_1(px.)
where

PP G B TN o Y T PO

H,, represents nth Hermite polynomial. Inserting the explicit expression of the Dirac spinors as given in Egs. (36) and (37)
into Eq. (33), one can get the explicit form of the function WSE"’) (p)[63]. For lowest Landau level,

N r
W () = ———5 A (pr)M(1 +6'2) + rER) (= 7)) = (p. = us) (7 = 71", (39)
4(2x) Ey.

while for higher Landau levels,

(n) /= 1 (n) P n (n) .0 2 5,0
W (p) = ri{ [A (pr) + s ———=——=A"(p )} {M+rE os7) + (sx/p +2an—ﬂs)7 7}
4(271)3E(n) o \/p? +2ngB ! r: ‘

P2sS

] p- ; T .
- [A(_ >(pT) + szizAQ(pT)} {(s p? +2ngB —/45) y+ rEg,z?sysﬁ - Malz}
\/p: +2ngB
2ngB (n)
- —————=A(P1) K\/ p? +2ngB - sus> (pxr' + pyr?)
P3P +2ngB ) ’

+ rsES (pur’y' + pyr°r?) — sM(p.o> - py013>] } n >0, (40)
where
A (pr) = 2exp (- P1), (a1)
+ qB
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A (o) = (=17, (zq%) T Lo (%)] ex (- 5—3) 50, (@)

Here L, (x) are the Laguerre polynomials with L_; (x) = 0. Using the Wigner function W(p), as given in Eq. (32), it can be
shown that the scalar DWH function is [63]

u [fjo Vo(po pIAL (pr) + fj g e PIPAL o] #3)

where
Vo(po. p.) = %5{@0 + )2 = |ER) PHOPo + 1) frn(po) + O(=po = w)[f ro(—po) = 1]} (44)
V,(po.p:) = 325{ po+ ) = [Eg s PHOpo + 1) ro(po) + 0(=po = i) [frp(=po) = 1]}, n >0 (45)
A(po.p.) = gzsa{ po+ 1) = |Ey 5 PYHO(po + 1) frp(po) + 0(=po — @) [frp(—po) = 1]}, n>0.  (46)

Once the scalar DWH function is known explicitly as given in Eq. (43), the chiral condensate of single flavor fermion can
be calculated using Eq. (16) and is given as

(wyr) = / d*pF(p) = / 2zprdpydprdp, F(p). (47)

Using Eqs. (43) and (47), it can be shown that (see Appendix A for details)

ity = || dl?%[l—fm(Eig)— W) = FrolES +4)]

+ZZ/dp7 ) — Fro(Eps = ) = fro( ps‘f‘ﬂ)H (48)

For vanishing chiral chemical potential, y5 = 0, scalar condensate gets reduced to

S =~ s 2= [ i [ reote! =)ot + ] (49)

n

where we denote M|, as the mass of fermion in the absence of chiral chemical potential and finite magnitude field. The single

particle energy eﬁ,'z) for vanishing chiral chemical potential can be written as

0 = /M3 + p? + 2ngB. n>0. (50)

The chiral condensate for a single flavor as given in Eq. (48) can be easily extended to NJL model with two flavors. Most
general Lagrangian for two flavor NJL. model with u# and d quarks in the magnetic field including chiral chemical potential
is given as

L= 5D —m+ usiP + Gy S [y + Fiysew)?] + Gol(pw)? — (1 7w)? — (Wiysy)? + @irsiw)?). (1)
a=0

where y is the U(2) quark doublet, given as y = (y,,w,)". The covariant derivative is given as P = @ + igA, and the
current quark mass matrix is m = diag(m,,, m,), with m,, = m. The first term in Eq. (51) is the free Dirac Lagrangian in the
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presence of magnetic field. For the calculation, we have
considered the gauge choice of the background magnetic
field as A# = (0, —By,0,0). The second term in Eq. (51) is
the four Fermi interaction and the attractive part of the
quark-antiquark channel of the Fierz transformed color
current-current interaction. 7%, a =0,...3 are the U(2)
generators in the flavor space. The third term is the ’t Hooft
interaction term which introduces flavor mixing, as in
Eq. (26). Since the magnetic field couples to the electric
charge of particles, in the presence of magnetic field, u
quark and d quarks couple differently with the magnetic
field; hence, the isospin symmetry is explicitly broken. In
the mean field approximation, in the absence of any
pseudoscalar condensate, Eq. (51) can be recasted as

where u, d quark condensates are given as (y,y,) and
(Wawq), respectively. The constituent quark masses for u
and d quarks in terms of the chiral condensates can be
given as

Mu =m, — 4G1<‘/_/ul//u>
4G (pay )

— 4G, (Way ).

Md =myg— - 4G2<l/_/ul//u>' (53)

Generalizing Eq. (48) for two flavor NJL model, the
chiral condensate in the presence of magnetic field and
chiral chemical potential can be written as

_ #£0 _ #0
L=, (i =M, + psy°r Wy + 5a(iD = My + psy’r g W)k = de<Wfo>§;o ; (54)
- 2Gl (<l/_/ul//u>2 + <1/_/de>2) - 4G2<1/_/ul//u><l/_/dl//d>1
(52) where
|
(l//fllffyéii)o—— fz /dpz [ fFD( . f — ) - fFD( ,,erﬂ)}
(27) EY,
+Z]Z/de—E(H)f [l—fFD(E(p f ) fFD( Pos,f JFM)H (55)
n=t s PSS

and the single particle energy of flavor f can be
expressed as

0
E;:)’f = \/M7+ (p. —us)* forn=0,
EY = \/MJ% - ( p? +2nlq;|B — Sﬂs)2 for n>0.

(56)

For vanishing chiral chemical potential 5 = 0, the chiral
condensate of single flavor can be expressed as

=0 _ Nc|‘]f|B -

<l/_/fl//f>?;;0 - (277)2 (2 - 5n,0)
n=0
M,
/dpzen { fFD(pf M)
Pt

_fFD<pf+:u):| (57)

and the single particle energies of flavor f can be
expressed as

The first term of the quark condensate as given in
Eq. (57) contains divergence and needs to be regularized
to derive meaningful results. Usually, in NJL. model at
vanishing temperature and chemical potential, such inte-
grals are regularized either by a sharp three momentum
cutoff [84,102] or a smooth cutoff [105-107]. Effective
models like NJL model which are nonrenormalizable have
to be complemented with a regularization scheme with the
constraint that the physically meaningful results should be
eventually independent of the regularization prescription.
In the presence of magnetic field, continuous momentum
dependence in two spatial dimensions transverse to the
direction of magnetic field is replaced by a sum over
discretized Landau levels. Hence, a sharp three momentum
cutoff in the presence of the magnetic field can suffer
from the cutoff artifacts. Instead, of a sharp cutoff, a
smooth momentum cutoff was used in Ref. [54] in the
context of chiral magnetic effects in the PNJL model to
avoid such sharp cutoff artifacts. To regularize the first
term in Eq. (57), we follow an elegant procedure that was
followed in Refs. [41,42,44,108-110] by adding and
subtracting a vacuum (zero field) term to the chiral
condensate which is also divergent. This makes the first
term of Eq. (57) neatly separated into a zero field vacuum
term and a term that is only dependent on the field written
in terms of gamma function which is finite. Thus, the
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regularized chiral condensate in the presence of magnetic field at vanishing quark chiral chemical potential is [see
Appendix B, Eq. (B13)]

_ & M, N.M,|q;|B 1 (Xo,
- #5*0:_2]\]‘ p r _ 19 f 1-1 InT (2
(llffllff>3¢o c Bl<A (27)? /7p2 n M(Z) 272 xo,( nxof) + In (xof) + > n o
f
N.|gf|B& © M, i}
+ 2B =00 [ dp G T, (59)
n=0 - €t

where the dimensionless variable x ;= M(z)f /2|qs|B. Scalar condensate as given in Eq. (59) can also be obtained by

minimizing the regularized thermodynamic potential using the mean field Lagrangian as given in Eq. (52) in the case of
vanishing chiral chemical potential. Solving Eq. (53) using Eq. (59), we get quark masses for vanishing chiral chemical
potential with finite magnetic field. This constituent mass will be later used to estimate quark masses at finite chiral
chemical potential and finite magnetic field, as discussed in the following subsection.

A. Regularization of chiral condensate in the presence of magnetic field and chiral chemical potential

Chiral condensate (s ) of quark flavor f in the presence of magnetic field and nonzero chiral chemical potential is
given as

o NlagB[[ M, .
ity =" | | szE(Tj;[l—fFD(EE,Z W) = Fen(ED) + )

(2r)? o
+ZZ/sz o) ~ frp(E! psf 1) = fro( psf"‘M)H
17 ‘f
= (s >CZC,B¢O + (W >med,B#:O’ (60)

where (7 ;y ﬂ’jgj%;&o is zero temperature and zero quark chemical potential part of the chiral condensate, and (y sy ﬂ’ggfﬁB 40

is the medium term at finite temperature and quark chemical potential. (s f->’j;f%¢0 contains divergent integral which has
to be regularized to obtain meaningful physical result. To regularize the vacuum part of the chiral condensate for
nonvanishing magnetic field and chiral chemical potential, we have not considered the naive regularization with finite cutoff
(Traditional Regularization Scheme (TRS)) to remove cutoff artifacts, rather we have considered MSS outlined in
Ref. [111]. By adding and subtracting the lowest Landau level term in the zero temperature and zero quark chemical
potential part of the chiral condensate for nonvanishing magnetic field and chiral chemical potential, we get (for details, see
Appendix C)

_Nlq IB Nclgs|B M
ps#0 ! clf d f
<l//fl//f>vac B0 — 27[ 2 Lo L il/ (27[)2 / P Eﬁ)())f
N |61f|B o My N |qs|B My
- 27[ 2 /dpz / dp, 2 n) 2 + (27[)2 /dpzw
n— 0 s=+1 o Pyt (Epz,s.f) Epz.f
== Il + 12, (61)
where E;';).S’f = \/M; + (/P2 + 2n|qs|B — sus)* and E + (p. — pus)?. Both integrals I, and I, are not

convergent at large momentum; hence, these integrals have to be regulanzed to get physically meaningful results. In the
present investigation, we are using MSS to regularize the integrals 7, and 7,. MSS method has also been applied in the case
of finite chiral chemical potential but vanishing magnetic field in Ref. [59]. In the present case, we keep both B # 0 and
us # 0 and use the same scheme in the following. Integral /; can be regularized by adding and subtracting the similar term
with magnetic field (B) but us = 0,
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—
—

1
+
n 2 n 2 n 2
P+ () pi+ )’ i (EY )

P2+ (€ )1p3 + (EY, )7
(62)

where A=M{ —M}—p3 and e \/M2 +p?+2n|q;|B.

Using the 1dent1ty given in Eq. (62) twice, we can write the
integrand of the integral /;, as given in Eq. (61), in the

following way:
1 B 1 +A+2s;45\/p§+2n|qf|B

n 2 n 2 n 2
P+ (EY ) P (P3+ (e )

/ 2

+ D) \2)\3
(i (e20))
3
(A+2s;¢5,/ 2—§—2n|qf|B)
+

(i () ) (pi o (E22))

(63)

Performing p, integration, we obtain (for details, see
Appendix B)

P M (MG, — M7+ 23)
- quad 2

1 Liog +1 Lfinite1 +1 Lfinite2 *
(64)

where

N, B
I, = - zlzfl ZZ / (65)

I, = N2|Zf lBZZ / ()

2 2102
J N ‘4f|BZZ (M A _4Mf/“‘5M0_,»)
Linier 2”)2 (e(n)f)S >
Pz

(67)

and

N |‘If|B 15
IlfinileZZ_ 271. /dpz
*0 K

3
/ld (1-x)2Mf(A+2s,45,/p§+2n|qf|3>
X X
n) \2 7/2
0 (el x(a+25ms\ /2 +2nlq/1B)|

(68)

The integrals /; , and [; ~are divergent at large
momentum. On the other hand, /7, ~and I, . are finite.

In a similar manner, the integral I, in Eq. (61), we obtain

12 2ﬁmle + zlog (69)
where
1 Nc|qf|B
I =) —=%— | d
2finite <2> (271')2 / p:
1 M:(A+2p,
/ dx 5 2f( pwﬂs) 7 (70)
0 (€))7 = x(A + 2p.ps)]
and
N.|qs|B My
210 T (271.)2 /dpz G;O)f. (71)
Using Egs. (64) and (69), <y7fl//f>’vli%¢0 can be

expressed as

M (M2 — M2+ 2422)
_ #0 A / 5
<l//flllf>"jZ-CqB#=0 == s 2 Illog + Ilﬁnitcl
+ IlﬂnileZ + szini(e + Iquad’ (72)
where

Tquaa = 11y + 12y,

M N lq/|B
r f
- M 2” 2 nZZ/ f
Ncqu|B MOf

Each integral in [g,,q is divergent. Using dimensional

regularization, it can be regularized to get [see Appendix B,
Egs. (B2) and (B13)]
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My | N.qsB
f f
I
meA ngz/

et [t = e ne ()

P
where
N.M¢|q/|B
ie! S
poce = NN [xof(l ~lnx;)
+1InT( )+11 (75)
nI'(x n
K 27:
and,
N.M
% _ cf
qu}gd— BN A,/M%)/—I—A2

A+ [N+ MG,
- Mﬁf In . (76)

Mof

Similarly, the term [ g is divergent at large momentum,
hence it has to be regularized. Regularization of / I CAN be

done using dimensional regularization. In the dimensional
regularization scheme [see Appendix B, Eq. (B16)],

N.|\q¢|B
I, = 2|Zf|2 ZZ/szT)

= I 4 e, (77)
Here,
N " (xo,)
Ifleld __'c |:_1 X, f :|’ (78)
e 22 % " T(xp,)
and

. N, A A? A
e =—{m|—+ [1+— | -———
og T M()/ MOf /A2 + M(2)f
(79)

Hence, the regularized chiral condensate of quark flavor
f for finite magnetic field and chiral chemical potential
in MSS for vanishing quark chemical potential can be
expressed as

M (M: — M?% +2u2)
FASIS] f 5
<Wfo>§5;i) - ! 2 Illog + Ilfinilel

+ Ilﬁnilc2 + Izﬁnilc + Iquad

Nelgs|B [ [e M, (0)
oy [/_oo dp. E(—O)fFD(EpZ,f>

£ [T

M
f
f F D( P: )s f )

pé s.f

(80)
where regularized [ g and /g4 are given in Egs. (77)
and (74), respectively. This makes the expression for
<y7fa//f>’l§5;g0 finite which we shall use later for the calcu-
lation of constituent mass (M ;) for nonvanishing magnetic
field and chiral chemical potential. Note that for the
estimation of constituent mass (M) for nonvanishing
magnetic field and chiral chemical potential, one requires
constituent mass Mo, for nonvanishing magnetic field and

vanishing chiral chemlcal potential, which can be obtained
from Eq. (59).

IV. CHIRAL SUSCEPTIBILITY

The fluctuations and correlations are an important
characteristics of any physical system. They provide
essential information about the effective d.o.f. and their
possible quasiparticle nature. These fluctuations and cor-
relations are connected with susceptibility. Susceptibility is
the response of the system to small external force. The
chiral susceptibility measures the response of the chiral
condensate to the infinitesimal change of the current quark
mass. Chiral susceptibility in two flavor NJL model can be
defined as

_ a<ll71//> . a<l/_/ul//u> a<l/_/dl//d> o
Xe = om - om + om = Xcu +)(cd' (81)
Using Eq. (53), we get
Ny u)
XCM - am
_ 8<l//_ul//u> a<l//_ul/’u> 6<l//_dl//d>
_76Mu 1-4G, “om 4G27am (82)
and
_ a<l//_dl//d>
XCd - am
_ Oawa) oWy a) o)
= oM, 1 —4G, om 4G, om .

(83)
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Using Eq. (82), Eq. (83) solving for y., and y.,, we get

a<l/7uWu> 1- 4G2)(cd

xcu - aMu 1 + 4G <Wulllu> (84)
and
Oy 1-4
. (Wawa) Goeu (85)
oM, 1 + 4G, (Wde)
Solving Egs. (84) and (85), we get
W,
_ a<l/_/ul//u> 1+ 4(G1 -G ) <gllﬁlv . (86)
Kew = oM, ( + 4G, (%Wu))( 1 + 4G, (l//dll/d ) 16G2 el '//ul//u>a<g}{d;/:d) ’
_ (%w)
_ a(u’dl//d> 1+ 4(G1 GZ) M, (87)
Hed oM, ( + 4G, (W:«sz))( 1 4+ 4G, <WdV/d ) 16G2 el 'I/ul//u> %ﬁ%d)

It is clear from Eqgs. (86) and (87) that to calculate chiral susceptibility for # and d quarks, we have to estimate iz ";f )
However, it is important to note that like chiral condensate, chiral susceptibility also contains ultraviolet divergence. Hence
a<g, Vi) term also has to be regularized to get meaningful results. Using Eq. (59), for vanishing chemical potential (1 = 0)

and vamshmg chiral chemical potential (u5 = 0), in the presence of magnetic field, we get

0wz _ 2N, M;,
8M0f (277 P‘<A \/P +Mo \/(P2+M(2)f)3
N |q/|B 1 (%,\] _ NeMj, 1 Tx,)
-5 xo, (1 —Inxo,) +1InT(x,) + 2ln )| T o —Inxo, +m+ (5,
f i
- I wy M :
z 2 5n0)/ dp, l(,,)fFD@;jf) - ﬁfFD(e; /)
=0 €pf (€p..s)
1 /M,
- ((—) Fro ()0~ Fro(el >)]. (58)
pof

ANy . : . . . o .

%?B*O as given in Eq. (88) is regularized and it can be used to calculate y,, ¥, and chiral susceptibility y,. for finite
f

magnetic field, but vanishing chiral chemical potential. To estimate chiral susceptibility at finite magnetic field as well as

(ww)

nonvanishing chiral chemical potential, we have to estimate regularized at finite B and us. This regularization has

been done using the MSS regularization scheme.

A. Regularization of chiral susceptibility in the presence of magnetic field and chiral chemical potential

For nonvanishing magnetic field (B) and chiral chemical potential (us5) for 4 = 0, using Eq. (55), the variation of chiral
condensate with constituent quark mass can be written as

- 5#0 . 5#0 - 570
8<V/fll’f>l;§;é0 _ a<Wfo>5ac,B¢0 4 a(‘/’f‘//fyr;ed,B;&o (89)
oM ¥ oM f oM ¥ '
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Here, the first term is the “vacuum” term given as

- 0
6<ll/f‘//f>/vlflf.13;e0 N |(]f|B / Nc|qf|B/d 1
8Mf 2” ? n= Os +1 (2”)2 ZEES)f
N qulB / ) J% Nc|qu/dp M3
(27)* 4= ()s £l Z ns )} (27)? ) (Egz),fp
:Il+12+13+14, (90)

and the medium dependent term is given as

8<‘/_/fo>”5;§0&&0 Nc|Qf|B 1 (0) Nc|‘]f|B M% 0)
P = dp:—gr (2 rolEL)) - / dp.—t— (21 ES))))
oMy (27)? / P o)) =y | 4P (£, fro(Ey.s)

poof
_Nelgy|B M; (2 ©) \q 0)
(21)? /dpzm<?>fFD<Ep( f)(l Jrp(E p- f))
N |61f\B N |‘If|B (n)
- (277.' 2 =] s— il/dpZ rz,h 2fFD( f)> 27[ 2 Lo £ i1/ szD( . sf))
Nclq \B
- 2ﬂf2 n=1 s= :tl/ ( >fFD( b ‘f)<1_fFD( )Sf)) (91)

The medium dependent term is convergent and does not need any regularization. The “vacuum” term, on the other hand, the
integrals, I, I, and I; are divergent and need regularization. We perform the MSS scheme as was done for the chiral

condensate. The regularized %f”*‘) can be expressed as [see Appendix D, Eq. (D13)]

0w Vs Mg, — M3 + 243
9 M;ac' 2= —< ! 5 )Il,log + 1 tinitet + Tt finite2 + Lo finite + I3 finite + Linite + Lquaa + Liogs ~ (92)

where regularized Igya4, Liog, L0z can be expressed as (see Appendix D, Egs. (D15)~(D17)]

N |61f|B N |6]f|B 1
Iquad: 2 B / )2 /dpzw
) Ov 1 2n € f
2
Ncla,|B 1 N. —[A N M,
== xo, (1 =Inxo,) +1In(xp,) + 21n 2” ~5 Ay /A" + MG, — MG In Mo, ,
(93)
1, N |61f|B / M% Nc|¢If|B/ » M3
og = 2 2 z
(27)° 4 0‘ - ) (27) (6522,)3
N.M? ' (x NM2| [N+ N+ MG A
- {—lnxojﬂ— + (Of)]+ —— Ll - (94)
2r 2.xOf F(xof ) T MO

¢ 1/A2+M(2)f
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I N |61f|B
Llog — 2” T A N2 pz ,1
n= Os +1 f

F/ (Xof) N
r<xo,>] i

o

o c
= - 7[2 |:—1H)C0f+ 5

T

and the convergent integrals I gnier> L1 finite2> L2 finites 13 finite> and I are given as

| 1.finitel —

I 1 finite2 —

N quIB( )i

1
L finiee = <§>

N B 1
L3 finiee = |qf| dp M3 2 - .
' n=| 0 s= il n f)3 (e(n)f)3

Nc‘qf|B 2 1 1
Linie = —7(27[)2 /deMf (E(O)f)3 - (eg))f)‘% .

(100)

For nonvanishing magnetic field and chiral chemical
potential Eq. (91), Eq. (92) along with Egs. (86) and (87),
can be used to calculate chiral susceptibility (y,.).

V. RESULTS

Let us note that the Lagrangian as given in Eq. (51)
has the following parameters, two couplings G;, G,, the
three momentum cutoff A, and the current quark masses
m, and m,. To study the effects of flavor mixing, the
couplings G; and G, are parametrized as G, = ag,
Gy = (1—-a)g [102]. The extent of flavor mixing is
controlled by a. For the numerical studies, we take the
parameters m, = m,; = 6 MeV, the three momentum cut-
off A =590 MeV, and the scalar coupling g = 2.435/A2.
For these values of the parameters, pion vacuum mass is
140.2 MeV, pion decay constant is 92.6 MeV, and the quark
condensates are () = (rap,) = (—241.5) MeV3. This
parameter set also leads to a vacuum constituent quark
mass 400 MeV. It may be relevant here to mention that
in the absence of magnetic field the two condensates

N |qf|B / A% -
(27) (2n? = 03 T P

Ncqu|B !
d d
(27)? / "%

In - . (95)
M, /A2 -I-M(Q)f
4/,t5

(1- x) (A + 2susy/ p? + 2n|qrf|B)3
77 (97)

- x(A + 2spsy/ p? + 2n|qf|B>}

A+2

=+ PzHs (98)

O Y2~ x(A+2p.us)]P?

(waw.) = (Waw,) and therefore the gap equation (53)
depends upon the sum of the two couplings (G; + G,)
which is independent of a. Thus, the masses M,, and M ; are
the same and do not depend upon a in the absence of
magnetic field.

Next, we discuss about choosing the parameter . One
can fix the parameter @ from the mass of the isoscalar
pseudoscalar particle that arises in the spectrum because of
breaking of U(1), symmetry. In a two flavor case, this
meson can be identified with the # meson. The mass of 5
meson can be given approximately by [103]

G,M?

2 _ 2 )
M G- G

(101)

Clearly, for @ = 0.5, the # meson disappears from the
spectrum. With the physical mass of the x meson
(m, = 547.8 MeV), the above equation leads to a value
of @ ~0.09. On the other hand, a description of # meson
without strange quarks is not realistic and therefore a better
way to fix a is from the three flavor NJL model in which
case the determinant interaction becomes a six fermion
interaction and leads to # — " splitting. In such a case, e.g.,
the gap equation for M, becomes [102]

Mu =my, = 4G<1/_/ul//u> + 2K<l/_/sl//s><lpdl//d>' (102)

Comparing the constituent quark mass as given in
Eq. (53), we can identify G; =G and G, = —%Kqﬁx,
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where ¢, = (y,p,) is the strange quark condensate.
Thus, using the strange quark condensate, we can express
a as [102]

1

a= szKIZ?S (103)
) ¢s
The parameters G, K, (y,y,) are fixed from fitting the
masses of the pseudoscalar octet. In particular, the deter-
minant interaction parameter K is fixed from the n —#/
mass difference. Even in such cases, the value of a can vary
about 25%-30% (i.e., from a = 0.21 to @ = 0.16) depend-
ing upon the parametrization chosen. This wide variation in
a has to do with the different ways #’ is treated in the model.
Since NJL. model does not confine and M,, lies above, the
threshold for ¢gg decays with an unphysical imaginary part
of the corresponding polarization diagram. This is an
unavoidable feature of NJL. model and leaves an uncer-
tainty that is reflected in difference in the parameters of
the determinant interaction. Further, it may be mentioned
here that, in a different context of spontaneous CP violation
in strong interactions, in Ref. [112] it has been argued that
0 < a £ 0.5 so that spontaneous parity violation is not there
for QCD at zero temperature and density for 8 = 0 in
accordance with Vafa-Witten theorem. In the present work,
we have considered the cases when a = 0, i.e., no flavor
mixing, a = 0.5 when both the couplings are same and a
value for a = 0.15 between these two limits to examine
the effects of instanton induced flavor mixing interaction
in the presence of magnetic field that breaks the isospin
symmetry.

0.5 u & d quarks (5 = 0.0 GeV)

--------- u & d quarks (p5 = 0.2 GeV)
_____ u & d quarks (p5 = 0.4 GeV)

M(GeV)

. 0.0 0.05 0.1 0.15 0.2 0.25 0.3
T (GeV)

FIG. 1.

In Fig. 1, we show the variation of constituent quark
masses and the associated chiral susceptibility as a function
of temperature (7) for different values of chiral chemical
potential (us) and for vanishing magnetic field. For zero
magnetic field () = (Wap,), hence the masses of the
u and d quarks remain same. From the left plot in Fig. 1, we
can see that the constituent mass decreases with increasing
chiral chemical potential. This decreasing behavior of the
constituent quark mass with ps is in contrast with other
calculations [57,95]. In contrast to Ref. [57], where the
condensates increase with us at lower temperature and
decrease with us at a higher temperature, we find the scalar
condensate always decreases with us. Further, we also
observe that the chiral transition is a smooth crossover as in
Ref. [95] and no first order phase transition is seen even for
us as large as 0.4 GeV unlike in Ref. [57]. It ought to be
mentioned here that while the vacuum mass satisfies a gap
equation with a cutoff in the three momentum, for the
thermal contribution no such cutoff was used, similar to
Refs. [57,113], as the distribution functions make the
corresponding contribution convergent.

The right plot in Fig. 1 shows the chiral susceptibility
for vanishing quark chemical potential and magnetic field.
Peak in the chiral susceptibility plot shows the chiral
transition temperature. Using Eqs. (86) and (87), it can
be shown that y., = y., for vanishing magnetic field.
Hence, the variation of total chiral susceptibility (y.) with
temperature shows only one peak. This behavior of chiral
transition temperature decreasing with us is similar to
Ref. [54]. Further the height of the peak decreases with
us and we do not observe any sharp peak indicative of a
first order transition. Absence of a first order transition with

0.1

Xe (GeV)?

T (GeV)

Left plot: variation of constituent quark mass M,, = M, with temperature (7') for zero magnetic field but for various values of

chiral chemical potential. Right plot: variation of chiral susceptibility y. with temperature (7') for zero magnetic field but with different
values of chiral chemical potential. Prominent peak in the chiral susceptibility plot shows the chiral transition temperature. From the left
plot, it is clear that with increasing chiral chemical potential (15) constituent mass decreases. From the susceptibility plot, it is clear that

transition temperature decreases with chiral chemical potential.
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large us was also observed in Ref. [95]. However, in the
presence of magnetic field, in general y., can be different
from y., and variation of total chiral susceptibility y. with
temperature can show multiple peaks. Results for non-
vanishing magnetic field will be shown later. From the right
plotin Fig. 1, it is clear that with increasing chiral chemical
potential (u5) chiral transition temperature decreases. We
would like to mention here that in Ref. [57] for vanishing
magnetic field, an opposite behavior regarding chiral
transition temperature was observed, i.e., T, increases with
us. However, the parameters of the NJL model chosen were
different compared to the parameters taken here or in
Ref. [102]. We have also verified that taking parameters of
Ref. [57] T, increases with us.

It may be relevant here to compare this behavior of 7',
with us. Such a decreasing behavior of T, with us was also
observed in PNJL model; however, the nature of the
transition was a first order transition at some critical value
of chiral chemical potential [54]. On the other hand, a
nonlocal NJL analysis showed the critical temperature to
increase with p5 [95]. A careful analysis in Ref. [57] shows
different behavior of 7. with 5. In Ref. [57], it has been
shown that if a cutoff is given to the thermal part also then
T, increases with us while not giving any cutoff decreases
T. with us. On the other hand, we have applied here a
medium separation scheme to remove cutoff artifact as was
done in Refs. [59,98,99]. However, our result for vanishing
magnetic field showed a opposite behavior, ie., T,
decreases with us. It turns out that the behavior of T,
with us depends upon the parameter chosen. A stronger
scalar coupling as we have taken leads to 7. decreasing
with us, while a weaker scalar coupling shows a mild
increase in T, with us [59]. We therefore feel a deeper
understanding is still required to understand the opposite
behavior of 7. with u5 with change in the scalar coupling.
With the parameters considered here, while the behavior of
T, decreasing with us is consistent with Ref. [57], the
transition itself seems to be a smooth crossover leading to
the absence of a critical point in the (us, 7') plane of the
phase diagram [57,95].

In Fig. 2, we show the variation of constituent quark
masses M, and M, with temperature for vanishing chiral
chemical potential and with finite magnetic field for
different values of a. From this figure, it is clear that at
nonvanishing magnetic field constituent quark mass
increases. At vanishing magnetic field, constituent mass
of u and d quarks is the same. Although in the presence of
magnetic field, quark condensates (y,y,) # (ap4), but
for a = 0.5 the quark masses M, = M. This is because for
a = 0.5, constituent quark mass is My = m — 2g({yr,y,,) +
(Wawaq)), as can be seen from Eq. (53). On the other hand,
for a # 0.5 quark masses, M, and M, are not the same. The
difference between M, and M, increases with decrease in
the value of « and this difference is largest when a = 0.0.
a = 0.0corresponds to the case when there is no flavor

M;(GeV)

— u & d(eB =0.0)
........ u (eB = 0.3 GeV?, a = 0.0)
o1 |— d (eB = 0.3 GeV2,a = 0.0)

""" u (eB = 0.3 GeV2,a = 0.15)
——d (eB =0.3 GeV%,a = 0.15)
—=u&d(eB=03GeV2a=05)
0.0 0.05 0.1 0.15 0.2 0.25
T (GeV)

0.0

FIG. 2. Variation of constituent quark masses M, and M, with
temperature for vanishing chiral chemical potential but with finite
magnetic field for different values of a. For vanishing magnetic
field, M, and M, are same. Note that in the presence of magnetic
field, for @ = 0.5, although (w,w,) # (W .y 4), but the constituent
quark masses M, = M,. However, for a # 0.5, the constituent
quark masses M, # M, in the presence of magnetic field. @ =
0.0 corresponds to the case when there is no flavor mixing
interaction, and a = 0.5 corresponds to maximal flavor mixing.

mixing interaction, and a = 0.5 corresponds to maximal
flavor mixing. It is important to note that for vanishing
magnetic field, flavor mixing interaction does not affect the
quark masses. Only in the presence of magnetic field when
(paw.) # Wawy), flavor mixing interaction affects the
constituent quark masses M, and M, significantly.

In Fig. 3, we show the variation of constituent quark
masses M, and M, and the associated total chiral suscep-
tibility, with temperature for vanishing chiral chemical
potential and with different values of magnetic field for
a = 0.5. It has been already mentioned that for a = 0.5
even in the presence of magnetic field M, = M ;. From the
left plot in Fig. 3, it is clear that with increasing magnetic
field constituent quark mass increases. On the other hand,
from the right plot in Fig. 3, it is clear that chiral transition
temperature increases with increasing magnetic field.

In Fig. 4, we show the variation of constituent quark
masses M, and M, and the associated total chiral suscep-
tibility, with temperature for vanishing chiral chemical
potential and with different values of magnetic field for
a = 0.0. For a = 0.0, there is no flavor mixing. From the
left plot, it is clear that at finite magnetic field M, # M.
This is because in the presence of magnetic field u and d
quark condensates are different and in the absence of
flavor mixing for « = 0.0, M,, is independent of ().
Similarly, M, is independent of (y,y,,) for a = 0.0. From
the right plot in Fig. 4, it is clear that chiral transition
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I - u & d(eB = 0.3 GeV?)
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FIG. 3.

— eB =00 i
0.8 | e B =0.2 GeV? A a=05
0o L eB = 0.3 GeV? ¥ ps = 0.0
T00 012 014 016 018 02 022 024 026 028

T(GeV)

Left plot: variation of constituent quark mass M, and M ,, with temperature for vanishing chiral chemical potential, but

with different values of magnetic field for o = 0.5. Right plot: variation of chiral susceptibility y. with temperature (7') for vanishing
chiral chemical potential, but with different values of magnetic field for a = 0.5. From the left plot, it is clear that with increasing
magnetic field constituent mass M, = M, increases. From the susceptibility plot, it is clear that transition temperature increases

with magnetic field.

temperature increases with increasing magnetic field.
However, it is important to mention that unlike the case
when a = 0.5, in this case the susceptibility plot shows two
distinct peaks at relatively large magnetic field values. In
fact, these two peaks are associated with u# and d quarks,
which have been shown in Fig. 5. In the left plot of Fig. 5,
we Show y.,» ¥ca» and y. for eB = 0.4 GeV? and a = 0.0.
On the other hand, in the right plot of Fig. 5, we show y.,,

0.5

0.4

S 03
[}
)
0.2
— u & d(eB =0.0)
o1 u(eB = 0.2 GeV?)
----- d(eB = 0.2 GeV?)
""" u(eB = 0.3 GeV?)
0o — d(eB = 0.3 GeV?)
0.0 0.05 0.1 0.15 0.2 0.25
T (GeV)

Yea» and y, for eB = 0.4 GeV? and a = 0.5. From the left
plotin Fig. 5, it is clear that for @« = 0.0, i.e., in the absence
of flavor mixing, at relatively large magnetic field, chiral
susceptibility y. shows two distinct peaks. These two peaks
are associated with u and d quarks. At relatively large
magnetic field with @ = 0.0, chiral restoration of d quark
happens at relatively low temperature with respect to the u
quarks. This is due to the fact that at nonzero magnetic field

0.1

0.7 eB =0.0

--------- eB =0.2 GeV?
-0.8 | ——-- eB = 0.3 GeV ? a=0.0
----- eB =0.4 GeV? ps = 0.0

022 024 026 028

0.1 0.12 0.14 0.16 0.18 0.2
T (GeV)

FIG. 4. Left plot: variation of constituent quark mass M, and M ,, with temperature for vanishing chiral chemical potential, but with
different values of magnetic field for o = 0.0. Right plot: variation of chiral susceptibility y. with temperature (') for vanishing chiral
chemical potential, but with different values of magnetic field for « = 0.0. From the left plot, it is clear that with increasing magnetic
field constituent mass increases. From the susceptibility plot, it is clear that transition temperature increases with magnetic field. In the
right plot, we can observe two distinct peaks at relatively large magnetic fields.
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0.9 0.9
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FIG.5. Left plot: variation of y.,, y.4> and y. with temperature at vanishing chiral chemical potential for eB = 0.4 GeV? and @ = 0.0.

Right plot: variation of y,, y.4, and y, with temperature at vanishing chiral chemical potential for eB = 0.4 GeV? and a = 0.5. From
the left plot, it is clear that chiral susceptibility shows two distinct peaks at large magnetic field. This is due to the fact that at large
magnetic field, difference between M, and M, is large. On the other hand, the right plot shows that for a = 0.5, (W,w.,) # WaWa)s Xeu
and y., show peak at same temperature. Hence, for a = 0.5, at finite magnetic field, chiral transition temperature for u and d quarks is
the same.

M, > M, as can be seen in Fig. 4. On the other hand, from  susceptibilities with temperature for finite magnetic

the right plot in Fig. 5, we can see that, although  field and finite chiral chemical potential for a = 0.5.
W) # Wawa), Xeu and y., show peak at same temper-  Behavior of quark constituent masses and the chiral
ature. Hence, for o = 0.5, at finite magnetic field, chiral susceptibilities with temperature are similar for other

transition temperature for u# and d quarks is the same. values of a. The left plot in Fig. 6 shows that with
Finally, in Fig. 6, we show the variation of quark

constituent masses M, and M, and the associated

increasing value of chiral chemical potential and for

finite magnetic field constituent quark mass decreases.
0.1
0.5 5
eB =0.2 GeV=,a = 0.5
<) ~‘§
S 03 .
o
) \
= !
= 5
0.2 5\
\
-
A
0.1 \
— u & d(ps = 0.0) \ — 115 =10.0
"""" u & d(ps = 0.2 GeV) 5 0.8 | e ps = 0.2 GeV a=05
----- u & d(ps = 0.4 GeV) M ——— Y 15 = 0.4 GeV eB =0.2 GeV?
0.0 -0.
0.0 0.05 0.1 0.15 0.2 025 0.1 012 0.14 016 018 02
T (GeV)

022 024 026 0.28
T (GeV)
FIG. 6. Left plot: variation of constituent quark mass M, = M, with temperature for finite magnetic field and finite chiral chemical
decreases.

potential. Right plot: variation of chiral susceptibility y. with temperature for finite magnetic field and finite chiral chemical potential.
From this figure, it is clear that with increasing chiral chemical potential quark mass as well as the chiral transition temperature
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This decrease in mass with increasing chiral chemical
potential has also manifested in the right plot of Fig. 6,
which shows that with increasing chiral chemical
potential chiral transition temperature decreases.

VI. CONCLUSION

In this investigation, we have studied chiral phase
transition and the associated chiral susceptibility of the
medium produced in ultrarelativistic heavy ion collisions at
vanishing quark chemical potential using Wigner function
approach within the framework of two flavor NJL model.
For a dynamical system, like the medium produced in
heavy ion collision, quantum effects can be relevant.
Hence, the quantum kinetic equation is a suitable formal-
ism to understand the evolution of these dynamical system.
The central quantity of the quantum kinetic description is
the Wigner function. Wigner function is the quantum
mechanical analog of classical distribution function.
Different components of Wigner function satisfies quantum
kinetic equation. However, in this investigation, we have
restricted ourselves to the case of global equilibrium so that
T, us are constant and we do not consider evolution of
Wigner function. In fact, we could have done the analysis
by estimating the mean field thermodynamic potential and
minimizing the same to get the quark masses as well as the
susceptibility.

We have looked into the behavior of quark masses and
chiral susceptibility within a two flavor NJL model with
flavor mixing determinant interaction. In the absence of
magnetic field, # and d quark masses are degenerate,
due to the isospin symmetry. However, in the presence
of magnetic field, due to different electric charge of u
and d quark, constituent mass of u and d quark can be
different. Our results show that while flavor mixing
instanton induced interaction does not affect the quark
masses in the absence of magnetic field; however, in the
presence of magnetic field, this interaction can affect
quark masses. For maximal flavor mixing, i.e., @ = 0.5
in NJL model for a nonvanishing magnetic field, u and d
quark masses are degenerate as the mass gap equation
for M, and M, depend upon the sum of two condensates
((w.y,) + (Waw,s)). However, one has to keep in mind
that this limiting case is not consistent with large N,
limit of G, and G, as G/G, ~ N, at large N.. For
nonmaximal flavor mixing, quark masses are nondegen-
erate in the presence of magnetic field. Constituent mass
of u and d quark is larger for nonvanishing magnetic
field compared to B =0 counterpart. With increasing
magnetic field, constituent mass of u# and d quark also
increases. This apart the chiral transition temperature is

higher for nonvanishing magnetic field as compared to
the case of vanishing magnetic field. This is the
manifestation of magnetic catalysis, i.e., in the presence
of magnetic field the formation of chiral condensate is
preferred even if the four Fermi coupling is below the
critical coupling [25]. Further, the magnitude of the
chiral condensate is higher for larger magnetic field. It is
interesting to note that in the presence of nonmaximal
flavor mixing instanton interaction, for vanishing mag-
netic field as well as for relatively small magnetic field,
the chiral transition temperatures of u# and d quark are
the same. This is due to the fact that the mass difference
between u and d quark arises due to the magnetic field
and for weak magnetic field this difference is negligible
and leads to the similar transition temperature. Only
when this mass difference is large (due to strong enough
magnetic field), one can have different transition temper-
ature for two flavors. The difference between the
transition temperature of u and d quark also increases
with magnetic field. We have also shown that non-
vanishing chiral chemical potential (u5) reduces quark
mass in the absence as well as in the presence of
magnetic field. Unlike magnetic catalysis, with increas-
ing chiral chemical potential (u5), chiral transition
temperature decreases. It is further observed that in
the presence of magnetic field, the chiral susceptibility
shows a double peak structure due to isospin breaking in
the presence of magnetic field.
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APPENDIX A: DERIVATION OF SCALAR
CONDENSATE IN A BACKGROUND
MAGNETIC FIELD AND CHIRAL
CHEMICAL POTENTIAL

Scalar condensate in the terms of the scalar DHW
function can be written as

W) = [ @pF(p). (A1)

Using the explicit form of scalar DHW function (F(p)),
as given in Eq. (43), scalar condensate in the presence of
magnetic field, as given in Eq. (A1), can be expressed as
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(wy) = / 2zprdpodprdp.M [Z V,(po. )AL A" (pr)
n=0

(n = 1
pr)+ ) —F————=A,(pPo.P:)P
+(pr) Z p§+2an (Po- P2)P:

= / 2zprdpodprdp.M [Vo(po,pz pr)+ > Valpo. p)A (pr)

n=1

A (pT)}

o |
+ Y ————A,(po. P.)P:
;\/pi +2ngB " :

Now, the first term in Eq. (A2),
0
I —2ﬂ// dposzMVO(POva)/dPTPTAQ(PT)- (A3)
Using the explicit form of V(py, p.) and A(f)( pr), Eq. (A3) can be expressed as
L = 27 [ dpodp.——M5((po +u)? = [EV2)[0(po + 1) fr(po)
1 podp; <2ﬂ)3 PoTH - Po T HK)J Fp\Po

+6(=po — 1) [frp(=po) = 1] / dprpr2exp [—p%/qB]

= [ [FD< )+ Fro(ES) ) =1 (A4

The second term in Eq. (A2),
I = ZEi // dpodp.MV ,(po. p.) / dprprAl (pr). (AS)
Using the explicit form of A(f> (pr), one can calculate the following integral:
/ dprprAY (pr) = (=1)" /0 " dprprlL,(2p3/4B) — Lu-y(2p}/4B)| exp(~p}/qB) = gB. (A6)
To get Eq. (A6), we use the following identity [114]:

/ " dx exp(=bx)L,(x) = (b= 1)"p=1. (A7)

0

Using Eq. (A6) and the explicit form of V,(py, p.), I, can be written as

I, = 27(¢B) // dpodpz MZ5 Po+u)* = |E§7’1)s|2)[9(1?0 +u)frp(po) +0(=po — 1) (frp(=po) — 1)]

= 271)2 iZ/dpz ,, fFD( — ) - fFD(Ep s +/4)} (A8)

Z,8

Now let us consider the third term of Eq. (A2),

- 1
I =2ﬂ//dp dp My ————A,(po.p.)p /dp prAY (pr). (A9)
3 0 z ;\/m 0> Fz)FPz THT T
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Using the explicit form of A" (p;), it can be shown that

/ dprprA®(pr) = 0. (A10)
Hence, the third term of Eq. (A2),
I; =0. (A11)

Hence, using Eqgs. (A4), (A8), and (A11), the scalar condensate is

<w>=—%/dng_[ ~ Fro(ES) = k) = Fro(ES) + )]

- QBziZ/sz o — Fro(Eps = 1) = Frp(Ey. s+u)} (A12)

APPENDIX B: REGULARIZATION OF CHIRAL CONDENSATE
IN A BACKGROUND MAGNETIC FIELD

The scalar condensate of a quark of flavor f, with N, color d.o.f. at finite temperature (7'), chemical potential (1) can be
expressed as

_ N.|qs|B &
0 f
<‘/’fo>/§5¢0 == (27)2 2 5n0)/d177— fFD( €p.f ﬂ) fFD( €p, f+ﬂ)]
= <‘/7f"/’f>vac.3¢0 + <l//fl//f>rried,B7&0’ (B1)

where (%-yfﬂ’jij&o is the T = 0, u = 0 part, or the vacuum part of the scalar condensate, and <1Z/fl//f>¢;5e:df)]3#o is the finite
temperature and finite chemical potential part or the medium part of the scalar condensate in the presence of magnetic field.
It is clear from Eq. (B1) the vacuum term is divergent for large momenta and however because of the distribution functions
the medium part in Eq. (B1) is not. Hence, it is important to regulate the vacuum part in Eq. (B1).

Let us consider the vacuum part <li/fl//f>,\f;c:,](;#0’ which is given as

_ N. o dp. M
- us=0 _ V¢ _ P; Ui
(W W ) vacBr0 = o ;(2 Sn0)lay|B /_Oo (27) efnn)f

NS [ Koy [~
—eo (27) O
) eV, w (27) €,

=7, +1I,. (B2)

Both integrals 7| and Z, are divergent at large momentum. These integrals can be regularized using dimensional
regularization scheme. In this regularization scheme, integral Z; can be expressed as

dp, M
:‘_ZZW / 2] o
epz,f

N & MO F(€/2)
27 ; I (am) =921 /2)(xo, +n)/?

where the dimensionless variable x , = M%,» /2|qs|B. Similarly, the integral 7, can be expressed as
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N, dp M,,
T=grlafs | oo
Mof + p;
~ N:My |qs|B I'(e/2)
(27)  (4m) =0T (1/2)x

(B4)

Using Egs. (B3) and (B4), vacuum part of the scalar condensate in the presence of magnetic field as given in Eq. (B2) can
be recasted as

N, I'(e/2) 1
I, +7Z,=—-——52|g,BM,
1T = =5 2y |BMy, (47)(1-9/21(1/2) [Z(x0/+n€/2 2 gf]

N, I'(e/2)
- —Z2|qf|BMof(

1
m {C(e/Z, xo,-) - F} . (B5)

0y

Expanding the right-hand side of Eq. (B5) around ¢ — 0 and keeping only the leading order terms, we get
N, 2xo, 1 1
Il +Iz = —2—71_2|Qf|BM0f —T—f—yExOf +§11'1.X0f —|—lnI_‘(x0f) —Eln(Zn') . (B6)

In Eq. (B5), we have used the representation of zeta function, which is given as [115]

- 1
- (B7)
; (x+n
Also, we have used the following identities to get Eq. (B6):
1 1 d¢(a,
£(0,x) = <§—x), and,  ¢'(0.x) = In[(x) = 3In(2x).  where ¢'(0.x) = Cila a2l (BS)
a a=0

It is clear from Eq. (B6) that the vacuum part has 1/e divergent part. To remove this 1 /¢ divergence, we use the following
integral:

—2N, / p +M2 (B9)

Using dimensional regularization method, the integral in Eq. (B9) can be recasted as

—2N .M, I'(-1+¢€/2)

1= — . (B10)
(47)*°0(1/2) (2x0,g|B) ™'+
Expand the right-hand side of Eq. (B10) around ¢ — 0 and keeping only the leading order terms, we get
—N:My,|qs|B [ 2xo
5 = 27;; [— ef = Xo, + Xo,VE + X0, lnxof} (B11)
Using Eqs. (B6) and (B11), we get
N.M, |q;|B 1. (%o
I] +Iz —I3 — —277;2 |:)C0f(1 - ]nxOf) + ]nF(XOf) + 2]n<27;>:| . (Blz)
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Using Egs. (B2) and (B12), we have the regularized vacuum part of the scalar condensate in the presence of magnetic
field and is given as

<V7fo>CZt::.g¢o =T +1,-13+1;

N.M B 1 P& M
:—ﬂ |:,X'0f(1 —1nx0f)—|—lnl"(x0f)—|—2ln< 0f>:| —2NC/ A( 14 Or . (B13)
<

272 2n 27)3 /pz—i-M%f

Again,
Zl :Il —Ig +I3
N |qs|BM,, [1 1 d*p M,
S Kl ) L G| —lnx0)+lnr(xo)——ln(27r)] —2NC/ ‘. (Bl4)
272 e 2 ! g 72 (2r)? /p2—|-M%f
Hence,
_NC|Qf|B

1=

s=E1 n= 0/ \/ +M0 +2n|qf|B

1 Bp |
= B|--£ 1-1 InT(xy,) — = In(27)| — 2N . BI5
L f”(“w+“W>ﬂ”ﬂ e ey, (B15)
Using Eq. (B15), we get
Nc|CIf|B / 1 1 o1
(2”) §= :I:l n=0 pz +M(%f + 2n|qf|B)3/2 MO/ 8M0f
N F/(XO ) d3p 1
=——%S1=Inxy, + d ] +2Nc/ '
2n* { " Tlx,) pisa (27)° (p? + M3 )72
(B16)

APPENDIX C: REGULARIZATION OF CHIRAL CONDENSATE IN A BACKGROUND MAGNETIC
FIELD AND CHIRAL CHEMICAL POTENTIAL

The scalar condensate of a quark of flavor f with N, color d.o.f. at finite temperature (7), quark chemical potential (u),
chiral chemical potential (us), electric charge (¢), and magnetic field (B) can be expressed as

v p)ido == N(62|:]r§|28 [/dngl [ f”)( Pe.f ”) f”’( Pf+”)}
Pzt

+Zz/mi& ~Fro(E, - )m%wﬁ@H

= Wwy >vac,B;é0 + Wy >med,B7r’:0’ (C1)

where <1/7fwf>’vlflfg 40 18 the T = 0, p = 0 part or the vacuum part of the scalar condensate, and <l/_/fl//f>lrlnse;fi(.)B -0 18 the finite
temperature and finite chemical potential part or the medium part of the scalar condensate in the presence of magnetic field
and chiral chemical potential (u5). It is clear from Eq. (C1) that the vacuum term is divergent at large momenta and however
because of the distribution functions the medium part in Eq. (C1) is not. Hence, the vacuum term has to be regularized.

094030-24



CHIRAL SUSCEPTIBILITY IN THE NAMBU-... PHYS. REV. D 100, 094030 (2019)

The vacuum term in the presence of magnetic field and chiral chemical potential can be expressed as

_ #0 |fJf‘ |Qf| My
<l//fl//f>l\fzsic,B;éO = / \/—_ )2 Z Zi:l dpz 5
P;—Hs n=1 s \/Mi + (,/p§+2n|qf|B—su5>
|f1f\B lq/|B My
/ i (2ﬂ)2/dpz M3+ (p. — ps)?
2P M+ (1/p? +2n|qf\B P2+ 2nlaglB = sus)” 7+ (p= s

My

|le\ /d / J
(2” (2r)? ;szi:l P P4 M2 + <1 /P2 +2n|qs|B - s,u5)2)

|C]f|B/ / Mf
+N, dp.—
Cap ) Pin ) M (pe =)

=1, +1,. (C2)

Using the regularization method discussed in Ref. [59], we can write the integrand of the integral /; as given in the
Eq. (C2) as follows:

1

2
P2+ M3+ (/2 +2nlq|B = sus )

1 1

= - +
2 2 2 , 2 2 2 , 2
Py +pz+ Mg +2nlqs|B - pi+ pz+ My +2nlqylB p5+M%+< /p§+2n|qf|3_%)

2 ) [ 2
1 M5 — M7 — ps + 2sps p'+2n|qf|B
! ; (C3)

— + )
2 2 2 2
Pict et Mo, 21018 (03t g2 M3+ 2nlg,1B) (97 + M3+ (/02 + 2l 1B = sus)”)

Using Eq. (C3) twice, we can write the integrand of the integral /; in the following way:

1 1 A+ 2sps4/ p? 4 2n|qy|B

= +
Py M3+ (\fp + 2nlaglB = sus)” Pt PE Mo, 2nlgslB (Pt pz ot M, + 2nlq|B)°

<A + 25/45\ / p% + 2n|q]c|B>2
+

(i + p? + M, +2nlq;|B)?

/ 3
+ K
2
(P + 2+ M3, +2nlq,1B)* (P + M3 + (\/ 02 + 2nlaslB = sus)”)

where A = M2 M2 ﬂs Performing p, integration in each term of Eq. (C4), we get

Z / P 1 =2 1
- 4
pi+ P+ M +2nlqfB 4 \/pg + M3 +2n|qy|B
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o] P 2 (p? + Mg,

(C6)
(pi + P2+ M;, +2n|qf|B + 2n|qs|B)*?
T —
Z dp, — 2 _2
p4+pz+M2 +2nlqgB) 5~ (8(p2 + MG +2nlq;[B)*?  2(p?+ Mj, +2nlq|B)
2
Hs
+- Cc7
2(p?+Mj, +2n|qf|3)3/2] 7
T \3
- dpy
2
i (i + p? + Mg, +2n|qf|B)3<pi+M§-+ (x/pﬁ +2n|qf\B—SMs) )
3
IZ/d /ld 3(1 = x2(A + 25u5/p2 + 2nlg/|B)
= P4 X 2 4
S 0 [e(pg M+ (02 2nlaglB = sus)”) + (1= x)(pF + p? + MG+ 2nlg/B)|
3
15 f1 (1= (A+ 255/ 2 + 2nlq,|B)
:Z%/ dx 5 (C8)
0 [p% +M%f + 2n|q¢|B —x(A + 2spusy/ p? + 2n|qf|B)]
Using Eqgs. (C5)—(C8), integral I; in Eq. (C2) can be expressed as
B |61f|B / M,
"= 0‘ ! \/M2 P +2n|qf|B—SMs>
M (M3 — M3 + 2u2)
S f 5
= [lquad - - 2 Illog + Ilfinilel + Ilﬁnnez’ (C9)
where
B
Ty = =Ne |qf| / (C10)
= Os £l \/ +M2 —|—2n|qf|B
\CIf| / 1
Iy, = : (C11)
. Z% 2. | P T i B
Ilﬁnim - 271.)2 ( 2 L M2 _|_2n| |B)5/2 (C12)
n=0 s=+1 Pz 0f ar
]qf|B 15 1—x)2Mf<A+25/45\/pZ—|—2n\qf|B)
Ilﬁnnez =-N 2 )2 dpz dx 5 5 72 (C13)
n— Os £1 p?+ M3 —|—2n|qf|B—x<A+2s,us,/pz+2n|qf|B)}
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In a similar way, the integral I, in Eq. (C2) can also be written as

lq,|B
=N d
C(27[)2/ pZ

lqs|B My |f1f\ |le|
Ne (277)2/dpZ /2 > / [ 2 2 N / [ 2 2
M'+(pz_ﬂ5) pz+M Pz+M

() |Qf|/ / M (A +2p.us) |Qf|/ My
[P+ M§, —x(A + 202 P2+ M,

= Izl'inilc + Izlog'

Using Egs. (C9) and (C14), Eq. (C2) can be recasted as

M (MG, — M7} + 2413)

_ #0
<wfl//f>/\j£5'lc.B¢0 == D) Illog + Ilﬁnilel + Ilﬁnnez + Izﬁnite + Ilquad + Izlog’
where
N I (xo,) d*p 1
I, =——%1-Inxy, +——2" —|—2N/ ,
e 2 [ ¥ Tlx,) “Jipiea @) (P + MG )P
and
11 _Nch|Qf|B

In Egs. (C16) and (C17), we have used Egs. (B16) and (B13), respectively.

APPENDIX D: CHIRAL SUSCEPTIBILITY AND ITS REGULARIZATION IN THE PRESENCE
OF A BACKGROUND MAGNETIC FIELD AND CHIRAL CHEMICAL POTENTIAL

Using Eq. (C2), we get

_ 0
8<Wfo>€3jB¢o N |61f|B 4 1
OM (27) 2 P:
f n= 0v +1 M2 2 B—
pz+ n‘qf| SHs
Nc|‘]f|B/
dp.
+ (2”)2 Pz

4 NelaB - / M}
2 3/2
2” n= Os +1 ,/p§+2n|qf|B—s,u5>2) /

N, |qf|B/ M2
-——5 [ dp
(27)? C(M7+ (p.—us)?)?
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1 0 dp M,
xo. (1 =Inxg. ) +1Inl(xy,) + = 1n< f)]—ZNL./ : :
P L (1 =) 4 ) + 10 (5 R

(C14)

(C15)

(C16)

(C17)
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Using Eq. (C9), we can write

I - |51f| /
\/M2 72+ 2ma 1B = sus)
(Mg, — M7 +243)
=1} quaa —— 3 Ly jog + Lifiniter + Lt finie2 (D2)
where
Iq |
Il,quad =-N f / (D3)
\/ + M3, —|—2n|qf|B
|6If| < / 1
I =N, , D4
e Z: ) T (R + MG, + 2nlqg|B) (>4
oo 2 _ 2,2
o (] o
Jgiitel ™ c )
(27)* & (p? + Mg, + 2nlq;|B)*?
2 2 3
B /15 (1= (A+ 255/ 2 + 2nlq|B)
L finite2 = —N. |qf| ( ) /dpz/ dx Z 72" (D6)
n=0 s—+1 p +M2 +2n|qf|B—x(A+2s;451/p§+2n|qf|3)}

The integral I, in Eq. (D1) can be expressed as

|q/|B 1
= Nc (2;)2 / dpz 2 > = IZ,finite + I2,10g’ (D7)
Mf + (pz - ﬂS)

where divergence free I, g 1S

1 |61f|B/ /1 (A+2p.ps)
L. = (=|N d d - , D8
> fnite (2) ‘@) e x[p§+M(2)f—x(A+2pZﬂ5)]3/2 (O#)

and the divergence term I, is

Nclay|B 1
L210g = (CZHJ;Z / ap: [ 2 (D9)
p: + Mof
Similarly, the integral I5 can be separated into a divergent term and a convergent term as
Nelas|B < M3
L= (2 fz /dpZ L 53372 = Linite + I3ogs (D10)
Q= OS + M2 P§+2”|C]f|3—5ﬂ5) )
where
N.|gs|B & 1 |

|61f| o)

2
I3 finiee = 2ﬂ 5 /szM ) 5 2 3/2_(M2 + 2+2n| |B)3/2 ’
n= Os Tl (Mf—f— (UPZ —|—2n|qf|B—s,us) ) o, t Pz qr
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and

N |gs1B& / M3
1 = d . D12
s = 2 2 M3+ p2 + 2nlq,1B) " (P12)

n=0 s=+1

It can be shown that the term I3 gy is finite. On the other hand, the term I, is not convergent at large momenta. Using
Egs. (D2), (D7), and (D10), Eq. (D1) can be rearranged in the following way:

O s Vil Bso MG, — M7 + 23
—anac’ 2= I g —————— ) Lo + Lifiniter + Lo finite2 + L2 finite + L3.finite + La + Lo10g + I3.10g
f
M(z)/ - MJ% + 2/4%
N L1 1og + Tifinitet T T finite2 + L2 finite + I3 finite

N |q|B M;
+ <I4 + ! /dP ! + (11 quad + Loog)

@n)? | Va3, + p) "

e _NcqulB/dp M}
e e ) T )

B MG, — M7 + 243

T S Iy 1og + Lifinitet T L1 finite2 + L2.finite + I3 finite + finite T Tquaa + Tiogs (D13)
where I 18
Nc|Qf|B M%
Linie = L + [ v, (D14)
te (2”)2 z (pz 4 M%f)3/2
and
Iquad = Il,quad +1 Jlog
Nc|‘1f|B |: xOf 2Nc 1
=- xo,(1 =Inxg,) +1InT(xo,) + 5 ln - / Pp—. (D15)
272 s 72\ 2 (27)* Jipi<a /P2+M%f
NC‘Qf|B M2
Tiog = I3000 — \2 d 423/2’
(27) (p* +M;)
N.M? 1 T'(x,)] 2N M2
_ T f i c 3 f
=- —Inxy + + } + / &Pp———is, (D16)
2 [ 0’ 2xo,  T'(xo,) (27)° Jipi<a (r* +M0,)3/2
with
I *N0|qf|B / 1 —& —Inx, +l"’(x0f)
Hee @ﬂsﬂno m+W+%WWm 2| 7Y Tlxo,)

&dp

+2N, .
plza (27)° (p? +M(2),»)3/2

(D17)
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