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We find a novel mechanism for generating transverse single-spin asymmetry (SSA) in semi-inclusive
deep inelastic scattering, distinct from the known ones which involve the Sivers and Collins functions, or
their collinear twist-three counterparts. It is demonstrated that a phase needed for SSA can be produced
purely within a parton-level cross section starting at two loops. We identify the complete set of two-loop
diagrams for SSA, and discuss their gauge invariance and collinear factorization which features the
gT distribution function. In the kT factorization framework, many more sources for SSA exist, and
contributions from all possible two-parton transverse-momentum-dependent parton distribution functions
are presented up to two loops and twist three.
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I. INTRODUCTION

A study of single-spin asymmetry (SSA) in processes
involving a transversely polarized nucleon is crucial for
exploring the three-dimensional nucleon structure.
Significant experimental signals of SSA have been
observed in hadron production [1,2], which amount up
to order of ten or more percent of unpolarized cross
sections. Data on pion production have been very consis-
tent, showing asymmetries up to pion transverse momenta
of several GeV [3,4]. Despite decades of efforts, the origin
of such significant asymmetries is not yet fully understood,
due in part to large theoretical and experimental uncer-
tainties. The future Electron-Ion Collider is expected to
deliver very precise measurements, that will impose strong
constraints on various theoretical approaches.
From the theoretical point of view, understanding SSA

is a quest for a “phase.” One is interested in the part of a
cross section which depends linearly on the transverse spin
vector ST of a nucleon. The spin vector usually comes with
a factor i, so to make the cross section real, one has to find
another factor i from involved diagrams. The first such
attempt was made by Kane, Pumplin, and Repko [5], who
calculated the SSA for single hadron (pion) production

from quark-quark scattering diagrams with a transversely
polarized quark. They found that nonvanishing SSA for
high pT reactions is proportional to a current quark mass.
Although their calculation does not explain the measured
large SSA, the observation with the result being propor-
tional to a quark mass indicates that SSA is a twist-three
effect in perturbative QCD. Subsequently, Efremov and
Teryaev pointed out that nonvanishing SSA could be
obtained as one goes beyond the leading power [6–9]. It
is by now well known that sizable SSA can be generated
through the combined effect of nonperturbative twist-three
distributions of a nucleon, called the Efremov-Teryaev-
Qiu-Sterman (ETQS) function [6,7,10,11], and the pole
part of a propagator which provides the required phase.
In this picture, the smallness of a current quark mass is no
longer an issue, since the relevant mass scale is a nucleon
mass. A similar twist-three effect has been implemented
into fragmentation functions as an alternative source of
SSA [12–14].
SSA has been also studied extensively in the kT

factorization framework. Parton transverse momenta are
incorporated either in transverse-momentum-dependent
(TMD) parton distribution functions (PDFs) or in TMD
fragmentation functions (FFs). The former is the Sivers
function [15,16], which describes the spin-orbit correlation
of partons inside a transversely polarized nucleon. The
required phase arises from the pole of a propagator for
Wilson lines. For the latter, the Collins function [17–19]
governs the fragmentation of a polarized quark, in which
the phase comes from final state interactions.
In this paper we will investigate the source of phases

starting from a parton-level cross section up to two loops,
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taking the polarized semi-inclusive deeply inelastic scatter-
ing (SIDIS) as an example. On shell internal particles in
certain two-loop diagrams produce phases from different
leading regions of particle momenta. The phase is then
absorbed into the relevant piece in the factorization theorem
for each leading region. In addition to the known Sivers
(or ETQS) and Collins mechanisms, which are associated
with the collinear regions of initial state and final state
partons, respectively, we find a novel source of phases
which goes into a hard kernel. The corresponding factori-
zation formula contains the gT distribution function for a
polarized nucleon, and the standard twist-2 FF for a final
state hadron. Our result is reminiscent of the observations
in [20–23]: the authors of [20,21] studied the same set of
two-loop diagrams as proposed in this work, but for a
transversely polarized quark target. The asymmetry is thus
proportional to a current quark mass, and only factoriza-
tions into the known mechanisms (Sivers, ETQS,…) were
examined. In [22,23], the authors found that multi-photon
exchange between the leptonic and hadronic parts of
inclusive deep-inelastic lepton-hadron scattering causes
SSA. The two-photon-exchange diagrams considered in
[22] has the same topology as our diagrams, but it turned
out that their final formula does not contain the gT
distribution function [24].
Once we are allowed to go to higher orders in a hard

cross section, more twist-3 TMD PDFs and FFs from
various spin projectors can contribute to SSA, resulting in
abundant phenomenology to be explored. We will derive a
complete set of subleading contributions to transverse SSA
at two-parton twist-three accuracy in SIDIS up to two
loops. Note that the proof of the factorization theorem at the
twist-three level is highly nontrivial. Here we will adopt the
twist-three factorization as a working hypothesis [25–30],
and leave its rigorous proof to future projects.
This paper is organized as follows. In Sec. II, we present

the general formalism for SSA in the collinear factorization
and check the QED and QCD gauge invariance. In Sec. III,
the complete set of two-loop diagrams that should be
included into the hard kernel introduced in Sec. II is
identified. We analyze the various infrared divergences
in the considered diagrams, and discuss how to handle
these divergences in the collinear and kT factorizations in
Sec. IV. A source of phase, which cannot be ascribed to the
known mechanisms of SSA, will be highlighted. It thus
represents a new contribution to SSA, and is our main
result. Section V is the conclusion.

II. SEMI-INCLUSIVE DEEP INELASTIC
SCATTERING

In this section we start with a general discussion of SSA
in SIDIS in the collinear factorization framework mostly
following the notations of [31] (see also [9,11]). The spin-
dependent part of the eðlÞpðPÞ → eðl0ÞhðPhÞX cross sec-
tion is given by

dσ ¼ 1

2Sep

d3Ph

ð2πÞ32Eh

d3l0

ð2πÞ32El0

e4

ðQ2Þ2 L
μνWμν; ð1Þ

where Sep ≡ ðlþ PÞ2, Q2 ≡ −q2 ¼ −ðl − l0Þ2, Lμν ¼
2ðlμl0ν þ lνl0μÞ − gμνQ2 is the leptonic tensor, Wμν is the
hadronic tensor, and ν and μ are the polarization indices of
the virtual photon in the amplitude and the complex-
conjugate amplitude, respectively. The Bjorken variable
is denoted as xB ¼ Q2=ð2P · qÞ. We work in the so-called
hadron frame, where the virtual photon and the proton
move in the z direction with

qμ ¼ ð0; 0; 0;−QÞ; Pμ ¼
�

Q
2xB

; 0; 0;
Q
2xB

�
: ð2Þ

The incoming and outgoing leptons have the momenta

lμ ¼ Q
2
ðcoshψ ; sinhψ cosϕ; sinhψ sinϕ;−1Þ;

l0μ ¼ Q
2
ðcoshψ ; sinhψ cosϕ; sinhψ sinϕ; 1Þ; ð3Þ

where ϕ is the azimuthal angle relative to the z axis, and

coshψ ≡ 2xBSeq
Q2

− 1 ¼ ðlþ PÞ2
P · q

− 1 ≈
2P · l
P · q

− 1: ð4Þ

The hadronic tensor is expressed as a convolution of
the reduced hadronic tensors wμν

q;g and the quark and
gluon FFs D1q;gðzÞ, which describe the processes
qðPh=zÞ; gðPh=zÞ → hðPhÞ,

Wμν ¼
X
i¼q;g

Z
dz
z2

D1iðzÞwμν
i : ð5Þ

In the following we will suppress the flavor summation.
The tensor wμν is represented by the sum of the two
diagrams in Fig. 1,

wμν ¼
Z

d4k
ð2πÞ4 Tr½M

ð0ÞðkÞSð0Þμν ðkÞ�

þ
Z

d4k1
ð2πÞ4

d4k2
ð2πÞ4 Tr½M

ð1Þ
σ ðk1; k2ÞSð1Þσμν ðk1; k2Þ�: ð6Þ

The hard matrix elements Sð0Þμν ðkÞ and Sð1Þσμν ðk1; k2Þ, with σ
being the polarization index of the attached gluon, can be
computed in perturbation theory. The nonperturbative proton

matrix elements Mð0Þ
ij ∼ hPST jψ̄ jψ ijPSTi and Mð1Þσ

ij ∼
hPST jψ̄ jgAσψ ijPSTi have indices in Dirac space (ij), as
well as in color space (omitted for simplicity). Here SμT ¼
ð0; ST; 0Þ is the spin vector of the transversely polarized
proton with the normalization S2T ¼ −1.
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The collinear factorization approach amounts to expanding the momentum kμ in Sð0Þ and kμ1;2 in S
ð1Þ around the collinear

part proportional to Pμ,

kμ ¼ xPμ þ kμT; kμ1;2 ¼ x1;2Pμ þ kμ1;2T: ð7Þ

After some manipulations, one finds (see Eqs. (31) and (42) of [31])

wμν ¼
Z

dxTr½Mð0ÞðxÞSð0Þμν ðxÞ� þ
Z

dxTr

�
iMð0Þα

∂ ðxÞ ∂S
ð0Þ
μν ðkÞ
∂kαT

�
k¼xP

þ
Z

dx1dx2Tr

�
Mð1Þþðx1; x2ÞSð1Þ−μν ðx1; x2Þ

þ iMð1Þα
F ðx1; x2Þ

∂Sð1Þ−μν ðk1; k2Þ
∂kα2T þMð1Þαðx1; x2Þ

�
Pþðx2 − x1Þ

∂Sð1Þ−μν ðk1; k2Þ
∂kα2T þ Sð1Þαμνðx1; x2Þ

�

þ iMð1Þα
∂1 ðx1; x2Þ

�∂Sð1Þ−μν ðk1; k2Þ
∂kα1T þ ∂Sð1Þ−μν ðk1; k2Þ

∂kα2T
��

ki¼xiP
; ð8Þ

where α is transverse, Sð0ÞðxÞ≡ Sð0ÞðxPÞ, Sð1Þσ ðx1; x2Þ≡ Sð1Þσ ðx1P; x2PÞ, and

Mð1Þα
∂ ðxÞ ¼

Z
dλ
2π

eiλxhPST jψ̄ð0Þ∂αψðλnÞjPSTi; ð9Þ

Mð1Þα
F ðx1; x2Þ ¼

Z
dλ
2π

Z
dζ
2π

eiλx1þiζðx2−x1ÞhPST jψ̄ð0ÞgFαþðζnÞψðλnÞjPSTi; ð10Þ

Mð1Þαðx1; x2Þ ¼
Z

dλ
2π

Z
dζ
2π

eiλx1þiζðx2−x1ÞhPST jψ̄ð0ÞgAαðζnÞψðλnÞjPSTi; ð11Þ

Mð1Þα
∂1 ðx1; x2Þ ¼

Z
dλ
2π

Z
dζ
2π

eiλx1þiζðx2−x1ÞhPST jψ̄ð0ÞgAþðζnÞ∂α
TψðλnÞjPSTi; ð12Þ

with nμ ¼ δμ−=Pþ. The authors in [31] have focused on the
third line of Eq. (8), evaluating the corresponding one-
loop hard kernel in perturbation theory and obtaining
the soft gluon pole (SGP), soft fermion pole (SFP) and
hard pole (HP) contributions. They have also shown that
all the other lines in Eq. (8) vanish identically for these
contributions.
However, all the lines in Eq. (8) can actually contribute

to SSA in more general situations. It has been pointed out in

[9,31] that the first line potentially contributes to SSA, if
one picks up the gT distribution function

Mð0ÞðxÞ ¼ MN

2
γ5=STgTðxÞ þ � � � ; ð13Þ

with MN being the proton mass. The authors of [31] noted
that if Sð0Þ is calculated in the Born (one-loop) approxi-
mation, the asymmetry trivially vanishes, because there is

P

k

q

Ph z

S 0

M 0

PhPh

P

k1 k2k2 k1

q

Ph z

S 1

M 1

PhPh

FIG. 1. Generic diagrams contributing to SSA in SIDIS, and a graphical representation of the two terms in Eq. (6).
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no phase from the Born diagrams to cancel the i from the
trace involving γ5 (see the discussion in Sec. III). As we
shall demonstrate later, certain two-loop diagrams for Sð0Þ
can generate a phase, which leads to a contribution to SSA
proportional to gT . When this occurs, the second line of
Eq. (8) provides the OðgÞ piece of the Wilson line in the
definition of gT . To see this, note the QCDWard-Takahashi
(WT) identity for the contraction of a gluon of the
momentum k2 − k1,

ðk2 − k1ÞσSð1Þσμν ðk1; k2Þ ¼ Sð0Þμν ðk2Þ − Sð0Þμν ðk1Þ; ð14Þ

where a color matrix ta with the color index a is implicit on
the right-hand side. The above formula gives

PþSð1Þ−μν ðx1; x2Þ ¼ −
Sð0Þμν ðx2Þ

x1 − x2 þ iϵ
þ Sð0Þμν ðx1Þ
x1 − x2 þ iϵ

; ð15Þ

in the collinear limit. Upon the integration over x1 or x2, the
factor 1=ðx1 − x2 þ iϵÞ becomes the θ-function that enters
the Wilson line integral

ψ̄ð0Þ
Z

λ

0

dζAþðζnÞψðλnÞ: ð16Þ

Differentiating Eq. (14) with respect to k1;2 and then
taking the collinear limit, one finds

Pþðx2 − x1Þ
∂Sð1Þ−μν ðk1; k2Þ

∂kα2T
����
ki¼xiP

þ Sð1Þμναðx1; x2Þ ¼
∂Sð0Þμν ðk2Þ
∂kα2T

����
ki¼xiP

;

Pþðx2 − x1Þ
∂Sð1Þ−μν ðk1; k2Þ

∂kα1T
����
ki¼xiP

− Sð1Þμναðx1; x2Þ ¼ −
∂Sð0Þμν ðk1Þ
∂kα1T

����
ki¼xiP

: ð17Þ

It means that the fourth line of Eq. (8) is nonvanishing, and
the fifth line does not vanish either, as one can see by
summing the two relations in Eq. (17). The crucial differ-
ence between the analysis of [31] and ours is whether the
right hand sides of Eq. (17) vanish or not. Following [31],
the hard kernel Sð1Þ is defined as the sum of “irreducible”
diagrams without including the “reducible” diagrams in
which the k2 − k1 gluon merges with the incoming or
returning quark line. With this definition, the right-hand
sides of Eq. (17), accounting for the contributions from
those reducible diagrams, exist in general. See [14,32,33]
for related discussions in the context of SSA. It turns out

that, for the SGP, SFP, and HP contributions at the Born
level considered in [31], the right-hand sides of Eq. (17),
and the fourth and fifth lines of Eq. (8), all vanish.
However, for the set of two-loop diagrams proposed in
the next section, the right-hand sides Eq. (14) do not vanish.
The fourth and fifth lines of Eq. (8) do not vanish either,
and they must be treated simultaneously for gauge invari-
ance as elaborated below.
Inserting Eq. (17) into Eq. (8), we observe that various

terms organize themselves to form gauge invariant twist-
three matrix elements.1 Define

Z
dλ
2π

Z
dμ
2π

eiλx1þiμðx2−x1ÞhPST jψ̄ jð0Þ½0; μn�Dα
TðμnÞ½μn; λn�ψ iðλnÞjPSTi

¼ MN

4
ð=PÞijϵαPnSTGDðx1; x2Þ þ i

MN

4
ðγ5=PÞijSαTG̃Dðx1; x2Þ; ð18Þ

Z
dλ
2π

Z
dμ
2π

eiλx1þiμðx2−x1ÞhPST jψ̄ jð0Þ½0; μn�gFαβðμnÞnβ½μn; λn�ψ iðλnÞjPSTi

¼ MN

4
ð=PÞijϵαPnSTGFðx1; x2Þ þ i

MN

4
ðγ5=PÞijSαTG̃Fðx1; x2Þ; ð19Þ

where the Wilson line ½μn; λn� ¼ P exp ½ig R μ
λ dtn · AðtnÞ� renders the matrix elements gauge invariant, and the three-parton

PDFs obey the symmetry property,

1Our notations are the same as in [31]: γ5¼ iγ0γ1γ2γ3, ϵ0123¼1 and ϵαPnST ≡ ϵαβγδPβnγSTδ.
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GDðx1; x2Þ ¼ −GDðx2; x1Þ; G̃Dðx1; x2Þ ¼ G̃Dðx2; x1Þ;
GFðx1; x2Þ ¼ GFðx2; x1Þ; G̃Fðx1; x2Þ ¼ −G̃Fðx2; x1Þ: ð20Þ

The second term of the first line and the fourth line in Eq. (8) combine to give the covariant derivative ψ̄Dα
Tψ , and the fifth

line provides the Wilson line of this operator to make it gauge invariant. Equation (8) then becomes

wμν ¼ MN

Z
dxTr

�
γ5=ST

gTðxÞ
2

Sð0Þμν ðxÞ
�
þ iMN

4

Z
dx1dx2Tr

�
ð=PϵαPnSTGDðx1; x2Þ þ iγ5=PSαTG̃Dðx1; x2ÞÞ

∂Sð0Þμν ðkÞ
∂kαT

����
k¼x2P

�

þ iMN

4

Z
dx1dx2Tr

��
=PϵαPnST

GFðx1; x2Þ
x2 − x1

þ iγ5=PSαT
G̃Fðx1; x2Þ
x2 − x1

��∂Sð0Þμν ðkÞ
∂kαT

����
k¼x2P

− Sð1Þμναðx1; x2Þ
��

: ð21Þ

The above expression can be further simplified by using the identity [34]

GDðx1; x2Þ ¼ P
GFðx1; x2Þ
x1 − x2

; G̃Dðx1; x2Þ ¼ δðx1 − x2Þg̃ðx1Þ þ P
G̃Fðx1; x2Þ
x1 − x2

; ð22Þ

where P denotes the principal value prescription. We shall omit P below to avoid confusion with the momentum Pμ. The
second equation can be regarded as the definition of g̃ðxÞ, that is in fact related to gTðxÞ, GF, and G̃F through the QCD
equation of motion [see Eq. (27) below].2 We thus arrive at

wμν ¼
MN

2

Z
dxgTðxÞTr½γ5=STSð0Þμν ðxÞ� −MN

4

Z
dxg̃ðxÞTr

�
γ5=PSαT

∂Sð0Þμν ðkÞ
∂kαT

����
k¼xP

�

þ iMN

4

Z
dx1dx2Tr

��
=PϵαPnST

GFðx1; x2Þ
x1 − x2

þ iγ5=PSαT
G̃Fðx1; x2Þ
x1 − x2

�
Sð1Þμναðx1; x2Þ

�
; ð23Þ

which will be the starting point of our two-loop analysis.

A. QED gauge invariance

Let us show that Eq. (23) respects the QEDWT identity,
which is actually nontrivial. The WT identity for Sð0Þ is
written as

qμ=PSð0Þμν ðxÞ ¼ 0; qνSð0Þμν ðxÞ=P ¼ 0; ð24Þ

where =P ¼ Pþγ−, and qμ and qν represent the outgoing and
incoming photon momenta, respectively. It is obvious that
the first line of Eq. (23) does not satisfy the WT identity by
itself due to the presence of γ5=ST . (For unpolarized
distributions, one has the spin projector γ− instead, and
the WT identity is trivially satisfied.) In fact, only the sum
of all lines in Eq. (23) obeys the WT identity. Similar
observations have been made in the literature [9,14,36].
To verify it, we begin with a slight generalization of

Eq. (24),

qμ=kSð0Þμν ðkÞ ¼ 0; qνSð0Þμν ðkÞ=k ¼ 0; ð25Þ

for an on shell, but not necessarily collinear momentum k.
Differentiating Eq. (25) with respect to kαT and then taking
the collinear limit, we get

qμγTαS
ð0Þ
μν ðxÞ þ qμx=P

∂Sð0Þμν ðkÞ
∂kαT

����
k¼xP

¼ 0;

qνSð0Þμν ðxÞγTα þ qν
∂Sð0Þμν ðkÞ
∂kαT

����
k¼xP

x=P ¼ 0: ð26Þ

Furthermore, we need the following identity [31]

gTðxÞ ¼ −
1

2x

�
g̃ðxÞ þ

Z
dx0

GFðx; x0Þ þ G̃Fðx; x0Þ
x − x0

�
;

ð27Þ

where the g̃ðxÞ part combines with the second line of
Eq. (23) to give the structure

∼
Z

dxg̃ðxÞTr
�
γ5=ST

Sð0Þμν ðxÞ
x

þ γ5=PSαT
∂Sð0Þμν ðkÞ
∂kαT

����
k¼xP

�

¼
Z

dx
g̃ðxÞ
x

Tr

�
γ5SαT

∂ð=kSð0Þμν ðkÞÞ
∂kαT

�
k¼xP

: ð28Þ
2g̃ðxÞ is related to the first moment g⊥ð1Þ

1T ðxÞ of the twist-3 TMD
g1Tðx; k2TÞ. We find g̃ðxÞ ¼ −2g⊥ð1Þ

1T ðxÞ, where the definition of
g⊥ð1Þ
1T ðxÞ from [35] has been used.
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This combination vanishes when contracted with qμ or qν, as can be easily checked by using Eq. (26).
The GF and G̃F terms of Eq. (27) combine with the third line of Eq. (23) to give the structure

∼
Z

dx1dx2Tr

��
−γ5=ST

Sð0Þμν ðx1Þ
x1

þ i=PϵαPnSTSð1Þμναðx1; x2Þ
�
GFðx1; x2Þ
x1 − x2

þ
�
−γ5=ST

Sð0Þμν ðx1Þ
x1

− γ5=PSαTS
ð1Þ
μναðx1; x2Þ

�
G̃Fðx1; x2Þ
x1 − x2

�
: ð29Þ

Remembering that Sð1Þ does not contain reducible diagrams, we have

qμSð1Þμναðx1; x2Þ ¼ γα
1

x1=P
qμSð0Þμν ðx1Þ; qνSð1Þμναðx1; x2Þ ¼ qνSð0Þμν ðx2Þ

1

x2=P
γα: ð30Þ

Using the following formulas

γ5=ST ¼ iγ0γ1γ2γ3=ST ¼ −ið1 − γþγ−Þγ1γ2ðST1γ1 þ ST2γ2Þ ¼ ið1 − γþγ−ÞϵijγiSTj;
¼ iðγ−γþ − 1ÞϵijγiSTj; ð31Þ

−iγαϵα−þλSTλ ¼ iϵijγiSTj; ð32Þ

together with Eqs. (20) and (24), one can show that both
lines of Eq. (29) vanish, when contracted with qμ or qν.
This completes the proof of the QED WT identity.

B. QCD gauge invariance

Similarly, the QCD gauge invariance holds only for the
sum of all terms in Eq. (23). Suppose that Sð0Þ is evaluated
in some gauge which involves a parameter ξ (here we have
suppressed the subscripts μ, ν for simplicity). For instance,
ξ can be the usual gauge parameter λ in the covariant gauge,
or a vector nα in the axial gauge n · A ¼ 0, in which the
gluon propagator is proportional to

Nαβ
co ¼ gαβ − ð1 − λÞ l

αlβ

l2
;

Nαβ
ax ¼ gαβ −

lαnβ þ lβnα

l · n
þ n2

lαlβ

ðl · nÞ2 ; ð33Þ

respectively. We will show that Eq. (23) does not change
under the variation of the gauge parameters ξ, concentrating
on these two classes of gauges. To vary the λ or n
dependence in diagrams at arbitrary orders, we apply the
differential operator d=dλ or d=dnδ to each of the gluon
propagators, yielding

λ
d
dλ

Nαβ
co ¼ lδ

2l2
ðNαδ

colβ þ Nδβ
colαÞ;

d
dnδ

Nαβ
ax ¼ −

1

n · l
ðNαδ

axlβ þ Nδβ
axlαÞ: ð34Þ

Starting with the g̃ terms in Eq. (28), one writes the
differentiated Sð0Þðk; ξÞ as δSð0Þðk; ξÞ. The momentum lα or
lβ appearing at one end of the differentiated gluon line (34)
is contracted with a vertex the gluon attaches to. We select
an ordinary gluon vertex denoted by α (without the
contraction with its momentum) in the diagrams, and
collect vertices which correspond to the attachments of
another end denoted by β. Since all gluons are differ-
entiated, the possible attachments of lβ form a complete set
of diagrams. Summing all the gluon attachments, one finds
that the only uncanceled piece comes from the diagram
with the momentum attaching to the outermost end of either
the incoming or returning quark [37], as depicted in Fig. 2.

One thus obtains δSð0Þðk; ξÞ ¼ δSð0ÞL ðk; ξÞ þ δSð0ÞR ðk; ξÞ cor-
responding to these two possibilities. Clearly they satisfy

k l
l

k

FIG. 2. The variation of the gauge parameters is represented by
the diagram, in which the momentum lβ attaches to the outermost
end of either the incoming or returning quark.
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δSð0ÞL ðk; ξÞ=k ¼ 0; =kδSð0ÞR ðk; ξÞ ¼ 0; ð35Þ

which are entirely analogous to Eq. (25). It is then trivial to

see that Eq. (28) with Sð0Þ being replaced by δSð0ÞL=R

vanishes. Therefore, the g̃ part is gauge independent.
Similarly, one can write the differentiated three-parton

amplitude Sð1Þ as

δSð1Þα ðx1; x2; ξÞ ¼ δSð1ÞLαðx1; x2; ξÞ þ δSð1ÞRαðx1; x2; ξÞ; ð36Þ

for which the QCD gauge invariance holds for the sum of
the reducible and irreducible diagrams. We then have

�
δSð1ÞLαðx1; x2; ξÞ − δSð0ÞL ðx2; ξÞ

1

x2=P
γα

�
=P ¼ 0;

=P

�
δSð1ÞRαðx1; x2; ξÞ − γα

1

x1=P
δSð0ÞR ðx1; ξÞ

�
¼ 0; ð37Þ

which are again completely analogous to Eq. (30). Hence,

Eq. (29) with Sð0Þ;ð1Þ being replaced by δSð0Þ;ð1ÞL=R vanishes.
This completes the proof that Eq. (23) is QCD gauge
invariant.

III. TWO-LOOP CONTRIBUTION TO PHASE

In this section, we identify the lowest order two-parton
Feynman diagrams that produce nonvanishing contribu-
tions to Eq. (23) in the collinear factorization. It was
pointed out [31] that the Born term, given by the one-loop
box diagram in Fig. 3 (left), does not contribute. We can
easily confirm this result by an explicit calculation as
follows. The incoming quark has the momentum p1 ¼ xP
with 1 ≥ x ≥ xB, and we write the virtual photon momen-
tum as q ¼ p2 − p1 with

pþ
2 ¼ ðx − xBÞPþ; p−

2 ¼ Q2

2xBPþ ; p2
2 ¼

x − xB
xB

Q2:

ð38Þ

Figure 3 (left) with the loop gluon momentum lμ ¼
ðlþ; l−; lTÞ is evaluated as

Z
d4l
ð2πÞ4

γαð=p1 − =lÞγμð=p2 − =lÞγνð=p1 − =lÞγα
½ðp1 − lÞ2 þ iϵ�½ðp1 − lÞ2 − iϵ� δððp2 − lÞ2Þδðl2Þ;

ð39Þ

whose integrand, as contracted with γ5=ST , yields a factor i.
In order to make the cross section real, the denominator
must provide an imaginary part. However, this is clearly not
possible, so the one-loop box diagram does not contribute
to SSA.

Next, consider the virtual correction to the photon vertex
in Fig. 3 (right),3Z

d4l
ð2πÞ4

γμ=p2γ
αð=p2 − =lÞγνð=p1 − =lÞγα

½ðp2 − lÞ2 þ iϵ�ðl2 þ iϵÞ½ðp1 − lÞ2 þ iϵ� δðp
2
2Þ;

ð40Þ
in which the final state quark is on shell with pþ

2 ¼ 0

(x ¼ xB). The loop integral over l needs to generate an
imaginary piece in order to get a real contribution.
Expressing ðp1− lÞ2¼2ðlþ−pþ

1 Þl−− l2T , l
2 ¼ 2lþl− − l2T ,

and ðp2 − lÞ2 ¼ 2lþðl− − p−
2 Þ − l2T , we see that lþ must

take a value in the range ð0; pþ
1 Þ to get a nonvanishing

contribution from the contour integration over l−. After
picking up the pole l−¼ l2T=½2ðlþ−pþ

1 Þ�þ iϵ, we need one
more i from the remaining l or p2 − l propagator. However,
this is impossible due to l2 ¼ 2p1 · l ¼ 2pþ

1 l
− < 0 and

ðp2− lÞ2¼2ðp1 · l−p2 · lÞ¼2ðpþ
1 l

−−p−
2 l

þÞ<0. Namely,
neither the gluon nor the scattered quark can become on
shell, so this diagram does not contribute.
These observations apply to other one-loop diagrams,

and we conclude that the asymmetry cannot be produced in
a parton-level diagram at one loop.

A. Fig. 4: A case with two virtual gluons

We then move on to two-loop diagrams, starting with the
diagram with two virtual gluons in Fig. 4 (see also
footnote 2). Let the incoming quark carry the momentum
p1 − l1 after emitting the first gluon, and p1 − l2 after
emitting the second gluon of the momentum l2 − l1. The
scattered quark then carries the momentum p2 − l2 before
receiving the second gluon and p2 − l1 before receiving the
first gluon. Focus only on the propagator denominators
entering the loop integrand for this diagram, and consider
the poles of l−1 and l−2 (again, pþ

2 ¼ 0):

FIG. 3. Left: A one-loop box diagram. Right: A one-loop
vertex-correction diagram.

3In the collinear factorization framework, this diagram does not
contribute to SSA trivially, since the final state quark has a vanishing
transverse momentum. We nevertheless study the pole structure of
this diagram (and other virtual diagrams below) because our
discussion can be straightforwardly generalized to the kT factori-
zation framework, where the incoming quark has a nonzero trans-
verse momentum and the analysis becomes nontrivial.
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Z
∞

−∞
dl−1 dl

−
2

1

½ðp1 − l1Þ2 þ iϵ�ðl21 þ iϵÞ½ðl1 − l2Þ2 þ iϵ�½ðp1 − l2Þ2 þ iϵ�ðl22 þ iϵÞ
¼

Z
∞

−∞
dl−1 dl

−
2

1

½2ðlþ1 − pþ
1 Þl−1 − l21T þ iϵ�ð2lþ1 l−1 − l21T þ iϵÞ½2ðlþ1 − lþ2 Þðl−1 − l−2 Þ − ðl1T − l2TÞ2 þ iϵ�

×
1

½2ðlþ2 − pþ
1 Þl−2 − l22T þ iϵ�ð2lþ2 l−2 − l22T þ iϵÞ : ð41Þ

It is easy to see that as long as one of the components lþ1 and
lþ2 is greater than pþ

1 , the integration over either l−1 or l−2
vanishes because the integration contour is not pinched. For
example, if lþ1 ; l

þ
2 > pþ

1 , all the poles are in the lower-half
plane except the one from the propagator ðl1 − l2Þ2.
The coefficient lþ1 − lþ2 is either positive or negative,
and then the integration over either l−1 or l−2 vanishes.
The same conclusion is drawn, as one of the components lþ1
and lþ2 is negative. We thus need to examine only the
ranges 0 < lþ1;2 < pþ

1 .
We first investigate the case with lþ1 < lþ2 , for which we

pick up the pole l−2 ¼ l22T=½2ðlþ2 − pþ
1 Þ� þ iϵ from the

incoming quark propagator. As for the pole of l−1 , we pick
up either l−1 ¼ l21T=½2ðlþ1 − pþ

1 Þ� þ iϵ from the incoming
quark propagator or

l−1 ¼ ðl1T − l2TÞ2
2ðlþ1 − lþ2 Þ

þ l−2 þ iϵ

¼ ðl1T − l2TÞ2
2ðlþ1 − lþ2 Þ

þ l22T
2ðlþ2 − pþ

1 Þ
þ iϵ; ð42Þ

from the gluon propagator with the momentum l2 − l1. The
first pole of l−1 does not lead to any on shell internal
particles, which all have negative invariant masses as
lþ1 < lþ2 . Indeed, the invariant masses of the scattered
quark are given by ðp2 − l1Þ2 ¼ 2pþ

1 l
−
1 − 2p−

2 l
þ
1 < 0 and

ðp2 − l2Þ2 ¼ 2pþ
1 l

−
2 − 2p−

2 l
þ
2 < 0. The two gluons have

the invariant masses l21 ¼ 2pþ
1 l

−
1 < 0 and

ðl2 − l1Þ2 ¼ l22 − 2l1 · l2 þ 2p1 · l1

¼ −
lþ2 − pþ

1

lþ1 − pþ
1

�
l1T −

lþ1 − pþ
1

lþ2 − pþ
1

l2T

�
2

< 0: ð43Þ

For the second pole of l−1 in Eq. (42), we just need to check
the incoming quark of the momentum p1 − l1:

ðp1 − l1Þ2 ¼ −2p1l1 þ 2l1 · l2 − l22

¼ lþ2 − pþ
1

lþ1 − lþ2

�
l1T −

lþ1 − pþ
1

lþ2 − pþ
1

l2T

�
2

> 0: ð44Þ

That is, this incoming quark does not go on shell.
We then analyze the case with lþ1 > lþ2 , for which we

pick up the pole l−1 ¼ l21T=½2ðlþ1 − pþ
1 Þ� þ iϵ from the

incoming quark propagator. As to the pole of l−2 , we pick
up either l−2 ¼ l22T=½2ðlþ2 − pþ

1 Þ� þ iϵ from the incoming
quark or

l−2 ¼ ðl2T − l1TÞ2
2ðlþ2 − lþ1 Þ

þ l−1 þ iϵ

¼ ðl2T − l1TÞ2
2ðlþ2 − lþ1 Þ

þ l21T
2ðlþ1 − pþ

1 Þ
þ iϵ; ð45Þ

from the second gluon propagator. The discussion is
completely analogous to the lþ1 < lþ2 case: one can show
that none of the remaining propagators can go on shell, so
they cannot produce a phase. We conclude that Fig. 4 does
not contribute to SSA.

B. Fig. 5: A case of real-virtual cancellation

When one gluon is real and another is virtual, there is a
chance to get an on shell parton. Consider the diagram
in Fig. 5 (left), which has the same assignment of momenta
as in Fig. 4 but with a different cut. Because p2

2 ¼
2p1 · qð1 − xBÞ ≥ 0, the scattered quark with the invariant
mass ðp2 − l2Þ2 ¼ p2

2 − 2p2 · l2 may go on shell and
generate a phase. Hence, this diagram deserves a careful
investigation.
The on shell condition l21 ¼ 0 leads to l−1 ¼ l21T=ð2lþ1 Þ.

The on shell condition ðp2 − l1Þ2 ¼ p2
2 − 2p2 · l1 ¼ 0 then

yields two solutions

q

p1

p2

l1

l2 l1

FIG. 4. A two-loop diagram with two virtual gluons.
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lþ1 ¼ pþ
2

2
ð1� Δ1Þ≡ lþ

1ð�Þ; Δ1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4l21T
p2
2

s
; l−

1ð�Þ ≡
l21T

2lþ
1ð�Þ

; ð46Þ

for which the incoming quark is off shell by ðp1 − l1Þ2 ¼ −2p1 · l1 ¼ −2pþ
1 l

−
1 < 0. We then come to the contour

integration over l−2 ,Z
∞

−∞
dl−2

1

½ðl2 − l1Þ2 þ iϵ�½ðp1 − l2Þ2 þ iϵ�½ðp2 − l2Þ2 þ iϵ�
¼

Z
dl−2

1

½2ðlþ2 − lþ1 Þðl−2 − l−1 Þ − ðl1T − l2TÞ2 þ iϵ�½2ðlþ2 − pþ
1 Þl−2 − l22T þ iϵ�½2ðlþ2 − pþ

2 Þðl−2 − p−
2 Þ − l22T þ iϵ� ; ð47Þ

which vanishes for lþ2 > pþ
1 as before. For pþ

2 < lþ2 < pþ
1 ,

we pick up the pole l−2 ¼ l22T=½2ðlþ2 − pþ
1 Þ� þ iϵ, that

renders both the scattered quark and the virtual gluon
off shell with negative invariant masses. For lþ1 < lþ2 < pþ

2 ,
we pick up the pole

l−2 ¼ ðl2T − l1TÞ2
2ðlþ2 − lþ1 Þ

þ l21T
2lþ1

− iϵ; ð48Þ

which makes the incoming quark of the momentum p1 − l2
off shell with a negative mass. The invariant mass of the
scattered quark

ðp2 − l2Þ2 ¼ p2
2 − 2p2 · l2 þ 2l1 · l2 − l21

¼ lþ1 − pþ
2

lþ2 − lþ1

�
l2T −

lþ2 − pþ
2

lþ1 − pþ
2

l1T

�
2

−
ðlþ2 − pþ

2 Þpþ
2

ðlþ1 − pþ
2 Þlþ1

l21T − 2ðlþ2 − pþ
2 Þp−

2 ; ð49Þ

approaches plus infinity as lþ2 → lþ1 from above, and −l22T
as lþ2 → pþ

2 . That is, we have an on shell internal particle,
and an imaginary piece. However, this phase will be
cancelled by a phase from the diagram with two real
gluons, which we turn to next.
The diagram in Fig. 5 (right) with the final state cut on

the outgoing quark of the momentum p2 − l2 and the
gluons of the momenta l1 and l2 − l1 is closely related to

the previously considered diagram. The on shell conditions
ðl2 − l1Þ2 ¼ 0 and ðp2 − l2Þ2 ¼ 0 are equivalent to Eq. (48)
and the vanishing of Eq. (49), respectively. To get an
imaginary piece, the outgoing quark of the momentum
p2 − l1 should go on shell, which then leads to the
condition in Eq. (46). Therefore, this diagram can give
rise to a phase from the same set of on shell propagators as
in the diagram of Fig. 5 (left). It has been known that the
contributions from on shell partons cancel between virtual
and real corrections. A simple explanation for this can-
cellation is as follows: for lþ1 < lþ2 , the contour integration
over the pole of the gluon propagator with the momentum
l2 − l1 in the diagram on the left of Fig. 5 gives the metric
tensor −gμν of the same sign as the real gluon in the diagram
on the right. The other pieces in the loop integrands also
contain the same sign between the two diagrams. The only
difference comes from the sign of the scattered quark
propagators: for the diagram on the left, the quark propagator
with the momentum p2 − l2 is proportional to

1

ðp2 − l2Þ2 þ iϵ
¼ 1

½ðp2 − l1Þ − ðl2 − l1Þ�2 þ iϵ

¼ 1

−2ðp2 − l1Þ · ðl2 − l1Þ þ iϵ
: ð50Þ

For the diagram on the right, the quark propagator with the
momentum p2 − l1 is proportional to

q

p1

p2

l1

l2 l1

q

p1

p2

l1

l2 l1

FIG. 5. Left: A two-loop diagram with one virtual gluon and one real gluon. Right: A two-loop diagram with two real gluons. The
phases cancel between these two diagrams (see the text).
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1

ðp2 − l1Þ2 − iϵ
¼ 1

2ðp2 − l1Þ · ðl2 − l1Þ − iϵ
; ð51Þ

where we have used the on shell conditions ðp2 − l2Þ2 ¼
ðl1 − l2Þ2 ¼ 0. Hence, the diagram on the right generates the
same imaginary piece as the diagram on the left but with an
opposite sign. Summing these diagrams, the imaginary
pieces cancel. The same observation applies to other dia-
grams, where the real gluon of the momentum l1 attaches to
the incoming quark on the right-hand side of the final state

cut. In summary, the sum of the diagrams with two real
gluons and those with one real gluon and one virtual gluon
does not contribute to SSA.

C. Fig. 6: A two-loop box diagram

Next we discuss a two-loop box diagram in Fig. 6, where
two final state partons form a timelike invariant mass with
rescattering between them via a virtual gluon with momen-
tum l2 − l1 [38]. The plus and minus components of l1 are
fixed by the final state on shell conditions as in Eq. (46).
The contour integration over l−2 has the structure

Z
∞

−∞
dl−2

1

½ðp1 − l2Þ2 þ iϵ�½ðp2 − l2Þ2 þ iϵ�½ðl2 − l1Þ2 þ iϵ�ðl22 þ iϵÞ
¼

Z
∞

−∞
dl−2

1

½2ðlþ2 − pþ
1 Þl−2 − l22T þ iϵ�½2ðlþ2 − pþ

2 Þl−2 − l22T þ iϵ�
×

1

½2ðlþ2 − lþ1 Þðl−2 − l−1 Þ − ðl2T − l1TÞ2 þ iϵ�ð2lþ2 l−2 − l22T þ iϵÞ : ð52Þ

For pþ
2 < lþ2 < pþ

1 , we have lþ2 − lþ1 > 0, as lþ1 < pþ
2

implied by Eq. (46). In this case the pole l−2 ¼ l22T=½2ðlþ2 −
pþ
1 Þ� þ iϵ renders the outgoing quark p2 − l2 and the two

virtual gluons all off shell with negative invariant masses.
In the range lþ1 < lþ2 < pþ

2 , we pick up the contributions
from two poles, Eq. (48) and l−2 ¼ l22T=ð2lþ2 Þ − iϵ. The
former leads to an imaginary piece from the outgoing quark
propagator p2 − l2 shown in Eq (49). For this pole, the
incoming quark is off shell by a negative invariant mass,
and the virtual gluon of the momentum l2 is off shell by

l22 ¼ 2l1 · l2 − l21 ¼
lþ1

lþ2 − lþ1

�
l2T −

lþ2
lþ1

l1T

�
2

> 0: ð53Þ

Following the same reasoning as before, the above
imaginary piece will be canceled by the same type of
diagram with the final state cut on the outgoing quark of the
momentum p2 − l2 and the gluon of the momentum l2 − l1
(see Fig. 7).

The contribution from the latter pole of l−2 can be
combined with the same pole in the range 0 < lþ2 < lþ1 ,
which makes the incoming quark off shell by a negative
invariant mass, and the virtual gluon of the momentum
l2 − l1 off shell by

ðl2 − l1Þ2 ¼ −2l1 · l2 ¼ −
lþ2
lþ1

�
l1T −

lþ1
lþ2

l2T

�
2

< 0: ð54Þ

For this pole, the outgoing quark of the momentum p2 − l2
also generates an imaginary piece, since the on shell
condition ðp2 − l2Þ2 can be satisfied. The two solutions
are given by

lþ2 ¼pþ
2

2
ð1�Δ2Þ≡ lþ

2ð�Þ; Δ2≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4l22T
p2
2

s
; l−

2ð�Þ≡
l22T

2lþ
2ð�Þ

;

ð55Þ

meaning that the imaginary piece persists for arbitrary
l21T; l

2
2T < p2

2=4. Note that this contribution is not canceled

q

p1

p2�l2

l1l2

l2 l1

FIG. 6. The box diagram.

FIG. 7. Cancellation of particular pole contributions, similar to
the one between the two diagrams in Fig. 5. Crosses denote on
shell propagators, which give rise to a phase.
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by the same type of diagram with the final state cut on the
outgoing quark of the momentum p2 − l2 and the gluon of
the momentum l2 (see Fig. 8). This diagram is just the
complex conjugate of the considered diagram, and thus
gives the identical contribution. The observation is that we
need two final state partons to form a timelike invariant
mass, which rescatter with each other via exchange of a
virtual gluon. The diagram with the virtual gluon of the
momentum l2 − l1 attaching to the incoming quark and the
real gluon, displayed in Fig. 9, does not contribute an
imaginary piece: as the first emitted gluon l2 becomes on
shell, the second emitted gluon l2 − l1 is off shell and the
loop integral does not produce a phase.

There exists a class of diagrams, as displayed in Fig. 10,
which have exactly the same set of on shell propagators as
in Fig. 8, and are equally important. The first and eighth
diagrams can be directly obtained from the box diagram
by changing the photon vertices. They guarantee that
the imaginary piece alone respects the QED WT identity.4

The other diagrams, such as the third and fourth diagrams
in the first row, are obtained from the box diagram by
changing the attachments of the l2 gluon. They are thus
crucial for the QCD gauge invariance. The sum of all these
diagrams is written as the following compact formula, as
depicted in Fig. 11,

Sð0ÞμνðxÞ ¼ g4

Nc
ð2πÞδ

��
p2 −

Ph

z

�
2
�Z

d4l2
ð2πÞ4 ð2πÞδðl

2
2Þð2πÞδððp2 − l2Þ2Þ

×fiAαμðl1ÞΔα0
α Mα0βðl1; l2ÞAνβðl2Þ − iAαμðl2ÞMαβðl2; l1ÞΔβ

β0A
νβ0 ðl1Þg; ð56Þ

with the number of colors Nc, and l1 ¼ p2 − Ph=z
being determined by the overall momentum conservation.
Δα

α0 is the projector onto the physical polarization states for
the final state gluon l1,

Δαα0 ¼
X
i¼1;2

ϵαi ϵ
�α0
i ¼ −gαα0 þ lα1 l̄

α0
1 þ lα

0
1 l̄

α
1

l1 · l̄1
; ð57Þ

with l ¼ ðl0; ⃗lÞ and l̄ ¼ ðl0; −⃗lÞ. As long as we sum over all
the terms in Eq. (23) to ensure the gauge invariance, we
may replace Δαα0 by −gαα0. The other factors in Eq. (56) are
defined as

Mαβðl1; l2Þ ¼ ð=p2 − =l1Þta
�
−ifabctc

Vαβργ
ρ

ðl1 − l2Þ2

þ tatb
γα=p2γβ
p2
2

þ tbtaγβ
=p2 − =l1 − =l2

ðp2 − l1 − l2Þ2
γα

�
× tbð=p2 − =l2Þ; ð58Þ

Vαβρ ¼ gαβðl2 þ l1Þρ þ gαρðl2 − 2l1Þβ þ gρβðl1 − 2l2Þα;
ð59Þ

and

Aαμðl1Þ ¼ γα
ð=p1 − =l1Þ
ðp1 − l1Þ2

γμ þ γμ
=p2

p2
2

γα; ð60Þ

Aνβðl2Þ ¼ γν
ð=p1 − =l2Þ
ðp1 − l2Þ2

γβ þ γβ
=p2

p2
2

γν: ð61Þ

FIG. 8. Noncancellation of poles between diagrams with
different final state cuts.

q

p1

p2

l1l2

l2 l1

FIG. 9. A diagram which does not contain a phase.

4One might think that Fig. 9 is also related to the box
diagram via the WT identity. However, as we have argued, this
diagram does not contain a phase, so the WT identity is satisfied
without it.
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The two terms in Eq. (56) correspond to the two possible
insertions of the final state cut (cf. Fig. 8). Taking the
Hermitian conjugate of the second term, one confirms that
Eq. (56) is symmetric in the indices μ, ν.
It should be noted that, in the end, the final set of

diagrams are identical to those considered in [21]. We have
however provided a more complete analysis of diagrams,
including the discussion of gauge invariance and various
kinematic configurations. In particular, we have identified
the roots in Eqs. (46) and (55) which are essential for the
factorization of our new contribution to be highlighted in
the next section.

D. Collinear splitting diagrams

There exists another class of two-loop diagrams, which
contains an imaginary part and is characterized by the
collinear splitting of an on shell parton. An example is
shown in Fig. 12, where the quark with the momentum
p2 − l2 is on shell, and splits into two on shell partons, a
quark with the momentum p2 − l1 − l2 and a gluon with the
momentum l1. This configuration is kinematically possible
only if the three partons are all collimated to each other,

and thus gets phase space suppression. Indeed, a simple
analysis indicates that the imaginary part arises, only if l2T
is opposite in direction relative to l1T and l22T < l21T . It
means that this diagram is suppressed by l21T=p

2
2 ∼ P2

hT=Q
2,

namely, a higher twist effect. We therefore neglect these
diagrams.

IV. FACTORIZATION

Equation (56) derived in the previous section cannot be
immediately inserted into Eq. (23), because it involves
collinear divergences from different kinematic regions. In
this section we examine the structure of these divergences
and discuss their treatments in the collinear and kT
factorizations. The on shell conditions for the final state
partons and the integration over the light-cone components
of l2 lead to a summation over the following combinations
of roots, see Eqs. (46) and (55),

ðlþ1 ; lþ2 Þ ¼ ðlþ
1ðþÞ; l

þ
2ðþÞÞ; ðlþ

1ðþÞ; l
þ
2ð−ÞÞ;

ðlþ
1ð−Þ; l

þ
2ðþÞÞ; ðlþ

1ð−Þ; l
þ
2ð−ÞÞ: ð62Þ

FIG. 10. Two-loop diagrams which have the same pole structure as the box diagrams. The diagrams obtained by the left-right mirror
reflection of the first, second and fifth diagrams are omitted. Virtual photon lines are also omitted for simplicity.

l2 l1

AMA

FIG. 11. A graphical representation of the first term in Eq. (56).

p2 l2

l1l2

FIG. 12. A diagram with an on shell parton splitting.
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For each choice, the corresponding minus components are
fixed by l−1 ¼ l21T=ð2lþ1 Þ and l−2 ¼ l22T=ð2lþ2 Þ. We introduce
the shorthand notations ðþþÞ; ðþ−Þ; ð−þÞ; ð−−Þ to re-
present the above four choices.

A. Collinear factorization

Since the momentum l1 has been set to l1 ¼ p2 − Ph=z
in the collinear factorization, we investigate only the
infrared divergence from the integration over l2T. First
consider the (þþ) and (−þ) cases, for which the radiative
l2 gluon is collimated to the initial proton in the collinear
region

lþ2 ∼Oðpþ
2 Þ ≫ l2T ≫ l−2 : ð63Þ

The incoming quark of the momentum p1 − l2 is nearly on
shell, and the associated l2T integral is logarithmically
divergent like

Z
d2l2T

ðp1 − l2Þ2
¼

Z
d2l2T

−2pþ
1 l

−
2þ

∼
Z

d2l2T
l22T

: ð64Þ

The l2 − l1 propagators for the (�þ) combinations are
written as

1

ðl1 − l2Þ2
¼ −1

p2
2ðΔ1 ∓ Δ2Þ2=4þ ðl1T − l2TÞ2

: ð65Þ

There is an apparent divergence at l1T → l2T in the (þþ)
case, but it is innocuous because the numerator of Eq. (56)
vanishes as l1 ¼ l2. The last term of Eq. (58) is given by

1

ðp2 − l1 − l2Þ2
¼ −1

p2
2ðΔ1 � Δ2Þ2=4þ ðl1T þ l2TÞ2

; ð66Þ

for which the (−þ) combination appears problematic in the
limit l1T → −l2T . Inspecting the numerator, we find that all
components of pμ

2 − lμ1 − lμ2 go to zero simultaneously as
l1T → −l2T , so this limit is in fact infrared finite.
To determine the nature of the collinear configuration in

the (�þ) combinations, look at the potentially dangerous
term in Eq. (56),

MαβAνβ ∼Mαβγ
ν =p1 − =l2

l22T
γβ: ð67Þ

In the small l2T limit, lμ2 has only the plus component. We
then immediately see that the β ¼ − component in Eq. (67)
vanishes owing to ð=p1 − =l2Þγ− ∼ ðγ−Þ2 ¼ 0. As for the
component β ¼ þ, we find from Eq. (58)

Mαþ ∝ Mαβl
β
2 ∝ l1α; ð68Þ

which is a consequence of the QCDWT identity. When the
longitudinal momentum l1α goes into the final state cut, this

contribution also vanishes. Therefore, we only need to
worry about the case, where β in Eq. (67) is transverse.
For transverse β, the singularity does survive. We argue

that this can be absorbed into the HP contribution to
SSA known in the literature. Indeed, since the collinear
gluon with the momentum l2 is transversely polarized
and travels a long distance, we may deform Fig. 11 into
Fig. 13, which is identical to Fig. 2 of [31]. As demon-
strated in [31], this corresponds to the HP contribution
associated with the three-parton ETQS functionGFðx1; x2Þ,
where the value of x1 is set to the Bjorken variable xB:
label the longitudinal momentum of the incoming quark
by pþ

1 − lþ2 ¼ xPþ − lþ2 ¼ x1Pþ and the gluon momentum
by lþ2 ¼ ðx2 − x1ÞPþ. The on shell condition lþ2 ≈ pþ

2 ¼
ðx − xBÞPþ then yields x1 ¼ xB. In practice, to absorb the
collinear divergence into the ETQS function, we insert the
projector ðγþÞðγ−Þ from the Fierz identity

IijIlk ¼
1

4
IikIlj þ

1

4
ðγαÞikðγαÞlj þ

1

8
ðγ5σαβÞikðσαβγ5Þlj

þ 1

4
ðγ5γαÞikðγαγ5Þlj þ

1

4
ðγ5Þikðγ5Þlj; ð69Þ

into the quark lines with the momenta p1 − l2 and p1 on
the left- and right-hand sides of the cut, respectively. The
matrix γþ then appears as the spin projector in the
definition of the ETQS function, and γ− is contracted to
the corresponding one-loop three-parton hard kernel. This
factorization has been explicitly demonstrated for a quark
target model in [21]. We therefore subtract this divergence,
as well as the finite part by scheme choice, from Eq. (56) as
a known mechanism.
Next we turn to the (þ−) and (−−) combinations. The

l1 − l2 and the p2 − l1 − l2 propagator denominators have
the forms as in Eqs. (65) and (66), respectively, which are
infrared finite in the limits l1T → l2T and l1T → −l2T as
explained above. Besides, the radiative l2 gluon satisfies the
hierarchy

l−2 ∼Oðp−
2 Þ ≫ l2T ≫ lþ2 ; ð70Þ

for these combinations, such that there is no infrared
singularity in the p1 − l2 propagator. Hence, the

FIG. 13. The HP contribution from the transversely polarized l2
gluon.
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corresponding phase cannot be absorbed into nonpertur-
bative distribution functions. It thus represents a new
perturbative origin of SSA purely attributed to a hard
kernel, and this is the central observation of our work. In
the collinear factorization framework, one can insert the
projector ðγþÞðγ−Þ between the upper two blobs in Fig. 1
and ðγ5γiÞðγiγ5Þ between the lower two blobs. The former
leads to the standard collinear twist-two FF D1 and the
latter leads to the gT distribution function. We then arrive at
a factorization formula

dσð2Þ ¼ gð0ÞT ⊗ Hð2Þ
γ5γ

y;γþ ⊗ Dð0Þ
1 ; ð71Þ

where the proton spin has been assumed to be along the y
direction. The superscript denotes the order to which
various factors are evaluated. This is the explicit structure
we advocated in Eq. (23).
There is, however, another possibility. One can insert the

projector ðγ5σiþÞðσiþγ5Þ between the lower two blobs in
Fig. 1 and the identity matrix ðIÞðIÞ between the upper two
blobs. The former gives the twist-two transversity distri-
bution function h1, and the latter gives the collinear twist-
three FF E [39]. We thus acquire an additional contribution

dσð2Þ ¼ hð0Þ1 ⊗ Hð2Þ
γ5σ

y−;I ⊗ Eð0Þ: ð72Þ

The FF E dropped out in the one-loop calculation of SSA in
SIDIS [14], where it was denoted as ê1, and also in pp
collisions [13]. It first shows up at two-loops, and is
naturally suppressed by a factor αs compared to the one-
loop contributions to SIDIS in [14]. We point out that an
analysis of the complete set of collinear FFs is considerably
more complicated at twist-three level.
Of course, Eq. (71) is also parametrically suppressed by

a factor αs compared with the known one-loop contribu-
tions from the ETQS (or Sivers) distributions [30]. The
reason we nevertheless consider them worthwhile to study
is because the gT distribution function has the Wandzura-
Wilczek part [40] related to the twist-two polarized quark
distribution function ΔqðxÞ. This can be seen from Eq. (22)
together with another identity (see Eq. (45) of [34])

g̃ðxÞ ¼ −x
Z

1

x
dx1

�
2Δqðx1Þ

x1
þ 1

x21

Z
1

−1
dx2

�
GFðx1; x2Þ
x1 − x2

þ ð3x1 − x2Þ
G̃Fðx1; x2Þ
ðx1 − x2Þ2

��
: ð73Þ

As suggested in [41], the genuine twist-three distributions
GF and G̃F, which are poorly constrained from the
experimental data at present, may be numerically small.
On the other hand, the polarized quark distributions,
being purely twist-two quantities and well constrained
by data, give a finite contribution to the proton spin.
Hence, the apparent suppression by αs could be numerically

compensated in practice. This possibilitywill be explored in
future works [42].
The above argument suggests that only the (�−) roots is

kept in the matrix elements Sð0Þ in Eq. (23). Remarkably,
however, we can include also the (�þ) roots in this formula
by inserting the Fierz identity into the p1 quark lines,
instead of the p1 − l2 and p1 quark lines, as we have done
in the (�−) case. It will be demonstrated that these
divergences due to the alternative Fierz insertion cancel
between the first two terms in Eq. (23). Substituting
Eq. (27) into Eq. (23), we obtain the structures in
Eqs. (28) and (29). We then notice that

Sð0ÞðkÞ=k ∼Mαβγ
ν =k − =l2
ðk − l2Þ2

γβ=k; ð74Þ

is free of the collinear divergence for an on shell but
not necessarily collinear momentum k: in the collinear
region where k and l2 are parallel, the numerator can be
expressed as

ð=k − =l2Þγβ=k ¼ 2ðkβ − lβ2Þ=k − γβð=k − =l2Þ=k: ð75Þ

This gives a vanishing contribution when kβ ∝ lβ2, because
of k2 ¼ 0 and Mαβl

β
2 ¼ 0. The differentiation of Eq. (74)

with respect to SαT∂=∂kα then immediately leads to the
cancellation of the divergences in the Wandzura-Wilczek
part of gT in Eq. (28).
Including the (�þ) roots into Sð0Þ and Sð1Þ, which

collects the diagrams with an additional valence gluon
attaching to an internal line of Sð0Þ, we find that the
resulting collinear divergences do not cancel in Eq. (29).
We argue that they should be absorbed into the renorm-
alization of the GF and G̃F distributions associated with the
one-loop HP contribution to SSA. Indeed, Eq. (29) can be
redrawn as in Fig. 14 by inserting the Fierz identity at a
different location. To achieve it, the projectors for the Sð0Þ

terms have been made the same as for the Sð1Þ terms in the
first and second lines of Eq. (29) via the replacements
γ5=ST=x1¼=Pγ5=ST=ðx1=PÞ¼ i=Pγαϵα−þST=ðx1=PÞ and =ST=x1 ¼
−=PSαTγα=ðx1=PÞ, respectively. In the above expressions γα
corresponds to the vertex located at the outermost end of
the incoming quark in Fig. 14, and 1=ðx1=PÞ represents the
quark propagator following this vertex. The lower parts of
the diagrams on the right are then identified as the one-loop
diagrams to renormalize the GF and G̃F distributions (see
Fig. 7 of Ref. [43]). In principle, one is able to rederive the
evolution equations ofGF and G̃F this way. We leave it to a
future work.

B. kT factorization

Next we come to the more complicated kT factorization,
in which both the initial and final state partons can carry

BENIĆ, HATTA, LI, and YANG PHYS. REV. D 100, 094027 (2019)

094027-14



transverse momenta. As elaborated below, the transverse
momenta l1T , l2T of the real gluons in the considered two-
loop diagrams serve as these additional parton kinematic
variables [44], independent of the momentum fractions
x and z. For example, l1T needs not to be equal to PhT=z
associated with the produced hadron as in the collinear
factorization. A parton is then off shell by −l2T in the
kT factorization, which is regarded as an infrared scale.
That is, an infrared divergence in the kT factorization is
represented by an infrared logarithm ln l2T . A factorization
formula is expressed as a convolution of a hard kernel
with TMD PDFs and TMD FFs in both longitudinal and
transverse momenta. The analysis of the phase origin is
the same as in Sec. III with the solutions of lþ1 and lþ2
being easily adapted from their collinear counterparts,
given by Eqs. (46) and (55), respectively. Below we will
discuss the kT factorization for the four combinations of
ðlþ1 ; lþ2 Þ separately.
First consider the (þþ) case, for which the radiative

gluons of the momenta l1 and l2 are both collimated to the
initial proton under the hierarchy similar to Eq. (63). The
two final state partons with the momenta p2 − l1 and l1
move in the minus and plus directions, respectively. The
incoming quark of the momentum p1 − l2 is nearly on
shell, and the associated l2T integral produces an infrared
logarithm from the collinear region l2T ∼ l1T as shown in
Eq. (64). Besides, the l2 − l1 gluon with the invariant mass
being of order l21T as l2T ∼ l1T , is soft according to Eq. (65).
On the other hand, the outgoing quark of the momentum
p2 − l2 moves mainly in the minus direction, namely, in the
direction of the produced hadron. Since the attaching gluon
momentum l2 − l1 is soft, the quark line with the momen-
tum p2 − l2 can be eikonalized:

1

ðp2 − l2Þ2
¼ 1

½ðp2 − l1Þ þ ðl1 − l2Þ�2
≈

1

2ðp−
2 − l−1 Þðlþ1 − lþ2 Þ

;

ð76Þ

if this gluon is longitudinally polarized. The resultant
Wilson line contains the propagator 1=ðlþ1 − lþ2 þ iϵÞ,
which generates a phase as lþ1 ¼ lþ2 . The collinear loga-
rithm together with this phase are then absorbed into the
Sivers function by inserting the projector ðγþÞðγ−Þ from the
Fierz identity in Eq. (69): the matrix γþ appears as the spin
projector in the definition of the Sivers function, and γ− is
contracted to the corresponding leading-order two-parton
hard kernel. Under this factorization, the quark carries the
momentum p1 − l1 before hard scattering, implying that
the Sivers function depends on the longitudinal momentum
pþ
1 − lþ1 ≡ xPþ and the transverse momentum l1T .
If the l2 − l1 gluon is transversely polarized, the collinear

logarithm can be absorbed into the one-loop renormaliza-
tion of the twist-three three-parton TMD PDF (the TMD
version of the ETQS function). To achieve this factoriza-
tion, we simply insert the projector ðγþÞðγ−Þ from the Fierz
identity: γþ appears as the spin projector in the definition
of the three-parton TMD PDF, and γ− is contracted to the
corresponding leading-order three-parton hard kernel. After
the factorization, the quark and the gluon on the left of the
final state cut carry the momenta p1 − l2 and l2 − l1 before
hard scattering, respectively, and the quark on the right of
the final state cut carries p1 − l1. It indicates that the three-
parton TMD PDF depends on the longitudinal momenta
pþ
1 − lþ2 ≡ x1Pþ and pþ

1 − lþ1 ≡ x2Pþ and on the trans-
verse momenta l1T and l2T . The phase comes from the on
shell p2 − l2 propagator in the hard kernel, which corre-
sponds to the SGP contribution observed in the collinear
factorization as l2T ¼ l1T , and to the HP contribution as
l2T ≠ l1T . We thus conclude that the (þþ) component does
not lead to a new contribution to SSA.
Next we turn to the (−−) combination, for which both

the radiative gluons of the momenta l1 and l2 follow the
hierarchy similar to Eq. (70). Due to p−

2 ≫ pþ
2 , the two

final state partons as well as the momentum p2 − l2
are mainly in the minus direction. The incoming quark
of the momentum p1 − l2 is highly off shell by OðQ2Þ, so
the collinear-to-proton divergence in Eq. (64) is absent. The
l2 − l1 propagator develops a soft logarithm as l2T ∼ l1T ,
the same as in the (þþ) combination according to Eq. (65).
Since lþ1;2 are soft, the two internal quark lines with the
momenta p1 − l2 and p1 − l1 can be eikonalized. The
resultant phase is absorbed by the twist-two FF, or
the Collins function in the kT factorization framework.
Note that, because the eikonalized p1 − l1;2 quark lines
always remain off shell, the Wilson lines involved in the
definition of the Collins function do not produce a phase.
This result differs from that for the Sivers function
mentioned above. See also [45].

FIG. 14. A sample of diagrams involved in the factorization of
the divergent contribution in Eq. (29), based on the two-loop box
diagram. The dashed curve represents the proper insertion of the
Fierz identity.

SINGLE-SPIN ASYMMETRIES AT TWO LOOPS PHYS. REV. D 100, 094027 (2019)

094027-15



The factorization of the infrared logarithm into the
Collins FF can be done by inserting the Fierz identity in
Eq. (69) between the two-loop FF and the leading-order
two-parton hard kernel (i.e., between the upper two blobs
in Fig. 1). One picks up the ðγ5σiþÞðσiþγ5Þ term, in which
σiþγ5 goes into the definition of the Collins function,
and γ5σiþ goes into the hard kernel. It implies that the same
spin projector also enters the leading-order PDF of the
polarized proton, defining the transversity distribution h1.
The other Dirac structures lead to either vanishing or
subleading (twist-three TMD) contributions. The final
state quark carries the momentum p2 − l1, so the Collins
function depends on the longitudinal momentum p−

2 −
l−1 ≡ zP−

h and the transverse momentum l1T . In conclu-
sion, the (−−) contribution also reduces to the known
mechanism of SSA.
We then turn to the (−þ) combination. It has been

pointed out that the l2 − l1 propagator does not generate an
infrared logarithm in this case [see Eq. (65)]. The quark line
p1 − l2 develops a collinear logarithm when the vertex β of
the l2 gluon is transverse, as explained in the previous
subsection. The kT factorization of this infrared logarithm
is similar to the collinear factorization: it is absorbed into
the three-parton TMD PDF with the same spin projector.
Under this factorization, the quark and the gluon on the
left of the final state cut carry the momenta p1 − l2 and
l2 before hard scattering, respectively, and the quark on
the right of the final state cut carries p1. It indicates that
the three-parton TMD PDF depends on the longitudinal

momenta pþ
1 − lþ2 ≡ x1Pþ and pþ

1 ≡ x2Pþ and on the
transverse momentum l2T . The phase comes from the on
shell p2 − l2 propagator in the one-loop three-parton hard
kernel, which corresponds to the HP contribution observed
in the collinear factorization. There is no SGP contribution,
because of l2 ≠ l1 for the (−þ) combination.
At last, we investigate the (þ−) combination, in

which the phase cannot be absorbed into nonperturbative
distribution functions. For this combination, there is no
infrared singularity in the l2 − l1 and p1 − l2 propagators.
The apparent singularity at l1T ¼ −l2T from the last term
of Eq. (58) does not exist either. Hence, we arrive at a
factorization formula similar to Eq. (71), but with gT and
D1 being interpreted as the TMD PDF and the TMD FF,
respectively.
Before closing this section, we briefly comment on the

general structure of SSA at the two-parton twist-three level
in the kT factorization framework. If we allow for kT-
dependent distributions, there are more contributions than
the TMD versions of Eqs. (71) and (72). For example, one
can insert ðγiÞðγiÞ between the upper two blobs and
ðγ5γþÞðγ−γ5Þ between the lower two blobs. The former
yields the twist-three TMD FF D⊥, while the latter yields
the twist-two TMD PDF g1T. (All the notations for the
TMD PDFs and the TMD FFs follow [39].) Exhausting all
possible combinations of the spin projectors for higher-
order hard kernels, we derive the contributions to SSA up to
the two-parton twist-three and two-loop level

dσ ¼ f⊥1T ⊗ Hð0Þ
γ−;γþ ⊗ D1 þ f⊥1T ⊗ Hð1Þ

γ−;γx ⊗ D⊥ þ f⊥1T ⊗ Hð2Þ
γ−;γ5γx

⊗ G⊥ þ g1T ⊗ Hð2Þ
γ5γ

−;γþ ⊗ D1

þ g1T ⊗ Hð1Þ
γ5γ

−;γ5γy
⊗ G⊥ þ g1T ⊗ Hð2Þ

γ5γ
−;γy ⊗ D⊥ þ h1 ⊗ Hð0Þ

γ5σ
y−;γ5σyþ

⊗ H⊥
1 þ h1 ⊗ Hð1Þ

γ5σ
y−;γ5σyx

⊗ H�

þ h1 ⊗ Hð2Þ
γ5σ

y−;I ⊗ E� þ eT ⊗ Hð1Þ
γ5;γ5σyþ

⊗ H⊥
1 þ e⊥T ⊗ Hð2Þ

I;γ5σyþ
⊗ H⊥

1 þ fT ⊗ Hð1Þ
γy;γþ ⊗ D1 þ gT ⊗ Hð2Þ

γ5γ
y;γþ ⊗ D1

þ h⊥T ⊗ Hð1Þ
γ5σ

yx;γ5σyþ
⊗ H⊥

1 þ hT ⊗ Hð1Þ
γ5σ

−þ;γ5σyþ
⊗ H⊥

1 ; ð77Þ

where the functions labeled by � diminish for a massless
produced hadron. The FF G⊥ comes from the projector
γiγ5, and H⊥

1 from σiþγ5. The TMD transversity function
h1 denotes h1 − ðk2x − k2yÞh⊥1T=ð2M2Þ actually. For the h1
piece, the hard kernel Hð1Þ

γ5σ
y−;γ5σxþ

may appear at one loop.
It has been omitted in Eq. (77), because it is subleading

compared to the term Hð0Þ
γ5σ

y−;γ5σyþ
. The nonperturbative

spin-momentum correlation in the Sivers function and
the Collins function are basically determined by fits to
data. Including the numerous terms in Eq. (77), it is
expected to make an impact on the determination of the
Sivers function and the Collins function.
When we work in the collinear factorization, all the

above terms vanish except for the ones which reduce to
Eqs. (71) and (72). This emphasizes the importance of the

parton transverse momentum for the existence of SSA.
Among the many terms in Eq. (77), the one proportional
to the distribution fT is particularly interesting. Since fT is
T-odd, the corresponding contribution flips signs between
SIDIS and Drell-Yan. Its definition involves the proton spin

hψ̄γαψi ∼ ϵαβT STβfTðx; k2TÞ, that combines with a factor of

kx from the one-loop hard kernel Hð1Þ to generate a SSA
proportional to Px

hS
y
T . If we stick to the leading order

hard kernel, the kx dependence will disappear, and fT will
contribute only to the SIDIS structure function associated

with sinϕS (denoted by FsinϕS
UT in [39]), where ϕS is

the azimuthal angle of the proton spin relative to the
lepton plane. Because the first moment vanishesR
d2kTfTðx; k2TÞ ¼ 0, its kT dependence exhibits some
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nodes in kT . This may result in a node in SSA as a function
of PhT , similarly to what was observed in [46,47].

V. CONCLUSION

In this paper, we have presented a detailed study of the
two-loop diagrams that produce an imaginary phase in
SIDIS and discussed their gauge invariance and collinear
factorization properties. In addition to the known mecha-
nisms for SSA, we have also identified an entirely new
contribution proportional to the gT distribution function.
While it is parametrically suppressed by a factor αs, gT has
the Wandzura-Wilczek part related to the polarized quark
distribution functions. Since this part is usually considered
to be larger than the genuine twist-three one, our new
contribution could be comparable in magnitude to those
from the ETQS function. In a future publication [42], we
plan to give a numerical estimate of the obtained results in
this paper, and make comparisons with the existing data as
well as predictions for the Electron-Ion Collider.
We note that there have been a lot of discussions on

potentially dominant sources of SSA recently. There is an
indication that the Sivers or ETQS contribution may be
numerically small [48]. Instead, a successful fit of the
RHIC data [41,49] suggests that the twist-three FFs may be
the dominant source of SSA. In order to confirm this, the
same FFs should be able to fit other observables [50–53].

In other words, a global analysis of many different data is
necessary for understanding the above observations. The
subleading contributions derived in the kT factorization
with a more complete set of origins for SSA may provide
such a theoretical framework. Because the momentum
transferred involved in the relevant processes are not large
enough, higher-order hard cross sections may give sizable
corrections. Therefore, the rich subleading structures pro-
posed in this work are phenomenologically important.
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