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The claim that the Xð3872Þ meson cannot be a charm-meson molecule because its prompt production
cross section at hadron colliders is too large is based on an upper bound in terms of a cross section for
producing charm-meson pairs. Assuming X is sufficiently weakly bound, we derive an equality between
the X cross section and a charm-meson pair cross section that takes into account the threshold enhancement
from the X resonance. The cross section for producing X is equal to that for producingD�0D̄0 integrated up
to a relative momentum kmax ¼ 7.7γX, where γX is the binding momentum of X. We also derive an order-of-
magnitude estimate of the X cross section in terms of a naive charm-meson pair cross section that does not
take into account the threshold enhancement, such as that produced by a Monte Carlo event generator. The
cross section for producing X can be approximated by the naive cross section for producing D�0D̄0

integrated up to a relative momentum kmax of order ðm2
πγXÞ1=3. The estimates of the prompt X cross section

at hadron colliders are consistent with the cross sections observed at the Tevatron and the LHC.

DOI: 10.1103/PhysRevD.100.094024

I. INTRODUCTION

The discovery of a large number of exotic hadrons
containing a heavy quark and its antiquark presents a major
challenge to our understanding of QCD [1–10]. The first of
these exotic hadrons to be discovered was the Xð3872Þ
meson. It was discovered in 2003 in exclusive decays of B�

mesons into K�X through the decay of X into J=ψπþπ−
[11]. Its existence was quickly verified through inclusive
production in pp̄ collisions [12]. The JPC quantum num-
bers of X were eventually determined to be 1þþ [13]. Its
mass is extremely close to the D�0D̄0 threshold, with the
difference being only 0.01� 0.18 MeV [14]. This suggests
that X is a weakly bound S-wave charm-meson molecule
with the flavor structure

jXð3872Þi ¼ 1ffiffiffi
2

p ðjD�0D̄0i þ jD0D̄�0iÞ: ð1Þ

The X can be produced by any reaction that can produce
its constituents D�0D̄0 and D0D̄�0. In particular, it can be
produced in high energy hadron collisions. The inclusive
production of X in pp̄ collisions has been studied at
the Tevatron by the CDF [12] and D0 [15] collaborations.

The inclusive production of X in pp collisions has
been studied at the Large Hadron Collider (LHC) by the
LHCb [16], CMS [17], and ATLAS [18] collaborations. At
a high energy hadron collider, X is produced by the weak
decays of bottom hadrons and by QCD mechanisms that
create charm quarks and antiquarks. If X is produced by the
weak decays of bottom hadrons, its decay products emerge
from a vertex displaced from the collision point. If X is
produced by QCD mechanisms, its decay products emerge
from the collision point, so these mechanisms are referred
to as prompt production. Cross sections for inclusive
prompt production of X have been measured by the
CDF [12], CMS [17], and ATLAS [18] collaborations.
The substantial prompt production rate of X at hadron

colliders has often been used as an argument against its
identification as a charm-meson molecule. This argument is
based on an upper bound on the cross section for producing
X in terms of the cross section for producing the charm-
meson pair D�0D̄0 integrated up to a maximum relative
momentum kmax [19]. The estimate for kmax in Ref. [19]
was approximately the binding momentum γX of the X. In
Ref. [20], it was pointed out that the derivation of the upper
bound in Ref. [19] requires kmax to be of the order of the
pion mass mπ instead of γX. In this paper, we use the
methods of Ref. [20] to derive equalities between the X
cross section and D�0D̄0 cross sections integrated up to
kmax. If we take into account the threshold enhancement
due to the X resonance, the value of kmax is 7.7γX. If we use
a naiveD�0D̄0 cross section without the threshold enhance-
ment, the value of kmax is order ðm2

πγXÞ1=3. The resulting
estimates of the prompt cross sections are compatible with
the measurements at the Tevatron and the LHC.
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The outline of this paper is as follows. In Sec. II, we
describe some universal aspects of weakly bound S-wave
molecules and the scattering of their constituents. In
Sec. III, we present experimental upper and lower bounds
on the cross sections for the production of X at the Tevatron
and the LHC. In Sec. IV, we discuss the theoretical upper
bound on the prompt cross section for producing X at
hadron colliders derived in Ref. [19]. In Sec. V, we derive
equalities between the X cross section and a charm-meson
pair cross section with and without the threshold enhance-
ment from the X resonance. In Sec. VI, we summarize our
results and discuss their implications.

II. BOUND S-WAVE MOLECULE

If short-range interactions produce an S-wave bound
state extremely close to a scattering threshold, the few-body
physics has universal aspects that are determined by the
binding momentum γX of the bound state [21]. The binding
energy is γ2X=2μ, where μ is the reduced mass of the
constituents. The momentum-space wave function in the
region of the relative momentum k below the inverse range
has the universal form

ψXðkÞ ¼
ffiffiffiffiffiffiffiffiffiffi
8πγX

p
k2 þ γ2X

: ð2Þ

The low-energy scattering of the constituents also has
universal aspects determined by γX through a simple
function of the complex energy E relative to the scattering
threshold:

fXðEÞ ¼
1

−γX þ ffiffiffiffiffiffiffiffiffiffiffiffi
−2μE

p : ð3Þ

This function has a branch cut along the positive E axis and
a pole at E ¼ −γ2X=2μ. The universal elastic scattering
amplitude in the region of relative momentum k below the
inverse range is obtained by evaluating this function at
energy E ¼ k2=2μþ iϵ.
The analytic function fXðEÞ also gives the energy

distribution from creation of the constituents at short
distances. By the optical theorem, the distribution in the
energy E below the energy scale set by the range is
proportional to the imaginary part of fXðEÞ:

Im½fXðEþ iϵÞ� ¼ πγX
μ

δðEþ γ2X=2μÞ þ
ffiffiffiffiffiffiffiffiffi
2μE

p
γ2X þ 2μE

θðEÞ:

ð4Þ
There is a delta-function term at a negative energy from the
production of the weakly bound molecule and a theta-
function term with positive energy from the production of
the constituents of the molecule.
The universal energy distribution in Eq. (4) from the

creation of the constituents at short distances is illustrated in
Fig. 1. The delta-function term below the scattering

threshold atE ¼ 0 is represented by a tall rectangle centered
at E ¼ −γ2X=2μ which would have the correct area if it was
multiplied by 10. That area is equal to the area of the energy
distribution above the threshold integrated up to the energy
20.2ðγ2X=2μÞ, which corresponds to a relative momentum
kmax ¼ 4.49γX. The energy distribution above the threshold
has a maximum at the binding energy γ2X=2μ. For E much
larger than γ2X=2μ, the universal energy distribution in
Eq. (4) decreases as E−1=2. This scaling behavior should
continue up to the energy scale set by the range.
The naive energy distribution in the absence of the

resonance has a form at low energy that can be obtained
from Eq. (4) by omitting the delta-function term and by
replacing the denominator γ2X þ k2 in the theta-function
term by Λ2, where Λ is some momentum of the order of the
inverse range:

Im½fnaiveðEþ iϵÞ� ¼ 1

Λ2

ffiffiffiffiffiffiffiffiffi
2μE

p
θðEÞ: ð5Þ

The naive energy distribution is shown as a dashed line in
Fig. 1. The actual energy distribution should cross over
from the solid line to the dashed line, and it should
therefore have a local minimum near Λ2=2μ. The area
under the delta function from the bound state is equal to the
area of the naive energy distribution integrated up to the
energy ð3πγXΛ2Þ2=3=2μ, which corresponds to a relative
momentum kmax ¼ ð3πγXΛ2Þ1=3.
If the Xð3872Þ is a weakly bound charm-meson

molecule, its constituents are the superposition of
charm mesons in Eq. (1). We denote the masses of the
charm mesons D0 and D�0 by M0 and M�0, respectively.
The reduced mass of D�0D̄0 is μ ¼ M�0M0=ðM�0 þM0Þ.
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FIG. 1. Universal energy distribution Im½fXðEþ iϵÞ� in Eq. (4)
as a function of the energy E. The tall rectangle below the
scattering threshold at E ¼ 0 represents the delta function from
production of the bound state and should be multiplied by 10. The
dashed curve is the naive energy distribution in the absence of the
resonance given by Eq. (5) with Λ ¼ 5γX.
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The range of the interactions between the charm mesons is
1=mπ , where mπ is the pion mass. The corresponding
energy scalem2

π=2μ is about 10 MeV. This is comparable to
the energy of the D�þD− scattering threshold, which is
8.2 MeVabove theD�0D̄0 scattering threshold. The present
value of the difference EX between the mass of the X and
the energy of the D�0D̄0 scattering threshold is [14]

EX ≡MX − ðM�0 þM0Þ ¼ ðþ0.01� 0.18Þ MeV: ð6Þ
The central value in Eq. (6) corresponds to a charm-meson
pair above the scattering threshold. The value lower by 1σ
corresponds to a bound state with binding energy jEXj ¼
0.17 MeV and binding momentum γX ¼ 18 MeV. The
upper bound on the binding energy with 90% confidence
level is jEXj < 0.22 MeV.
Some qualitative aspects of the energy distribution

illustrated in Fig. 1 have been observed by the Belle
collaboration in the decays of B mesons into KD0D̄0π0

[22]. The D0D̄0π0 invariant-mass distribution has a peak
near the D�0D̄0 threshold. The energy resolution was not
sharp enough to resolve the contributions from the narrow
peak below the D�0D̄0 threshold from the X bound state
and the peak above the threshold from the D�0D̄0 and
D�0D̄�0 threshold enhancements. The difference between
the fitted curve to the D0D̄0π0 invariant-mass distribution
and the combinatorial background in Ref. [22] has a
minimum at a D0D̄0π0 energy about 11 MeV above the
D�0D̄0 threshold. If we set Λ2=2μ ¼ 11 MeV, we get an
estimate for Λ of about 150 MeV. This is consistent with Λ
being of order mπ.

III. CROSS SECTIONS FOR X
AT HADRON COLLIDERS

In this section, we summarize experimental results on the
inclusive prompt cross sections for Xð3872Þ at the Tevatron
and the LHC. We use them to obtain upper and lower
bounds on the cross sections.
Within months of the discovery of the X in B meson

decays by the Belle collaboration in September 2003 [11],
its existence was confirmed by the CDF collaboration
through inclusive production of X in pp̄ collisions at the
Tevatron [12]. The X was observed in the discovery decay
mode J=ψπþπ−. Some of the X events were produced from
decays of bottom hadrons, with the ultimate decay products
μþμ−πþπ− emerging from a displaced vertex. The majority
of X events were produced promptly, with the ultimate
decay products emerging from the primary collision vertex.
The prompt X events presumably come from QCD pro-
duction mechanisms. The CDF collaboration has reported
ratios of the prompt cross sections for X and ψð2SÞmodulo
the ratio ϵψ=ϵX of the efficiencies for observations of ψð2SÞ
and X in their J=ψπþπ− decay modes [23]. The ratio ϵψ=ϵX
is presumably closer to 1 than to 2 or 1=2. In Ref. [19]

(BGP2S), measurements of the prompt cross sections
for X and ψð2SÞ by the CDF collaboration were used to
obtain an estimate of the product σ Br of the prompt cross
section for X and its branching fraction into J=ψπþπ− in
the region with rapidity jyj < 0.6 and transverse momen-
tum pT > 5 GeV:

Tevatron∶ σ½Xð3872Þ�Br½X → J=ψπþπ−�≈ ð3.1� 0.7Þ nb:
ð7Þ

A loose lower bound on the cross section for X can be
obtained by using Br < 1.
The inclusive production of the X in pp collisions at the

LHC has been studied by the LHCb [16], CMS [17], and
ATLAS [18] collaborations. The CMS collaboration mea-
sured the product σ Br of the prompt cross section for X and
its branching fraction into J=ψπþπ− for X with jyj < 1.2
and 10 GeV < pT < 30 GeV at center-of-mass energy
7 TeV [17]:

LHC∶ σ½Xð3872Þ�Br½X → J=ψπþπ−�
¼ ð1.06� 0.11� 0.15Þ nb: ð8Þ

The prompt fraction was measured to be about 74% in the
range 10 GeV < pT < 50 GeV [17].
In Ref. [24], we derived upper and lower bounds on the

branching fraction Br for the X bound state to decay into
J=ψπþπ−:

4% < Br½X → J=ψπþπ−� < 33%: ð9Þ

The loose lower bound Br > 4% is derived from a recent
measurement by the BABAR collaboration of the inclusive
branching fraction for Bþ into Kþ plus the X resonance
feature [25]. The upper bound Br < 33% is derived from
measurements of branching ratios of J=ψπþπ− over other
short-distance decay modes of the X.
Given the results for σ Br in Eqs. (7) and (8), a constraint

on the branching fraction into J=ψπþπ− gives constraints
on the prompt cross sections. A lower bound on the prompt
cross section σ can be estimated by decreasing the central
value of σ Br by 1 standard deviation and then dividing it by
the upper bound on Br in Eq. (9). A loose upper bound on σ
can be estimated by increasing the central value of σ Br by
1 standard deviation and then dividing it by the lower
bound on Br in Eq. (9). Using the estimate in Eq. (7), the
bounds on the prompt cross section at the Tevatron with
jyj < 0.6 and pT > 5 GeV are

Tevatron∶ 7.3 nb < σ½Xð3872Þ� < 95 nb: ð10Þ

Using the measurement in Eq. (8), the bounds on the
prompt cross section at the LHC with jyj < 1.2 and
10 GeV < pT < 30 GeV are
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LHC∶ 2.6 nb < σ½Xð3872Þ� < 31 nb: ð11Þ

In both Eqs. (10) and (11), the loose upper bound is more
than 10 times larger than the lower bound.
In Ref. [26], ranges of prompt cross sections σ for X at

the Tevatron and at the LHC were obtained by considering
branching fractions in the range 2.7% < Br < 8.3% [27].
The lower ends of their ranges were about 5 times larger
than our lower bounds on the cross sections in Eqs. (10)
and (11). The differences come primarily from two
sources. First, the lower end of their range for σ was
obtained from the central value of σ Br rather than from
the value lower by 1 standard deviation. Second, the upper
end of their range for Br was about 4 times smaller than
our upper bound in Eq. (9). The smaller upper bound on
Br was obtained by assuming that measurements of the
branching fraction of X into D0D̄�0 are dominated by the
decay of the X resonance into D0D̄0π0 and D0D̄0γ below
the D0D̄�0 threshold and have a negligible contribution
from the threshold enhancement in the production of
D0D̄�0 above the threshold. This assumption is contra-
dicted by measurements of the width of the X from the
D0D̄�0 decay mode, which are significantly larger than the
upper bound on the width obtained by the Belle collabo-
ration from the J=ψπþπ− decay mode [28].

IV. UPPER BOUND ON CROSS
SECTION FOR X

In this section, we present the upper bound on the
inclusive prompt cross section for producing Xð3872Þ in
Ref. [19]. We explain why the derivation of the upper
bound requires the charm-meson pair cross section to be
integrated up to a relative momentum of ordermπ instead of
order γX, as apparently assumed in Ref. [19].
If X is a charm-meson molecule with the flavor structure

in Eq. (1), the inclusive cross section for producing X can
be expressed in terms of the same amplitudes as those in the
inclusive cross sections for producing D�0D̄0 and D0D̄�0

[19]. The inclusive cross sections for producingD�0D̄0 and
D0D̄�0 with small relative momentum k in the charm-
meson-pair rest frame and the inclusive cross section for
producing X can be expressed as

dσ½D�0D̄0�¼ 1

flux

X
y

Z
dΦðD�D̄ÞþyjAD�0D̄0þyðkÞj2

d3k
ð2πÞ32μ;

ð12aÞ

dσ½D0D̄�0�¼ 1

flux

X
y

Z
dΦðD�D̄ÞþyjAD0D̄�0þyðkÞj2

d3k
ð2πÞ32μ;

ð12bÞ

dσ½Xð3872Þ� ¼ 1

flux

X
y

Z
dΦðD�D̄Þþy

����
Z

d3k
ð2πÞ3 ψXðkÞ

×
AD�0D̄0þyðkÞ þAD0D̄�0þyðkÞffiffiffi

2
p

����
2 1

2μ
; ð12cÞ

where μ is the reduced mass ofD�0D̄0. The sums over y are
over all the additional particles that can be produced. The
amplitudes that appear in the cross section forX in Eq. (12c)
are the charge-conjugation-even superpositions of the
amplitudes for producing D�0D̄0 þ y and D0D̄�0 þ y. The
momentum-space wave function for the X in Eq. (12c) is
normalized so

R ðd3k=ð2πÞ3ÞjψXðkÞj2 ¼ 1. The differential
phase space dΦðD�D̄Þþy is that for a composite particle
denoted by ðD�D̄Þ with massM�0 þM0 plus the additional
particles y. The mass of X is sightly smaller thanM�0 þM0

and the invariant mass of a charm-meson pair is larger than
M�0 þM0, but the differences in the phase space integrals
are negligible. Factors of 3 from the sums over the spin states
ofD�0 or D̄�0 or X are absorbed into the amplitudesA. The
phase-space integrals in Eqs. (12) are over the 3-momenta of
the additional particles y, but the cross sections remain
differential in the 3-momentumP of ðD�D̄Þ. Thus theD�0D̄0

and D0D̄�0 cross sections in Eqs. (12a) and (12b) are
differential in both P and k, while the X cross section in
Eq. (12c) is differential only in P.
In the expression for the X cross section in Eq. (12c),

there are interference terms between the amplitudes for
producing D�0D̄0 þ y and D0D̄�0 þ y. The interference
terms are positive for some sets of additional final-state
particles y and negative for others. In high-energy hadron
collisions, there are dozens or even hundreds of additional
particles. The sum over the many additional particles y
gives cancellations that suppress the interference terms.
The X cross section in Eq. (12c) then reduces to the sum of
a D�0D̄0 term and a D0D̄�0 term. At large transverse
momentum, the hadronization of a cc̄ pair is equally likely
to produce D�0D̄0 and D0D̄�0, because the probability of a
light quark or antiquark from a colliding hadron to become
a constituent of one of the charm mesons is very small. The
D�0D̄0 term and the D0D̄�0 term should therefore be equal,
and the expression for the X cross section can be reduced to

dσ½Xð3872Þ�

¼ 1

flux

X
y

Z
dΦðD�D̄Þþy

����
Z

d3k
ð2πÞ3ψXðkÞAD�0D̄0þyðkÞ

����
2 1

2μ
:

ð13Þ
The authors of Ref. [19] (BGP2S) derived a theoretical

upper bound on the cross section for producing X in
terms of a cross section for producing the charm-meson
pair D�0D̄0. To derive their upper bound, BGP2S first
restricted the integral over the relative momentum in
Eq. (13) to a region jkj < kmax in which ψXðkÞ differs
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significantly from 0. They then applied the Schwarz
inequality to that integral:

dσ½Xð3872Þ�

≤
Z 0 d3k

ð2πÞ3 jψXðkÞj2 ·
1

flux

X
y

Z
dΦðD�D̄Þþy

×
Z 0 d3k

ð2πÞ3 jAD�0D̄0þyðkÞj2
1

2μ
; ð14Þ

where the primes on the integrals indicate restrictions to
jkj < kmax. The first factor on the right side of Eq. (14) is
the probability for the constituents of the X to have relative
momentum less than kmax. Since this probability is less than
1, they obtained the inequality

σ½Xð3872Þ� < σ½D�0D̄0ðk < kmaxÞ�: ð15Þ

The validity of this inequality hinges on the validity of
restricting the integral in Eq. (13) to the region jkj < kmax.
In Ref. [19], BGP2S did not give an unambiguous pre-

scription for the maximummomentum kmax in the inequality
in Eq. (15). They quoted the differenceEX between the mass
of the X and the energy of the D�0D̄0 scattering threshold
at that time as EX ¼ −0.25� 0.40 MeV. The central
value corresponds to binding momentum γX ¼ 22 MeV,
and the value lower by 1σ corresponds to γX ¼ 35 MeV.
InRef. [19], BGP2S chosekmax in the inequality inEq. (15) to
be 35 MeV. In a subsequent paper Ref. [29], whose authors
included most of those of Ref. [19], an updated estimate
kmax ¼ 20 MeV was given. This is close to the binding
momentum γX ¼ 18 MeV from the value of EX that is 1σ
below the central value in Eq. (6). The choice for kmax in both
papers is consistent with the assumption that kmax is
approximately γX, although this assumption was not stated
explicitly in Ref. [19].
The conclusions of Ref. [19] were challenged in

Ref. [20], which argued that the appropriate choice of
kmax in the upper bound in Eq. (15) is of ordermπ instead of
order γX. If short-range interactions produce an S-wave
bound state close to a scattering threshold, the momentum-
space wave function in the momentum region below the
inverse range has the universal form in Eq. (2). The
normalization integral of the probability density jψXðkÞj2
is dominated by k of order γX. However the integral over k
in Eq. (12c), whose integrand has only one factor of ψXðkÞ,
is not dominated by k of order γX. It has significant
contributions from the region extending up to k of order
mπ , which is where the wave function ψXðkÞ begins to fall
faster than 1=k2. Thus the derivation of the upper bound in
Ref. [19] requires kmax to be of ordermπ instead of order γX,
as was apparently assumed in Ref. [19].
In Ref. [19], BGP2S estimated the cross section for

charm-meson pairs with relative momentum k at the
Tevatron using the event generators HERWIG and PYTHIA

to produce hadronic final states from 2 → 2 parton proc-
esses, primarily gg → gg. This extremely inefficient method
gave distributions at small k with the behavior kdk. Their
estimate for the theoretical upper bound on the prompt
cross section for X at the Tevatron obtained by inserting
kmax ¼ 35 MeV into Eq. (15) was 0.07 nb using HERWIG

and 0.11 nb using PYTHIA. These cross sections are about
30 times smaller than the loose lower bound of 3.1 nb given
by the right side of Eq. (7). BGP2S concluded that if the X
was a weakly bound charm-meson molecule, its formation
from charm mesons at the rate observed at the Tevatron
would be unlikely. Given that their D�0D̄0 cross section
scaled as k2max, the value of kmax would have to be larger
than about 280 MeV for theD�0D̄0 cross section calculated
using PYTHIA to be above the lower bound on the X cross
section at the Tevatron in Eq. (10).
In Ref. [20], the cross section for charm-meson pairs

with small relative momentum k at the Tevatron was
estimated using the event generator PYTHIA to produce
hadronic final states from the 2 → 3 parton process
gg → cc̄g. The distribution had the behavior k2dk in the
region k < mπ . This behavior should be more accurate than
the behavior kdk obtained in Ref. [19], because the event
generator, which has not been tuned to reproduce distri-
butions in k, plays a smaller role in generating the
distributions. Their estimate for the charm-meson-pair
cross section at the Tevatron integrated up to a relative
momentum kmax was

Tevatron∶ σnaive½D�0D̄0ðk < kmaxÞ�≈ 0.03 nb

�
kmax

35 MeV

�
3

:

ð16Þ

The subscript “naive” emphasizes that the cross section
calculated using an event generator does not take into
account the effects of the X resonance. The theoretical
upper bound in Eq. (15) is greater than the loose lower
bound of 3.1 nb given by the right side of Eq. (7) if kmax is
greater than about 160 MeV. The authors of Ref. [20]
concluded that the upper bound in Eq. (15) with kmax of
order mπ was compatible with the observed prompt cross
section for X at the Tevatron. The upper and lower bounds
on the X cross section at the Tevatron in Eq. (10) take
into account the bounds on the branching fraction for
X → J=ψπþπ− in Eq. (9). The value of kmax would have to
be larger than 220 MeV for the naive D�0D̄0 cross section
to be above the lower bound on the X cross section at the
Tevatron in Eq. (10). This value of kmax is also compatible
with the scale mπ .
The conclusions of Ref. [19] were also challenged in

Ref. [26]. They used an effective field theory with ultra-
violet cutoff Λ in which X is treated as a charm-meson
molecule. They calculated the inclusive prompt cross
sections for producing X in pp̄ collisions at the Tevatron
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and in pp collisions at the LHC using the event generators
HERWIG and PYTHIA to calculate the production rate ofD�D̄
at short distances and using the effective field theory to
calculate the formation rate of the X at long distances. With
Λ ¼ 100 MeV, their cross sections using PYTHIA were
0.05 nb at the Tevatron and 0.04 nb at the LHC, which
are much smaller than the results from CDF and CMS in
Eqs. (7) and (8). Their cross sections were compatible with
the results from CDF and CMS for Λ in the range from
500 MeV to 1000 MeV. For these large ultraviolet cutoffs,
the contributions from the charged-charm-meson-pair
channels D�þD− and DþD�− were larger than those from
the D�0D̄0 and D0D̄�0 channels by about a factor of 2.
The analysis in Ref. [26] was rejected in Ref. [29], whose

authors included most of those of Ref. [19]. They argued
that kmax must be determined “independently of any
educated guesses on the explicit form” of ψXðkÞ. They
did not address the issue that their derivation of the upper
bound with kmax approximately equal to γX fails for the
explicit wave function in Eq. (2).

V. ESTIMATE OF CROSS SECTION FOR X

In this section, we derive an equality between the
Xð3872Þ cross section and a charm-meson-pair cross
section that takes into account the threshold enhancement
produced by the X resonance. We also present an order-of-
magnitude estimate of the X cross section in terms of a
naive charm-meson-pair cross section that does not take
into account the threshold enhancement.
Expressions for the cross sections for producing charm-

meson pairs and for producing X in Eqs. (12) that take into
account the X resonance were presented in Ref. [20]. The
cross sections were expressed in factored forms, with long-
distance factors that involve the binding momentum γX and
with short-distance factors that involve only momentum
scales of order mπ or larger. The amplitude for producing
D�0D̄0 þ y in Eq. (12a) can be decomposed into charge-
conjugation even (C ¼ þ) and charge-conjugation odd
(C ¼ −) components. The C ¼ þ component is enhanced
by theX resonance. If the nonresonantC ¼ − component is
neglected, the amplitude for producing D�0D̄0 þ y can be
expressed as a product of the C ¼ þ component of a short-
distance amplitude and a resonance factor that depends
on γX:

AD�0D̄0þyðkÞ¼
1ffiffiffi
2

p
�As:d:

D�0D̄0þyþAs:d:
D0D̄�0þyffiffiffi

2
p

�
Λ

−γX−ik
: ð17Þ

The expression for the correspondingamplitudeAD0D̄�0þyðkÞ
is identical. The short-distance amplitudes As:d:

D�0D̄0þy
and

As:d:
D0D̄�0þy are independent of the momentum if k is small

compared to mπ . The constant Λ in the numerator of the
resonance factor should be of ordermπ. The only dependence
on the small momentum γX is in the denominator of the

resonance factor. Since Λ ≫ γX, the absolute value of the
resonance factor is approximately 1 at k ¼ Λ, so Λ can be
interpreted as the momentum scale where the amplitude
becomes comparable in magnitude to the amplitude in the
absence of the resonance. The resonance factor in Eq. (17)
produces a threshold enhancement in the cross section. The
differential cross section dσ=dE in the kinetic energy E of
D�0D̄0 in the D�0D̄0 center-of-momentum frame should
have a local minimum above the threshold enhancement.
A simple physical interpretation of Λ is that the kinetic
energy E at the local minimum is roughly Λ2=2μ.
The factorization formula for the D�0D̄0 cross section

can be obtained simply by inserting the amplitude in
Eq. (17) into Eq. (12a). The factorization formula for
the X cross section cannot be obtained so simply. If the
universal wave function in Eq. (2) is inserted into Eq. (12c),
the momentum integral is logarithmically ultraviolet diver-
gent. The factorization formula for the X cross section can
be obtained instead by requiring the sum of the cross
sections for producing X and the cross sections
for producing D�0D̄0 and D0D̄�0 integrated over k to be
consistent with the optical theorem in Eq. (4). The resulting
factorization formulas for the inclusive cross sections are

dσ½D�0D̄0� ¼ 1

flux

X
y

Z
dΦðD�D̄ÞþyjAs:d:

D�0D̄0þy

þAs:d:
D0D̄�0þy

j2 Λ2

γ2X þ k2
d3k

ð2πÞ38μ ; ð18aÞ

dσ½D0D̄�0� ¼ 1

flux

X
y

Z
dΦðD�D̄ÞþyjAs:d:

D�0D̄0þy

þAs:d:
D0D̄�0þyj2

Λ2

γ2X þ k2
d3k

ð2πÞ38μ ; ð18bÞ

dσ½Xð3872Þ� ¼ 1

flux

X
y

Z
dΦðD�D̄ÞþyjAs:d:

D�0D̄0þy

þAs:d:
D0D̄�0þy

j2 Λ
2γX
8πμ

: ð18cÞ

The differential cross sections for D�0D̄0 and D0D̄�0
in Eqs. (18a) and (18b) should be good approximations
up to relative momentum k of about Λ.
The short distance factors in Eqs. (18) can be eliminated

to obtain an expression for theD�0D̄0 cross section in terms
of the X cross section:

dσ½D�0D̄0� ¼ dσ½Xð3872Þ� π=γX
γ2X þ k2

d3k
ð2πÞ3 : ð19Þ

This relation is analogous to relations between cross
sections for the production of the deuteron bound state
with large momentum transfer and cross sections for the
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production of proton-neutron pairs [30]. The integral of this
D�0D̄0 cross section over the region jkj < kmax is

σ½D�0D̄0ðk < kmaxÞ�

¼ σ½Xð3872Þ� kmax=γX − arctanðkmax=γXÞ
2π

: ð20Þ

There is a value of kmax such that the integrated cross
section is equal to that for X: kmax ¼ 7.73γX. The resulting
equality between the X cross section and a D�0D̄0 cross
section is

σ½Xð3872Þ� ¼ σ½D�0D̄0ðk < 7.73γXÞ�: ð21Þ

The right side of this equality can also be expressed as the
sum of the D�0D̄0 and D0D̄�0 cross sections integrated up
to a smaller maximum value of k:

σ½Xð3872Þ� ¼ 2σ½D�0D̄0ðk < 4.49γXÞ�: ð22Þ

The equalities in Eqs. (21) and (22) are equivalent provided
γX is sufficiently small. As a reasonable condition for
the validity of the equality, we require kmax to be smaller
than the inverse range mπ . If this condition is applied to
the equalities in Eqs. (21) and (22), it requires the binding
energy jEXj to be less than about 0.2 and 0.5 MeV,
respectively.
The equality in Eq. (21) is consistent with the upper

bound in Eq. (15) for any value of kmax greater than 7.73γX.
However the derivation of the upper bound in Eq. (15)
requires kmax to be order mπ, because the derivation must
allow for the possibility that the wave function for X has the
form in Eq. (2). The equality in Eq. (21) is incompatible
with the upper bound in Eq. (15) if kmax is taken to be
approximately γX, as was apparently assumed in Ref. [19].
The equality between the cross sections for X andD�0D̄0

in Eq. (21) assumes the D�0D̄0 cross section has the
threshold enhancement from the X resonance. If an event
generator such as HERWIG or PYTHIA is used to estimate the
charm-meson-pair cross section, the equality in Eq. (21)
cannot be used because the event generator is not informed
about the resonance. The naive cross section for producing
D�0D̄0 can be obtained from Eq. (12a) by replacing the
amplitude AD�0D̄0þyðkÞ by the short-distance amplitude
As:d:

D�0D̄0þy
:

dσ½D�0D̄0�naive≈
1

flux

X
y

Z
dΦðD�D̄ÞþyjAs:d:

D�0D̄0þyj2
d3k

ð2πÞ32μ:

ð23Þ

This naive D�0D̄0 cross section integrated over the region
jkj < kmax scales like k3max, in agreement with the charm-
meson cross section calculated using an event generator in

Ref. [20]. In the expression for the X cross section in
Eq. (18c), the sum over the many additional particles y give
cancellations that suppress the interference terms between
the amplitudes As:d:

D�0D̄0þy
and As:d:

D0D̄�0þy
. In a high energy

hadron collider, the production rates for D�0D̄0 and D0D̄�0
at large transverse momentum should be equal, because the
light quarks in the charm mesons are unlikely to come from
the colliding hadrons. The D�0D̄0 and D0D̄�0 contributions
should therefore be equal, so the cross section reduces to

dσ½Xð3872Þ� ¼ 1

flux

X
y

Z
dΦðD�D̄ÞþyjAs:d:

D�0D̄0þy
j2 Λ

2γX
4πμ

:

ð24Þ

The short distance factor in the expression for the naive
D�0D̄0 cross section in Eq. (23) can then be eliminated in
favor of the X cross section using Eq. (24):

dσ½D�0D̄0�naive ≈ dσ½Xð3872Þ� 2π=γX
Λ2

d3k
ð2πÞ3 : ð25Þ

Note that this is larger by a factor of 2 than the cross section
obtained from the equality in Eq. (19) by replacing γ2X þ k2

in the denominator by Λ2. If the naive D�0D̄0 cross section
in Eq. (25) is integrated over the region jkj < kmax, there is
a value of kmax for which the integrated cross section is
equal to the X cross section:

σ½Xð3872Þ� ≈ σnaive½D�0D̄0ðk < ð3πΛ2γXÞ1=3Þ�: ð26Þ

This result can be used to obtain an order-of-magnitude
estimate of the X cross section using naive charm-meson-
pair cross sections calculated using a Monte Carlo event
generator. Since Λ is order mπ, this estimate is compatible
with the upper bound in Eq. (15) with kmax of order mπ.
In Ref. [20], the estimate of the X cross section in terms

of a naive charm-meson-pair cross section was expressed in
the form

σ½Xð3872Þ� ≈ σnaive½D�0D̄0ðk < ΛÞ� 6πγX
Λ

: ð27Þ

The naive D�0D̄0 cross section integrated up to a relative
momentum kmax that was calculated using the PYTHIA event
generator in Ref. [20] scales as k3max. The estimate in
Eq. (27) therefore differs from that in Eq. (26) only by a
multiplicative factor of 2. Thus the estimate in Eq. (26) is
essentially just a convenient repackaging of the estimate
from Ref. [20] in Eq. (27).
The estimate of the X cross section in Eq. (26) depends

on the combination ðΛ2γXÞ1=3 of unknown parameters. If
we use the lower bound on the X cross section at the
Tevatron in Eq. (10) and the naive estimate of the D�0D̄0

cross section at the Tevatron in Eq. (16), we get the lower
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bound ðΛ2γXÞ1=3 > 100 MeV. The order-of-magnitude
estimate of this combination of parameters obtained
by inserting Λ ¼ mπ and γX ¼ 18 MeV is ðΛ2γXÞ1=3∼
70 MeV. We conclude that the estimate of the X cross
section at the Tevatron in Eq. (27) is compatible with the
observed cross section for some value of Λ of order mπ if
the binding energy of the X is roughly 0.17 MeV.
There does not seem to be any calculation using event

generators in the literature of the naive cross section for
producing D�0D̄0 with small relative momentum at the
LHC. If there was such a calculation for a single small
value of kmax, the cross section as a function of kmax

could be obtained simply by assuming it scales as k3max.
Equation (26) would then give an estimate of the cross
section for producing X at the LHC that could be compared
with the measured value in Eq. (11). Given the large
uncertainty in kmax ¼ ð3πΛ2γXÞ1=3 and the fact that the
estimate of the cross section scales as k3max, there is little
doubt that the estimate would be compatible with the
observed cross section.

VI. SUMMARY AND DISCUSSION

We have discussed the inclusive prompt production of
the Xð3872Þ at high energy hadron colliders under the
assumption that the X is a weakly bound charm-meson
molecule with the particle content in Eq. (1). We considered
the production of X through the creation of its constituents
D�0D̄0 or D0D̄�0 at short distances of order 1=mπ or
smaller. The formation of the X proceeds on longer distance
scales of order 1=γX, where γX is the binding momentum of
the X.
The theoretical upper bound on the cross section for

producing X in Eq. (15) was derived in Ref. [19]. It is given
by the D�0D̄0 cross section integrated up to relative
momentum kmax. The authors did not give any clear
prescription for kmax, but their numerical value for kmax
was consistent with it being approximately equal to γX. In
Ref. [20], it was pointed out that the derivation of the upper
bound in Eq. (15) actually requires kmax to be of order mπ.
A specific example of a wave function for which the

derivation of the upper bound requires kmax ≫ γX is the
universal wave function for a weakly bound molecule in
Eq. (2). This failure of the derivation of their upper bound
with kmax approximately equal to γX has never been
addressed by the authors of Ref. [19].
Assuming the binding energy of the X is sufficiently

small, we used the methods of Ref. [20] to derive the
equality in Eq. (21) between the X cross section and the
D�0D̄0 cross section integrated up to relative momentum
kmax ¼ 7.73γX. This equality takes into account the thresh-
old enhancement in the charm-meson-pair cross section
associated with the X resonance. The condition for the
validity of this equality is that the binding energy jEXj is
less than about 0.2 MeV.
The equality in Eq. (21) is not applicable if the charm-

meson-pair cross section is estimated using a naive method
that is not informed about the resonance, such as a
Monte Carlo event generator. We used the methods of
Ref. [20] to derive the order-of-magnitude estimate for the
X cross section in Eq. (26). It is expressed as the naive
D�0D̄0 cross section integrated up to a relative momentum
kmax of order ðm2

πγXÞ1=3. The resulting estimate for the
prompt cross section for X at the Tevatron using the naive
D�0D̄0 cross section in Eq. (16) is compatible with the
experimental lower bound on the prompt X cross section
given in Eq. (10). Given the large uncertainty in kmax and
the k3max scaling of the naive cross section, there is little
doubt that the corresponding estimate of the cross section at
the LHC would be compatible with the measured value in
Eq. (11). We conclude that the prompt cross sections for X
at the Tevatron and at the LHC are compatible with the
identification of Xð3872Þ as a weakly bound charm-meson
molecule.

ACKNOWLEDGMENTS

This work was supported in part by the Department of
Energy under Grant No. DE-SC0011726 and by the
National Science Foundation under Grant No. PHY-
1607190. We thank T. Skwarnicki and F. K. Guo for
valuable comments.

[1] H. X.Chen,W.Chen,X.Liu, andS. L. Zhu,The hidden-charm
pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016).

[2] A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui,
Exotic hadrons with heavy flavors: X, Y, Z, and related
states, Prog. Theor. Exp. Phys. 2016, 062C01 (2016).

[3] R. F. Lebed, R. E. Mitchell, and E. S. Swanson, Heavy-
quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017).

[4] A. Esposito, A. Pilloni, and A. D. Polosa, Multiquark
resonances, Phys. Rep. 668, 1 (2017).

[5] F. K. Guo, C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao,
and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90,
015004 (2018).

[6] A. Ali, J. S. Lange, and S. Stone, Exotics: Heavy penta-
quarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123
(2017).

[7] S. L. Olsen, T. Skwarnicki, and D. Zieminska, Nonstandard
heavy mesons and baryons: Experimental evidence, Rev.
Mod. Phys. 90, 015003 (2018).

ERIC BRAATEN, LI-PING HE, and KEVIN INGLES PHYS. REV. D 100, 094024 (2019)

094024-8

https://doi.org/10.1016/j.physrep.2016.05.004
https://doi.org/10.1093/ptep/ptw045
https://doi.org/10.1016/j.ppnp.2016.11.003
https://doi.org/10.1016/j.physrep.2016.11.002
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1103/RevModPhys.90.015004
https://doi.org/10.1016/j.ppnp.2017.08.003
https://doi.org/10.1016/j.ppnp.2017.08.003
https://doi.org/10.1103/RevModPhys.90.015003
https://doi.org/10.1103/RevModPhys.90.015003


[8] M. Karliner, J. L. Rosner, and T. Skwarnicki, Multiquark
states, Annu. Rev. Nucl. Part. Sci. 68, 17 (2018).

[9] C. Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A
33, 1830018 (2018).

[10] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P.
Shen, C. E. Thomas, A. Vairo, and C. Z. Yuan, The XYZ
states: Experimental and theoretical status and perspectives,
arXiv:1907.07583.

[11] S. K. Choi et al. (Belle Collaboration), Observation of a
Narrow Charmonium-Like State in Exclusive B� →
K�πþπ−J=ψ Decays, Phys. Rev. Lett. 91, 262001
(2003).

[12] D. Acosta et al. (CDF Collaboration), Observation of the
Narrow State Xð3872Þ → J=ψπþπ− in p̄p Collisions atffiffiffi
s

p ¼ 1.96 TeV, Phys. Rev. Lett. 93, 072001 (2004).
[13] R. Aaij et al. (LHCb Collaboration), Determination of the

Xð3872Þ Meson Quantum Numbers, Phys. Rev. Lett. 110,
222001 (2013).

[14] M. Tanabashi et al. (Particle Data Group), Review of
particle physics, Phys. Rev. D 98, 030001 (2018).

[15] V.M. Abazov et al. (D0 Collaboration), Observation and Pro-
perties of theXð3872ÞDecaying toJ=ψπþπ− inpp̄Collisions
at

ffiffiffi
s

p ¼ 1.96 TeV, Phys. Rev. Lett. 93, 162002 (2004).
[16] R. Aaij et al. (LHCb Collaboration), Observation of

Xð3872Þ production in pp collisions at
ffiffiffi
s

p ¼ 7 TeV,
Eur. Phys. J. C 72, 1972 (2012).

[17] S. Chatrchyan et al. (CMS Collaboration), Measurement of
the Xð3872Þ production cross section via decays to J=ψππ
in pp collisions at

ffiffiffi
s

p ¼ 7 TeV, J. High Energy Phys. 04
(2013) 154.

[18] M. Aaboud et al. (ATLAS Collaboration), Measurements of
ψð2SÞ and Xð3872Þ → J=ψπþπ− production in pp colli-
sions at

ffiffiffi
s

p ¼ 8 TeV with the ATLAS detector, J. High
Energy Phys. 01 (2017) 117.

[19] C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa, and
C. Sabelli, Is the Xð3872Þ Production Cross Section at

Tevatron Compatible with a Hadron Molecule Interpreta-
tion?, Phys. Rev. Lett. 103, 162001 (2009).

[20] P. Artoisenet and E. Braaten, Production of the Xð3872Þ
at the Tevatron and the LHC, Phys. Rev. D 81, 114018
(2010).

[21] E. Braaten and H.-W. Hammer, Universality in few-body
systems with large scattering length, Phys. Rep. 428, 259
(2006).

[22] G. Gokhroo et al. (Belle Collaboration), Observation of a
Near-Threshold D0D̄0π0 Enhancement in B → D0D̄0π0K
Decay, Phys. Rev. Lett. 97, 162002 (2006).

[23] G. Bauer, The Xð3872Þ meson and “exotic” spectroscopy at
CDF II, Int. J. Mod. Phys. A 21, 959 (2006).

[24] E. Braaten, L.-P. He, and K. Ingles, Branching fractions of
the Xð3872Þ, arXiv:1908.02807.

[25] G. Wormser (BABAR Collaboration), Quarkonium
2019 in Torino (2019), https://agenda.infn.it/event/15632/
contributions/89320/attachments/63025/75778/charmonium_
QWG19.pdf.

[26] M. Albaladejo, F. K. Guo, C. Hanhart, U. G. Meißner, J.
Nieves, A. Nogga, and Z. Yang, Note on Xð3872Þ produc-
tion at hadron colliders and its molecular structure, Chin.
Phys. C 41, 121001 (2017).

[27] F. K. Guo, U. G. Meißner, W. Wang, and Z. Yang, Pro-
duction of the bottom analogs and the spin partner of the
Xð3872Þ at hadron colliders, Eur. Phys. J. C 74, 3063
(2014).

[28] S.-K. Choi et al., Bounds on the width, mass difference and
other properties of Xð3872Þ → πþπ−J=ψ decays, Phys.
Rev. D 84, 052004 (2011).

[29] A. Esposito, B. Grinstein, L. Maiani, F. Piccinini, A. Pilloni,
A. D. Polosa, and V. Riquer, Comment on “Note on
Xð3872Þ production at hadron colliders and its molecular
structure, Chin. Phys. C 42, 114107 (2018).

[30] G. Faeldt and C. Wilkin, Bound state and continuum
production in large momentum transfer reactions, Phys.
Lett. B 382, 209 (1996).

ESTIMATES OF THE Xð3872Þ CROSS SECTION AT A … PHYS. REV. D 100, 094024 (2019)

094024-9

https://doi.org/10.1146/annurev-nucl-101917-020902
https://doi.org/10.1142/S0217751X18300181
https://doi.org/10.1142/S0217751X18300181
https://arXiv.org/abs/1907.07583
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1103/PhysRevLett.91.262001
https://doi.org/10.1103/PhysRevLett.93.072001
https://doi.org/10.1103/PhysRevLett.110.222001
https://doi.org/10.1103/PhysRevLett.110.222001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevLett.93.162002
https://doi.org/10.1140/epjc/s10052-012-1972-7
https://doi.org/10.1007/JHEP04(2013)154
https://doi.org/10.1007/JHEP04(2013)154
https://doi.org/10.1007/JHEP01(2017)117
https://doi.org/10.1007/JHEP01(2017)117
https://doi.org/10.1103/PhysRevLett.103.162001
https://doi.org/10.1103/PhysRevD.81.114018
https://doi.org/10.1103/PhysRevD.81.114018
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1016/j.physrep.2006.03.001
https://doi.org/10.1103/PhysRevLett.97.162002
https://doi.org/10.1142/S0217751X06025134
https://arXiv.org/abs/1908.02807
https://agenda.infn.it/event/15632/contributions/89320/attachments/63025/75778/charmonium_QWG19.pdf
https://agenda.infn.it/event/15632/contributions/89320/attachments/63025/75778/charmonium_QWG19.pdf
https://agenda.infn.it/event/15632/contributions/89320/attachments/63025/75778/charmonium_QWG19.pdf
https://agenda.infn.it/event/15632/contributions/89320/attachments/63025/75778/charmonium_QWG19.pdf
https://agenda.infn.it/event/15632/contributions/89320/attachments/63025/75778/charmonium_QWG19.pdf
https://agenda.infn.it/event/15632/contributions/89320/attachments/63025/75778/charmonium_QWG19.pdf
https://doi.org/10.1088/1674-1137/41/12/121001
https://doi.org/10.1088/1674-1137/41/12/121001
https://doi.org/10.1140/epjc/s10052-014-3063-4
https://doi.org/10.1140/epjc/s10052-014-3063-4
https://doi.org/10.1103/PhysRevD.84.052004
https://doi.org/10.1103/PhysRevD.84.052004
https://doi.org/10.1088/1674-1137/42/11/114107
https://doi.org/10.1016/0370-2693(96)00683-1
https://doi.org/10.1016/0370-2693(96)00683-1

