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Pion photoproduction off the nucleon close to threshold is studied in covariant baryon chiral perturbation
theory at Oðp3Þ in the extended-on-mass-shell scheme, with the explicit inclusion of the Δð1232Þ
resonance using the δ counting. The theory is compared to the available data of cross sections and
polarization observables for all the charge channels. Most of the necessary low-energy constants are well
known from the analysis of other processes and the comparison with data constrains some of the still
unknown ones. The Δð1232Þ contribution is significant in improving the agreement with data, even at the
low energies considered.
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I. INTRODUCTION

Single pion photoproduction off the nucleons has been a
subject of strong and continuous theoretical and experimen-
tal efforts. Many have been dedicated to the investigation of
the process at intermediate energies which allowed us to
study the spectrum and properties of numerous baryon
resonances [1,2]. Here, we address the near threshold region,
where chiral perturbation theory (ChPT) [3–6], the effective
field theory of QCD at low energies, should provide an
adequate framework and only nucleons, pions, and the
lowest lying resonances might play a role.
Early work attempted to describe this process through

low-energy theorems (LET) obtained from gauge and
Lorentz invariance [7] and later from current algebra
and the partial conservation of the axial current [8,9].
These theorems described well the production of charged
pions, but failed for the case of the γ þ p → pþ π0 process
[10–13]. In one of the earliest successes of ChPT with

baryons, Bernard et al. [14–16] could solve the discrep-
ancies between theory and the data available at the time
with corrections related to loop-diagram contributions.
Still, the theoretical models showed their limitations with
the more precise measurements of cross sections and
polarization observables obtained at the Mainz Microtron
(MAMI) in 2013 [17]. For instance, it was found in an
Oðp4Þ heavy baryon (HB) calculation that the agreement
with data was satisfactory only up to some 20 MeV above
threshold [18]. This indicated the need of calculations at
even higher orders. The situation was not better in other
approaches to baryon ChPT, such as the extended-on-mass-
shell (EOMS) scheme, which at Oðp4Þ also obtained a
good agreement only for a very limited range of energies
[19]. However, a higher order calculation, apart from the
added technical complications, would lose its predictive
power because of the new set of undetermined low-energy
constants (LECs) appearing in the Lagrangian. These
difficulties could be intrinsic to this specific process, for
instance because of the cancellation happening at the lowest
order of the chiral expansion, but they may also signal the
need for some revision of the theoretical approach.
In recent years, there has been a considerable advance in

the qualitative and quantitative understanding of low-
energy hadron physics using ChPT. It provides a systematic
framework to obtain a perturbative expansion in terms of
small meson masses and external momenta and has a quite
impressive record on its predictivity and the quality of its
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description of multiple observables involving mesons,
nucleons and photons [20,21]. Nonetheless, ChPT, when
applied to systems with baryons, contains some subtleties
which may hinder its progress. As shown in Ref. [22], in
the presence of baryon loops the naive power counting is
broken because of the nonzero nucleon mass in the chiral
limit, making difficult the development of a scheme that
allows for a systematic evaluation of higher orders in the
chiral expansion. This problem was first solved in the HB
formalism (HBChPT) [23,24], at the expense of losing
Lorentz covariance, and later by some covariant methods
as the infrared regularization (IrChPT) [25] and the
EOMS scheme [26].1 Here, we adhere to the latter, which,
apart from providing a proper power counting, preserves
the analytic structure of the calculated amplitudes.
Furthermore, it usually leads to a faster chiral convergence
than HBChPT or IrChPT [27–29]. This approach has been
used with satisfactory results in the calculation of many
baryon observables such as masses, magnetic moments,
axial form factors, among others [28–40]. Moreover, it has
been successfully applied to many processes, among which
πN scattering [27,37,41,42] and the pion electromagnetic
production on the nucleons [19,43–45]. Both are directly
related to the pion photoproduction on the nucleons
investigated in this work.
In addition to the power counting problem in baryon

ChPT, another issue arises due to the small mass difference
between the nucleon and the Δð1232Þ resonance. In fact,
the mass of the latter is little above the pion production
threshold. Due to this proximity of the resonance to the
threshold and its large transition couplings to pions and
photons, the Δð1232Þ is crucial for the description of πN
and γN processes even at very low energies [46]. These
facts suggest the importance of the explicit inclusion of the
Δð1232Þ resonance in our effective theory. The hope is that
the incorporation of the most relevant degrees of freedom
(d.o.f.), such as those associated to the Δ, could lead to a
faster convergence of the chiral series. A price to pay is the
emergence of a new small parameter, δ ¼ mΔ −mN ≈
300 MeV that should be properly accounted for in the
chiral expansion, wheremΔ andmN are the masses of theΔ
resonance and the nucleon, respectively.
In this work, we investigate the near threshold pion

photoproduction off nucleons within the aforementioned
effective theory approach, i.e., EOMS ChPT, at Oðp3Þ. We
also choose to include the Δð1232Þ resonance explicitly.
This, or a very similar approach has already been used for
the analysis of Compton scattering [47,48], πN scattering
[27,41,42] or the weak process νN → lN0π [49,50] of high
interest for neutrino detection. Moreover, the fact that we
are using the same framework at the same chiral order as

some of these works allows us to fix many of the LECs of
the theoretical model.
Besides the general reasons given in the previous para-

graphs, the inspection of the cross section data shows
that the Δð1232Þ resonance is conspicuously dominant
for all pion photoproduction channels [46], and its tail
could well be large even close to threshold. The possible
importance of the Δ resonance for the chiral analyses of
pion photoproduction had already been suggested in
Refs. [16–18,51]. Indeed, the convergence of the chiral
series and the agreement with data was found to improve
substantially with this inclusion in the investigation of
the neutral pion photoproduction on the proton in
Refs. [43,44]. Nevertheless, it is also clear from even a
cursory perusal of data, that the energy dependence is very
different for the γp → π0p and the γp → πþn processes. In
the latter case there is a large nonresonant electric dipole
contribution that produces s-wave pions and is strongly
suppressed in the π0 case. For this reason, the importance of
including higher orders and the Δ resonance is especially
strong for the neutral pion channel. However, also the other
ones will have noticeable corrections due to these inclu-
sions. Furthermore, the different channels of pion produc-
tion are sensitive to different ChPT LECs, leading to the
need of studying carefully also the charged pion channels in
the same framework.
Motivated by the sensitivity to different mechanisms

of the various channels, here we extend the analysis of
Refs. [43,44], restricted to the γp → π0p process, by
incorporating the other channels, in which charged pions
are produced. We perform a global study of all the data
currently available in the low-energy region. This amounts
to measurements of angular distributions, total cross
sections and spin observables such as beam and target
asymmetries. Ultimately, these studies will benchmark the
ability to improve upon the predictions for the weak pion
production processes [49,50,52,53], for which the data are
very scarce, and integrated over wide ranges of energies,
thus making it impossible to constrain well the LECs or to
make concrete statements about the behavior at specific
energies. While the predictive power of ChPT calculations
is limited to the threshold region, they should properly be
taken into account in phenomenological models that aim to
describe weak pion production in wider energy regions, see
also Ref. [54] and references therein.
The inclusion of the charged channels requires the

addition of a more extensive set of diagram topologies
and also of some extra pieces of the chiral Lagrangian with
their corresponding LECs. Furthermore, we incorporate a
more detailed analysis of the errors, estimating both the
statistical uncertainty coming from the fits and the uncer-
tainty related to the truncation of the chiral series.
The structure of the paper is as follows. In Sec. II, we

present the basic formalism, the chiral Lagrangian and the
theoretical model for the amplitude. Section III describes

1See, e.g., Ref. [6] for a review of the three schemes and the
discussion in the Introduction of Ref. [27].
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the experimental database and the fit method, including
the procedure for the error estimation. Finally, results are
presented in Sec. IV. We summarize in Sec. V.

II. BASIC FORMALISM AND
THEORETICAL MODEL

A. Kinematics, amplitude decomposition
and observables

The pion photoproduction off the nucleon, depicted in
Fig. 1, can occur in four possible charge channels:
γp → π0p; γp → πþn; γn → π−p; γn → π0n. The differen-
tial cross section in the center of mass (c.m.) system can be
written as

dσ
dΩπ

¼ 1

64π2s
Λ1=2ðs;m2

N;m
2
πÞ

Λ1=2ðs;m2
N; 0Þ

1

4

X
si;sf;λ

jT j2; ð1Þ

where s≡ðkþpÞ2 is the Mandelstam variable,Λðx; y; zÞ ¼
ðx − y − zÞ2 − 4yz is the Källén function, mN and mπ are
the nucleon and pion masses, respectively. The modulus
squared of the scattering amplitude T is averaged over the
initial nucleon spin (si) and photon polarization (λ) and
summed over the final nucleon spin (sf). For practical
purposes, it is convenient to use a representation of T in
terms of the Chew-Goldberger-Low-Nambu (CGLN)
amplitudes F i [55], which lead to simple expressions
for multipoles, cross sections and the polarization observ-
ables. In the CGLN formalism, T can be written as

T ¼ 4π
ffiffiffi
s

p
mN

χ†fFχi; ð2Þ

where χi and χf are Pauli spinors of the initial and final
nucleon states, respectively. For real photons and in the
Coulomb gauge (ϵ0 ¼ 0, ϵ⃗ · k⃗ ¼ 0), the amplitude F may
be decomposed as

F ¼ iσ⃗ · ϵ⃗F 1 þ σ⃗ · q̂ σ⃗ ·k̂ × ϵ⃗F 2 þ iσ⃗ · k̂ q̂ ·ϵ⃗F 3

þ iσ⃗ · q̂ q̂ ·ϵ⃗F 4; ð3Þ

with σ⃗ the Pauli matrices, ϵ the photon polarization and
q̂, k̂ unit vectors in the direction of q⃗ and k⃗, respectively.

The explicit expressions for each F i amplitude are given
in the Appendix A 1, Eqs. (A8)–(A11). In this representa-
tion, the unpolarized angular cross section in the c.m.
system in Eq. (1) is recast as

dσ
dΩπ

¼ dσ0

¼ ρ0RefF �
1F 1 þ F �

2F 2 þ sin2θðF �
3F 3 þ F �

4F 4Þ=2
þ sin2θðF �

2F 3 þ F �
1F 4 þ cos θF �

3F 4Þ
− 2 cos θF �

1F 2g; ð4Þ

where θ stands for the scattering angle between the
incoming photon and the outgoing pion and

ρ0 ¼
Λ1=2ðs;m2

N;m
2
πÞ

Λ1=2ðs;m2
N; 0Þ

¼ jq⃗j
jk⃗j

; ð5Þ

with jq⃗j and jk⃗j evaluated in the c.m. system.
At the studied energies, apart from the unpolarized

angular cross section, there are many data for the polarized
photon asymmetry. This observable is defined by

Σ≡ dσ⊥ − dσk
dσ⊥ þ dσk

; ð6Þ

with dσ⊥ and dσk the angular cross sections for photon
polarizations perpendicular and parallel to the reaction plane,
respectively. In the CGLN representation we have [56]

Σ ¼ −
ρ0
dσ0

sin2θRefðF �
3F 3 þ F �

4F 4Þ=2þ F �
2F 3

þ F �
1F 4 þ cos θF �

3F 4g: ð7Þ

In its turn, the target asymmetry, defined as the ratio

T ¼ dσþ − dσ−
dσþ þ dσ−

; ð8Þ

where dσþ and dσ− correspond to the cross sections for
target nucleons polarized up and down in the direction of
k⃗ × q⃗, can be written as

T ¼ ρ0
dσ0

sin θImfF �
1F 3 −F �

2F 4 þ cos θðF �
1F 4 −F �

2F 3Þ

− sin2θF �
3F 4g: ð9Þ

Useful expressions for other polarization observables in
terms of the F i amplitudes can be found, for instance,
in Ref. [56].

B. Power counting and chiral Lagrangians

As was discussed in the Introduction, when the Δð1232Þ
resonance is explicitly included, a new small parameter

FIG. 1. Kinematics of the pion photoproduction process. k
and p are the incoming photon and nucleon momenta, while q
and p0 correspond to the outgoing pion and nucleon momenta,
respectively.
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δ ¼ mΔ −mN ≈ 300 MeV appears, which must be taken
into account in the chiral expansion. In this work, we use
the δ counting, introduced in Ref. [57], in which
δ ∼Oðp1=2Þ. Therefore, the chiral order D of a diagram
with L loops, VðkÞ vertices of OðpkÞ, Nπ internal pions,
NN nucleon propagators and NΔ Δð1232Þ propagators is
given by

D ¼ 4Lþ
X∞
k¼1

kVðkÞ − 2Nπ − NN −
1

2
NΔ: ð10Þ

Here, we consider all contributions up through Oðp3Þ.
The following pieces of the chiral effective Lagrangian are
required:

Leff ¼
X2
i¼1

Lð2iÞ
ππ þ

X3
j¼1

LðjÞ
N þ Lð1Þ

πNΔ þ Lð2Þ
γNΔ; ð11Þ

where the superscripts represent the chiral order of each of
the terms. The needed terms of the pionic interaction are
given by [4,22]

Lð2Þ
ππ ¼ F2

0

4
Tr½∇μUð∇μUÞ† þ χU† þ Uχ†�; ð12Þ

Lð4Þ
ππ ¼ l4

16
ððTr½χU† þ Uχ†�Þ2

þ 2Tr½∇μUð∇μUÞ†�Tr½χU† þUχ†�Þ þ � � � ; ð13Þ

where the Goldstone pion fields are written in the isospin
decomposition

U ¼ exp

�
i
τ⃗ · π⃗
F0

�
¼ exp

�
i
F0

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

��
; ð14Þ

τi (i ¼ 1, 2, 3) are the Pauli matrices, F0 indicates the
pion decay constant in the chiral limit, and ∇μU ¼ ∂μU −
irμU þ iUlμ is the covariant derivative with external fields
rμ ¼ lμ ¼ eQAμ. Here, e is the electric charge of the
electron, Q ¼ ðτ3 þ 12×2Þ=2 is the charge matrix, and Aμ

is the photon field. Tr½� � �� denotes the trace in flavor space.
We will be working in the isospin symmetric limit, and thus
χ ¼ m2

π12×2, with mπ the corresponding pion mass.
The relevant terms that describe the interaction with

nucleons at Oðp1Þ are given by [58]

Lð1Þ
N ¼ N̄

�
i=D −mþ g

2
=uγ5

�
N; ð15Þ

where N ¼ ðp; nÞT is the nucleon doublet with massm and
axial charge g, both in the chiral limit. Furthermore,

Dμ ¼ ∂μ þ Γμ; Γμ ¼
1

2
½u†; ∂μu� −

i
2
u†rμu −

i
2
ulμu†;

u ¼ U1=2; uμ ¼ iu†ð∇μUÞu†: ð16Þ

At the second order the only relevant terms are

Lð2Þ
N ¼ N̄

�
c1Tr½χþ�þ

c6
8m

Fþ
μνσ

μνþ c7
8m

Tr½Fþ
μν�σμν

�
Nþ��� ;

ð17Þ

with χ�¼m2
πðU†�UÞ in the isospin limit, F�

μν¼u†FRμνu�
uFLμνu†, where in our case FRμν ¼ FLμν ¼ Fμν results in
the electromagnetic tensor Fμν ¼ eQð∂μAν − ∂νAμÞ. Here,
ci (i ¼ 1, 6, 7) are Oðp2Þ LECs in units of GeV−1.
The contributing terms of Oðp3Þ are [58]

Lð3Þ
N ¼ d8N̄

�
1

2m
iϵμναβTr½F̃þ

μνuα�Dβ þ H:c:

�
N þ d9N̄

�
1

2m
iϵμναβTr½Fþ

μν�uαDβ þ H:c:

�
N þ d16N̄

�
1

2
γμγ5Tr½χþ�uμ

�
N

þ d18N̄

�
1

2
iγμγ5½Dμ; χ−�

�
N þ d20N̄

�
−

1

8m2
iγμγ5½F̃þ

μν; uλ�Dλν þ H:c:

�
N þ d21N̄

�
1

2
iγμγ5½F̃þ

μν; uν�
�
N

þ d22N̄

�
1

2
γμγ5½Dν; F−

μν�
�
N; ð18Þ

where dj (j ¼ 8, 9, 16, 18, 20, 21, 22) are new LECs
appearing at Oðp3Þ in units of GeV−2. The derivative
operator Dλν ¼ DλDν þDνDλ acts over the nucleon dou-
blet2 and

F̃þ
μν ¼ Fþ

μν −
1

2
Tr½Fþ

μν�: ð19Þ

The interaction between the nucleon and Δ is described
by a Lagrangian that decouples the spin-1=2 components
from the spin-3=2 Rarita Schwinger field [59,60]. For a
calculation up throughOðp3Þ in the δ counting the relevant
terms are

2The totally antisymmetric Levi-Civita tensor can be written as
ϵμναβ ¼ − i

8
½f½γμ; γν�; γαg; γβ�γ5.
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Lð1Þ
ΔπN ¼ ihA

2FmΔ
N̄Taγμνλð∂μΔνÞ∂λπ

a þ H:c:; ð20Þ

Lð2Þ
ΔγN ¼ 3iegM

2mðmþmΔÞ
N̄T3ð∂μΔνÞf̃μν þ H:c:; ð21Þ

where γμνλ ¼ 1
4
f½γμ; γν�; γλg, f̃μν ¼ 1

2
ϵμναβð∂αAβ − ∂βAαÞ.

Furthermore, Δν ¼ ðΔþþ
ν ;Δþ

ν ;Δ0
ν;Δ−

ν ÞT are the compo-
nents of the spin-3=2 Rarita Schwinger field corresponding
to the isospin multiplet for the Δ resonance. The isospin
transition matrices Ta can be found in Ref. [60].

C. Theoretical model

The tree-level Feynman diagrams contributing to the
scattering amplitude up through order Oðp3Þ are depicted
in Fig. 2 for the nucleonic sector, and in Fig. 3 for the
Δð1232Þ resonance part. The explicit expressions of the
amplitudes are given in Appendix A.
Additionally to the tree diagrams, we need the one loop

amplitudes generated by the topologies shown in Fig. 4.
The calculation of the amplitudes has been carried out in
Mathematica with the help of the FeynCalc package
[61,62]. The analytical results are very lengthy and not
shown here but can be obtained from the authors upon
request.3

The ultraviolet (UV) divergences stemming from the
loops are subtracted using the modified minimal subtrac-
tion scheme, i.e., gMS or equivalently MS-1, and here the
renormalization scale μ is taken to be the nucleon mass.4

To restore the power counting, we apply the EOMS
scheme. Therefore, after the cancellation of the UV
divergences we proceed to perform the required finite
shifts to the corresponding LECs, so that the transformed
parameter X̃ fulfills

X ¼ X̃ þ mβ̃X
16π2F2

; ð22Þ

which in our case applies for X ∈ fm; g; c1; c6; c7g. For
the parameters, m and g, from Lð1Þ

πN , we get

β̃m ¼ −
3

2
g2Ā0½m2�; β̃g ¼ g3mþ ð2 − g2Þg

m
Ā0½m2�;

ð23Þ

where

Ā0½m2� ¼ −m2 log
m2

μ2
ð24Þ

is the gMS-renormalized scalar 1-point Passarino-Veltman
function with μ the renormalization scale introduced in the
dimensional regularization. For the second order LECs we
have [30]5

β̃c1 ¼
3

8
g2 þ 3g2

8m2
Ā0½m2�; β̃c6 ¼ −5g2m; β̃c7 ¼ 4g2m:

ð25Þ

Finally, the full amplitude, T , is related to the amputated
one, T̂ , via the Lehmann-Symanzik-Zimmermann (LSZ)
reduction formula [63]

T ¼ Z
1
2
πZN T̂ ; ð26Þ

where Zπ and ZN are the wave function renormalization
constants of the pion and nucleon, respectively. Their
explicit expressions are given in Appendix B.

(a) (b)

FIG. 3. Direct (a) and crossed (b) Feynman diagrams for the
reaction γN → πN0 including the Δ resonance. The labels in the
circles specify the chiral order for each vertex.

3Expressions for the less general case of the γp → pπ0 process
can be found in Ref. [44].

4In fMS,one subtractsmultiples ofR¼ γE−1=ϵUV− logð4πÞ−1,
where ϵUV ¼ ð4 − dÞ=2with d the dimension of spacetime, and γE
is the Euler constant.

(a) (b) (c) (d)

FIG. 2. Topologies of tree-level Feynman diagrams for the reaction γN → πN0. Diagrams (a)–(d) correspond to theOðpkÞ amplitudes
T ðkÞ

ðaÞ - T
ðkÞ
ðdÞ given in Appendix A.

5Note that the EOMS shifts applied to the c6 and c7 parameters
in Ref. [30] are different, since their Lagrangian has an alternative
arrangement so that: c6 ¼ 4mcF6 , c7 ¼ mðcF7 − 2cF6 Þ, where the
superscript F is just to identify the LECs in Ref. [30].
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III. FIT PROCEDURE AND ERROR ESTIMATION

A. Experimental database

We compare our theoretical model to the data in the
energy range from threshold

ffiffiffi
s

p
∼ 1080 MeV up toffiffiffi

s
p

∼ 1130 MeV. This choice guarantees that the momen-
tum of the outgoing pion is small and that we stay well below
the Δ resonance peak. We should point out that we work in
the isospin limit, both in the choice of the Lagrangian and
in the further calculation of the loops. Therefore, the
framework is not well suited for the measurements corre-
sponding to the first MeV’s above threshold, where the mass
splittings are quite relevant. We have checked, nonetheless,
that our numerical results are not modified by the inclusion
or exclusion of those data points.
The larger part of the database corresponds to the γp →

π0p process. Furthermore, the experimental errors are
relatively smaller when compared to the other channels.
As a consequence, the neutral pion production has a
preeminent weight in the fits. There have been extensive
measurements in the near threshold region [64–67], although
the largest contribution comes from the comprehensive set of
data on angular cross sections and photon asymmetries
obtained at MAMI [17].6 At the higher end of our energy
range there are a few data points measured by the LEGS
facility at the Brookhaven National Laboratory [68].
In comparison, at these energies data are scarce for

the channels with charged pions and there are very few
recent experiments on them. For the reaction γn → π−p, we
use the angular distributions and total cross sections from
Refs. [69–72]. There are no data on polarization observ-
ables. The early experiments at Frascati [69] and DESY
[70] actually measured the reaction on deuterium and then,

the cross sections on the neutron were obtained using the
spectator model. On the other hand, the experiments at
TRIUMF [71,72] correspond to the inverse reaction:
radiative pion capture on the proton. There are some later
measurements from the early 1990s, also at TRIUMF,
quoted by SAID [73], but they are unfortunately unpub-
lished. Only recently, the π− photoproduction on the
deuteron has been measured again at the MAX IV
Laboratory [74], but the neutron cross section has not
been derived yet.
There are some more data for the γp → πþn channel,

which can be measured more directly. They are mostly
angular and total cross sections but they also include some
photon asymmetries.We take the data fromRefs. [68,75–77].
In total, the database contains 957 points. For most of

them the total error estimation (statistic plus systematic) was
given in the original references. A typical 5% systematic
error has been added in quadrature for the few points where
only the statistical error was provided [69–71].

B. Low-energy constants

Most of the parameters required in the calculation are
readily available as they have been obtained in the analysis
of other processes or they are known functions of physical
quantities. The constants g, F0, m appearing in the lowest
order terms of the Lagrangian are given as a function of
their corresponding physical values in Appendix B. For the
physical magnitudes we take F ¼ 92.42 MeV, gA ¼ 1.27,
mΔ ¼ 1232 MeV and e2 ¼ 4π=137.
In Table I, we show the values of LECs obtained with the

same framework (EOMS schemeþ explicit Δ) and at the
same order [Oðp3Þ in the δ counting] as the present work.7

FIG. 4. One-loop topologies for the reaction γN → πN0 from which Feynman diagrams are generated. Solid lines indicate nucleons,
dashed lines stand for pions and the crossed-circle vertices denote the position where incoming photons can be inserted. The topologies
that lead to corrections in the external pion and nucleon legs are not shown because they are taken into account by the wave function
renormalization.

6The data from Refs. [65,66] are not unfolded from the angular
spectrometer distortion and have not been included in the fit.

7In some of the references, e.g., [78], the Δ resonance was not
explicitly included, but its contribution starts at a higher order in
the δ counting.
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Apart from them, our theoretical model depends on the
LECs d8, d9, d16, d20 and d21. In our case d16 can be
absorbed by g as shown in Appendix A.8 The remaining
four constants have been fitted to the experimental data
minimizing the χ squared.

C. Error estimation

There are two sources of uncertainties in our prediction
of any observable. First, there is the uncertainty propagated
from the statistical errors of the LECs in the fit, which we
take as

δOLECs ¼
�X

i;j
½Corrðxi; xjÞ�

∂Oðx̄iÞ
∂xi δxi

∂Oðx̄jÞ
∂xj δxj

�
1=2

;

ð27Þ

whereO refers to the observable, and the i and j indices are
labels for a given LEC xi, with x̄i and δxi its corresponding
mean and error values as obtained from the fit. Finally,
Corrði; jÞ is the ði; jÞth matrix element of the correlation
matrix.
Additionally, we consider the systematic errors due to

the truncation of the chiral series. We have used the method

from Refs. [42,82] where the uncertainty δOðnÞ
th , at order n

for any observable O is given by

δOðnÞ
th ¼ max ðjOðnLOÞjQn−nLOþ1; fjOðkÞ −OðjÞjQn−jgÞ;

nLO ≤ j ≤ k ≤ n; ð28Þ

where Q ¼ mπ=Λb, Λb is the breakdown scale of the chiral
expansion. We set Λb ¼ 4πF ∼ 1 GeV as in Ref. [79]. In
our case, the lowest order considered is nLO ¼ 1 and the
upper order calculated is n ¼ 3.

IV. RESULTS AND DISCUSSION

A. Fit with and without Δ contribution

We have fitted the free LECs of our model comparing
our calculation with the experimental database and mini-
mizing the χ squared. The results of the fit for several
different options are given in Table II. Fit I corresponds to
our full model, as described in the previous sections. The
LECs from Table I have been set to their central values
except for d18, which has been left to vary within the quoted
range, and gM that was left free. In the minimization
procedure, we have chosen the combinations d8 þ d9 and
d8 − d9 because of the strong correlation existing between

TABLE I. Values of the LECs determined from other processes.

LEC Value Source

Lð2Þ
N c̃6 5.07� 0.15 μp and μn [49,78,80]

c̃7 −2.68� 0.08 μp and μn [50,78,80]

Lð3Þ
N d18 −0.20� 0.80 GeV−2 πN scattering [27]

d22 5.20� 0.02 GeV−2 hr2AiN [79]

Lð1Þ
πNΔ hA 2.87� 0.03 Γstrong

Δ [81]

Lð2Þ
γNΔ gM 3.16� 0.16 ΓEM

Δ [48]

TABLE II. The values of the LECs are dimensionless for gM
and in units of GeV−2 for d’s. Fit I refers to the standard setting,
fit II removes Δmechanisms, fit III leaves d18 free. In fits I and II,
d18 is restricted to the 1σ range given in Table I, and therefore
shown in boldface.

LECs Fit I Fit II - =Δ Fit III

d8 þ d9 1.16� 0.01 3.53� 0.01 0.95� 0.02
d8 − d9 1.09� 0.18 5.31� 0.24 0.27� 0.18
d18 0.60 −1.00 5.69� 0.14
d20 −0.74� 0.17 −3.81� 0.19 1.87� 0.19
d21 4.32� 0.14 6.98� 0.15 4.58� 0.15
gM 2.90� 0.01 � � � 3.16� 0.02
χ2TOT=d:o:f: 3.22 29.5 1.58
χ2π0=d:o:f: 3.58 37.2 1.31
χ2πþ=d:o:f: 1.89 1.79 2.43
χ2π−=d:o:f: 1.99 1.90 2.76

FIG. 5. χ2 per d.o.f. as a function of the maximum photon
energy of the data included in the fit. Solid diamonds: full model
at order Oðp3Þ with Δ resonance, empty circles: model without
the Δ inclusion. Lines to guide the eye.

8The parameter d16 has been investigated, within the current
approach, studying the dependence on the pion mass of the
axial coupling of the nucleon in lattice data. A value of d16 ¼ð−0.83� 0.03Þ GeV−2 was obtained in Ref. [79].
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d8 and d9 which cannot be well determined independently.
Furthermore, the channel γp → π0p, with the most accu-
rate data depends just on d8 þ d9, which leads to a quite
precise value for this combination. With the current data,
we are less sensitive to d8 − d9 that would benefit from
better data on the other channels that depend only on d9
for the γp → πþn and γn → π−p cases, and on d8 − d9
for γn → π0n.
Also, the Oðp3Þ constants d20 and d21 are less con-

strained, because they only affect the channels with
charged pions. These latter channels are already relatively
well described by lower order calculations and are not
very sensitive to third order effects. Furthermore, the
uncertainties in their data are comparatively larger than
for the π0 channel. We must also recall that, in pion
photoproduction, d21 is fully correlated with d22 and only
appears in the amplitudes in the 2d21 − d22 combination.

Thus, the value shown in Table II depends straightfor-
wardly on d22.
A first remark is that gM takes a value consistent with that

obtained from the electromagnetic Δ decay width. This
clearly shows the sensitivity of the pion photoproduction to
the Δ resonance even at the low energies investigated. In
fact, removing the Δ mechanisms we get fit II, with a much
worse agreement with data. The reshuffling of the free
parameters is ineffective in describing the rapid growth
of the cross section of the π0 channel. The importance of
the resonant mechanisms can be also appreciated in Fig. 5.
The quality of the agreement decreases rapidly as a
function of the maximum photon energy of the data
included in the fit in the Δ-less case, whereas it is
practically stable for the full model. This behavior (rapid
growth of χ2 as a function of energy) can also be seen
even for Oðp4Þ covariant and HB calculations that do not

FIG. 6. Angular cross section for the γp → π0p channel at various energies. Solid line: theoretical model (fit I). Dashed line: Fit III.
Data from Ref. [17] marked as red points and from [68] as violet squares. The inner band represents the statistical errors obtained by
varying the LECs within their uncertainties (as shown in Table I) in the fit. The outer band stands for the total errors where the theoretical
uncertainties (due to the chiral truncation) are added to the statistical ones in quadrature.
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include the Δ resonance explicitly. See, e.g., Figs. 2 of
Refs. [19,45] and Fig. 1 of Ref. [18].9

Comparing the absolute values of χ2=d:o:f: (χ squared
per d.o.f.), we see that the Oðp3Þ calculation without Δ
(fit II) gives χ2=d:o:f: ¼ 29.5. This number is mostly driven
by the contribution of the γp → π0p channel (Table II),
whereas the contribution of the channels with charged
pions to χ squared is barely modified. The χ2 value is
substantially reduced with the explicit inclusion of the Δ
(fit I), still at Oðp3Þ and even when the corresponding
LECs are previously fixed. A reduction can also be
obtained without the Δ by doing an Oðp4Þ calculation
[18,19]. However, apart from requiring a number of extra

FIG. 7. Beam asymmetry for the γp → π0p channel at various energies. Data from Ref. [17] marked as red points and from [68] as a
violet square. Description same as Fig. 6.

FIG. 8. Cross section for the γp → π0p channel. Solid line:
theoretical model, circles: data from Ref. [67], triangles: data
from Ref. [83], not included in the fit. Description same as Fig. 6.

9The two figures from Refs. [18,19] only consider the π0

channel, whereas Fig. 5 includes all the channels. Still, the
comparison is fair as the χ2 is basically driven by the π0 channel
and we obtain a similar figure for that restricted case.
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parameters, in the Δ-less calculations the fit quality
diminishes rapidly as a function of the photon energy.
In Figs. 6–8, we compare the results from fit I with data

from the π0 channel. The only free third order LEC is the
d8 þ d9 combination. The agreement is overall good for
both cross section and beam asymmetries in the full range
of energies considered. Only the total cross sections

from Ref. [83] are systematically below the calculation
from 165 to 205 MeV, see Fig. 8. However, these data are
incompatible with the differential cross sections measured
at the same energies in Ref. [17]. Also, there is some
overestimation (within the error bands but systematic)
of the angular distributions at backward angles. The
uncertainties due to the truncation of the chiral expansion

FIG. 9. Angular cross section for the γp → πþn channel at various energies. Going from low to high energy, the data from Ref. [84]
are marked as red diamonds, [77] as black squares, [76] as blue triangles, [68] as violet squares. Finally, in the lowest right panel, data for
different energies from Ref. [75] are marked as magenta circles and from [65] as dark-green squares. In this latter panel the theory has
been calculated at precisely the energies and angles of the data points, and the lines and bands have been interpolated. Description same
as Fig. 8.

GUSTAVO H. GUERRERO NAVARRO et al. PHYS. REV. D 100, 094021 (2019)

094021-10



are considerable. This fact reflects the large size
of the Δ contribution and the Oðp3Þ mechanisms to this
observable.
The channel γp → πþn is sensitive to the LECs d9, d20

and d21. As shown in Figs. 9–11, the agreement is good
for the cross sections and for the few data available on
beam asymmetry. The model also agrees well with the
γn → π−p data as shown in Figs. 12 and 13. This channel
depends on the same third order LECs as the previous one.
The measurements in this channel are scarce and the
uncertainties are relatively large. However, it gets a larger
χ2 than the πþ channel. This may come from some

underestimation of the experimental uncertainties.
Actually, most of the contribution of this channel to the
χ2 comes from regions with conflicting and incompatible
measurements, such as the angular distribution at forward
angles at Eγ ¼ 211 MeV.
The combination d8 þ d9 is very precisely determined

in our fits as compared to the other third order LECs and,
in particular, to d8 − d9. Using the correlation matrix and
Eq. (27), we can estimate their individual uncertainties.
We obtain d8¼1.13�0.09GeV−2 and d9¼0.04�
0.09GeV−2 for fit I. The same values and uncertainties
are obtained using directly d8 and d9, instead of their
combinations, in the fit. These separate uncertainties
are 1 order of magnitude larger than for the d8 þ d9
combination.
We have explored the stability of the minimum of our

standard result (fit I) by removing the constraints pre-
viously imposed on d18, c6 and c7. Notice that gM was
already free, hA always appears in a combination multi-
plied by gM and d22 is fully correlated with d21. The results
are shown in the fit III of Table II. The χ2 improves
substantially, mostly due to a better agreement with
the π0 channel and, in particular, the cross section at
backward angles, Fig. 6. Notice, however, the slight
worsening of the agreement with the charged pion
channels. While this might be pointing to some issue
with the neutral pion production data at backward angles
[17], it could also be arising from the theory side, as
detailed below.
Of the now unconstrained LECs, the c6 and c7 values

remain in the range given in Table I, but d18 prefers positive
values which are not acceptable as they are hardly com-
patible with the pion nucleon coupling constant gπN [27].
We have also examined how χ2 changes when moving d18

FIG. 10. Cross section for the γp → πþn channel at various
energies. Data from Ref. [85] presented as red circles. In the same
way as in Fig. 9, data from [76] as blue triangles and [77] as black
squares. Description same as Fig. 8.

FIG. 12. Cross section for the γn → π−p channel at various
energies. Data from Ref. [86] presented as red square and data
from [87] as blue filled circles. Description same as Fig. 8.

FIG. 11. Beam asymmetry for the γp → πþn channel at Eγ ¼
212.9 MeV. Data from Ref. [68]. Description same as Fig. 8.
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across the range ½−1.0; 0.60� GeV−2 given in Table I. At
d18 ¼ −1.0 GeV−2, it goes up to χ2 ¼ 4.70.10

We have found that the value d18 changes much by
modifications such as whether the wave function renorm-
alization is applied to the full amplitude or the first order
only, and whether the physical mass or m2 [see Eq. (B4)] is
used in the loops for the nucleons. All these options amount
to Oðp4Þ variations, and the fact that the value of d18 is
strongly affected by themmay indicate the need for a higher
order calculation to reach a proper chiral convergence.
A first step would be the inclusion of Oðp7=2Þ mech-

anisms, which correspond to tree mechanisms with higher
order Δπ or Δγ coupling and a set of loop diagrams with Δ
propagators inside the loop. This approach was already
explored in Ref. [44] for the π0 channel and did not change
much the results as compared with the third order calcu-
lation, remaining consistent with the preference of large
positive d18 values.
A full Oðp4Þ calculation would incorporate further

extra terms. The fourth order Lagrangian, Lð4Þ
N , that

contributes to the process entails fifteen additional cou-
plings [45].11 We have estimated the importance of this
order by considering the tree-level amplitude generated by

Lð4Þ
N . The explicit expression can be found in Appendix C

from Ref. [45]. In particular, we have explored how d18 is
affected by the new terms and we have found that it is very
sensitive to some of the parameters, as e48, e50 or e112.

B. Convergence of the approach

In Table III, we show the χ2 results for the calculations at
different chiral orders. At the lowest order, there is no free
LEC. The amplitude only depends on physical magnitudes
such as gA, the masses, charges and the pion decay
constant. The agreement is acceptable for the pion charged
channels but quite bad for the π0 one. The reason is well
known as being due to the large cancellation between the
different pieces of the OðpÞ amplitude which leads to
small cross sections and a large sensitivity to higher
orders. The situation does not improve in a second order

FIG. 13. Angular cross section for the γn → π−p channel at various energies. Data from Ref. [88] are presented as red filled squares,
[71] marked as black triangles, [69] as blue squares, [70] as violet filled triangles and data from [72] as magenta filled diamonds.
Description same as Fig. 8.

10In fit II, it rises up to χ2 ¼ 31.7 at d18 ¼ 0.6 GeV−2.

11With the current dataset, the use of the full Lð4Þ
N Lagrangian

with fifteen extra parameters and an already small χ2 leads to
many minima and obvious overfitting.
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calculation. Again there are no free parameters. The new
tree diagrams correspond to c6 and c7 terms which are
directly connected to the magnetic moments of the neutron
and proton.12 Next, in the δ counting, comes the inclusion
of the Δ mechanisms which start contributing at Oðp5=2Þ.
Once more, there are no free constants. We already get a
much better description in the three channels. Still, the
agreement is poor for the neutral pion channel. An even
larger improvement is reached in a third order calcu-
lation, without Δ but with some extra free parameters (fit
II of Table II). At this order, the loop diagrams start
appearing. They are also important for improving the
agreement of all channels. Finally, in the last column we
show our fit I results, incorporating both Δ mechanisms
and a full third order calculation. It leads to an overall
good agreement with the data in all channels.
Altogether, the Δ mechanisms and the third order

contributions play a capital role in reaching a good
description of the pion photoproduction process. This is
especially the case for neutral pion photoproduction, but
also the charged pion production channels feel the improve-
ment. We remark here that these effects also play a
significant role in weak pion production [49,50].

V. SUMMARY

In this work, we have investigated pion photoproduction
on the nucleon close to threshold in covariant ChPT,

following the EOMS renormalization scheme. Our
approach includes explicitly the Δð1232Þ resonance mech-
anisms. We have made a full calculation up through Oðp3Þ
in the δ counting.
The model reproduces well the total cross section,

angular distributions and polarization observables for all
the channels. The agreement is better, and for a wider range
of energies, than in the Oðp4Þ calculations in both,
covariant [19] and HB [18] schemes, without explicit Δ.
As in their case, our model without Δ only reproduces the
data very close to threshold. This shows that the Δ
resonance is instrumental in reproducing the energy
dependence of the various observables. We should remark
here that the Δ couplings are strongly constrained from its
strong and electromagnetic widths.
With the simultaneous incorporation of all pion photo-

production channels, our fit constrains some unknown
Oðp3Þ LECs. Of these, the combination d8 þ d9 is the
most precisely determined due to the high quality of the
γp → pπ0 data. The constants d20, d21 or d9 separated from
d8, which only appear in the other channels involving
charged pions, are not so well determined because data are
scarce and typically with large uncertainties. New mea-
surements on the γp → nπ−, γn → pπ− or the reverse
nπ− → γp processes would be useful to better pin down
the values of these LECs. Finally, the extension to the
description of electro- and weak production data will
advance these studies even further, while offering the
possibility of making reliable and accurate predictions
for weak processes where data are more scarce.
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APPENDIX A: AMPLITUDES

1. Representations of the invariant amplitude

We write the scattering amplitude T as

T ¼ ūðp0Þ½aNq · ϵVN þ aEVE þ aKq · ϵVK

þ aEKVEK�uðpÞ; ðA1Þ

TABLE III. LECs and χ2 for calculations at different chiral
orders. Bold numbers are fixed and depend only on physical
quantities such as gA, the proton and neutron magnetic moment
and the Δ decay width. Thus, they are not fitted to the pion
photoproduction process.

LECs Oðp1Þ Oðp2Þ Oðp5=2Þ Oðp3Þ, Fit I
g 1.27 1.27 1.27 1.11
c6 � � � 3.706 3.706 5.07
c7 � � � −1.913 −1.913 −2.68
d18 � � � � � � � � � 0.60
d22 � � � � � � � � � 5.20
d8 þ d9 � � � � � � � � � 1.16� 0.01
d8 − d9 � � � � � � � � � 1.09� 0.18
d20 � � � � � � � � � −0.74� 0.17
d21 � � � � � � � � � 4.32� 0.14
hA � � � � � � 2.87 2.87
gM � � � � � � 3.16 2.90� 0.01
χ2TOT=d:o:f: 165 310 60.7 3.22
χ2π0=d:o:f: 208 392 76.6 3.58
χ2πþ=d:o:f: 10.7 9.15 2.88 1.89
χ2π−=d:o:f: 5.73 6.29 2.33 1.99

12Actually, the cross sections are slightly better described, but
there are strong disagreements with the beam asymmetry of the
π0 channel.
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where uðpÞ and ūðp0Þ ¼ u†ðp0Þγ0 are the Dirac spinors
corresponding to the initial and final nucleon states
respectively, ϵ is the photon polarization vector, and q is
the 4-momentum of the outgoing pion, the coefficients aN ,
aE, aK and aEK are complex functions of the Mandelstam
variables, while there are four operators defined as

VN ¼ γ5; VE ¼ =ϵγ5; VK ¼ =kγ5; VEK ¼ =ϵ=kγ5;

ðA2Þ

where k is the photon 4-momentum. There is another
representation, commonly used, in terms of Lorentz invari-
ant operators, Mi, where the scattering amplitude reads

T ¼ ϵμMμ ¼ ϵμūðp0Þ
�X4

i¼1

AiM
μ
i

�
uðpÞ; ðA3Þ

with Mμ the factorized hadronic current and

ϵ ·M1 ¼ i=k=ϵγ5;

ϵ ·M2 ¼ iðp0 · ϵk · q − q · ϵk · ðpþ p0ÞÞγ5;
ϵ ·M3 ¼ ið=ϵk · q − =kq · ϵÞγ5;
ϵ ·M4 ¼ ið=ϵk · ðpþ p0Þ − =kp0 · ϵ − 2mN=k=ϵÞγ5:

Note that in the c.m. system p · ϵ ¼ 0. One can easily find
the conversion between the two different representations:

A1 ¼ i

�
aEK −

mN

k · p
ðaE þ k · qaKÞ

�
; ðA4Þ

A2 ¼ i
aN

2k · p
; ðA5Þ

A3 ¼ i

�
aK

�
1 −

k · q
2k · p

�
−

aE
2k · p

�
; ðA6Þ

A4 ¼ −
i

2k · p
ðaE þ k · qaKÞ: ðA7Þ

For practical purposes, as explained in Sec. II A, it is
sometimes convenient to use the CGLN amplitudes [55]. In
this way the scattering amplitude from Eq. (2) reads

T ¼ 4πW
mN

χ†fFχi;

where W ¼ ffiffiffi
s

p
is the center-of-mass energy, and the

amplitude F can be expressed as the decomposition of
the F i (i ¼ 1;…; 4) pieces as shown in Eq. (3). These
pieces are given explicitly by

F 1 ¼ −i
N1N2

8πW
ðW −mNÞ

�
A1 þ

k · q
W −mN

A3

þ
�
W −mN −

k · q
W −mN

�
A4

�
; ðA8Þ

F 2 ¼ −i
jq⃗�jN1N2

8πWðE2 þmNÞ
ðW −mNÞ

�
A3k · q
mN þW

þ A4

�
−

k · q
mN þW

þmN þW

�
− A1

�
; ðA9Þ

F 3 ¼ −i
jq⃗�jN1N2

8πW
ðW −mNÞðA2ðW −mNÞ þ A3 − A4Þ;

ðA10Þ

F 4 ¼ −i
jq⃗�j2N1N2

8πWðE2 þmNÞ
ðW −mNÞð−A2ðmN þWÞ

þ A3 − A4Þ; ðA11Þ

with Ni¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mNþEi

p
, E1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Nþjp⃗j2
p

, E2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Nþjq⃗j2
p

;
jp⃗j and jq⃗j are evaluated in the c.m. system. Ai are the
coefficients of the scattering amplitude in the Lorentz
invariant basis, fMig as in Eq. (A3). Having the explicit
expressions of Ai in terms of the coefficients aN , aE, aK
and aEK through the relations (A4)–(A11), we are able to
compute the observables as presented in Eqs. (4), (7) and
(9) from the amplitude parametrized in the fVN; VE;
VK; VEKg basis of Eq. (A2). We write down the tree-level
amplitudes in this basis in the following, Sec. A 2.

2. Tree-level amplitude

a. At Oðp1Þ

T ð1Þ
ðaÞ ¼ Cð1Þ

I
eg
F0

VE; ðA12Þ

T ð1Þ
ðbÞ ¼Cð1Þ

II
eg
F0

�ðs−m2
NÞ

ðm2
2−sÞ VEþ

ðmN þm2Þ
ðm2

2− sÞ VEK

�
; ðA13Þ

T ð1Þ
ðcÞ ¼ Cð1Þ

III
eg
F0

�ðm2
N − uÞ

ðm2
2 − uÞ VE

þ 2ðmN þm2Þ
ðm2

2 − uÞ q · ϵVN þ ðmN þm2Þ
ðm2

2 − uÞ VEK

�
;

ðA14Þ

T ð1Þ
ðdÞ ¼ Cð1Þ

IV
2

ffiffiffi
2

p
egmN

F0ð−2m2
N þ sþ uÞ q · ϵVN; ðA15Þ

where the coefficientsCð1Þ
i for i ¼ fI; II; III; IVg are given

in Table IV and u≡ ðp − qÞ2. Here mN is the physical
nucleon mass coming from the external legs in the Feynman
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diagrams of Fig. 2, that in our case corresponds to the order
Oðp3Þ nucleon mass, whose expression is derived in
Eq. (B3). The inner nucleon propagator has the second
order nucleon mass m2 instead of m. This automatically
generates the Oðp2Þ and higher order contributions corre-
sponding to c1 mass insertions.

b. At Oðp2Þ
In what follows, for the amplitudes of order Oðp2Þ and

higher, the leading order bare constants, e.g., m, can be
replaced by their corresponding physical ones since the dif-
ference is of higher order than our current accuracy [Oðp3Þ].
This replacement is actually made in our calculation:

T ð2Þ
ðbÞ ¼ Cð2Þ

II
egA
F

� ð3m2 þ sÞ
2mðm2 − sÞVEK − VE

�
; ðA16Þ

T ð2Þ
ðcÞ ¼ Cð2Þ

III
egA
F

�
2

ðm2 − uÞ q · ϵVK

þ ð3m2 þ uÞ
2mðm2 − uÞVEK þ VE

�
: ðA17Þ

Thedefinitions for the constantsCð2Þ
II andCð2Þ

III are presented in
Table V.

c. At Oðp3Þ

T ð3Þ
ðaÞ ¼ Cð3Þ

Ia
e
F

�
2ð2m2 −m2

π þ sþ uÞ
m

VEK þ 2ðs −m2Þ
m

q · ϵVN þ 4q · ϵVK þ 2ðs − uÞVE

�

þ Cð3Þ
Ib

e
F

��
m2

πð2m2 − s − uÞ þ 2ðm2 − sÞðm2 − uÞ
4

ffiffiffi
2

p
m2

d20 þ
ð2m2 − s − uÞd212 − 4m2

πd168
2

ffiffiffi
2

p
�
VE

þ
�ðm2 þm2

π − sÞ
2

ffiffiffi
2

p
m2

d20 þ
d212ffiffiffi
2

p
�
q · ϵVK

�
; ðA18Þ

T ð3Þ
ðbÞ ¼ Cð3Þ

II
e
F
d168

�
2mm2

π

m2 − s
VEK −m2

πVE

�
; ðA19Þ

T ð3Þ
ðcÞ ¼ Cð3Þ

III
e
F
d168

�
4mm2

π

m2 − u
q · ϵVN þ 2mm2

π

m2 − u
VEK þm2

πVE

�
; ðA20Þ

T ð3Þ
ðdÞ ¼ Cð3Þ

IV
e
F
d168

4
ffiffiffi
2

p
mm2

π

ð2m2 − s − uÞ q · ϵVN; ðA21Þ

where d168 ¼ 2d16 − d18 and d212 ¼ 2d21 − d22. The coefficients C
ð3Þ
j for j ¼ fIa; Ib; II; III; IVg are given in Table VI.

TABLE IV. Tree-level amplitude constants for each channel at
order Oðq1Þ.
Channel Cð1Þ

I Cð1Þ
II Cð1Þ

III Cð1Þ
IV

γp → pπ0 0 1
2

1
2

0

γp → nπþ 1ffiffi
2

p 1ffiffi
2

p 0 −1
γn → pπ− − 1ffiffi

2
p 0 1ffiffi

2
p 1

γn → nπ0 0 0 0 0

TABLE V. Tree-level amplitude constants for each channel at
order Oðq2Þ.
Channel Cð2Þ

I Cð2Þ
II Cð2Þ

III Cð2Þ
IV

γp → pπ0 0 1
2
ðc6 þ c7Þ 1

2
ðc6 þ c7Þ 0

γp → nπþ 0 1ffiffi
2

p ðc6 þ c7Þ 1ffiffi
2

p c7 0

γn → pπ− 0 1ffiffi
2

p c7 1ffiffi
2

p ðc6 þ c7Þ 0

γn → nπ0 0 − 1
2
c7 − 1

2
c7 0
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d. At Oðp5=2Þ
For the following amplitudes the definitions of the constants DII and DIII are given in Table VII

T ð5=2Þ
ðaÞ ¼ DII

egMhA
4FmmΔðmþmΔÞ

� ðm2 − sÞðmmΔ þ sÞ
ð−iΓΔðsÞmΔ þm2

Δ − sÞ q · ϵVN −
ðm2mΔ þ 2msþmΔsÞ
ð−iΓΔðsÞmΔ þm2

Δ − sÞ q · ϵVK

þ ðm4 − 8m3mΔ −m2ðm2
π þ 6sÞ þ 4mmΔðm2

π − 2sÞ þ sð5m2
π − 5s − 6uÞÞ

6ð−iΓΔðsÞmΔ þm2
Δ − sÞ VEK

þ ð−m5 þ 3m4mΔ þm3ðm2
π − 2sÞ þm2mΔðm2

π − 10sÞ −msðm2
π þ 3s − 6uÞ þmΔsð−m2

π þ sþ 6uÞÞ
6ð−iΓΔðsÞmΔ þm2

Δ − sÞ VE

�
;

ðA22Þ

T ð5=2Þ
ðbÞ ¼ DIII

egMhA
4FmmΔðmþmΔÞ

�
−
ðm2 − sÞðmmΔ þ uÞ

ðm2
Δ − uÞ q · ϵVN

þ ð−m3 þ 6m2mΔ þmðm2
π þ 3uÞ þmΔðm2

π − 3s − uÞÞ
3ðm2

Δ − uÞ q · ϵVK

þ ð−m4 þ 8m3mΔ þm2ðm2
π þ 6uÞ − 4mmΔðm2

π − 2uÞ þ uð−5m2
π þ 6sþ 5uÞÞ

6ðm2
Δ − uÞ VEK

þ ð−m5 þ 3m4mΔ þm3ðm2
π − 2uÞ þm2mΔðm2

π − 10uÞ −muðm2
π − 6sþ 3uÞ þmΔuð−m2

π þ 6sþ uÞÞ
6ðm2

Δ − uÞ VE

�
;

ðA23Þ

where the energy dependent width, ΓΔðsÞ, is given by [89]

ΓΔðsÞ ¼
ðhA=2Þ2Λ3=2ðs;m2

π; m2Þ
192πF2s3

× ½ðs −m2
π þm2ÞmΔ þ 2sm�θðs − ðmþmπÞ2Þ;

ðA24Þ

using θðxÞ as the step function ensuring the dependence to
be above the threshold of pion production on nucleons.

APPENDIX B: RENORMALIZATION FACTORS

The wave function renormalization of the external legs is
written as

ZN ¼ 1þ δð2ÞZN
þOðp3Þ; Zð2Þ

π ¼ 1þ δð2ÞZπ
þOðp3Þ;

ðB1Þ

where

δð2ÞZN
¼ −

3g2A
64π2F2ðm2

π − 4m2Þ
× f4m2

πðA0½m2� þ ðm2
π − 3m2ÞB0½m2; m2

π; m2� −m2Þ
þ ð12m2 − 5m2

πÞA0½m2
π�g;

δð2ÞZπ
¼ −

2

3F2

�
3l4m2

π þ
A0½m2

π�
16π2

�
: ðB2Þ

Furthermore, the mass corrections are given by

mN ¼ m̃ − 4c̃1m2
π þ δð3Þm þOðp4Þ; ðB3Þ

m2 ¼ m̃ − 4c̃1m2
π ¼ mN − δð3Þm þOðp4Þ; ðB4Þ

TABLE VI. Tree-level amplitude constants for each channel at
order Oðq3Þ.
Channel Cð3Þ

Ia Cð3Þ
Ib Cð3Þ

II Cð3Þ
III Cð3Þ

IV

γp → pπ0 d8 þ d9 0 1 1 0
γp → nπþ

ffiffiffi
2

p
d9 −1

ffiffiffi
2

p
0 1

γn → pπ−
ffiffiffi
2

p
d9 1 0

ffiffiffi
2

p
−1

γn → nπ0 d8 − d9 0 0 0 0

TABLE VII. Tree-level amplitude constants for each channel at
order Oðq5=2Þ.
Channel DII DIII

γp → pπ0 1 −1
γp → nπþ −1ffiffi

2
p −1ffiffi

2
p

γn → pπ− 1ffiffi
2

p 1ffiffi
2

p

γn → nπ0 1 −1
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with

δð3Þm ¼ 3g2Amm2
π

32π2F2

�
B̄0½m2; m2

π; m2� −
�
1þ Ā0½m2�

m2

��
:

ðB5Þ

Finally, the corrections to the axial vector coupling and the
pion decay constant read

gA ¼ g̃

�
1þ 4dr16m

2
π

gA
þ δð2ÞgA

�
þOðp3Þ;

F ¼ F0ð1þ δð2ÞF Þ þOðp3Þ; ðB6Þ

where

δð2ÞgA ¼ 1

16π2F2ð4m2 −m2
πÞ
f4g2Am2

πĀ0½m2�

þ ðð8g2A þ 4Þm2 − ð4g2A þ 1Þm2
πÞĀ0½m2

π�
þm2

πððð3g2A þ 2Þm2
π − 8ðg2A þ 1Þm2ÞB̄0½m2; m2

π; m2�
− 4g2Am

2Þg;

δð2ÞF ¼ lr4m
2
π

F2
þ Ā0½m2

π�
16π2F2

: ðB7Þ

Note here that lr4 and dr16 are gMS-renormalized LECs.
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