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We employ a new self-consistent mean field approximation of the Nambu-Jona-Lasinio (NJL) model,
which introduces a free parameter α (α reflects the weight of different interaction channels), to study the
effects of the chiral chemical potential μ5 on QCD phase structure, especially the location of the QCD
critical endpoint (CEP). We find that, at a high temperature, the critical temperature of QCD phase
transition smoothly increases with μ5 at the beginning, and then decreases rapidly. At low temperature and
high baryon density region, the increase of the chiral chemical potential will reduce the critical chemical
potential of phase transition. The temperature of the CEP shows a nonmonotonic dependence on the chiral
chemical potential with a long plateau around the maximum. At μ5 ¼ 0, we found that the CEP will
disappear when the α value is larger than 0.71 and will reappear when the μ5 increases. This study is
important for exploring the QCD phase structure and the location of CEP in chiral imbalanced systems.
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I. INTRODUCTION

As a fundamental theory of strong interaction, quantum
chromodynamics (QCD) plays an important role in the
Standard Model. At the low energy scale, the most
prominent features of the QCD vacuum are color confine-
ment and spontaneously chiral symmetry broken. As the
temperature and baryon chemical potential increase, the
QCD matter will undergo a phase transition from hadronic
phase to quark-gluon plasma (QGP), which is a deconfined
and approximate chiral symmetric state [1–4]. The QGP is
expected to exist in the early universe and can be created in
relativistic heavy-ion collisions.
Because of the non-Abelian feature of the QCD gauge

group, the vacuum has many topological structures. Each
of the vacuum states can be characterized by an integer
number called Chern-Simons charge [5–7]. In the domain
of nonperturbative QCD, the instantons and sphalerons
with wind number Qw ≠ 0 could change the topological
structure of the vacuum [6,8]. Because of the high potential
barrier of scale ΛQCD between the two different vacuum
states, at the low temperature, the transition between them
relies on the instantons tunneling [8]. Therefore the
transition rate is largely limited. When the temperature

reaches the scale ΛQCD of the QGP phase, the sphalerons
can leap over the barrier, which will lead to the significant
increasing of the transition rate [9–12]. When the quarks
interact with these topological gauge fields, the helicities of
the quarks will change, which results in the chiral imbal-
ance between left- and right-hand quarks [13,14]:

NL − NR ¼ 2NfQw: ð1Þ

This chiral imbalance would lead to a local P and CP
violation [15–17]. Because of the higher temperature and
the approximation chiral restoration of the QGP phase, the
chiral imbalance is more obvious there. In the case of the
strong magnetic field, the right- and left-hand quarks move
in different directions along the magnetic field, and the
chiral imbalance would result in the observable effects in
experiment [18–20].
Due to the complexity and nonperturbative feature of

QCD, it is a big challenge to map out the QCD phase
structure. The first principle lattice QCD calculation has
confirmed that the nature of the QCD phase transition at
zero baryon chemical potential is a smooth crossover [21].
In the case of finite baryon chemical potential μB, the lattice
QCD meets the sign problem. Thus, there are still large
uncertainties in determining the QCD phases structure at
high baryon density region from theoretical side.
Experimentally, relativistic heavy-ion collisions can

create extreme environment and provide us a useful tool
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to study the phase structure of hot dense nuclear matter in a
controllable way. By tuning the colliding energies, one can
scan the QCD phase diagram and search for the possible
signatures of QCD critical point and/or first order phase
transition [22–25]. It is the main goal of the Beam Energy
Scan program (BES) program (BES-I&II: 2010-2021)
conducted at Relativistic Heavy-Ion Collider (RHIC). At
the beginning of the noncentral heavy-ion collisions, a
strong magnetic field of 1014 Tesla will be generated
[16,26]. Considering the chiral imbalance of the QGP, it
will result in an observable electric current along the
magnetic field direction. This phenomenon is called chiral
magnetic effect (CME) [20,27,28]. The observation of
CME can be seen as evidence for the local CP violation
and the existence of nontrivial gauge configurations.
Therefore, in order to better understand the relativistic
heavy-ion collision experiment, it is important for us to
study the influence of the chiral imbalance on the strong
interaction phase diagram.
In order to investigate the system where right- and left-

hand quark are asymmetric, we can introduce the chiral
chemical potential μ5 [20,29] which connects to the chiral
number density n5 ¼ nR − nL. Just as the chemical poten-
tial μ can reflect the density of the quark, we introduce the
chiral chemical potential to denote the imbalance between
the right- and left-hand quarks. Since the real state of QGP
is chiral imbalanced, we need to consider the influence of
μ5 when we study the phase transition of the strong
interaction. In previous works, people have studied the
effects of μ5 on the phase transition and critical end-
point (CEP) with the Polyakov-loop extended Nambu-
Jona-Lasinio (PNJL) model [29–32], Dyson-Schwinger
equation [31,33–35], and quark-meson model [29] among
others.
The standard Lagrangian of NJL model contains scalar

ðψ̄ψÞ2 and pseudoscalar-isovector ðψ̄ iγ5τψÞ2 channels. We
can produce not only scalar ðψ̄ψÞ2 and pseudoscalar-
isovector ðψ̄iγ5τψÞ2 through standard Fierz transforma-
tions, but also generate other interaction channels. These
interaction channels will play an important role in the case
of specific background fields. For example, in the Walecka
model [36], the vector channel ðψ̄γμψÞ2 contribution is
important at finite density. In the same way as the case
for the finite density, we cannot neglect the contribution of
the axial-vector channel ðψ̄iγ5γμψÞ2 when we study the
chiral imbalanced system. In previous NJL model analyses,
people usually ignore the various channel contributions from
the Fierz-transformed term or manually add the relevant
terms. As shown below, the above mean field approximation
approach for adding with finite chemical potential μ and
chiral chemical potential is not self-consistent. In this paper,
we employ a new self-consistent mean field approximation
[37,38] of NJL model to study the phase transition at
nonzero chiral chemical potential and chemical potential.
This model introduces a new free parameter α to reflect the

proportion of the different channel contributions from the
Fierz-transformed term and will lead to some new results.
In Sec. II, we will introduce the new self-consistent mean
field approximation in the case of the chiral chemical
potential and get the self-consistent gap equations. In
Sec. III, we discuss the effects of chiral chemical potential
on phase diagram and CEP with different α. Finally, we will
make a summary in Sec. IV.

II. THE NEW SELF-CONSISTENT MEAN FIELD
APPROXIMATION OF NJL MODEL

The standard two-flavor NJL Lagrangian with interac-
tion term in the scalar and pseudoscalar-isovector channel
is given by:

LNJL ¼ ψ̄ði=∂ −m0Þψ þG½ðψ̄ψÞ2 þ ðψ̄ iγ5τψÞ2�; ð2Þ

where m0 is the current quark mass and ψ ¼ ð u d ÞT
represents the quark fields. We can perform the Fierz
transformation on the four-Fermion interaction terms:

LIF ¼ G
8Nc

½2ðψ̄ψÞ2 þ 2ðψ̄iγ5τψÞ2 − 2ðψ̄τψÞ2 − 2ðψ̄iγ5ψÞ2

− 4ðψ̄γμψÞ2 − 4ðψ̄iγμγ5ψÞ2
þ ðψ̄σμνψÞ2 − ðψ̄σμντψÞ2�; ð3Þ

where Nc is the number of colors. Then the Lagrangian
becomes

LF ¼ ψ̄ði=∂ −m0Þψ þ LIF: ð4Þ

The Fierz transformation is a mathematical identity trans-
formation, which relates the exchange and direct terms to
each other. It is a very useful approach for us to understand
clearly what this interaction is made of. And we can use
Fierz transformation to derive a more general interac-
tion term.
Although the original Lagrangian LNJL and the Fierz-

transformed Lagrangian LF are identical, their contribu-
tions are no longer equivalent when we apply the mean
field approximation. Especially in the case of an external
field, the results yielded by LNJL and LF are quite different
[39]. It means that it is important for us to know exactly the
proportion of their contributions when we use the mean
field approximation. The Ref. [39] employs the Lagrangian
1
2
ðLNJL þ LFÞ, which is invariant under Fierz transforma-

tion. Therefore, the Hartree and Fock contributions of
this Lagrangian are equal to each other. In fact, as the
Refs. [37,38] show, there is no physical requirement under
the mean field approximation to ensure that Hartree and
Fock contributions should be equal.
Considering the LNJL and LF are mathematically equiv-

alent, we employ the most general Lagrangian introduced
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by Refs. [37,38] in this paper. The Lagrangian of the new
self-consistent mean field approximation is

LR ¼ ð1 − αÞLNJL þ αLF; ð5Þ
where the parameter α is an arbitrary c-number, which can
be determined experimentally. As the LNJL and LF are
equivalent, the Lagrangian does not change with α. But in
the case of finite chemical potential, which can be regarded
as the background vector field, we will get very different
results from different α [37,38].
In order to study the effects of chiral imbalance between

right-hand and left-hand quarks, we should add to the
Lagrangian the following term [20,30]:

μ5ψ̄γ
0γ5ψ ; ð6Þ

where μ5 is the chiral chemical potential coupling to the
chiral density operator ψ̄γ0γ5ψ ¼ ψ†

RψR − ψ†
LψL. In this

paper, we will discuss the effects of chiral chemical
potential on phase transition at finite chemical potential.
Therefore we have to employ the grand-canonical ensem-
ble. The partition function is

Z ¼ Tre−βðH−μNÞ: ð7Þ
In term of the Lagrangian, we can introduce the quark
number density operator ψ̄γ0ψ to it. Then the Lagrangian
becomes

L ¼ ð1 − αÞLNJL þ αLF þ μ5ψ̄γ
0γ5ψ þ μψ̄γ0ψ : ð8Þ

In this paper, we only care about the scalar, vector, and
axial-vector channels contribution. Other terms have no
effect on our studies at the level of mean field approxi-
mation. Applying the mean field approximation to this
Lagrangian and dropping the irrelevant terms, we get the
effective Lagrangian

Leff ¼ ψ̄ði=∂ −Mþ μ0γ0 þ μ05γ
0γ5Þψ −G

�
1− αþ α

4Nc

�
σ2

þ αG
2Nc

n2 −
αG
2Nc

n25; ð9Þ

where M is often called “constituent quark mass”:

M ¼ m0 − 2G

�
1 − αþ α

4Nc

�
σ; ð10Þ

and

μ0 ¼ μ −
αG
Nc

n; ð11Þ

μ05 ¼ μ5 þ
αG
Nc

n5: ð12Þ

The quark condensation σ ¼ hψ̄ψi, the quark number
density n ¼ hψ†ψi, and the chiral number density n5 ¼
hψ†γ5ψi can be determined in a thermodynamically self-
consistent way. The path integral representation of the
partition function is

Z ¼
Z
perodic

Dψ̄Dψ exp

�Z
β

0

dτ
Z

d3xLeff

�
: ð13Þ

And we can use the method introduced in the Ref. [40] to
get the mean-field thermodynamic potential density

Ω ¼ −
T
V
lnZ

¼ G

�
1 − αþ α

4Nc

�
σ2 −

αG
2Nc

n2 þ αG
2Nc

n25 þΩM; ð14Þ

where ΩM is expressed as

ΩM ¼ −
NcNf

2π2
X
s¼�1

Z
Λ

0

p2fωs þ T ln½1þ e−βðωsþμ0Þ�

þT ln½1þ e−βðωs−μ0Þ�gdp; ð15Þ

here Nc ¼ 3 and Nf ¼ 2 are respectively color number
and flavor number, the pole ωs of the quark propagator is
given by

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ ðμ05 − sjpjÞ2

q
ð16Þ

and the index s ¼ �1 is the sign of the helicity. In order to
obtain the self-consistent equations of the thermodynamic
equilibrium state, we have to find the minima of the
thermodynamic potential density. Given the constraint
conditions δΩ

δσ ¼ 0, δΩ
δn ¼ 0 and δΩ

δn5
¼ 0 of the minima, we

can get the quark condensation:

σ ¼ ∂ΩM

∂M
¼ −M

NcNf

2π2
X
s¼�1

Z
Λ

0

p2

ωs
½1 − fþs ðp; μ0; μ05; TÞ

− f−s ðp; μ0; μ05; TÞ�dp; ð17Þ

the quark number density:

n ¼ −
∂ΩM

∂μ0
¼ NcNf

2π2
X
s¼�1

Z
Λ

0

p2½f−s ðp; μ0; μ05; TÞ

− fþs ðp; μ0; μ05; TÞ�dp; ð18Þ

and the chiral number density:
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n5 ¼ −
∂ΩM

∂μ05
¼ NcNf

2π2
X
s¼�1

Z
Λ

0

p2
μ05 − sp

ωs
½1 − f−s ðp; μ0; μ05; TÞ

− fþs ðp; μ0; μ05; TÞ�dp; ð19Þ

where f�s is the Fermi-Dirac distribution represented as

f�s ðp; μ0; μ05; TÞ ¼
1

1þ eβðωs�μ0Þ : ð20Þ

Finally, plugging the Eqs. (17)–(19) into the Eqs. (10)–
(12), we will obtain the self-consistent gap equations in the
case of finite μ and μ5.
In order to fit the experimental results (the pion mass

mπ ¼ 138 MeV, decay constant fπ ¼ 93 MeV and quark
condensate per flavor hψ̄ψi ¼ −ð250 MeVÞ3), which are
obtained at T ¼ 0, μ ¼ 0, and μ5 ¼ 0, we must redefine the
coupling constant G of this new self-consistent method as

G ¼
1þ 1

4Nc

1 − αþ α
4Nc

g; ð21Þ

where g ¼ 5.074 × 10−6 MeV−2 is the coupling constant
of the conventional mean field approximation of NJL
model [41]. The remaining parameters are the cutoff Λ ¼
631 MeV and the current quark mass m0 ¼ 5.5 MeV [41].
As indicated in Refs. [37,38], α cannot be given in advance
by the mean field theory, it must be determined by a finite
density experiment. For example, it can be determined by
astronomical observation data on the latest neutron star
merger [38]. In this paper, we consider α as a free parameter
to see the effect of chiral chemical potential μ5 on QCD
phase structure under different α values.

III. NUMERICAL CALCULATIONS
AND ANALYSIS

First, we consider the condition of α ¼ 0.5. We solve the
gap equations Eqs. (10)–(12) numerically and obtain the
phase diagram Fig. 1 on the μ − T plane with different μ5.

1

As we can see, the chiral chemical potential μ5 could reduce
the critical chemical potential μc of phase transition at a
low temperature. When the chiral chemical potential is
zero, the critical endpoint (CEP) locates at ðμ; TÞCEP ¼
ð340.1; 44Þ MeV which is quite different with the result
(160,165) MeVof Ref. [29]. The change of CEP with μ5 is
similar to the Ref. [42], in which the vector interaction is
not involved. The temperature of CEP increases with the
chiral chemical potential up to a maximum of TCEP

max ¼

96 MeV, and afterwards it decreases. The chemical poten-
tial of CEP always decreases with increasing μ5. When the
temperature is higher than TCEP

max , the phase transition is
crossover with all μ5.
The phase diagram of α ¼ 0.8 at different chiral chemi-

cal potential is shown in Fig. 2. When μ5 ¼ 0, the phase
transition is crossover at zero temperature and there is
no CEP on the phase diagram. As stated in the Ref. [37],
when α is greater than the critical value 0.71, there is
no CEP with μ5 ¼ 0. As the chiral chemical potential
increases, there is not CEP until μ5 ¼ 54 MeV. When
μ5 ¼ 54 MeV, at zero temperature, the phase transition is
no longer crossover but a first-order phase transition and
the CEP appears at ðμ; TÞCEP ≈ ð359.2; 0Þ MeV. The tem-
perature of CEP increases at first. After reaching the
maximum TCEP

max ≈ 69 MeV, it decreases.

FIG. 1. The phase diagram of α ¼ 0.5. The solid lines and the
dotted lines respectively represent the first-order phase transition
and crossover at the corresponding μ5. The stars denote the CEPs.
The difference in μ5 between each star is 50 MeV.

FIG. 2. The phase diagram of α ¼ 0.8. The solid lines and the
dotted lines respectively represent the first-order phase transition
and crossover at the corresponding μ5. The stars denote the CEPs.
The difference in μ5 between each star is 50 MeV.

1Given that we use the 3-momentum hard cutoff regularization
scheme in this paper, T, μ and μ5 are limited by the cutoff Λ. It is
sensible to keep the values of T, μ, μ5 lower than 500 MeV.
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Similar results appear for other values of α greater
than 0.71. We can see from the phase diagram Fig. 3 of
α ¼ 0.9 that the phase diagram does not have CEP with
μ5 ¼ 0. When the chiral chemical potential increases to the
critical value 90 MeV, the CEP appears on the μ axis at
μ ¼ 351.3 MeV. We display the critical temperature Tc of
phase transition at μ ¼ 0 as a function of μ5 for all the
presented values of α in Fig. 4. As we can see, at a high
temperature, as the chiral chemical potential rises, the
critical temperature Tc of phase transition increases slowly
at the beginning, and then decreases quickly. The projec-
tion of CEPs onto μ5 − μ plane is plotted in Fig. 5.
When α ¼ 0.9, as the chiral chemical potential grows,
the chemical potential of CEP decreases when μ5 <
360 MeV but increases when μ5 > 360 MeV. The mini-
mum of the chemical potential of CEP is μCEPmin ¼
252.1 MeV. It means that the phase transition is totally

crossover and there is no CEP on μ5 − T plane when
μ < 252.1 MeV. This result contradicts the calculation of
PNJL model [29], which predicts that the CEP can
consecutively move to the CEP5 (the CEP in μ5 − T plane
at μ ¼ 0). The projection of CEPs onto the μ5 − T plane is
plotted in Fig. 6. It shows us that, when α ¼ 0.9, the CEP
appears at μ5 ≈ 90 MeV and vanishes at μ5 ≈ 396 MeV.
That is to say the phase transition is crossover when
μ5 < 90 MeV or μ5 > 396 MeV. There are two peaks of
temperature at μ5 ≈ 160 MeV and μ5 ≈ 270 MeV. And the
maximum temperature of CEP is TCEP

max ≈ 49 MeV at
μ5 ≈ 270 MeV. This result indicates that, if the temperature
is higher than TCEP

max , the phase transition must be crossover.
With different α, phase diagram changes with μ5 in a

similar way. As shown in Fig. 4, at a high temperature, the
chiral chemical potential will raise the critical temperature
Tc of phase transition at first, but when μ5 > 200 MeV, Tc
will quickly decrease. Under the condition of low temper-
ature and high density, the chiral chemical potential will
lower the critical chemical potential μc of phase transition.
As we can see in Fig. 6, the temperature of CEP increases

FIG. 3. The phase diagram of α ¼ 0.9. The stars denote the
projection of CEPs onto μ − T plane. The solid lines and the
dotted lines respectively represent the first-order phase transition
and crossover at the corresponding μ5.

FIG. 4. The critical temperature Tc of phase transition changes
with μ5 at μ ¼ 0 for different α.

FIG. 5. The projection of CEPs onto μ5 − μ plane for different α.

FIG. 6. The projection of CEPs onto μ5 − T plane for different α.
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with μ5 growing at first, undergoes a long plateau around
the maximum and then decreases. When α > 0.71, there is
no CEP with μ5 ¼ 0. As the chiral chemical potential
increases, the CEP reappears. What needs to be pointed out
here is that as far as we know, this is a completely new
result and we have never seen a similar report before.

IV. CONCLUSION

In this paper, we employed the new self-consistent mean
field approximation to study the QCD phase diagram in the
case of chiral imbalance. Our results show that, at high
temperature, the critical temperature Tc of phase transition
rises slowly with increasing the chiral chemical potential,
but when μ5 > 200 MeV, Tc will decrease rapidly. This
result is consistent with the Ref. [43], which uses three
different regularization schemes to study the effects of
chiral chemical potential. In relativistic heavy-ion colli-
sions, the chiral chemical potential is estimated to be about
10–100 MeV [44–46]. As shown in Fig. 4, within this
range, the chiral chemical potential will raise the critical
temperature Tc slowly. At the low temperature, as the chiral
chemical potential increases, the critical chemical potential
μc will diminish. The location of CEP is studied in this
paper and we found that the temperature of CEP will
increase at first, reaches the maximum TCEP

max then decrease

with increasing of μ5. When the temperature is higher
than TCEP

max , the phase transition becomes crossover. If the
temperature is lower than TCEP

max , the crossover will become a
first-order phase transition. The previous works show that
when α > 0.71 [37,38], there is no CEP on the QCD
phase diagram. But as we have shown in this paper that, in
the chiral imbalanced system, the CEP will appear again
with increasing chiral chemical potential μ5. As shown in
Ref. [46], the chiral chemical potential shows a positive
correlation with centrality. It is possible to adjust the
centrality to change the chiral chemical potential. This
means that we may possibly regulate the chiral imbalance
in the relativistic heavy-ion collision experiment to better
observe the possible CEP signal.
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