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We present a novel method for precisely determining the running QCD coupling constant αsðQ2Þ over a
wide range of Q2 from event shapes for electron-positron annihilation measured at a single annihilation
energy

ffiffiffi
s

p
. The renormalization scale Q2 of the running coupling depends dynamically on the virtuality of

the underlying quark and gluon subprocess and thus the specific kinematics of each event. The
determination of the renormalization scale for event shape distributions is obtained by using the principle
of maximum conformality (PMC), a rigorous scale-setting method for gauge theories which satisfies all the
requirements of renormalization group invariance, including renormalization-scheme independence and
consistency with Abelian theory in the NC → 0 limit. In this paper, we apply the PMC to two classic event
shapes measured in eþe− annihilation: the thrust (T) and C-parameter (C). The PMC renormalization scale
depends differentially on the values of T and C. The application of PMC scale-setting determines the
running coupling αsðQ2Þ to high precision over a wide range of Q2 from 10 to 250 GeV2 from
measurements of the event shape distributions at the Z0 peak. The extrapolation of the running coupling
using pQCD evolution gives the value αsðM2

ZÞ ¼ 0.1185� 0.0012 from the thrust and αsðM2
ZÞ ¼

0.1193þ0.0021
−0.0019 from the C-parameter in the MS scheme. These determinations of αsðM2

ZÞ are consistent
with the world average and are more precise than the values obtained from analyses of event shapes
currently used in the world average. The highly consistent results for the T and C event-shape distributions
provide an additional verification of the applicability of the PMC to pQCD.

DOI: 10.1103/PhysRevD.100.094010

I. INTRODUCTION

The strong coupling constant, αsðQ2Þ, is the fundamental
coupling underlying QCD and its predictions for hadron
and nuclear physics. It is thus crucial to determine αsðQ2Þ
to the best possible precision. The dependence of αsðQ2Þ
on the renormalization scale Q2 obtained from many
different physical processes show consistency with QCD
predictions and asymptotic freedom. The Particle Data

Group (PDG) currently gives the world average: αsðM2
ZÞ ¼

0.1181� 0.0011 [1] in the MS renormalization scheme.
An important test of the consistency of the QCD

predictions can be obtained from the analysis of event
shapes in electron-positron annihilation. A precise deter-
mination of αsðQ2Þ can be obtained from a detailed
comparison of the theoretical predictions with the exper-
imental data, especially by using the large data sample
available at the Z0 peak. In fact, the main obstacle for
achieving a highly precise determination of the QCD
coupling from event shapes is not the lack of precise
experimental data, but the ambiguity of theoretical
predictions.
Currently, theoretical calculations for event shapes are

based on “conventional” scale-setting; i.e., one simply sets
the value of the renormalization scale equal to the center-of-
mass energy μr ¼

ffiffiffi
s

p
; the theory uncertainties for this

guess are estimated by varying the renormalization scale
over an arbitrary range; e.g., μr ∈ ½ ffiffiffi

s
p

=2; 2
ffiffiffi
s

p �. By using
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conventional scale-setting, only one value of αs at the scaleffiffiffi
s

p
can be extracted, and the main source of the uncertainty

is the choice of the renormalization scale. For example,
the value of αsðM2

ZÞ ¼ 0.1224� 0.0039 [2], with a per-
turbative uncertainty of 0.0035, is obtained by using
next-to-next-to-leading order (NNLO)+next-to-leading-
logarithmic approximation (NLLA) predictions. Recent
determinations of αs based on the soft-collinear effective
theory are αsðM2

ZÞ ¼ 0.1135� 0.0011 [3] from the thrust
and αsðM2

ZÞ ¼ 0.1123� 0.0015 [4] from the C-parameter.
Theorists have introduced corrections, such as nonpertur-
bative hadronization effects, in order to match the theo-
retical predictions to the experimental data. However, as
pointed out in Ref. [1], the systematics of the theoretical
uncertainties for extracting αs using Monte Carlo gener-
ators to simulate the nonperturbative hadronization effects
are not well understood.
Conventional scale-setting introduces an inherent

scheme-and-scale dependence for pQCD predictions,
and it violates a fundamental principle of renormalization
group invariance (RGI): theoretical predictions cannot
depend on arbitrary conventions such as the renormaliza-
tion scheme. One often argues that the inclusion of higher-
order terms will suppress the scale uncertainty; however,
estimating unknown higher-order terms by simply varying
the renormalization scale within an arbitrary range is
unreliable since it is only sensitive to the β terms. In
fact, the resulting pQCD series diverges strongly as
αnsβ

n
0n!, the “renormalon” divergence [5]. Moreover, the

conventional procedure of guessing the renormalization
scale is inconsistent with the Gell-Mann-Low procedure
[6] which determines the scale unambiguously in QED.
pQCD predictions must analytically match Abelian theory
in the NC → 0 limit [7].
The principle of maximum conformality (PMC) [8–12]

provides a systematic way to eliminate the renormalization
scheme-and-scale ambiguities. The PMC scales are fixed
by absorbing the β terms that govern the behavior of the
running coupling via the renormalization group equation
(RGE). Since the PMC predictions do not depend on the
choice of the renormalization scheme, PMC scale-setting
satisfies the principles of RGI [13–15]. Since the β terms do
not appear in the pQCD series after the PMC, there is no
renormalon divergence. The PMC method extends the
Brodsky-Lepage-Mackenzie scale-setting method [16]
to all orders, and it reduces in the Abelian limit to the
Gell-Mann-Low method [6].
In this paper, we will apply the PMC to make compre-

hensive analyses for two classic event shapes: the thrust (T)
[17,18] and the C-parameter (C) [19,20]. The PMC
renormalization scale depends dynamically on the virtuality
of the underlying quark and gluon subprocess and thus the
specific kinematics of each event. We then can determine
αsðQ2Þ over a large range of Q2 by comparing the PMC
predictions with the experimental data.

II. NUMERICAL RESULTS AND DISCUSSIONS
FOR THE THRUST AND C-PARAMETER

The thrust and C-parameter are defined as

T¼max
n⃗

�P
ijp⃗i · n⃗jP
ijp⃗ij

�
; C¼3

2

P
i;jjp⃗ijjp⃗jjsin2θij
ðPijp⃗ijÞ2

; ð1Þ

where p⃗i denotes the three-momentum of particle i. For the
thrust, the unit vector n⃗ is varied to define the thrust
direction n⃗T by maximizing the sum on the right-hand side.
For the C-parameter, θij is the angle between p⃗i and p⃗j.
The range of values is 1=2 ≤ T ≤ 1 for the thrust, and for
the C-parameter it is 0 ≤ C ≤ 1.
For our numerical computations, we use the EVENT2

program [21] to precisely calculate the perturbative coef-
ficients at the next-to-leading order (NLO). The perturba-
tive coefficients at the NNLO can be calculated using the
EERAD3 program [22] and are checked using the results of
Ref. [23]. We use the RunDec program [24] to evaluate the
MS scheme running coupling from αsðMZÞ ¼ 0.1181 [1].
A detailed PMC analysis for the thrust has been given

in Ref. [25]. We calculate the C-parameter following a
similar procedure and present its differential distributions atffiffiffi
s

p ¼ MZ in Fig. 1. Figure 1 shows that the conventional
predictions—even up to NNLO pQCD corrections—
substantially deviate from the precise experimental data.
The conventional predictions are plagued by the scale
uncertainty. Since the variation of the scale is only sensitive
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FIG. 1. The C-parameter differential distributions using
conventional (Conv.) and PMC scale-settings at

ffiffiffi
s

p ¼ MZ.
The dot-dashed, dashed, and dotted lines are the conventional
scale-fixed results at LO, NLO, and NNLO [22,23], respectively,
and the corresponding error bands are obtained by varying
μr ∈ ½MZ=2; 2MZ�. The solid line is the PMC result, and its
error band is the squared averages of the errors for αsðMZÞ ¼
0.1181� 0.0011 [1] and the estimated unknown higher-order
contributions �0.2 Cn. The data are taken from the ALEPH [26]
experiment.
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to the β terms, the estimate of unknown higher-order terms
by varying μr ∈ ½ ffiffiffi

s
p

=2; 2
ffiffiffi
s

p � is unreliable: the NLO
calculation does not overlap with the leading order (LO)
prediction, and the NNLO calculation does not overlap
with NLO prediction. In addition, the perturbative series for
the C-parameter distribution shows slow convergence
because of the renormalon divergence. In contrast, Fig. 1
shows that PMC prediction for the C-parameter distribution
is in excellent agreement with the experimental data. There
is some deviation near the two-jet and multijet regions,
which is expected since pQCD becomes unreliable due to
the presence of large logarithms in those kinematic regions.
The resummation of large logarithms is thus required, and
this topic has been extensively studied in the literature.
It should be emphasized that the PMC eliminates the

scale μr uncertainty; the conventional estimate of unknown
higher-order terms obtained by varying μr ∈ ½ ffiffiffi

s
p

=2; 2
ffiffiffi
s

p �
is not applicable to the PMC predictions. An estimate of the
unknown higher-order contributions can be characterized
by the convergence of the perturbative series and the
magnitude of the last-known higher-order term. We note
that the relative magnitude of the corrections for the
C-parameter distribution is CLO∶CNLO∶CNNLO ∼ 1∶0.5∶0.2
[27] in the intermediate region using conventional scale-
setting. After using the PMC, the relative magnitude
at NLO is improved to be CLO∶CNLO ∼ 1∶0.2. The error
estimate of an nth-order calculation can be characterized
by the last known term; i.e., �Cn, where n stands for
LO;NLO;NNLO;…. After applying the PMC, the unknown
Cnþ1 term can be estimated using �0.2Cn if one assumes
that the relative magnitude of the unknown (nþ 1)th-order
term is the same as that of the known nth-order term; i.e.,
Cnþ1=Cn ¼ Cn=Cn−1. The resulting PMC error bar for the
C-parameter distribution is presented in Fig. 1. This estimate
of the unknown higher-order terms is natural for a convergent
perturbative series.
Unlike conventional scale-setting, where the scale is

fixed at μr ¼
ffiffiffi
s

p
, the PMC scale is determined by absorb-

ing the β terms of the pQCD series into the coupling
constant. The resulting PMC scale is not a single value, but
it monotonously increases with the value of C, reflecting
the increasing virtuality of the QCD dynamics. Thus,
simply fixing the scale at μr ¼

ffiffiffi
s

p
obviously violates

the physical behavior of the C-parameter distribution. In
addition, the number of active flavors nf changes with the
value of C according to the PMC scale. More explicitly, the
PMC scale in the 0 < C < 0.75 region is presented in
Fig. 2. The LO contribution vanishes in the 0.75 < C < 1
region; the NLO PMC scale is determined in this domain
by using the NNLO contribution. Near the two-jet region,
the quarks and gluons have soft virtuality, and the PMC
renormalization scale becomes small. The pQCD theory
thus becomes unreliable in this domain. The dynamics of
the PMC scale thus signals the correct physical behavior in
the two-jet region. After PMC scale-setting, the resulting

pQCD series with β ¼ 0 gives the prediction for a “con-
formal collider” [28]. The correct physical behavior of the
scale for event shapes was also obtained in Refs. [29,30].
Soft-collinear effective theory also determines the
C-parameter distribution at different energy scales [31].
Since the renormalization scale is simply set as μr ¼

ffiffiffi
s

p
when using conventional scale-setting, only one value of αs
at scale

ffiffiffi
s

p
can be extracted. In contrast, since the PMC

scale varies with the value of the event shape C, we can
extract αsðQ2Þ over a wide range of Q2 using the exper-
imental data at a single energy of

ffiffiffi
s

p
. By adopting a

method similar to [32], we have determined αsðQ2Þ bin-by-
bin from the comparison of PMC predictions with
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FIG. 2. The PMC scale for the C-parameter. As a comparison,
the scale μr ¼

ffiffiffi
s

p
using conventional scale-setting and the PMC

scale in QED are also presented.
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FIG. 3. The coupling constant αsðQ2Þ extracted by comparing
PMC predictions with the ALEPH data [26] at a single energy offfiffiffi
s

p ¼ MZ from the C-parameter distributions in the MS scheme.
The error bars are the squared averages of the experimental and
theoretical errors. The three lines are the world average evaluated
from αsðM2

ZÞ ¼ 0.1181� 0.0011 [1].
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measurements at
ffiffiffi
s

p ¼ MZ; see Fig. 3. The results for
αsðQ2Þ in the range 3 GeV < Q < 11 GeV are in excellent
agreement with the world average evaluated from αsðM2

ZÞ
[1]. Since the PMC method eliminates the renormalization
scale uncertainty, the extracted αsðQ2Þ is not plagued by
any uncertainty from the choice of μr. The results for
αsðQ2Þ obtained from the thrust observable using the PMC
are consistent with the results using the C-parameter [25].
Thus, PMC scale-setting provides a remarkable way to
verify the running of αsðQ2Þ from event shapes measured at
a single energy of

ffiffiffi
s

p
.

III. MEAN VALUES FOR THE THRUST AND
C-PARAMETER

The differential distributions of event shapes are afflicted
with large logarithms in the two-jet region. The comparison
of QCD predictions with experimental data and then
extracting αs are restricted to the region where leading-
twist pQCD theory is able to describe the data well.
Choosing different domains of the distributions leads to
different values of αs. Note that the mean value of event
shapes,

hyi ¼
Z

y0

0

y
σh

dσ
dy

dy; ð2Þ

where y0 is the kinematically allowed upper limit of the y
variable, involves an integration over the full phase space; it
thus provides an important complement to the differential
distributions and to determinate αs.
The PMC renormalization scales corresponding to the

mean values for the thrust and C-parameter are

μpmc
r jh1−Ti ¼ 0.0695

ffiffiffi
s

p
; and μpmc

r jhCi ¼ 0.0656
ffiffiffi
s

p
;

respectively. The PMC scales satisfy μpmc
r ≪

ffiffiffi
s

p
reflecting

the virtuality of the underlying QCD subprocesses and the
effective number of quark flavors nf. We note that the
analysis of Ref. [26] using conventional scale-setting
leads to an anomalously large value of αs, demonstrating
again that the correct description for the mean values
requires μr ≪

ffiffiffi
s

p
.

In the case of the center-of-mass energy at the Z0

peak,
ffiffiffi
s

p ¼ MZ ¼ 91.1876 GeV, the PMC scales are
μpmc
r jh1−Ti ¼ 6.3 GeV and μpmc

r jhCi ¼ 6.0 GeV for the
thrust and C-parameter, respectively. The PMC scales of
the differential distributions for the thrust and C-parameter
are also very small. The average of the PMC scales hμpmc

r i
of the differential distributions for the thrust and
C-parameter are close to the PMC scales μpmc

r jh1−Ti and
μpmc
r jhCi, respectively. This shows that PMC scale-setting is

self-consistent with the differential distributions for the
event shapes and their mean values.

We present the mean values for the thrust and
C-parameter versus the center-of-mass energy

ffiffiffi
s

p
in

Fig. 4. It shows that in the case of conventional scale-
setting, the predictions are plagued by the renormalization
scale μr uncertainty and substantially deviate from mea-
surements even up to NNLO [33,34]. In contrast, after
using PMC scale-setting, the mean values for the thrust
and C-parameter are increased, especially for small

ffiffiffi
s

p
.

The scale-independent PMC predictions are in excellent
agreement with the experimental data over the wide range
of center-of-mass energies

ffiffiffi
s

p
. Thus, PMC scale-setting

provides a rigorous, comprehensive description of the
measurements without artificial parameters.
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FIG. 4. The mean values for the thrust (up) and C-parameter
(down) versus the center-of-mass energy

ffiffiffi
s

p
using conventional

(Conv.) and PMC scale-settings. The dot-dashed, dashed, and
dotted lines are the conventional results at LO, NLO, and NNLO
[33,34], respectively, and the corresponding error bands are
obtained by varying μr ∈ ½MZ=2; 2MZ�. The solid line is the
PMC result, and its error band is obtained by the squared averages
of the errors for αsðMZÞ ¼ 0.1181� 0.0011 [1] and the esti-
mated unknown higher-order contributions�0.2 Cn. The data are
from the JADE and OPAL experiments, taken from [35,36].
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Since a high degree of consistency between the
PMC predictions and the measurements is obtained,
we can extract αsðQ2Þ with high precision; the results in
the MS scheme are presented in Fig. 5. The values obtained
for αsðQ2Þ are mutually compatible and are in excellent
agreement with the world average in the range 1 GeV <
Q < 15 GeV. The results are not plagued by the renorm-
alization scale μr uncertainty. In addition, unlike the αs
extracted from the differential distributions, the αs extracted
from the mean values are not afflicted with large loga-
rithmic contributions nor nonperturbative effects.
We can also obtain a highly precise determination of the

value of αsðM2
ZÞ from a fit of the PMC predictions to

the measurements. We adopt the method similar to [37] and
the χ2-fit is defined by χ2 ¼ P

i ððhyiexpi − hyitheoi Þ=σiÞ2,
where hyiexpi is the value of the experimental data, σi is
the corresponding experimental uncertainty, hyitheoi is the
theoretical prediction. The χ2 value is minimized with
respect to αsðM2

ZÞ for the thrust and C-parameter sepa-
rately. We obtain

αsðM2
ZÞ ¼ 0.1185� 0.0011ðExpÞ � 0.0005ðTheoÞ

¼ 0.1185� 0.0012; ð3Þ

with χ2=d:o:f: ¼ 27.3=20 for the thrust mean value, and

αsðM2
ZÞ ¼ 0.1193þ0.0009

−0.0010ðExpÞ
þ0.0019
−0.0016

ðTheoÞ
¼ 0.1193þ0.0021

−0.0019 ; ð4Þ

with χ2=d:o:f: ¼ 43.9=20 for the C-parameter mean value,
where the first (Exp.) and second (Theo.) errors are the
experimental and theoretical uncertainties, respectively.
Both values are consistent with the world average of
αsðM2

ZÞ ¼ 0.1181� 0.0011 [1]. Since the dominant scale
μr uncertainty is eliminated and the convergence of pQCD
series is greatly improved after using the PMC, the
precision of the extracted αs values is largely improved.
In particular, since a strikingly much faster pQCD con-
vergence is obtained for the thrust mean value [25], the
theoretical uncertainty is even smaller than the experimen-
tal uncertainty.
We can also apply the PMC analysis to QED event

shapes, where the final-state particles in eþe− → γ� →
XðQEDÞ are restricted to leptons and photons. The PMC
scales for QCD and QED event shapes are identical at LO
after applying the relation between PMC scales: Q2

QCD=
Q2

QED ¼ e−5=3; this factor converts the scale underlying

predictions in the MS scheme used in QCD to the scale of
the V scheme conventionally used in QED [38]. The
running of the QED coupling αðQ2Þ can be determined
from events at a single energy of

ffiffiffi
s

p
[39]. Thus, one can use

the measured event shape distribution in eþe− → Z0 →
XðQEDÞ to measure the QED coupling αðQ2Þ over a large
range of Q2.

IV. SUMMARY

In summary, the strong running coupling αsðQ2Þ of QCD
and its property of asymptotic freedom are fundamental to
all QCD analyses; its determination from event-shape
distributions is an essential input. The PMC predictions
for pQCD are independent of the choice of the initial
renormalization scale and the choice of renormalization
scheme. Renormalon divergences are eliminated. The PMC
procedure is identical in the NC → 0 Abelian limit to the
standard Gell-Mann-Low method for QED. It is thus also
essential for renormalization scale-setting for grand-unified
theories. We have shown that a comprehensive and self-
consistent analysis for both the differential distributions
and the mean values for event shapes is obtained by using
PMC scale-setting. The highly consistent results for the T
and C event-shape distributions verify the applicability of
the PMC to pQCD. The PMC provides a rigorous method
for unambiguously setting the renormalization scale as
function of the event-shape kinematics, reflecting the
virtuality of the underlying QCD subprocesses. Thus, the
PMC provides a remarkable way to verify the running of
αsðQ2Þ from the event shape differential measurement at a
single energy of

ffiffiffi
s

p
. These new results for αsðM2

ZÞ are
consistent with the world average and are more precise than
the values conventionally obtained from the analysis of
event shapes currently used in the world average.

FIG. 5. The running coupling αsðQ2Þ extracted from the thrust
and C-parameter mean values by comparing PMC predictions
with the JADE and OPAL data [35,36] in the MS scheme. The
error bars are the squared averages of the experimental and
theoretical errors. The three lines are the world average evaluated
from αsðM2

ZÞ ¼ 0.1181� 0.0011 [1].
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