
 

Exploring the origin of small-x saturation in the collinear approach
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A modification of the collinear evolution equations as an appropriate approach to improving the
behavior of parton distribution functions in the region of small longitudinal momentum fractions and to
finding more theoretical arguments to clarify the possible appearance of the saturation regime is suggested.
It is argued that parton diffusion in the rapidity space at large parton densities along the space-time
evolution could result in the emergence of a natural saturation scale on which freezing actually occurs.
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I. INTRODUCTION

Nowadays, it is widely recognized the hadron interactions
at very high energies are driven by the states with very high
densities of partons (quarks and gluons), in particular, with
small longitudinal momentum fractions x. The routine
theoretical framework for analyzing such systems is
essentially grounded on the QCD collinear factorization
in which the calculated cross sections are decomposed
in the perturbative coefficient functions and nonperturbative
parton densities of which evolvement is treated according
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [1–4]. Already, these linear equations qualita-
tively capture the traits associated with an increase in the
gluon densities at small x with extremely large Q2 values.
The latter turn out also quite instrumental, for example, to
justify byneglecting any type of higher-twist corrections and
some perturbative resummation contributions. An idea to
follow the evolution within the perturbative paradigm and to
evaluate the leading contributions at small x for not very
large Q2 led to the development of the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) approach associated to so-called
high-energy factorization. However, resolving the corre-
sponding BFKL equations [5–7] exhibits a very strong raise
(powerlike) of the gluon density at small x that is stro-
nger than the experimental data analysis demonstrates and
leads to an apparent violation of unitarity at very small x. It
signals some theoretical problems generated by the appear-
ance of an infrared instability related to a diffusion with the

rapidity evolution and the consistent description of QCD
coupling constant αs behavior that should reflect a very
sophisticated interplay of perturbative and nonperturbative
QCD physics. Apparently, both look like an ensuing result
of taking into account the linear evolution only with
resummation in these approaches. From the phenomeno-
logical point of view, an observation of a scaling law in a
wide range of small x and Q2 was done [8], thereby
demonstrating an onset of the saturation scale. This fact
is quite interesting because it may provide a perturbative
scale in the high-density region of small x where linear
evolution approximation works and provides, in a sense, a
boundary condition to the linear evolution equations. In
fairness, remember that it was argued a long time ago [9,10]
that eventually the system under consideration should enter
a new regime, in which the rate of growing gluon density
slows down and saturates, thus possibly curing a potential
conflict with unitarity of the underlying scattering. Actually,
the restoration of the unitarity in the high-energy limit of
QCD remains a challenging problem, although several
approaches, drawing a scenario with nonlinear behavior,
have been explored in past years (see, for example,
Refs. [11–18] and references therein), but those allow us
to conclude only that we are still essentially no closer to
knowing where the problem solution lies besides the very
general claim about the nonperturbative finite-density
effects that are left out entirely from the BFKL evolution.
The interest in physics of the high-density regime of small-x
QCD is greatly increasing and dictated by an avalanche of
experimental data on collisions of relativistic heavy ions
overwhelming this area of research in the last few decades.
Meanwhile, there is another opportunity to address the

problem in the framework of well-known DGLAP
approach that we would like to draw attention to in this
paper. It concerns one possible modification of collinear
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timelike evolution equations that was also discussed a long
time ago [19,20] as well as in the context of increasing
parton multiplicity in electron-positron annihilation into
hadrons. We adapt this modification for the spacelike
evolution of parton distribution functions and demonstrate
it develops a saturated regime of the color glass condensate
[21]. This is a regime of strong color fields in which
nonlinear dynamics comes to the perceptible play and
signals, thereby, an appearance of the natural saturation
scale. The evolution is getting frozen on that scale, in fact,
indicating also the universality of both phenomena. Actually,
such an approach is treated as an effective theory of high-
energy scattering successfully describing the data measured
in experiments.
The paper is organized as follows. In Sec. II, we briefly

review the principal features of the DGLAP evolution in
order to be clear and to introduce the notations. The particular
modified QCD evolution is discussed in Sec. III. In Sec. IV,
the extension to the double parton distribution functions is
considered. The possible phenomenological issues are dis-
cussed in Sec. V, together with some conclusions.

II. COLLINEAR EVOLUTION

One may take the value of the hard scale as the evolution
variable in the DGLAP approach. The most popular choice
is the transfer momentum squared Q2, or its logarithm
ξ ¼ lnðQ2=Q2

0Þ. The double logarithm that explicitly takes
into account the behavior of the effective coupling constant
in the leading logarithm approximation proves very instru-
mental as well,

t ¼ 2

β
ln

�
lnðQ2

Λ2Þ
lnðQ2

0

Λ2Þ

�
; ð1Þ

where β ¼ ð11Nc − 2nfÞ=3 in QCD, Q0 is the some
characteristic scale above which the perturbative theory
is applicable, nf is the number of active flavors, Λ is the
QCD dimensional parameter, and Nc ¼ 3 is the color
number. In Eq. (1), the one-loop running QCD coupling

αsðQ2Þ ¼ 4π

β lnðQ2=Λ2Þ ð2Þ

was used.
The DGLAP evolution equations [1–4] assume the

simplest form if we use the natural dimensionless evolution
variable t; that is,

dDj
hðx; tÞ
dt

¼
X
j0

Z1
x

dx0

x0
Dj0

h ðx0; tÞPj0→j

�
x
x0

�
: ð3Þ

These equations describe the evolution of single distribu-
tions Dj

hðx; tÞ of bare quarks, antiquarks, and gluons

(j ¼ q; q̄; g) within a hadron h in response to the change
of the evolution variable t. The kernels, P, of these
equations include a regularization at x → x0 and are known
in their appropriate forms.
Equations (3) are explicitly solved by introducing the

Mellin transforms

Mj
hðn; tÞ ¼

Z
1

0

dxxn Dj
hðx; tÞ; ð4Þ

which reduce those to a system of ordinary linear-differ-
ential equations at the first order,

dMj
hðn; tÞ=dt ¼

X
j0
Mj0

h ðn; tÞPj0→jðnÞ; ð5Þ

where

Pj0→jðnÞ ¼
Z

1

0

xnPj0→jðxÞdx: ð6Þ

To obtain the distributions in x representation, the
inverse Mellin transformation should be performed,

xDj
hðx; tÞ ¼

Z
dn
2πi

x−nMj
hðn; tÞ; ð7Þ

where the integration runs along the imaginary axis to the
right from all n singularities. It can be done in a general
form numerically only. However, the asymptotic behavior
can be estimated in some interesting and simple enough
limits with the technique under consideration.
The solutions of the DGLAP equations with the given

initial conditions Dj
hðx; 0Þ at the reference scale Q0ðt ¼ 0Þ

can be expressed by the Green’s functions Dj
iðz; tÞ in the

following way:

Dj
hðx; tÞ ¼

X
i

Z1
x

dz
z
Di

hðz; 0ÞDj
i

�
x
z
; t

�
: ð8Þ

These Green’s functions (gluon distributions at the parton
level) Dj

iðz; tÞ are the solutions of Eqs. (3) at the parton
level with the singular initial conditions Dj

iðz; t ¼ 0Þ ¼
δðx − 1Þδij and in the double logarithm approximation (see,
for instance, Refs. [3,9]) look like

xDg
gðx; tÞ ¼ 4Nct exp ½−at�I1ðvÞ=v

≃ 4Nctv−3=2 exp ½v − at�=
ffiffiffiffiffiffi
2π

p
; ð9Þ

where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nct ln ð1=xÞ

p
; a ¼ 11

6
Nc þ

1

3
nf=N2

c ð10Þ
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and I1 is the standard modified Bessel function. This result
just illustrates the unitarity violation at very small x. In
addition, one should also note that the mean number of
partons of type j in a parton of type i,

hnjii ¼ Mj
ið0; tÞ ¼ ½expPð0Þt�ji ; ð11Þ

cannot be correctly determined in the collinear approach
because the kernels Pg→gð0Þ and Pq→gð0Þ are divergent and
some improvements are necessary at very small x.

III. COLLINEAR EVOLUTION WITH
DISSIPATION

The modification of collinear timelike evolution equa-
tions was discussed in Refs. [19,20] to take into account the
formation (so-called pionization) of soft quark-antiquark
pairs at a hard quark (gluon) propagating. In analogy with
the electron-photon showers, the energy outflow was
phenomenologically simulated by the dissipative terms
in the evolution equations with a rather interesting income.
Such a modification for the spacelike evolution has, of
course, another physical motivation in our case due to the
parton diffusion in the rapidity space at large parton
densities, and we suggest

∂Dj
iðx; tÞ
∂t ¼

X
j0

Z
1

x

dx0

x0
Dj0

i ðx0; tÞPj0→j

�
x
x0

�

þ γj
∂Dj

iðx; tÞ
∂x ð12Þ

with γj as some parameters characterizing the process of the
energy outflow.
In the situation of small dissipation, γj ≪ 1, the mean

number of partons can be calculated [20] by using the
Mellin technique. For credibility, we bring here the result
for gluon multiplicity at the early evolution stage (t ≪ 1)
only referring to the transparent, but laborious, calculations
performed in Ref. [20],

hngig ¼ I0ðVÞe−at

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nct

ln ð1=γgÞ

s
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln ð1=γgÞ
2Nct

s
I1ðVÞe−at; ð13Þ

where

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Nct ln ð1=γgÞ

p
ð14Þ

and I0 is another modified Bessel function. This result (13)
reproduces exactly the mean number of gluons with the
longitudinal momentum fractions larger than x0 ¼ γg as
calculated in the DGLAP unmodified approach. The
exercise above makes transparent the physical meaning

of the dissipative term. It establishes the scale of energy
drift because gluons (partons) with the longitudinal
momentum fractions less than γg are simply withdrawn
from consideration. Moreover, the evolution is, in fact,
frozen at the scale [19]

Q2
fr ¼ Λ2ðQ2=Λ2Þγg : ð15Þ

The origin of this freezing scale is similar to the saturation
scale in the color glass condensate (CGC) approach
[13,15–18,21].

IV. GENERALIZING TO DOUBLE PARTON
DISTRIBUTIONS

The extension of basic equations to double parton
distribution functions is straightforward:

∂Dj1j2
h ðx1; x2; tÞ

∂t
¼

X
j0
1

Z
1−x2

x1

dx01
x01

D
j0
1
j2

h ðx01; x2; tÞPj0
1
→j1

�
x1
x01

�

þ γj1
∂Dj1j2

h ðx1; x2; tÞ
∂x1

þ
X
j0
2

Z
1−x1

x2

dx02
x02

D
j1j02
h ðx1; x02; tÞPj0

2
→j2

�
x2
x02

�

þ γj2
∂Dj1j2

h ðx1; x2; tÞ
∂x2

þ
X
j0
Dj0

h ðx1 þ x2; tÞ
1

x1 þ x2
Pj0→j1j2

�
x1

x1 þ x2

�
: ð16Þ

Here, the splitting kernels,

1

x1 þ x2
Pj0→j1j2

�
x1

x1 þ x2

�
; ð17Þ

which appear in the nonhomogeneous part of the equations,
are the nonregularized one-loop well-known DGLAP
kernels without the “þ” prescription. The unmodified
equations were derived first in Refs. [22,23] in framework
of the DGLAP approach. The functions Dj1j2

h ðx1; x2; tÞ in
question have a specific interpretation in the leading
logarithm approximation of perturbative QCD. They are
the inclusive probabilities that allow one to find two bare
partons of types j1 and j2 with the given longitudinal
momentum fractions x1 and x2 in a hadron h.
The dissipative terms provide the energy outflow and

establish the scale of energy drift as well. Gluons (partons)
with the longitudinal momentum fractions less than γj are
simply removed again from consideration for each of two
parton cascade branches practically independently. In the
small-x region, we can restrict ourselves to homogeneous
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evolution equations because the solutions of nonhomo-
geneous unmodified equation are substantial at not para-
metrically small longitudinal momentum fractions only
[24]. Moreover, the homogeneous evolution equations
(independent evolution of two branches) admit the factori-
zation of double parton distribution functions,

Dj1j2
h ðx1; x2; tÞ ≃Dj1

h ðx1; tÞDj2
h ðx2; tÞ; ð18Þ

as a good approximate solution, if such a factorization was
assumed at the reference scale Q0ðt ¼ 0Þ.
Further, we hold the leading exponential terms only if

those have the same structure [25] both at the parton level
and the hadron level under smooth enough initial con-
ditions at the reference scale. Indeed, Eq. (8) in the double
logarithm approximation reads

xDg
hðx; tÞ ≃

ZY
0

dy½zDg
hðz; 0Þ�j1=z¼exp y

× exp
h ffiffiffiffiffiffiffiffi

8Nc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðY − yÞ

p i
∼ exp

h ffiffiffiffiffiffiffiffi
8Nc

p ffiffiffiffiffi
tY

p i
; ð19Þ

with Y ¼ lnð1=xÞ. The y integration is not a saddle-point
type, and therefore one of the edges, just y → 0 (z → 1),
dominates, provided that the initial gluon distribution does
not increase too much with z decreasing. Actually, one
needs zDg

hðz; 0Þ ∼ ð1=zÞa at z → 0 with a < A, where
A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Nct=Y
p

> 0. Let us notice that the parametrization
of the initial gluon distributions, usually used, satisfies this
condition (e.g., the parametrization of CTEQ Collaboration
from Ref. [26]). Thus, as a result, we have for the double
gluon distributions [25] in this approximation

x1x2D
gg
h ðx1; x2; tÞ

∼ exp
h ffiffiffiffiffiffiffiffi

8Nc

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ln ð1=x1Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ln ð1=x2Þ

p �i
; ð20Þ

with the infinite mean number of such gluons. If the two
branches evolve independently, then introducing the dis-
sipative terms slows down the rate of gluon density
increase, and one gets the finite mean gluon numbers as

hnggih∼exp
h ffiffiffiffiffiffiffiffi

8Nc

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t lnð1=γgÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t lnð1=γgÞ

p �i
ð21Þ

since the gluons with the longitudinal momentum fractions
less than γg are simply excluded.

V. CONCLUSIONS

Clearly, the dissipative parameters above cannot
be determined within the DGLAP approach. They are
treated as the phenomenological parameters in numerical

simulations and should be estimated in the other models
for further applications. The phenomena of saturation and
slowing down an increase of gluon density take place also
in the CGC scenario [13,15–18]. However, the saturation
scale is energy dependent in that approach, and, never-
theless, it turns out quite predictive. For example, in the
Golec-Biernat-Wusthoff model [27,28], it is parametrized
by three parameters,

Q2
s ¼ Q2

0ðx0=xÞλ; ð22Þ
with Q0 ¼ 1 GeV, x0 ≃ 0.0001, and λ ≃ 0.3, which have
been used to accurately describe the HERA data [29].
The value of characteristic energy (longitudinal momentum
fraction) x0 in Eq. (22) allows us to estimate the dissipative
parameter γg that has a physical meaning similar to x0.
In fact, it justifies the assumption of small dissipation used
in the previous sections to obtain the crucial estimates (13)
and (21), which are pretty encouraging to investigate the
properties of modified collinear equations further as a new
alternative insight into the saturation physics extending the
initial limits of the linear approach.
In summary, the modified collinear evolution equations

are suggested to extract information on the properties of a
hot and dense QCD medium created in the experiments
on heavy ion collisions searching the quark-gluon plasma,
a thermalized phase, that may exist in very specific regimes
for very short periods of time. Comprehensive phenom-
enological analysis of proton-proton collisions based on
the QCD factorization, as a key instrument, made it
possible to extract the universal distribution functions
validating such an approximation and open up (quite often)
transparent ways for introducing the efficient corrections.
Truly, these corrections at leading power of the large
momentum transfer are fairly general and easily traceable,
but the corrections within the factorized forms turn out very
complicated and too sensitive to the process details, as it was
shown again many years ago, because of the QCD multiple
scatterings in hadronic collisions differ from heavy ion ones
significantly [30]. The model presented in this paper shows
the possibility of perturbatively forming a dynamical regime
in a particular kinematical configuration that could not be
foreseen according to the theoretical dogmas. As argued, it
concerns a regime of high parton densities and dynamical
interactions described definitely by nonlinear equations. The
evolution of hadron scattering amplitudes, at least, in the
framework of the color dipole picture in such a regime is
quite similar [31] to the time evolution of a classical particles
system undergoing reaction-diffusion processes. Amazingly,
introducing the dissipative terms results in an origin of the
natural saturation scale on which the evolution is frozen and
the gluons with longitudinal momentum less than γg are
simply excluded. In the phenomenological applications, the
direct numerical solutions of suggested modified equations
may occur simpler than the BFKL treatment of the very
small-x region.
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