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The widely used nonrelativistic QCD (NRQCD) factorization theory now encounters some notable
difficulties in describing quarkonium production. This may be due to the inadequate treatment of soft
hadrons emitted in the hadronization process, which causes bad convergence of velocity expansion in
NRQCD. In this paper, starting from QCD we propose a rigorously defined factorization approach, soft
gluon factorization (SGF), to better deal with the effects of soft hadrons. After a careful velocity expansion,
the SGF can be as simple as the NRQCD factorization in phenomenological studies, but has a much better
convergence. The SGFmay provide a new insight to understand the mechanisms of quarkonium production
and decay.
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I. INTRODUCTION

As the simplest bound state of strong interactions, heavy
quarkonium is a perfect system to study both perturbative
and nonperturbative physics of QCD. Ever since the
discovery of the first heavy quarkonium J=ψ in 1974, a
lot of efforts have been devoted to interpret the production
and decay mechanisms of heavy quarkonium. Among
them, the most notable theories include the color-singlet
model [1–3] and the nonrelativistic QCD (NRQCD)
factorization theory [4].1

The NRQCD factorization approach is successful. With
the color-octet mechanism, NRQCD can solve the infrared
divergence problem encountered in the color-singlet model
[11], explain the ψð2SÞ surplus [12], and describe the
inclusive quarkonium production [13–24]. In addition,
although there is still no convincing all-order proof of
NRQCD factorization for quarkonium production, it was
found that factorization may hold at least to next-to-next-to-
leading order (NNLO) if long-distance matrix elements
(LDMEs) are modified to be gauge complete [25–27].

Nevertheless, studies in recent years have shown that
NRQCD factorization in describing quarkonium produc-
tion may encounter some notable difficulties. (1) The
polarization puzzle: The leading order calculation in
NRQCD implies that ψðnSÞ andϒðnSÞ produced at hadron
colliders are transversely polarized due to 3S½8�1 channel
dominance [28–30]. But experimental measurements found
these states almost unpolarized [31–35]. Thanks to next-to-
leading order calculations [36–43], the observed polari-
zations of J=ψ and ϒðnSÞ can be qualitatively explained,
but it is still hard to understand the polarization of
ψð2SÞ [44]. (2) The hierarchy problem: The best fit of
J=ψ yield data at high transverse momentum in hadronic
collisions determines two linearly combined LDMEs,
M0¼0.074GeV3 and M1 ¼ 0.0005 GeV3 [22] (the J=ψ
polarization data requires almost the same two combined
LDMEs [38]). There is a two-orders difference between the
two combined LDMEs. However, velocity scaling rules in
NRQCD [4] expect these LDMEs to be at the same order of
magnitude. (3) The universality problem: A necessary
condition for NRQCD factorization is that LDMEs are
universal, i.e., process independent. Yet phenomenology
studies show that M0 extracted from hadron colliders
[22,23,39] is much larger than the upper bound set by
eþe− collisions M0 < 0.02 GeV3 [45].
In this paper, we show that the velocity expansion in

the present NRQCD framework suffers from large high
order relativistic corrections due to ignoring the momentum
of soft hadrons, which are mainly soft gluons perturba-
tively, emitted in the hadronization process. Thus, by
including only a few low order contributions in relativistic
expansion, NRQCD is hard to provide good descriptions
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1For quarkonium production only, there are two more well-
established theories. One is the color-evaporation model [5–7],
which is a phenomenological model that may not be able to
derive from first principles of QCD. The other is QCD collinear
factorization [8–10], which is rigorous but can only describe high
momentum quarkonium production.
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for quarkonium production, which may be the reason for
the above mentioned difficulties. Starting from QCD, we
propose a new factorization approach, called soft gluon
factorization (SGF), to better deal with the effects of soft
hadrons. The SGF has a much better convergence in the
velocity expansion, and it may provide a new insight to
fully understand the mechanisms of quarkonium produc-
tion and decay.
The rest of the paper is organized as follows. In Sec. II,

we explain why NRQCD factorization may have bad
convergence in velocity expansion, and then define the
SGF formula with rigorous operator definition. Relations to
other approaches are also discussed. In Sec. III, we do a
careful simplification to the SGF so that it will be easy to
use in practice, but at the same time it can capture main
physics. Following this, we compare the SGF and NRQCD
by studying the gluon fragmentation to yield of J=ψ in
Sec. IV. As expected, we find that the lowest order NRQCD
approximation is not good, which may be the reason why
NRQCD encounters many difficulties. The summary and
the possibility of solving these difficulties in the SGF
framework are given in Sec. V.

II. SOFT GLUON FACTORIZATION

A. Bad convergence of v2 expansion in NRQCD

In NRQCD factorization [4], the differential cross
section of a heavy quarkonium H production can be
factorized as

ð2πÞ32P0
H
dσH
d3PH

¼
X
n

HnðPHÞhOH
n i þ � � � ; ð1Þ

where PH is the momentum of H, n denotes intermediate
QQ̄ states, whose quantum numbers are usually expressed

in terms of spectroscopic notation 2Sþ1L½c�
J , with c ¼ 1; 8

denoting color singlet or color octet of the pair,HnðPHÞ are
perturbative calculable short-distance coefficients which
can be expanded order by order in αs, hOH

n i are gauge-
completed [25–27] nonperturbative long-distance matrix
elements (LDMEs) which can be classified according to the
power counting rules of v, and the ellipses denote other
relativistic correction terms. It is needed to emphasize that,
in NRQCD factorization, one expands the mass of quar-
konium MH around twice of heavy quark mass 2m, which
results in P2

H ≈ 4m2 in Eq. (1).
If convergence of velocity expansion in NRQCD fac-

torization is very good, one only needs to consider a very
limited number of LDMEs to describe experimental data.
Unfortunately, it may not be the case. To see this, for an
example let us consider the differential cross section of
quarkonium production in hadron colliders with high
transverse momentum PHT . In NRQCD factorization,
one calculates the partonic QQ̄ production differential
cross sections with transverse momentum PT , and then

expands PT around PHT . On average, let us set PHT ∼
ð1 − λÞPT , with λ being the average transverse momentum
fraction carried by soft gluons which can be at the order of
v or v2. At a specific range of large PHT , differential cross
section behaves as

dσH
dP2

HT
∼

1

Pc
T
∼
ð1 − λÞc
Pc
HT

; ð2Þ

with c being usually larger than 4. Expansion of this result
with respect to λ mimics the relativistic expansion in
NRQCD. For a typical choice λ ¼ 0.2 and c ¼ 4 [46],
we have ð1 − λÞc ¼ 0.4096, but the expansion of ð1 − λÞc
to Oðλ0Þ gives 1, and expansion to Oðλ1Þ gives 0.2. The
above argument shows a bad convergence of relativistic
expansion. We note that the convergence still cannot be
improved if one instead is to calculate, e.g., P4

HT
dσH
dP2

HT
.

Furthermore, as we will see in Sec. IV, there are other
relativistic correction terms that make the convergence of
relativistic expansion even worse.
Because of the bad convergence of relativistic correc-

tions, theoretic calculations based on only a limited number
of LDMEs are sometimes hard to describe experimental
data. In literature, e.g., Refs. [47–50], for each problem
one can resum a specific subset of LDMEs to improve
the theoretic results. The resummation results in many
so-called “shape functions.”
A factorization method aiming to improve convergence

for an arbitrary problem was proposed in Ref. [51].
However, this method can only be thought of as a model
because there is no operator definition for nonperturbative
functions. Without an operator definition, the method is not
well defined and it is not possible to do rigorous calculation
beyond tree level.

B. Soft gluon factorization formula

The aim of soft gluon factorization is to resum a subset of
relativistic correction terms in NRQCD factorization that
are important for a phenomenological purpose. It is
convenient to demand the subset to be Lorentz invariant.
The formula of SGF for a quarkonium H production is

ð2πÞ32P0
H
dσH
d3PH

≈
X
n

Z
d4P
ð2πÞ4HnðPÞFn→HðP; PHÞ; ð3Þ

where HnðPÞ are perturbatively calculable hard parts
that, roughly speaking, produce an intermediate state with
quantum numbers n and momentum P, and Fn→HðP;PHÞ
are nonperturbative functions, which we call soft gluon
distribution functions (SGDs), which describe the hadro-
nization of the intermediate state to physical quarkonium
H. To account for the effect of soft hadrons emission, which
are mainly soft gluons perturbatively, the momentum of
the observed quarkonium PH is kept different from the
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momentum of the intermediate state P, which is different
from the treatment in NRQCD.
For quarkonium decay, one can define a similar formula.

C. Intermediate states

Naively, in Eq. (3) we should sum over a complete set of
intermediate states that may or may not contain a QQ̄ pair.
However, if there is no QQ̄ pair in the intermediate state, a
QQ̄ pair must be produced in the hadronization process. In
this case, the corresponding Fn→HðP;PHÞ has short-
distance effects and can be refactorized, which enables
us to eliminate this contribution from the factorization
formula. Furthermore, if the intermediate state contains
other energetic partons in addition to a QQ̄ pair, the
corresponding Fn→HðP;PHÞ can also be refactorized
because there is no energetic gluon or light quark in the
dominant Fock state of conventional quarkonium. In this
consideration, we only need to sum over intermediate states
which contain a QQ̄ pair and some soft partons. According
to physical scales existing in the quarkonium system,
energy of these soft partons can be at the order of mv
or mv2, which are assumed to be much smaller than m.
As each conventional quarkonium has a QQ̄ state with

specific quantum numbers as its leading Fock state, theQQ̄
intermediate state with the same quantum numbers has
leading contribution. If the intermediate state contains soft
partons in addition to a QQ̄ pair, which means that soft
partons are produced in the hard parts, the contribution is at
least suppressed by v2 comparing with the contribution
from the intermediate state with the same QQ̄ but without
soft partons. In other words, power counting of the
corresponding Fn→HðP; PHÞ in the factorization formula
is at high order in v2. Unlike v2 corrections due to
kinematic effects of soft gluons emission, contribution of
intermediate states with soft partons should have a mild v2

corrections. Thus, as the first approximation, we will ignore
these contributions and consider only intermediate states
constituted by a QQ̄ pair in the rest of the paper.
Then n in Eq. (3) denotes intermediateQQ̄ states, whose

quantum numbers are usually expressed in terms of

spectroscopic notation n ¼ QQ̄ð2Sþ1L½c�
J;Jz

Þ, with c ¼ 1; 8
denoting color singlet or color octet of the pair. We note
that the state in the amplitude n can be in general
different from that in the complex-conjugate amplitude

ñ ¼ QQ̄ð2S̃þ1L̃½c̃�
J̃;J̃z

Þ. Color charge, C-parity, P-parity and

angular momentum conservations provide general selection
rules [52], which gives that the following relations always
hold: c ¼ c̃, S ¼ S̃, and jL − L̃j ¼ 0; 2; 4;…. For the
production of a polarization-summed quarkonium, we have
further constraints J ¼ J̃, Jz ¼ J̃z. Thus, even in the
polarization-summed case, there is interference between

the 3S½c�1;Jz
state and the 3D½c�

1;Jz
state. Selection rules for

polarization distributions can be found in Ref. [52]. For

simplicity, in the rest of the paper we will only discuss
polarization-summed quarkonium production and choose
the quantum numbers of the intermediate QQ̄ pair in the
amplitude to be the same as that in the complex-conjugate
amplitude, while polarization and interference contribu-
tions can be studied similarly.

D. Nonperturbative distributions

To make SGDs Lorentz invariant, it is convenient to
define them using QCD fields instead of NRQCD fields.
We define SGDs for polarization-summed quarkonium H
production as vacuum expectation values of bilocal oper-
ators constructed from QCD fields,

Fn→HðP;PHÞ

¼
Z

d4be−iP·bh0j½Ψ̄KnΨ�†ð0Þða†HaHÞ½Ψ̄KnΨ�ðbÞj0iS;

ð4Þ

where

a†HaH ¼
X
X

X
JHz

jH þ XihH þ Xj ð5Þ

projects final state to include a polarization-summed
H with relativistic normalization hHðPHÞjHðP0

HÞi ¼
ð2EHÞð2πÞ3δ3ðPH − P0

HÞ. The subscript “S” means that,
to evaluate the matrix element, one only picks up integra-
tion regions where off-shellness of all particles is much
smaller than heavy quark mass.2 KnðrbÞ are projection
operators defining the intermediate state n,

KnðrbÞ ¼
ffiffiffiffiffiffiffiffi
MH

p
MH þ 2m

MH þ PH

2MH
Γn

MH − PH

2MH
C½c�; ð6Þ

where angular momentum operators Γn are defined explic-
itly in Appendix A, color operators C½c� will be defined

later, MH�PH
2MH

project out large components in velocity
expansion, and, as we will see later, the introduction of

prefactor
ffiffiffiffiffiffi
MH

p
MHþ2m makes our SGDs more closely related to

NRQCD LDMEs.
If the intermediate QQ̄ pair is in color singlet, we define

color operator as

C½1� ¼ 1cffiffiffiffiffiffi
Nc

p ; ð7Þ

which is nothing but SU(3) color Clebsch-Gordan coef-
ficient h3i; 3̄ ī j00i and 1c is the identity matrix in color
space. If the intermediate QQ̄ pair is in color octet, we

2From the point view of method of region [53], the effect of
“S” keeps all regions except the hard region.
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define color operator by the multiplication of a color matrix
in fundamental representation with a gauge link in adjoint
representation,

C½8� ¼
ffiffiffi
2

p
tāΦðAÞ

aā ðrbÞ; ð8Þ

where
ffiffiffi
2

p
tā is SU(3) color Clebsch-Gordan coefficient

h3i; 3̄ ī j8āi and the introduction of gauge link ΦðAÞ
āa ðrbÞ is

to enable gauge invariance of SGDs.
The next question is what direction of the gauge link

should we choose. A natural choice is to define the
direction along a light cone, because a gauge link can
be obtained by eikonal approximation for soft gluon
interaction between the QQ̄ pair and jets. Indeed, this is
the choice to define gauge-completed NRQCD LDMEs in
Refs. [25–27]. In the SGF framework, however, this choice
will result in uncanceled gauge-link-collinear rapidity
divergence because the position b in Eq. (4) is in general
not along a light cone. This is the same problem encoun-
tered in transverse-momentum-dependent (TMD) factori-
zation where there is a mismatch of rapidity divergence
between virtual correction and real correction [54]. To
cancel the rapidity divergence, soft factor as well as jet
functions may need to be introduced.
If we do not want to introduce additional soft factors,3

the gauge links can be defined along the b direction,

ΦðAÞðrbÞ¼P exp

�
−igs

Z
∞

0

dλbl ·AðAÞðrbþλblÞ
�
; ð9Þ

where P denotes path ordering, AðAÞ is gluon field with
color matrix in adjoint representation, and bμl ¼ bμ þ εlμ.
We choose 0 < ε ≪ 1 and a fixed lightlike vector lμ so
that, when bμ is finite, bμl is the same as bμ; while as
bμ → 0, the gauge link is well defined (along the lμ

direction).
In the above, we have defined SGDs for n with fixed Jz.

SGDs for polarization-summed intermediate states can be
defined accordingly,

F
QQ̄ð2Sþ1L½c�

J Þ→H
≡X

Jz

F
QQ̄ð2Sþ1L½c�

J;Jz
Þ→H

: ð10Þ

Similar to LDMEs in NRQCD, each SGD has a definite
power counting in v2, which will be explained later. Thus,
for a certain accuracy, we can truncate to use only a few
SGDs for each H production.

E. Perturbative matching

With the definition of SGDs, short-distance hard parts
can be obtained order by order in perturbation theory by
matching both sides of Eq. (3). As HnðPÞ are independent
of nonperturbative physics, they are unchanged if we
replace the quarkonium H in Eq. (3) by an on-shell QQ̄
pair with specific quantum numbers. To make the following
equations more convenient to use, we first relabel n and P
in Eq. (3) by n0 and P0, respectively, and we then replace H
in both sides of the equation by a state n ¼ QQ̄ð2Sþ1L½c�

J;Jz
Þ

with momentum P, which results in

dσnðPÞ ≈
X
n0

Z
d4P0

ð2πÞ4Hn0 ðP0ÞFn0→nðP0; PÞ; ð11Þ

where

dσnðPÞ≡ ð2πÞ32P0
dσn
d3P

: ð12Þ

Note that, although dσH and Fn0→H are changed to dσn and
Fn0→n, respectively, Hn0 ðP0Þ stays unchanged, which is
guaranteed by the fact that Hn0 ðP0Þ is perturbatively
calculable and thus it is independent of nonperturbative
external states. The reason for choosing the on-shell QQ̄
pair is that dσn and Fn0→n are then gauge invariant and can
be expanded order by order in αs in any gauge.
The key to determine allHn0 is to projectH to a complete

set of QQ̄ states, and then to match coefficients of αs in
both sides of Eq. (3). Although any complete set is doable
for this purpose, a good choice should satisfy as much as
possible that leading order in αs expansions of Fn0→n are
delta functions.
To define a good complete set, we begin with a QQ̄ with

momenta

pQ ¼ P=2þ q; pQ̄ ¼ P=2 − q: ð13Þ
We project it to color state c by color projectors:

1cffiffiffiffiffiffi
Nc

p for color singlet; ð14aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

N2
c − 1

s
ta for color octet; ð14bÞ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 1
p

in the denominator is to average over
color-octet states. We then project it to state with total spin
S and Sz by replacing spinors of QQ̄ by4

3As we will discuss later, the SGF Eq. (3) is only a conjecture
and it is not clear right now whether it is valid to all orders. If
Eq. (3) does not hold to all orders, maybe a modification by
introducing a gauge invariant soft factor is unavoidable.

4This expression can be interpreted as covariant spin projectors
[55,56] multiplied by a normalization factor

ffiffiffiffiffiffiffiffiffiffi
2=M

p
[57]. But for

our purpose, this interpretation is unnecessary. The key in our
definition is to guarantee the orthogonal relations Eq. (19).
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2ffiffiffiffiffi
M

p ðM þ 2mÞ ðpQ̄ −mÞM − P
2M

Γ̃s
SSz

M þ P
2M

ðpQ þmÞ;

ð15Þ

where M2 ¼ P2 and

Γ̃s
00 ¼ −γ5; ð16aÞ

Γ̃s
1Sz

¼ ϵ�μSz γμ: ð16bÞ

On-shell conditions p2
Q ¼ p2

Q̄ ¼ m2 result in

P · q ¼ 0; q2 ¼ m2 − P2=4: ð17Þ

There are still 2 degrees of freedom of the relative
momentum q, which can be chosen as spatial angles in
the rest frame of the pair. We further do a partial wave
expansion in this frame, which removes the q dependence
although introducing orbital angular momentum L and Lz.
Finally, we project spin and orbital angular momentum
to total momentum J and Jz. More precisely, in the rest

frame of P, dσn and Fn0→n with quantum number n ¼
QQ̄ð2Sþ1L½c�

J;Jz
Þ can be obtained from the corresponding

production of QQ̄ with fixed c, S and Sz by the following
operation:

X
Lz;Sz

hL;Lz;S;SzjJ;Jzi
Z

d2Ωjqj−L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ1Þ!!
4πðL!Þ

s
Y�Lz
L : ð18Þ

In Appendix B, we show that the above definition can
indeed result in orthogonal relations at lowest order

Fð0Þ
n0→nðP0; PÞ ¼ δn0nð2πÞ4δ4ðP0 − PÞ; ð19Þ

where the superscript “(0)” denotes leading order in αs
expansion.
By inserting perturbative expansions

dσn ¼ dσð0Þn þ αsdσ
ð1Þ
n þ α2sdσ

ð2Þ
n þ � � � ; ð20aÞ

Fn0→n ¼ Fð0Þ
n0→n þ αsF

ð1Þ
n0→n þ α2sF

ð2Þ
n0→n þ � � � ; ð20bÞ

Hn ¼ Hð0Þ
n þ αsH

ð1Þ
n þ α2sH

ð2Þ
n þ � � � ð20cÞ

into Eq. (11) and using the orthogonal relations Eq. (19),
coefficients of different powers of αs give the following
relations:

Hð0Þ
n ðPÞ ¼ dσð0Þn ðPÞ; ð21aÞ

Hð1Þ
n ðPÞ ¼ dσð1Þn ðPÞ

−
X
n0

Z
d4P0

ð2πÞ4 dσ
ð0Þ
n0 ðP0ÞFð1Þ

n0→nðP0; PÞ; ð21bÞ

Hð2Þ
n ðPÞ ¼ dσð2Þn ðPÞ

−
X
n0

Z
d4P0

ð2πÞ4 dσ
ð1Þ
n0 ðP0ÞFð1Þ

n0→nðP0; PÞ

−
X
n0

Z
d4P0

ð2πÞ4 dσ
ð0Þ
n0 ðP0ÞFð2Þ

n0→nðP0; PÞ; ð21cÞ

and so on. Based on these relations,Hn can be obtained by
perturbative calculation of dσn and Fn0→n for on-shell QQ̄
pair production. This perturbative calculation relies on the
cancellation of IR divergences between dσn and Fn0→n [like
in Eq. (21)] to all orders in perturbation theory, which is a
very difficult problem and will be discussed in the next
subsection.
It is worth emphasizing that the above perturbative

calculation of on-shell QQ̄ pair production can only
directly determine HnðPÞ with P2 > 4m2. Although on
average we may have P2 > 4m2 [7], there is a nonvanishing
contribution from the P2 < 4m2 region in Eq. (3). The
value of HnðPÞ in the later region can be obtained by
analytical continuation of its value in the former region.
Analytical continuation here is almost trivial, which means
that we use the same functional form of HnðPÞ in all
regions of P2.

F. Justification

The above proposed SGF is only a conjecture, and we
cannot provide an all order proof at present. The most
dangerous interaction that may ruin the factorization is the
elastic scattering between the QQ̄ pair and hard jets by
exchanging gluons, the kinematic region of these
exchanged gluons are called “Glauber” region in literature.
We find that IR divergence from the Glauber region at
one-loop order is purely imaginary, which cancels with the
contribution from its complex conjugate diagram.
Therefore, SGF holds at one-loop order. Thanks to the
two-loop study of infrared divergences of quarkonium
production [25–27], it is hopeful that SGF may also hold
to two-loop order, which however still needs further
examination.

G. Relation to NRQCD factorization

The difference between NRQCD and SGF can be
partially understood from the treatment of intermediate
momenta. Based on relations in Eq. (17), we can express q00
and q02 by P0

0 and P02, which corresponds to the SGF

NEW FACTORIZATION THEORY FOR HEAVY QUARKONIUM … PHYS. REV. D 100, 094007 (2019)

094007-5



strategy. Alternatively, we can also use Eq. (17) to express
q00 and P

0
0 by q

02 and P02, which corresponds to the strategy
of NRQCD factorization.
To further discuss the relation between SGF and

NRQCD, by ignoring velocity corrections we can approxi-
mateHnðPÞ byHnðPHÞ in Eq. (3). Then the integral over P
is applied on SGDs defined in Eq. (4), and thus Eq. (3)
becomes

ð2πÞ32P0
H
dσH
d3PH

≈
X
n

HnðPHÞhÕH
n i; ð22Þ

which has the same form as the NRQCD factorization
Eq. (1). In the above formula,

hÕH
n i ¼

Z
d4P
ð2πÞ4 Fn→HðP; PHÞ ð23Þ

are closely related to gauge-completed LDMEs hOH
n i

although they are defined by different fields. Considering
the differences between normalization in color space, up to
lowest order in v2 approximation, we have5

hOH
n i ≈ 2NchÕH

n i; if n is color singlet; ð24aÞ

hOH
n i ≈ hÕH

n i; if n is color octet: ð24bÞ

Based onNRQCDvelocity scaling rules, these relations also
tell us v2 power counting rules for SGDs.
Beyond the above approximation, the complete SGF

formula resums a series of velocity corrections in NRQCD,
which are important for phenomenological study. As we
know, the TMD factorization is a generalization of collinear
factorization with a series of higher twist corrections
resummed [54]. In this sense, we can say that SGF is a
“TMD” version of NRQCD. We expect that there are a lot
of similarities between SGF and TMD factorization.

H. Relation to QCD collinear factorization

It is also needed to explain the relation between the
SGF method and the QCD collinear factorization method
[8–10]. In QCD collinear factorization, one assumes the

transverse momentum of the produced quarkonium to be
much larger than the heavy quark mass, PHT ≫ m.
Therefore, one can factorize out hard physics at the scale
of PHT , and leave the physics at the scale of m to be
described by input functions, which are called fragmenta-
tion functions (FFs). Unlike NRQCD factorization and
SGF, QCD collinear factorization has been proved to all
orders in perturbation theory at both leading power
and next-to-leading power levels. Phenomenologically,
the advantage of this method is that large logarithms
logðPHT=mÞ can be resummed to all orders in perturbation
theory using renormalization group equations for single-
parton and double-parton FFs [10], and therefore there can
be smaller theoretical uncertainties.
Due to the above advantages, when studying high

transverse momentum quarkonium production, one should
better first use QCD collinear factorization to express cross
sections in terms of the convolution of perturbative calcu-
lable hard parts [58] with FFs. Based on renormalization
group equations, these FFs are fully determined by their
values at an initial scale. Because of the heavy quark mass,
these FFs at the initial scale still have perturbative physics
that can be further separated from nonperturbative physics.
This can be achieved by using NRQCD or SGF. Using
NRQCD factorization, these FFs at an initial scale have
been studied extensively [59–70]. In Sec. IV, we will see
that FFs can also be calculated by using the SGF method,
which can improve the convergence of v2 expansion
comparing with the using of NRQCD factorization.
Note, however, that both NRQCD factorization and SGF

can also be used to directly describe low transverse
momentum quarkonium production as well as quarkonium
decay, where the QCD collinear factorization does not
apply.

III. SIMPLIFICATION

A. Collinear approximation

The factorization formula in Eq. (3) can be further
simplified to make it more suitable in practical use. In
the rest frame of H, SGDs in Eq. (3) have support only in
the region Pμ ¼ ðM þOðλ2=MÞ; OðλÞ; OðλÞ; OðλÞÞ, where
M2 ¼ P2 and λ ∼ a few hundreds MeV ≪ M is the typical
energy of emitted gluons. Thus we can expand OðλÞ and
Oðλ2=MÞ terms in hard parts. In this expansion, although
space components of Pμ are OðλÞ, the convergence should
be much better than usual velocity expansion in NRQCD
because P⃗ is integrated out symmetrically around the
origin. The leading term in this expansion gives

ð2πÞ32P0
H
dσH
d3PH

≈
X
n

Z
dzHnðPH=zÞFn→HðzÞ; ð25Þ

where

5Let us first check color-octet states. In NRQCD one usually
chooses nonrelativistic normalization for the H state, which
means that our definition has an extra factor 2EH due to
normalization of state. For a color operator, in NRQCD one
uses tā instead of

ffiffiffi
2

p
tā, due to which we have an extra factor 2.

Finally, the prefactor in Eq. (6) introduces an extra factor
MH=ðMH þ 2mÞ2. The multiplication of these three factors
equals 1 if we choose the H rest frame and take v2 → 0. Except
these differences, all other parts of our definition are identical to
the NRQCD definition at the lowest order in v2 approximation.
For color-singlet states, in NRQCD one uses 1c as color operator,
which results in a difference of factor 2Nc comparing with the
color-octet case.
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Fn→HðzÞ ¼
Z

d4P
ð2πÞ4 δðz −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
H=P

2

q
ÞFn→HðP;PHÞ: ð26Þ

In this way, we significantly reduce the complication of
input functions from four dimensional to one dimensional.
We refer to Eq. (25) as SGF-1d and Eq. (3) as SGF-4d.
Note that a similar formula that relates momentum of χcJ

to its decaying particle J=ψ , pJ=ψ ≈ mJ=ψ

mχcJ
pχcJ , was first

introduced by us in Ref. [21], and later also used in other
publications [7,39,71]. The approximation was found to be
very good, with only 8% deviation from full results for both
yield and polarization measurements [71]. We thus expect
the approximation Eq. (25) to be also very good.
There are also other choices of collinear approximations.

For any direction ê, we can have an approximation

ð2πÞ32P0
H
dσH
d3PH

≈
X
n

Z
dzHnðPH=zÞFê

n→HðzÞ; ð27Þ

with

Fê
n→HðzÞ¼

Z
d4P
ð2πÞ4 δðz−PH · ê=P · êÞFn→HðP;PHÞ: ð28Þ

In the rest of the paper, we will only take Eq. (25) as an
example to show the effect of collinear approximation.

B. Statical approximation

As hard gluon emissions are excluded from Fn→HðzÞ and
very soft gluon emissions are suppressed by phase space,
Fn→HðzÞ should peak around z ¼ zn ∼ 1 −Oðλ=mHÞ. If the
distribution of Fn→HðzÞ is narrow enough, we can approxi-
mate it by δðz − znÞhÕH

n i. Then the SGF becomes

ð2πÞ32P0
H
dσH
d3PH

≈
X
n

HnðPH=znÞhÕH
n i; ð29Þ

which we call SGF-0d. While this formula is as simple as
NRQCD factorization, we will see later that the lowest
order SGF-0d is a much better approximation of real
physics than that of the lowest order NRQCD.

C. Expansion of m

In hard parts of all the above SGFs, there are at least two
independent hard scales, 2m and M. Their difference is,
however, much smaller than 2m. We thus can further
simplify hard parts by expanding m around M=2, which
defines a relativistic correction series in SGFs. We will see
that there are no large corrections in this expansion.

IV. EXAMPLE: J=ψ HADROPRODUCTION

A. High pT quarkonium production

To compare SGFs with NRQCD factorization, we apply
them to the J=ψ hadron production via gluon fragmenta-
tion. A charmonium H production cross section via gluon
fragmentation is given by

dσHðpTÞ ¼
Z

dx dσ̂gðpT=xÞDg→HðxÞ; ð30Þ

where dσ̂gðpT=xÞ is the well-known hard part that produces
a gluon with transverse momentum pT=x, and Dg→HðxÞ is
the FF of a gluon into an H that will be determined in the
following.

B. Fragmentation functions calculated in SGF

Using the SGF-4d Eq. (3), we obtain

D4d
g→HðxÞ¼

X
n

Z
dP2

2π

dy
y
D̂nðy;P2ÞF̄n→H

�
x
y
;P2

�
; ð31Þ

where

F̄n→H

�
x
y
; P2

�
¼

Z
d3PH

ð2πÞ32P0
H
δ

�
x
y
−
Pþ
H

Pþ

�
Fn→HðP; PHÞ;

ð32Þ

which only depends on x=y and P2 because of Lorentz
symmetry combined with boost invariance along the “þ”
direction. Using the SGF-1d Eq. (25), we obtain

D1d
g→HðxÞ ¼

X
n

Z
dzD̂n

�
x
z
;
m2

H

z2

�
zFn→HðzÞ: ð33Þ

In Eqs. (31) and (33), D̂nðy; P2Þ can be calculated

perturbatively. Up to OðαsÞ, only the n ¼ 3S½8�1 channel
has a nonvanishing contribution [72],

D̂ð1Þ
3S½8�

1

ðx;M2Þ ¼ παs
24m3

ð1þ2Δ
3

Þ2
Δ5

δð1 − xÞ; ð34Þ

with Δ ¼ M
2m. Equation (34) can also be used in NRQCD

factorization, where one expresses Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ hvi2

p
and

then expands hvi2, which gives a normalized series
1 − 11

6
hvi2 þ 191

72
hvi4 þ � � �. The first two terms in this

expansion have been calculated before [61,65].

C. Model assumptions

For the nonperturbative function Fn→HðP; PHÞ, we
simply employ an existing model in Ref. [51],
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F3S½8�
1
→H

ðP; PHÞ ¼ ak2 exp

�
−
k20 þ k2

Λ2

�
; ð35Þ

where k ¼ P − PH is a timelike momentum with positive
energy k0. Λ is an energy cutoff for emitted soft gluons, for
which we will choose 500 MeV.6 As we are only interested
in the cross section ratio in the following, the value of a is
irrelevant. We further set m ¼ 1.55 GeV in studying J=ψ
production. We note that our conclusions are in fact
independent of these choices.

D. Numerical results

With these inputs in hand, FFs calculated by using
different methods are shown in Fig. 1. In this figure,
D4d

g→HðxÞ and D1d
g→HðxÞ are calculated by using the exact

value of m, while D1dð0Þ
g→HðxÞ is similar to D1d

g→HðxÞ but
calculated by setting m ¼ M=2 in Eq. (34). We find that
FFs calculated by using SGF-4d and SGF-1d have different
shapes, but they have the same accumulated values,Z

1

0

dxD4d
g→HðxÞ ¼

Z
1

0

dxD1d
g→HðxÞ: ð36Þ

This is because SGF-4d and SGF-1d are equivalent for
the integrated FF. The FF obtained by expanding m to the
lowest order,D1dð0Þ

g→HðxÞ, has only a small difference from the
complete result D1d

g→HðxÞ, which implies that relativistic
correction due to the expansion of m is very small.
We also find that F3S½8�

1
→H

ðzÞ has almost the same shape

as that of D1d
g→HðxÞ, which is δ-function-like. For cross

section, we will find that SGF-0d with z0 ¼ 0.86 can well
reproduce SGF-4d.
Using the above FFs, we can calculate the J=ψ cross

section based on Eq. (30). Let us assume that the cross
section calculated by SGF-4d is “exact,” and examine how
good are the SGF-1d, SGF-0d, and NRQCD expansions.
We show ratios of J=ψ differential cross section calculated
by different methods over that calculated by SGF-4d in
Fig. 2. We find that the SGF-1d result is close to the exact
value, with largest error less than 6%. This implies that, as
expected, the SGF-1d expansion should be very good. By
expandingm to the lowest order, SGF-1dð0Þ also provides a
good approximation, with deviation smaller than 10%.
The SGF-0d can well reproduce SGF-4d if we choose
z0 ¼ 0.86, as shown in Fig. 2. So, we expect that the
convergence of velocity expansion in SGF is good in
general.
On the contrary, the lowest order NRQCD result is larger

than the exact value by more than a factor of 4, where

NRQCD LDMEs are determined by the approximation
Eq. (24). There are two main sources for the large
deviation. One comes from the hard part of Eq. (30), which
has an approximate scaling behavior dσ̂gðpT=xÞ ∼
ðpT=xÞ−4 with average value of x being around 0.86.
Yet, by ignoring soft gluon emission, NRQCD approx-
imates x ≈ 1, which enhances the total result by almost
a factor of 2. This effect has also been pointed out in
Sec. II A. The other one comes from Eq. (34). By ignoring
soft gluon emission and then expanding M around 2m,

NRQCD approximates Δ ≈ mJ=ψ=0.86
2m ≈ 1.16 by 1, which

enhances the total result by another factor of 2. Roughly
speaking, the lowest order NRQCD approximates 0.869 ≈
1=4 ∼ ð1 − v2=2Þ9 by 1 in this problem, which is hard
to be recovered by traditional relativistic correction in
NRQCD [73].
For bottomonia production, because v2 is smaller,

NRQCD approximation can be a little bit better than
that for charmonia. According to the above discussion,
we expect the lowest order NRQCD approximation
overestimates bottomonia production rate by a factor of
ð1 − v2=2Þ−9 ≈ 1.6.

FIG. 1. Fragmentation functions calculated by SGFs. The overall
normalization is arbitrary.

FIG. 2. Ratio of J=ψ differential cross section at LHC
calculated from different approaches over that calculated from
SGF-4d. See the text for details.

6By assuming the cutoff at the order of mv2, this choice
corresponds to v2 ≈ 0.3. As we will see, D1d

g→HðxÞ calculated in
this model is picked around x ≈ 1 − v2=2.
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V. SUMMARY AND OUTLOOK

In this paper, we propose a soft gluon factorization (SGF)
approach to describe quarkonium production and decay,
which keeps the momentum difference between intermedi-
ateQQ̄ pair and physical quarkonium. From the point view
of NRQCD, the SGF effectively resums a subset of Lorentz-
invariant relativistic correction terms in NRQCD factoriza-
tion. In this sense, the SGF is a generalization of theNRQCD
factorization.
By construction, the SGF has a good convergence in

velocity expansion, so the lowest order approximation may
already capture most physics; whereas for NRQCD fac-
torization, we find that the lowest order result in velocity
expansion can deviate from the full result by more than a
factor of 4, mainly due to ignoring the momentum taken
away by soft gluon emission. With so large deviation, it is
not surprising that the NRQCD calculation faces many
difficulties.
Hopefully, these difficulties may be resolved or relieved in

the SGF framework with well controlled relativistic correc-
tions. Specifically, the universality problemmay be due to the
fact that, for quarkonium production in different processes,
e.g., eþe− collision or pp collision, lowest order NRQCD
calculations suffer from large but different relativistic cor-
rections. While in SGF, we do not expect large relativistic
corrections.Moreover, considering the large relativistic effect
on yield, we may also expect a significant effect on polari-
zation, like color-magnetic dipole transition effect, which
may alter the transverse polarization of the 3S½8�1 channel.
Further examinations should be performed on the above
expectations.
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APPENDIX A: DEFINITION OF ANGULAR
MOMENTUM OPERATORS

Angular momentum operators in Eq. (6) are defined as

Γn ¼
X
Lz;Sz

hL;Lz; S; SzjJ; JziΓo
LLz

Γs
SSz

: ðA1Þ

As total spin has only two choices, S ¼ 0 or 1, the
corresponding spin operators are

Γs
00 ¼ γ5; ðA2aÞ

Γs
1Sz

¼ ϵμSzγμ; ðA2bÞ

where ϵμSz are polarization vectors. Orbital operators are
defined as

Γo
LLz

¼ ϵμ1���μLLz

�
−
i
2

�
L
D
↔

μ1 � � �D
↔

μL ; ðA3Þ

where Dμ is the gauge covariant derivative with Ψ̄D
↔

μΨ ¼
Ψ̄ðDμΨÞ − ðDμΨ̄ÞΨ and ϵμ1���μLLz

are L-rank polarization
tensors. The above polarization tensors ϵμSz and ϵ

μ1���μL
Lz

have
only spatial components in the rest frame of PHμ, which is
equivalent to the following relations:

PH · ϵSz ¼ 0; ðA4aÞ

PHμi · ϵ
μ1���μL
Lz

¼ 0 for i ¼ 1;…; L: ðA4bÞ

Furthermore, polarization tensors are chosen to be ortho-
normal, e.g., ϵSz · ϵ

�
S0z
¼ −δSzS0z . The combination of the

above two properties results in

X
Sz

ϵμSzϵ
�ν
Sz
¼ −gμν þ Pμ

HP
ν
H

M2
H

: ðA5Þ

Although orbital operators in Eq. (A3) are similar to that
in NRQCD, their meanings are actually very different. In
fact, in addition to these operators, there are an infinite
number of relativistic-correction operators in NRQCD, like

ð− i
2
Þ2D↔2

, which do not show up in SGF. The reason is that,
instead of relativistic expansion, the SGF is performing a
partial-wave expansion. This can be seen more clearly in
momentum space. Then in the rest frame of PH, Eq. (A3)
becomes

ϵμ1���μLLz
qμ1 � � � qμL ¼ jqjL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðL!Þ

ð2Lþ 1Þ!!

s
YLz
L ðθ;ϕÞ; ðA6Þ

where qμ is half of the relative momentum between
intermediate QQ̄, and θ and ϕ are polar angle and
azimuthal angle of q, respectively. Equation (A6) can be
thought of as the definition of Γo

LLz
in momentum space. As

the partial-wave expansion already forms a complete set of
operators, we do not need further relativistic-correction
operators. Relativistic corrections in SGF are encoded in
perturbative calculable hard parts. Our definition of SGDs
is to pick up the minimal number of jqj in each partial wave.

APPENDIX B: LEADING ORDER
EXPANSION OF SGDs

The Feynman diagram which represents the leading
order expansion Fð0Þ

n→n0 ðP;P0Þ is shown in Fig. 3. It is clear
that, if the color of n is different from that of n0, then the
amplitude vanishes. If both n and n0 are color singlet, we
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get Trc½ 1ffiffiffiffi
Nc

p 1ffiffiffiffi
Nc

p � ¼ 1. If both n and n0 are color octet, for

amplitude we have Trc
h ffiffiffi

2
p

ta
ffiffiffiffiffiffiffiffi
2

N2
c−1

q
ta

0
i
¼ δaa0ffiffiffiffiffiffiffiffi

N2
c−1

p , which

results in δaa0ffiffiffiffiffiffiffiffi
N2

c−1
p δaa0ffiffiffiffiffiffiffiffi

N2
c−1

p ¼ 1 after summing over color

states. Thus for color factor we always have δcc0 .
The angular momentum part of the amplitude gives

Að0Þ
n→n0 ðP;P0Þ ¼

�X
Lz;Sz

hL; Lz; S; SzjJ; Jzi
Z

d4q
ð2πÞ4 jqj

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðL!Þ

ð2Lþ 1Þ!!

s
YLz
L ðθ;ϕÞ

�

×

�X
L0
z;S0z

hL0; L0
z;S0; S0zjJ0; J0zi

Z
d2Ω0jq0j−L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L0 þ 1Þ!!
4πðL0!Þ

s
Y�L0

z

L0 ðθ0;ϕ0Þ
�
ð2πÞ4δ4ðpQ − p0

QÞ

×
2

ffiffiffiffiffiffi
M0p

ffiffiffiffiffiffi
M0p

ðM0 þ 2mÞ2 Tr
�
M0 þ P0

2M0 Γs
SSz

M0 − P0

2M0 ðp0̄
Q −mÞM

0 − P0

2M0 Γ̃s
S0S0z

M0 þ P0

2M0 ðp0
Q þmÞ

�
; ðB1Þ

where ð2πÞ4δ4ðpQ − p0
QÞ presents because the diagram is disconnected and the terms inside of “Tr” project both initialQQ̄

and final QQ̄ to specific spin states. By setting P ¼ P0 and using the delta function to integrate out q, we get

Að0Þ
n→n0 ðP;P0Þ ¼

X
Lz;Sz;L0

z;S0z

hL;Lz; S; SzjJ; JzihL0; L0
z; S0; S0zjJ0; J0zi

Z
d2Ω0YLz

L ðθ0;ϕ0ÞY�L0
z

L0 ðθ0;ϕ0ÞjqjL−L0

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L0 þ 1Þ!!ðL!Þ
ð2Lþ 1Þ!!ðL0!Þ

s
2

ðM þ 2mÞ2 Tr
�
M þ P
2M

Γs
SSz

M − P
2M

ðpQ̄ −mÞM − P
2M

Γ̃s
S0S0z

M þ P
2M

ðpQ þmÞ
�

¼ δLL0
X

Lz;Sz;S0z

hL;Lz; S; SzjJ; JzihL; Lz; S0; S0zjJ0; J0zi

×
2

ðM þ 2mÞ2 Tr
�
M þ P
2M

Γs
SSz

M − P
2M

ðpQ̄ −mÞM − P
2M

Γ̃s
S0S0z

M þ P
2M

ðpQ þmÞ
�
; ðB2Þ

where we have used
R
d2Ω0YLz

L ðθ0;ϕ0ÞY�L0
z

L0 ðθ0;ϕ0Þ ¼ δLL0δLzL0
z
in the last step. Due to

M − P
2M

ðpQ̄ −mÞM − P
2M

¼ −
�
mþM

2

�
M − P
2M

; ðB3aÞ

M þ P
2M

ðpQ þmÞM þ P
2M

¼
�
mþM

2

�
M þ P
2M

; ðB3bÞ

the last line of Eq. (B2) gives

−
1

2
Tr

�
M þ P
2M

Γs
SSz

M − P
2M

Γ̃s
S0S0z

�
¼ −

1

2
Tr

�
M þ P
2M

Γs
SSz

Γ̃s
S0S0z

�
¼ δSS0δSzS0z ; ðB4Þ

where we have used the fact that PH ¼ P at this order and thus P · ϵSz ¼ 0. Therefore,

Að0Þ
n→n0 ðP;P0Þ ¼ δLL0δSS0

X
Lz;Sz

hL;Lz; S; SzjJ; JzihL;Lz; S; SzjJ0; J0zi ¼ δLL0δSS0δJJ0δJzJ0z : ðB5Þ

Eventually, we have

Fð0Þ
n→n0 ðP;P0Þ ¼ ð2πÞ4δ4ðP − P0Þδcc0 jAð0Þ

n→n0 ðP; P0Þj2 ¼ ð2πÞ4δ4ðP − P0Þδnn0 : ðB6Þ

FIG. 3. Diagram of Fð0Þ
n→n0 ðP;P0Þ.
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