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In this work, we calculate the nonrelativistic asymptotic behavior of the amplitudes of gg — 29 — ¢g in
the leading order of a, with gg in the 3P, channels. In the practical calculation we take the momenta of
quarks and antiquarks on shell and expand the amplitudes on the three-momentum of the quarks and
antiquarks to order 6 and get three nonzero terms. The imaginary parts of the results are comparable with
the known nonrelativistic QCD results. The real parts of the results have IR divergence. When applying the
results to the heavy quarkonia, the corresponding amplitude of gg — 1g — ¢g with ¢g in the color octet

3§, channel is considered to absorb the IR divergence in a unitary way in the leading order of ». The final

results can be used to estimate the mass shifts of the 3P, heavy quarkonia due to the effect of two-gluon
annihilation. The numerical estimation shows that the contributions to the mass shifts of y.q .1 ., are about
1.23 ~ 1.58 MeV, 1.57 ~ 1.86 MeV, and 5.92 ~ 5.45 MeV when taking a; = 0.25 ~ 0.35.

DOI: 10.1103/PhysRevD.100.094004

I. INTRODUCTION

The energy spectrum of an elemental system is a basic
question after the breakthrough of quantum mechanism.
Currently, the energy spectrum of hadrons is still an
unsolved problem in QCD due to the complex non-
perturbative property. Many phenomenological models
have been used to study the energy spectrum of hadrons in
the quark level such as the quark model [1], QCD sum
rules [2], Dyson-Schwinger equation and Bethe-Salpeter
equation [3], etc. In these calculations, the annihilation
effect whose imaginary and real parts correspond to
the decay width and the mass shift is usually neglected.
For heavy quarkonia, their inclusive decays can be
well described by the effective theory nonrelativistic
QCD (NRQCD) [4]. In NRQCD, the imaginary part of
the coefficients of four fermions interactions are matched
from the imaginary parts of the on-shell scattering
amplitudes gg — 1g,2¢9,39 — qg or the decay widths
of qq — 1g,2g,3¢ in perturbative QCD order by order.
In a previous paper [5], we calculated the real parts of
these coefficients in the leading order of a, (LO-«y) in the
1S, channel with the momenta of quarks and antiquarks off
shell and find the results are gauge invariant, while the
similar calculation cannot be directly extended to the 3P,
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channels due to the gauge invariance. In principle, the
corresponding four-point Green’s function of ¢g — qg
with quarks and antiquarks off shell provides the inter-
action kernel of the Bethe-Salpeter and then determines
the mass shifts. Usually the Green’s function with the
off-shell quarks and antiquarks is not gauge invariant. To
avoid this problem, the most simple way is to do an
approximation by taking the quarks and antiquarks on
shell. After using such an approximation, the results are
gauge invariant and the calculation is similar with what
was done in NRQCD. In this work, we calculate the
amplitudes of ¢g — 2g — gg in the 3P, channels and
qg — 1g — qg in the 35, channel with ¢g in color single
and color octet states, respectively.

We organize the paper as follows. In Sec. II we give an
introduction on the basic formula, in Sec. III we describe
our calculation and present the analytic results for the
coefficients to order 6 after the nonrelativistic expansion, in
Sec. IV we compare the above results with the correspond-
ing NRQCD coefficients and from this comparison the real
parts of the corresponding NRQCD coefficients can be read
directly, in Sec. V we apply the above results to discuss
the mass shift of 3P, states, and in Sec. VI we estimate the
effects to the mass shifts numerically and discuss the
interesting properties of the results.

II. BASIC FORMULA

Following the idea of NRQCD, for a heavy quarkonium
H(*P;) in the J* state there are two contributions in the
amplitudes of H(*P;) — H(*P;) in the leading order of v
(LO-v) which can be expressed as
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FIG. 1.

M(H(P;) = H(CP))) = M(qq(*Py); = qq(*Py),)H,
+ M(qq(*S1)s = qq(*S))s)Hs.
(1)

where H; and Hg are some nonperturbative matrix
elements, M(qg(*P,); — qg(*P,);) and M(qq(*S))s —
qq(®S))g) are the amplitudes with the momenta of the
quarks and antiquarks on shell, and the indexes 1 and 8
refer to the color signal and color octet states, respec-
tively. The amplitudes at quark level can be calculated
perturbatively. In the perturbation theory, the corresponding
Feynman diagrams for the amplitudes of ¢g(*P;), —
29 — qq(®P;), are shown in Fig. 1, and the transition
qq(3S1)s = g = qq(*S))g is shown in Fig. 2.

In the center of mass frame, we choose the momenta as
follows:

1 1
P1—§P+Pn Pz—EP Di
al 1
ps=5P+pp pa=5P-py. (2)

with p? = p3 = p3 = p} =m? and m the mass of the
heavy quark. We can define P=(E,0,0,0), p;=(0,p,),
and p fé(O, p;). For the heavy quark and antiquark pairs
we can take [p;/|/m as small variables, and then can
expand the expressions on these small variables. In the
on-shell case, we have the relations |p;| = |pf|ép and

E = \/m? + p?. This relation means we cannot distinguish
Ip;| from |p;| and a nonuniqueness may happen when

FIG. 2. The Feynman diagrams for ¢g — 1g — g in the 35,
channel in the leading order of «;.

L (b

The Feynman diagrams for ¢§ — 2g — ¢g in the 3P, channels in the leading order of a;.

applying the final expressions to the bound states. There is
no such nonuniqueness in the direct calculation of the
imaginary parts since the momenta p; and p, appear
independently after cutting the gluon lines. Fortunately,
we can see the first two nonzero orders can be gotten
uniquely due to the symmetry which will be discussed in
the following.

To project the quark and antiquark pairs to the 3P, state
and the 3S, state, we use the project matrix in the on-shell
case [6,7] and have the following:

- I 1
Z v(pa. Sz)Tu(PhSl)<§S1;§S2|1Si>éTr[T-Hi(Si)]v

_ 1 1
S s, ss)Tolpacso) (st il ST )]

(3)

where the Clebsch-Gordan coefficients are the standard
ones as in Ref. [7] and the Dirac spinors are normalized as
utu = vtv = 1, whose expressions are written as

u(p sgw(?l)

VT E(E +m)\ 0 )

A —ﬂz‘f‘m 0)
v(pz,n)—;Ez(Eﬁm)(nsz , @)

with E,,=/p},+m?>=E, £/2=(1,0)7, &2 = (0,1)",

n'/? = (0,1)7, and ~'/2 = (~1,0)". The combination of
the above expressions results in the following:

1(5) = g 7zg g P  MCE A P)
x d(s2) (2 + m)
I (s,) = —m (~Hatm)
x 4" (s))2E; + P)(#a + m) 5

where E; = E; =, /p;; + m* and
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¢*(0)=(0,0,0,1),
e (£1)=(0,F 1,-i,0)/V2. (6)

Here the relative sign of II;(s;) and I (s;) is positive which
is different from the 'S, case.

To discuss the mass shifts of 3P, heavy quarkonia due
to the effect of two-gluon annihilation, in principle,
one can go to calculate the full four-point Green’s
function with quarks and antiquarks of shell and then
take the four-points Green’s function as the interaction
|

[H(P))) ~ $1(Ipl)

\/_

(4'¢’), CPy)) + do(lpl)

kernel of the Bethe-Salper equation to discuss the mass
shifts. In our calculation, similarly with NRQCD we
take the on-shell approximation to the four-point
Green’s functions. Since we take the approximated
four-point Green’s function as the interaction kernel
of the Bethe-Salpeter equation, we only calculate it in
the perturbative QCD and do not go to match them
with the corresponding amplitudes in NRQCD. In the
practical calculation, we directly include the structure of
the heavy quarkonia and assume the following structure
for the H(*P,):

TY

WKQ '3)5(3S1)g") (7)

where the color factors 1//N, and 1/+/(N? — 1)/2 are used to normalized the color parts to 1, and ¢ (|p|) refer to the
wave functions of the H(*P,) in the momentum space in the color single and color octet states, respectively. The relations
between the wave functions ¢, ; with the wave functions in the coordinate space are defined as

Si(Ip)Y im(2) 2 / PR (1) V(). (8)

1
(27)*

Using the structure of the H(*P,) and the above project matrices, the amplitudes can be expressed as follows:

MECP)EM(qq(PPy), — qa(*P))))H,
/d|Pz|d|Pf||Pz| s 2h1(Ips))i (Ip: NG (P Py),
M(351)éM(QQ(351)8 - qq(>S,)g)Hy

/dlplldlpfllpll o do(lps )5 (IR )G CS)), ©)

where G(@?)(3P,) and G(°)(3S,) are expressed as

G(“’b)(3P,)—Z(JJz|lsf;1mf)<JJz|1si;1mi>/deidQ Vi (@)Y, ()G (s,,5,),

SiSy

GEI(s)) = (1lesf|><1sillfz>/de,.de,Yoo(Qi)YfSo(Qf)G(”)(si,sf), (10)

and

. dPk
G (s;,57) = _w}zg) / (22)P T[T\ 10 (s;) | Te[To s (s£) Dy, (k) Dosi(p1 + 2 = k),
G® - (29) d"k
(sis87) = —icy WTr[TlHi(si)]Tr[TBHf(sf)]DM(k>Dup(pl + p2 = k),
G (s;,87) = _’C( ITe[(~igy T (s )] Te[(=igyr* T (s )] Dy (1 + p2). (11)

with D = 4 — 2¢ and the color factor c?g)

094004-3



HUI-YUN CAO and HAI-QING ZHOU

PHYS. REV. D 100, 094004 (2019)

(2.(]) - 511 jm . 5l'/j! j/mr 131
o = (T ) (T

_ CaCr _ N:-1 2
3

sl 1

'] _

30 v

2N, Nc

(19)
C =
! ( N2 N

(12)
the hard kernel 7,
Ty = (=igsr") - Sp(p1 — k) - (—iger"),
Ty = (—igyy”) - Sp(ps — k) - (=igyr").
Ts = (—igsy”) - Sp(k — p4) - (—igs}"l)’ (13)
and
i(¢ +m)
S =)
F(q) qz _ mz + ie
_i mep;
Dﬂﬂ(q) = q2 +ie (gﬂp _f 22/>‘ (14)

In the real bound states, the values of |p;| and |p;| are
independent which is different from the on-shell case, so
we label |p;| and |p,| independently in the above original
expressions.

To calculate G(*2<) (s, s +), we use the package Feyncalc
[8] to do the trace of Dirac matrices in the D dimension and

then expand the expressions on the variable p to a special
order. After the expansion, we use the tensor decomposi-
tion to reexpress the loop integrations and finally use the
package FIESTA [9] to do the sector decomposition and
then use Mathematica to do the analytic integration.

After the loop integrations, the form of G(@*+2<)(s;, sf)
can be expressed as follows:

G(a+b,c) (Si , sf) —

+ Y e(s) - piet(sy) - py
+ Cgﬁb‘c)e(si) “pre(sy) - pi
+ Cz(tﬁh’c)e(si) ‘Pie*(sf) Pi
+CE P e(s) - pre(sy) - ppe (15)

with

3

a bL n
=S P p)(pipy). (16)
n=0

a+b c)

After getting the coefficients C 1(;1 H”C), usually the properties

of the integrations of the angle and the sums of the spins
are independently used to simplify the expressions as in
Ref. [6]. In our calculation, for simplification we directly
calculate the sums of the spins and the integrations of
angles together. We define

P(LX. )23 (0 Us i lmg) (40 Ls : 1m,) / 49 A V1, ()Y, (@) (i pr)'X.

SiuSf

O(X.n) 2 (11,15,) (15,]17.) / 49 A2, Yio(2)Yi0(Q)) (B - Py)"X, (17)

where X are some functions dependent on p;, p, e(s;), and e*(sf) with i)i,fépi,f/|p,»,f|, n=20,1,2,and3,J =0, 1, and 2,
P(X,n) and Q(J,X,n) are not dependent on J, whose manifest forms are directly listed in the Appendix. Using the
expressions of P(J,X,n) and Q(X,n), M(®*P;) and M(®S;) can be calculated easily.

III. THE ANALYTIC RESULTS FOR THE ASYMPTOTIC BEHAVIOR

In the practical calculation, we expand the expressions on p to order 6. Since the calculation is taken with the momenta on
shell, the gauge invariance is manifest. The final result can be expressed as

2 4 6
(';(a+b)(3pj)| c}Zg)a%z [p_4 cjo+— 4 cCrat p_g ¢y + higher order} ,
m mb m
~(¢) (3 _ (19) 1 p*
G'( Sl)|p_cf do+ dz—i— ¢ d4 + higher order |, (18)
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where the subindexes p mean to expand the expressions
on p. For the real bound states, the terms p> and p*
only receive contributions from the terms |p,||p;| and
2(Ipillps? + [pil*[ps]). respectively, since only they are
nonzero. The term p® receives the contributions both
from the terms 5 (|p:l[p;° + [pil*[ps[) and |p:[*[p/P,
which results in that one cannot distinguish them in a
unitary from.

The imaginary parts of ¢,; and d; are expressed as
follows:

56
Im[cg,] =87, Imfcyy] = -5
1384
Im[cq 6] = T Im[c, ;] =0,
Im| ]—32 Im[c, 4] = o4
Coo] = 15”’ Cra] = 157/7,
51088
Im[C2'6] = ﬁﬂ, Im[d,] =0. (19)

The real parts of ¢;; and d; are expressed as follows:

8 64
RC[CO,z] = —g — 1610g2 _?CIRv
32 112 832
Refcoq] = 45+Tl g2+ —— 15 Crr,
9452 2786 17216
Relco 6] :ﬁ—?logz 575 —< Cr.  (20)
16 64
Re[c ] = ey _ECIR’
16 512
Refc4] = E‘FECIR,
464 22528
R S 21
elersl = 315~ 1575 (21)
32 64 64
Re[Cz’z] = E—ElogZ —KCIR,
1568 128 128
RC[CZA] = —ﬁ—l-ﬁlogz +TCIR,
14656 102176 11168
Releael =T125 ~ 775 182~ 555 e (22)
Re[dy| = -8,
Re[dz} = 877,',
74
Re[dﬂ = —?ﬂ' (23)

with

1/1 m>
Cr=-=-—log—5 —7yg ). 24
IR 3 (6 0og 4”#12R }’E) ( )

In the following discussion, we define Re[c/'7] as the finite
part of Re[c; ;] with the Crg related parts being subtracted.

IV. COMPARE THE RESULTS
WITH NRQCD

The asymptotic behavior of the amplitude in pQCD
can be used to get the coefficients of the NRQCD by
matching. Comparing our Eq. (19) with the expressions in
Appendix B of Ref. [10], one can find the following
relations:

1
mf,(CP))] = - P a?Imlc, o],

cPa2Imlc, 4] (25)

oo|»—aoo

Imlg, (3PJ)] =

where f,(*P;) and g, (*P;) are the coefficients of the four-
fermion couplings O, (*P;) and P;(*P,) in the NRQCD
effective Lagrangian [10], respectively. This relation is
natural since the two calculations should give the same
expressions for the decay width except for the global factor
difference between the wave functions and the matrix
elements.

It is sure that the real parts of the coefficients obey the
same relations as follows:

1
Re[f1(*P))] = g ajRelc]].

1
— c}zg ) a%Re[c];’Z] (26)

Relgi (°P))] = ¢

Furthermore, the coefficients ¢, ¢ are corresponding to the
sum of the coefficients of next order in NRQCD which
means

iy (7)) + W CP)] = s ame, .

1 mn
Re[n (P)) + 1 CP))] = g alRelc]¢).  (27)

where the coefficients h; (*P;) and k| (*P;) are defined as
h 3P h/ 3
pyper s M) g )  B1ER) o) (o)

with

094004-5



HUI-YUN CAO and HAI-QING ZHOU

PHYS. REV. D 100, 094004 (2019)

1 i i< i<
Q(°Py) = EV/T <—§D'0'> (_ED) xrt <—§D‘
L ie N[ i<
Q:(°Py) =3 <—§D XU) <—§D>
Lo s N[ Qs
Ql(Pz):ZW _ED o/ _ED
1 i< i<
1(GPy) = EV/T <—§D U) (—§D>
| i i
/1(3P1)_§WT<—§DXG> (‘ )
| i< . i
1CPy) = na <—2D UJ)) (‘2 >

similarly with the operators O, (*P,) and P,(*P;) [10].

V. THE MASS SHIFTS OF
H(3P;) STATES

To discuss the mass shifts of the H(*P,) states, in
principle, one can take the Green’s function as a part of the
interaction kernel of the Bethe-Salpeter equation, then
solve the Bethe-Salpeter equation to get the corrected
energy spectrum and the mass shifts. Since such an
approach is unconquerable at present, usually the pertur-
bative form is used. One can do this order by order by
matching NRQCD into pNRQCD [11] under the frame of
effective theory. In this work for simplicity we directly
match the amplitude in pQCD with that in the quantum
mechanism order by order to extract the effective potential
in the quantum mechanism. In the LO-a; one has the
following simple relation for the corresponding effective
potential:

(Vert ) =(HCP)) Ve[ HCP;)) =
(30)

In the LO-v, the corresponding decay widths of H(*P,)
to the light hadrons (I.4) from the above diagrams, which
are labeled as (3P, — L.h), are expressed as

1
IR (0)P

m4 ’

(31)

TCP; = 1.h) = =2Im[(Vgr )] = —oiImlc, 5]

4n

and the corresponding mass shifts labeled as AM (*P;) are
expressed as

—(MCPy) + MC5y)).

3) v + H.c.,

o\ 2
D) v+ H.c., (29)

AM(SPJ) = ReKVeff,Jﬂ
_ in IR '(0)]?
8a |R$‘><o>\2 1 |Ro(0)?
+ ﬂ'a |:3 > C IR m4 + E m2 ’
(32)
where we have used the relation
2n+3 _on
[ titorpdp = 12RO
TT [r|=0
[ oot rap = -1 RG] 69

Equation (32) shows when one goes to discuss the mass
shifts of the H(*P,) states due to the two-gluon annihi-
lation effects in the LO-a,, the color octet contribution
should also be considered. The IR divergence in M(*P)
can be absorbed in a unitary way by M(3S,) in the
LO-v. The absorbed form is unique and is same as the
case of the one-loop radiative corrections to the decay
width"(*P, — L.h). This is natural if one goes to match the
above results with the corresponding NRQCD coefficients.

In the literature, the decay widths [(*P; — L.h) in the
LO-v and the NLO-a, can be expressed as follows [12]:

Ay CO
VA

4
F(){O —)LH) :gﬂang[

”216 %S Hilog + H
3% (27 7 1g5 8

16
= —ﬂa_%H] |:1 +%C2:|
/4

+I’lf

T 2 16
+np ——Hl og

3% |5 =+ Hg] (34)
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where n; is the number of light quarks, ny =3 for
charmonium and n = 4 for bottomonium states, C, and
C, are expressed as

4 (2 7 454 722 1llog2
CO‘§(T§>+3<8—1‘M‘ 3 )

2log2 16
3 = B}
+ < 3 27>

16 2239 33777
Cz—‘3+3<216‘ 384 ‘21"%2)
2log2 11
3 -—, 35
w3(RE2-5) 35)

and H, is related to the derivative of the wave function
through the relation:

1
9 RYP

H, —[1+ 0] (36)

21 m

Using the following replacement, which is similar with that
in [13],

m 1
log—~——~C 37
087~ 5.~ CRe (37)

we can see that the IR divergences in Eq. (32) and Eq. (34)
are absorbed in the same form.

The property of the color octet matrix element Hg has
been discussed in the literature such as in Ref. [11] where
how Hg reabsorbs the IR divergence coming from the
singlet sector are shown. In our case, we can get the
following relation from the comparison between Eq. (32)
and Eq. (34):

LR

= 38
8 4r m? (38)

Combing Eq. (32) with Eq. (34), finally one can get

1 _
AM(3P1) = _ERG[CJ,Z]G%HI + ﬂ'ang, (39)

with
—a8a, . RO 1 |Ry(0)
B=3m R T
16 a. m
~——"H log— + Hs. 4
7 M 0g5+ 8 (40)

Finally, Eq. (39) can be used to estimate the mass shifts of
H(P,) in the LO-a, and the LO-v due to the two-gluon
annihilation effect.

VI. NUMERICAL RESULT AND CONCLUSION

The main results of our calculation are the expressions
of the coefficients c¢;; and the mass shifts AM(*P;). In
the LO-» and the LO-q,, if one assumes that the contri-
bution from the Hy related term is small, then the ratios
between the mass shifts and the decay widths can be
expressed as

AM(P;) 1+ 6log2

_ ~ 0.27,

F(3Po) 6r
AMEGP 2log2 -1

3( 2) _ 208 ~ 0.06,
rCP,) 27
AM log2 —1
sy _ log ~ —0.098, (41)
r('Sy) 4

where the similar result for the 'S, state is also presented.
We can see that the ratio for the P, state is much larger
than the ratios for the 3P, and 'S, states and the ratios are
positive for the 3P, states and negative for the 'S, state.

Furthermore one can extract the parameters H, and Hg
from the experimental data by Eq. (34) in the NLO-a, and
the LO-v, and then one can use the extracted parameters
to estimate the mass shifts AM(3P,) using Eq. (39) in
the LO-a, and the LO-v. The corresponding numerical
results of AM(*P;) for y.; are listed in Table I where the
experimental data are taken from Ref. [14]. The similar
estimation can be applied to the bottomonium. Comparing
these numerical results with the corresponding results of 5,
[5], we can find that the mass shifts of y.; are very different.
These properties mean the corrections to different states
cannot be subtracted or hidden in a unified way. Combing
the numerical results, one can get AM(3Py) — AM(1S,) ~
9.0 ~8.6 MeV with a;~0.25~0.35, correspondingly.
This numerical result suggests that the annihilation
effects should be considered seriously when we try to
understand the spectrum of heavy quarkonia precisely,
especially when some decay channels with large decay
widths are opened.

Another interesting property is that although the decay
width of the 3P, states to the two-gluon intermediated state
is zero, the corresponding mass shift is nonzero.

TABLE I. The numerical results for AM(*P;) which refer to
the mass shifts of y.; in the leading order. The experimental
decay widths are taken from Ref. [14]; the values of H, and Hg
are extracted by using Eq. (34) with «; taking as 0.25 ~ (.35,
correspondingly.

& (MeV) H, (MeV) Hg MeV) AM(P;) (MeV)

xo0(1P) 108 5.92 ~5.45
21 (1P) 69.8~293 1.18~1.21 1.57~1.86
Xc1(2P) 1.6 1.23 ~1.58
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In summary, the real part of the nonrelativistic asymp-
totic behavior of the amplitudes of gg — 2g — ¢g in the
3P, channels is discussed in the LO-a,. By expanding the
expressions on the three-momentum of quarks and anti-
quarks, the expressions are calculated to order 6. The
imaginary part of the first two terms of our results are the
same as those given in the references. The real part of our
results can be used to estimate the mass shifts of the *P,
heavy quarkonia due to the two-gluon annihilation effect.
In the LO-a, and the LO-v, we get the following properties:
(1) the mass shifts of the 3P, states are positive which are
different from the 'S, case where the mass shifts are
negative; (2) the mass shifts of the 3P, states are nonzero
although their decay widths are zero; (3) the numerical
estimation shows the contributions to the mass shifts of
J

Xc0.c1.c2 are about 1.23 ~ 1.58 MeV, 1.57 ~ 1.86 MeV, and
5.92 ~5.45 MeV when taking a, ~ 0.25 ~ 0.35.
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APPENDIX

In this appendix, the manifest expressions for P(/, X, n)
and Q(X,n) are listed. From the definition of P(J, X, n)
and Q(X,n) which are expressed as

P(1.X.n) =Y (Lsi mgJ ) (Ls g Img|JJ) / dQy dQy Y1, (R, (Q)(pi - ps)"X,

Si8f

O(X.n) 2 (17|15 )(15,]17.) / 49 A2, Yoo Q)i (@7) (B - Py,

with 0 < n <3, we have

P e(s) - ¢ (s). 1) = %”,

- 167
P(2,¢e(s;) - pie*(sf) - Py, 2) ===
4
PO.s) - pye(sp) pi0) = 2%,
¥4
P(Le(s) bye*(s)) - pin0) = =2
N 4
P(2.e(sy) - bye(s7) 71n0) =2
A s . dr
P(O’e(sl)‘pie (Sf) pza]):_?y
A % A 87T
P(2,€(Sl) - Pi€ (Sf) Pi» 1) = _E’
A 4
PO.e(s) - e ) pye) = =
N 8
P(2,e(s;) - pre*(sp) - by 1) = 15

and the results for the other (J, n) are zero,

(A1)
4
P(J.e(s)) - €(s;).3) = ?” (A2)
47
P(0,e(s;) - pie*(sy) - py.2) =3
(A3)
. ¥4
PO.€(s) bye'(sy) hi2) = o
. ¥4
P(Lels) - bye'(sy) - Pin2) = —ox
127
P(0,e(s;) - pre*(sy) - pin2) =55 (A4)
. . 4
P(0,e(s;) - pie*(sy) pn3)=—g,
. . 87
P(zve(sl) s pi€ (sf) pl73) = _g’ (AS)
. V¥4
P(0,e(s;) - pre*(sy) - Py, 3) 5
. . 87
P(.els) - bye(s,) - byn3) = — o, (6)
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Ole(s) i’ (57) - o) = =5
0e(s) pye(57) 1) = =
O(e(si) pie*(sy) pre1) = =g
Ole(s) - ye(s7) by 1) = =g

and the results for other n are zero.

Ofelsi) (572 ==
0e(s) pie*(sy) by 3) =~ 5.
Oe(sy) - bye(s)) pin3) == 12
O(c(s) pie*(sy) - p1n3) = =15
Ocls)) - ye*(s)) by 3) = — 12 (A7)
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