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We investigate the double parton distributions (DPDs) for a positroniumlike bound state using light-front
QED. We incorporate the higher Fock three-particle component of the state, which includes a photon.
We obtain the overlap representation of the DPDs in terms of the three-particle light-front wave functions.
Our calculation explores the correlations between the momentum fractions of the particles probed and
the transverse distance between them, without any assumption of factorization between them. We also
investigate the behavior of the DPDs near the kinematical boundary when the sum of the momentum
fractions is close to 1.
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I. INTRODUCTION

As the flux of partons increases in high-energy hadronic
collision experiments, the probability of having more than
one independent hard scattering interaction also increases,
and a proper description of final states in hadronic
collisions requires the inclusion of multiple partonic
interactions (MPIs). The MPIs in hadronic collision were
predicted long ago [1–5]. The most probable and the
simplest of these MPIs are the double parton scattering
(DPS) events. In DPS, two partons from each hadron
participate in separate hard interactions. In such a process,
a large momentum transfer is involved in both scattering.
The first experimental evidence of DPS was found at
CERN-ISR [6] in p-p collision. DPS events are indeed
relevant at the LHC and Tevatron because of the high
density of partons [7–9]. The ATLAS Collaboration
reported their first results on DPS a while ago [10], and
DPS also contributes to the Higgs production background
in several channels at the LHC.
DPS can be factorized in terms of the hard interactions,

which are calculable in perturbation theory and the double
parton distribution (DPDs) functions. The DPDs depend on
two-body quantities encoding the nonperturbative dynam-
ics of the partons. Factorization of DPS usually assumes the

simplest case wherein there are no correlations between
the two partons [11–14]. The DPDs are interpreted as the
number densities of a parton pair at a given transverse
distance y⊥ and carrying longitudinal momentum fractions
ðx1; x2Þ of the composite system [2,13,15]. Since the DPDs
depend on the partonic interdistance [15], they contain
information on the hadronic structure that complements the
tomographical information encoded by the one-body dis-
tributions such as generalized parton distributions (GPDs)
[16] and transverse momentum–dependent distributions
[17]. Therefore, DPDs represent a novel tool to access
the three-dimensional hadron structure [18]. Despite the
wealth of information provided by the DPDs, the present
experimental knowledge is mainly accessible through the
DPS cross section, which has been accumulated into the
effective cross section, σeff . For the recent results, we refer
to Refs. [19–24].
DPDs, being nonperturbative in nature, are always very

difficult to evaluate from QCD first principles, and there
have been numerous attempts to gain insight into them by
studying QCD-inspired models. Model calculations of
DPDs are important and interesting to understand the
properties as well as for predictions of experimental
observables. Several phenomenological models such as
the bag model [25], constituent quark model [26–29],
generalized valon model [30], soft-wall anti-de Sitter
(AdS)/QCD model [31], dressed quark model [32], etc.,
have been used to obtain the basic information on DPDs
and to gauge the phenomenological impact of transverse
and longitudinal correlations, along with spin correlations
[27,33–36]. The transverse structure of the proton from the
DPDs and the effective cross section has been investigated
in Refs. [15,37,38]. Recently, the matching of both the
position and momentum space DPDs onto ordinary parton
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distribution functions at the next-to-leading order in per-
turbation theory has been reported in Ref. [39], while the
authors have also discussed the sum rules for DPDs
[40,41]. The quantities related to DPDs, and encoding
double parton correlations, have been evaluated for the pion
in lattice QCD [42].
As very little is known so far about the DPDs

Fðx1; x2; y⊥Þ, there are several approaches to parametrize
or model them. A common approach is based on a
factorized ansatz, which assumes that the y⊥ dependence
is factored out from the dependence on x1 and x2, which are
the momentum fractions of the partons probed. In addition,
it is sometimes also assumed that x1 and x2 dependences
are factored out, in terms of single parton distributions
(PDFs) and neglecting any correlations between them [25].
Reference [43] used an approach based on Ref. [44] in
which the DPDs were written as a convolution of two
impact parameter–dependent PDFs, which were obtained
from GPDs. A Gaussian form of the impact parameter–
dependent PDFs were used. However, it was concluded
that the factorized ansatz fails in the valence region, and
the authors also observed that a Gaussian dependence on
y⊥ is rather arbitrary. It is thus relevant to investigate the
DPDs without such assumptions. The model calculations
can be thought of as a parametrization of the DPDs at a
low momentum scale, and one then evolves them to a
higher scale of the experiments, using the evolution
equation; such evolution equations have been obtained
by now and discussed in detail [45]. Another interesting
aspect of model calculation of the DPDs is the behavior
near the kinematical bound x1 þ x2 ¼ 1. The DPDs
should vanish in the unphysical region x1 þ x2 > 1. In
some early model calculations, this support property was
violated, due to nonconservation of momentum of the
constituents. In later calculations, a phenomenological
factor is included to improve the behavior in this
kinematical limit [46].
A widely used method to calculate the DPDs is by

expressing them in terms of overlaps of light-front wave
functions (LFWFs). In the light-front (LF) formalism, the
proton state is expanded in Fock space in terms of multi-
parton LFWFs. The LFWFs satisfy the bound-state equa-
tion in LF QCD. One then truncates the Fock space to a
few-particle sector; such a truncation is boost invariant in
the LF framework. As it is very difficult to solve the LF
bound-state equation, in particular to obtain the wave
functions of the higher Fock sector, most model calcula-
tions are restricted to using the three-quark valence LFWF
for the proton. In a previous work [32], to calculate the
quark-gluon DPDs, a different approach was used; namely,
instead of a proton state, a relativistic spin-1=2 composite
state of a quark dressed with a gluon was used. The LFWFs
of the two-particle state were calculated in perturbation
theory. This may be thought of as a field theory–
based perturbative model, to investigate the quark-gluon

correlations in the DPDs. However, the kinematics of a
two-particle system are rather constrained. In this work, we
use the overlap approach in terms of LFWFs for a two-
particle bound state like a positronium in QED, in the weak
coupling limit. We include the effect of the three-particle
eþe−γ component of the LFWF. As solving the LF bound-
state equation is rather difficult in QED as well, we use a
simpler but nevertheless interesting approach followed
earlier in Ref. [47] to calculate the twist-4 structure function
of positronium and verifying a sum rule. We use an analytic
form of the two-particle LFWF in the weak coupling limit.
The three-particle LFWF is then expressed in terms of the
two-particle LFWF using the LF QED Hamiltonian. This
calculation illustrates the formalism, which can also be
applied to a QCD mesonic system; in fact, in the weak
coupling limit, the LFWFs are expected to mimic those of a
meson. Our approach allows us to calculate them without
any assumption on factorization of the x1, x2, and y⊥
dependence, and we can investigate the interplay between
these variables in full form. Thus, our calculation may be
thought of as an exploratory analysis on the explicit x1, x2,
and y⊥ dependence of the DPDs in a three-particle system.
We also discuss the behavior of the DPD in the limit
x1 þ x2 → 1.
The paper is organized as follows. In Sec. II, we discuss

the DPDs for the electron-positron pair and their overlap
representation in the LF dressed positronium model. We
present the numerical results in Sec. III. Conclusions are
given in Sec. IV.

II. DOUBLE PARTON DISTRIBUTIONS

The DPDs for unpolarized quarks can be defined as
[13,14]

Fa1a2ðx1; x2; y⊥Þ ¼ 2pþ
Z

dz−1
2π

dz−2
2π

dy−eiðx1z−1þx2z−2 Þpþ

× hpjOa2ð0; z2ÞOa1ðy; z1Þjpi; ð1Þ

where jpi is the target system with momentum p. x1 and x2
are momentum fractions of the partons, and y⊥ is the
relative transverse distance between them.
The fermionic operators are given by [13] (see the

Appendix)

Oaiðy; ziÞ ¼ ψ̄ i

�
y −

zi
2

�
Γaiψ i

�
yþ zi

2

�����
zþi ¼yþi ¼0;z⊥i ¼0

; ð2Þ

where Γai are various Dirac γ matrices projecting onto the
corresponding polarization states given by

Γq ¼
1

2
γþ; ΓΔq ¼

1

2
γþγ5; Γj

δq ¼
1

2
iσjþγ5; ð3Þ
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for the unpolarized fermion (q), longitudinally polarized fermion ðΔqÞ, and the transversely polarized fermion ðδqÞ,
respectively. We choose the light-cone gauge, and the gauge link in the operator structure is set to unity.

A. Overlap representation for the DPD

As discussed in the Introduction, we consider our target state to be a positroniumlike bound state in LF QED. We use the
two-component form of the LF QED along the lines of Refs. [48,49]. In this section, we present a calculation of the
unpolarized fermion DPDs for such a state. This means Γq ¼ 1

2
γþ in Eq. (2). The state can be expanded in Fock space in

terms of LFWFs as

jPi ¼
X
σ1;σ2

Z
dpþ

1 d
2p⊥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3pþ

1

p
Z

dpþ
2 d

2p⊥
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3pþ
2

p ϕ2ðPjp1; σ1;p2; σ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðð2πÞ3Pþ

q
δ3ðP − p1 − p2Þb†ðp1; σ1Þd†ðp2; σ2Þj0i

þ
X
σ1;σ2;λ

Z
dpþ

1 d
2p⊥

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3pþ

1

p
Z

dpþ
2 d

2p⊥
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3pþ
2

p
Z

dpþ
3 d

2p⊥
3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3pþ
3

p ϕ3ðPjp1; σ1;p2; σ2;p3; λÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞ3Pþ

q
δ3ðP − p1 − p2 − p3Þ

× b†ðp1; σ1Þd†ðp2; σ2Þa†ðp3; λÞj0i; ð4Þ

where the first term corresponds the two-particle Fock sector, jeþe−i, with the two particle LFWF ϕ2 and the second term is
the three-particle Fock component, jeþe−γi, wherein ϕ3 is the three-particle LFWF. σ1, σ2, and λ are the helicities of the
electron, positron, and photon, respectively. The LFWF are written in terms of the Jacobi momenta (xi, q⊥

i ) defined as

pþ
i ¼ xipþ; p⊥

i ¼ q⊥
i þ xip⊥; ð5Þ

where
P

i xi ¼ 1 and
P

i q
⊥
i ¼ 0. The contribution coming from the three-particle sector of the Fock space can then be

written in terms of the overlap of LFWFs,

Fe−eþðx1; x2; y⊥Þ ¼
ðpþÞ2
2π2

X
σ1;σ01;σ2;σ

0
2
;λ

Z
d2k⊥

1 d
2k⊥

2 d
2k0⊥

1 ϕ3�
σ1;−σ02;λ

ðp; k1; k01; p − k1 − k01Þ

× ϕ3
σ0
1
;−σ2;λ

ðp; k1 þ k01 − k2; p − k1 − k01Þeiðk
⊥
1 −k

0⊥
1 Þ:y⊥ ; ð6Þ

with pþϕ3
σ1σ2λ

ðkþi ;k⊥
i Þ ¼ ψ3

σ1σ2λ
ðxi;q⊥

i Þ. We can rewrite Eq. (6) as

Fe−eþðx1; x2; y⊥Þ ¼
1

2π2
X

σ1;σ01;σ2;σ
0
2
;λ

Z
d2k⊥

1 d
2k⊥

2 d
2k0⊥

1 ψ3�
σ1;−σ02;λ

ðx1;k⊥
1 ; x2;k

0⊥
1 þ k⊥

2 − k⊥
1 ; 1 − x1 − x2;k⊥

3 Þ

× ψ3
σ0
1
;−σ2;λ

ðx1;k0⊥
1 ; x2;k⊥

2 ; 1 − x1 − x2;k⊥
3 Þeiðk

⊥
1 −k

0⊥
1 Þ:y⊥ ; ð7Þ

where k⊥
3 ¼ p⊥ − k0⊥

1 − k⊥
2 , we consider the frame in which p⊥ ¼ 0. The amplitudes or LFWFs ψ2 and ψ3 are boost

invariant and are functions of the Jacobi momenta. These can be written as [49,50]

ψ3
σ1;σ2;λ3

ðx1; k1; x2; k2; 1 − x1 − x2; k3Þ ¼ M1 þM2; ð8Þ

where the amplitudes are given by [47]

M1 ¼
1

E
ð−Þ effiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x1 − x2
p V1ψ

2
s1;σ2ð1 − x2;−k⊥

2 ; x2;k
⊥
2 Þ;

M2 ¼
1

E
effiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2πÞ3
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x1 − x2
p V2ψ

2
σ1;s2ðx1;k⊥

1 ; 1 − x1;−k⊥
1 Þ; ð9Þ

with the energy denominator
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Eðx1; x2Þ ¼
�
M2 −

m2 þ ðk⊥
1 Þ2

x1
−
m2 þ ðk⊥

2 Þ2
x2

−
ðk⊥

3 Þ2
1 − x1 − x2

�

and the vertices

V1ðx1;k⊥
1 ; x2;k

⊥
2 Þ ¼ χ†σ1

X
s1

�
2k⊥

3

1 − x1 − x2
−
ðσ⊥:k⊥

1 − imÞ
x

σ⊥ þ σ⊥ ðσ⊥:k⊥
2 − imÞ

1 − x2

�
χs1 :ðϵ⊥λ1Þ�;

V2ðx1;k⊥
1 ; x2;k

⊥
2 Þ ¼ χ†−σ2

X
s2

�
2k⊥

3

1 − x1 − x2
− σ⊥ ðσ⊥:k⊥

2 − imÞ
x2

þ ðσ⊥:k⊥
1 − imÞ

1 − x1
σ⊥

�
χ−s2 :ðϵ⊥λ1Þ�: ð10Þ

The above expressions are obtained using the LF Hamiltonian for QED along a similar line as in LF QCD [49]. Following
Eqs. (8)–(10), we can rewrite Eq. (7) in terms of ψ2 as

Fe−eþðx1; x2; y⊥Þ ¼
e2

ð2πÞ5
1

½Eðx1; x2Þ�2
1

1 − x1 − x2

X
σ1;σ01;σ2;σ

0
2
;λ

Z
d2k⊥

1 d
2k⊥

2 d
2k0⊥

1 × ½P11 þ P12 þ P21 þ P22�eiðk⊥
1 −k

0⊥
1 Þ:y⊥ ;

ð11Þ

where

P11 ¼ ½V1ðx1;k⊥
1 ; x2;k

0⊥
1 þ k⊥

2 − k⊥
1 Þψ2

s1;−σ02
ð1 − x2;−k0⊥

1 − k⊥
2 þ k⊥

1 ; x2;k
0⊥
1 þ k⊥

2 − k⊥
1 Þ�†

× ½V1ðx1;k0⊥
1 ; x2;k⊥

2 Þψ2
s1;−σ2ð1 − x2;−k⊥

2 ; x2;k
⊥
2 Þ�;

P22 ¼ ½V2ðx1;k⊥
1 ; x2;k

0⊥
1 þ k⊥

2 − k⊥
1 Þψ2

σ1;s2ðx1;k⊥
1 ; 1 − x1;−k⊥

1 Þ�†
× ½V2ðx1;k0⊥

1 ; x2;k⊥
2 Þψ2

σ0
1
;s2
ðx1;k0⊥

1 ; 1 − x1;−k0⊥
1 Þ�;

P12 ¼ ½V1ðx1;k⊥
1 ; x2;k

0⊥
1 þ k⊥

2 − k⊥
1 Þψ2

s1;−σ02
ð1 − x2;−k0⊥

1 − k⊥
2 þ k⊥

1 ; x2;k
0⊥
1 þ k⊥

2 − k⊥
1 Þ�†

× ½V2ðx1;k0⊥
1 ; x2;k⊥

2 Þψ2
σ0
1
;s2
ðx1;k0⊥

1 ; 1 − x1;−k0⊥
1 Þ�;

P21 ¼ ½V2ðx1;k⊥
1 ; x2;k

0⊥
1 þ k⊥

2 − k⊥
1 Þψ2

σ1;s2ðx1;k⊥
1 ; 1 − x1;−k⊥

1 Þ�†
× ½V1ðx1;k0⊥

1 ; x2;k⊥
2 Þψ2

s1;−σ2ð1 − x2;−k⊥
2 ; x2;k

⊥
2 Þ�: ð12Þ

The above expression is evaluated using Mathematica to calculate the spinor products. The final expressions are
given below:

P11 ¼
8ð1þ x1 − x2Þ2ðk0y1 ð1 − x2Þ þ ky2x1Þððk0y1 þ ky2Þx1 − ky1ðx1 þ x2 − 1ÞÞ

x21ðx2 − 1Þ2ðx1 þ x2 − 1Þ2 × ψ2ðx2;k⊥
1 − k0⊥

1 − k⊥
2 Þψ2ðx2;k⊥

2 Þ; ð13Þ

P22 ¼
−8ð1 − x1 þ x2Þ2ðky2ðx1 − 1Þ þ k0y1 x2Þðky1ðx1 þ x2 − 1Þ − ðk0y1 þ ky2Þðx1 − 1ÞÞ

x22ðx1 − 1Þ2ðx1 þ x2 − 1Þ2 × ψ2ðx1;k⊥
1 Þψ2ðx1;k0⊥

1 Þ; ð14Þ

P12 ¼
8ððx1 − x2Þ2 − 1Þðky2ð1 − x1Þ þ k0y1 x2Þðky1ðx1 þ x2 − 1Þ − ðk0y1 þ ky2Þx1Þ

x1ðx1 − 1Þx2ðx2 − 1Þðx1 þ x2 − 1Þ2 × ψ2ðx2;k⊥
1 − k0⊥

1 − k⊥
2 Þψ2ðx1;k0⊥

1 Þ;

ð15Þ

P21 ¼
8ððx1 − x2Þ2 − 1Þðk0y1 ð1 − x2Þ þ ky2x1Þððk0y1 þ ky2Þðx1 − 1Þ − ky1ðx1 þ x2 − 1ÞÞ

x1ðx1 − 1Þx2ðx2 − 1Þðx1 þ x2 − 1Þ2 × ψ2ðx1;k⊥
1 Þψ2ðx2;k⊥

2 Þ: ð16Þ

Motivated by Refs. [47,51], we take the two-particle wave function ψ2 in the weak coupling limit as
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ψ2ðx;k⊥Þ ¼
ffiffiffiffiffi
m
π2

r
4ðe1Þ5=2h

ðe1Þ2 −m2 þ 1
4

ðk⊥Þ2þm2

xð1−xÞ
i
2
; ð17Þ

with m being the electron mass and e1 ¼ m=2.

III. NUMERICAL RESULTS

In this section, we present the numerical results for the
unpolarized DPDs for the correlation between e− and eþ.
To do the numerical calculations, a cutoff kmax ¼ 20 MeV
has been introduced for the upper limit of all the integra-
tions over k⊥. We notice that for higher values of kmax the
results do not change. The electron (positron) mass has
been taken as m ¼ 0.50 MeV. In Fig. 1, we show the DPD
for the e− and eþ pair in the positroniumlike bound state as
a function of x1 for different values of x2 and a fixed value
of y⊥ ¼ 0.2 MeV−1. In this figure, we present the con-
tribution evaluated from the je−eþγi Fock sector. In our
calculation, we have chosen the physical kinematical
region in the three-particle sector, that is, x1 þ x2 < 1.
We observe that as x1 þ x2 → 1 the distribution shows a
sharp rise. This is expected since the analytic expression
from the three-particle section has a pole at x1 þ x2 ¼ 1.

Actually, the two-particle sector contributes at x1 þ x2 ¼ 1,
in particular, to the normalization of the state, and it is
necessary to incorporate this contribution to correctly
predict the behavior of the DPDs at x1 þ x2 ¼ 1, similar
to the calculation of single parton distribution, or the
structure functions [50]. In the calculation of the PDFs,
the normalization contribution coming from the state
cancels the pole. It is beyond the scope of the present
work to investigate if such cancellation happens for the
DPDs; rather, we follow a more phenomenological
approach, as seen later in this section. It can also be
noticed that there is a peak in the distribution near x1 ≈ 0.5
for a lower value of x2. However, the peak disappears as
the magnitude of the distributions increases significantly
with increasing x2, and the distribution behaves like an
ordinary parton distribution function of the bare electron
in a physical electron system [52]. In Fig. 1, the peak
is present only for x2 ¼ 0.1 because of the term
ðx1 − 1Þ2x22ðx1 þ x2 − 1Þ2 present in the denominator of
the term P22, which suppress the peak value for x2 > 0.1.
The DPD as a function of x1 for four different values of x2
together with fixed y⊥ ¼ 0.2 MeV−1 is shown in Fig. 2.
We notice that the maximum value for the distribution is
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FIG. 1. Plot for Fðx1; x2; y⊥Þ vs x1 for a fixed value of y⊥ ¼ 0.2 MeV−1. The numbers on the vertical axis are in units of MeV2.
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obtained near x1 ¼ 0.5 when x2 ¼ 0.5, and the magnitude
of the distribution gradually decreases on both sides of
x2 ¼ 0.5. This implies that the correlation of the e−eþ pair
is maximum when they share the total momentum of the
system equally.
Figure 3 shows the three-dimensional (3D) plot of the

DPD as a function of y⊥ and x1 for fixed values of
x2 ¼ 0.3. The DPD has the maximum but finite value
when the relative distance between the e− and eþ is zero.
However, it decreases gradually with an increasing value
of y⊥. The magnitude of the distribution increases as the
value of x1 increases.
Figure 4(a) shows the 3D plot of the DPD as a function

of x1 and x2 for fixed values of y⊥ ¼ 0.2 MeV−1. The same
plot with a reduced range for the magnitude of DPD is
shown as a contour plot in Fig. 4(b). Both plots cover
the region x1 þ x2 < 1. As observed in the two-
dimensional (2D) plots in Fig. 1, we observe that the
magnitude of the DPD sharply increases as x1 þ x2 → 1.
We can clearly observe the symmetry between x1 and x2
from these two plots.
As discussed in the Introduction, the DPDs for a

three-particle system should vanish in the unphysical
region x1 þ x2 > 1. In some model calculations, for
example, in the bag model [25] and in the constituent
quark model [26], this support property was found to be
violated. To have a correct behavior near the kinematical
bound x1 þ x2 ¼ 1, it is common to introduce a factor
θð1 − x1 − x2Þð1 − x1 − x2Þn, in model calculations of the
DPDs for a nucleon, where n is a parameter to be
determined phenomenologically [43,53]. In Ref. [45], it
was found that a common factor ð1 − x1 − x2Þn multiplying
all DPDs led to a violation of momentum sum rule, and the
authors suggested a modification of this factor. Motivated
by these results, in Fig. 5, we multiply the DPD by a factor
of ð1 − x1 − x2Þn, and we plot the DPD as a function of x1
for fixed values of x2 and y⊥. We show the result for three

FIG. 2. Plot for Fðx1; x2; y⊥Þ as a function of x1 for different
values of x2 ¼ ð0.3; 0.4; 0.5; 0.6Þ and a fixed value of
y⊥ ¼ 0.2 MeV−1. The numbers on the vertical axis are in units
of MeV2.

FIG. 3. 3D plot for Fðx1; x2; y⊥Þ as a function of x1 and y⊥ for a
fixed value of x2 ¼ 0.3. The numbers on the vertical axis are in
units of MeV2, and y⊥ is in MeV−1.

(a) (b)

FIG. 4. (a) 3D and (b) contour plot for Fðx1; x2; y⊥Þ as a function of x1 and x2 for a fixed value of y⊥ ¼ 0.2 MeV−1. The numbers for
Fðx1; x2; y⊥Þ are in units of MeV2.
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different values of n ¼ ð1; 2; 3Þ. The behavior near the
bound x1 þ x2 → 1 is improved. The DPD has a peak
in x1 for a fixed value of x2 (and vice versa); the position of
the peak shifts to a lower x1 value as n increases. For a
given value of n, the peak occurs at smaller x1 values for
larger x2.
The phenomenological correction is used to take account

of the fact that finding a parton with x ¼ x1 reduces the
probability of finding another parton with x ¼ x2 if x1 þ x2
is close to 1. The trimming is expected to be much smaller
if x1 were small and x2 were large than if both x1 and x2
were large, even if the sum of x1 and x2 were the same in
both cases [45]. In agreement with Ref. [45], we find that
the reduction due to the phenomenological correction is
large for x2 ¼ 0.3 compared to x2 ¼ 0.1 and x2 ¼ 0.2 for
all three values of n and the reduction is even larger for
n ¼ 3. However, the probability should be larger when both
the partons carry larger momentum. In Fig. 5, we notice
that only for n ¼ 1, x2 ¼ 0.3 distribution dominates over
the other distributions for x2 ¼ 0.1 and x2 ¼ 0.2. This
implies that the probability of finding fe−; eþg with
momentum fractions fx1; x2g ¼ f0.3; 0.7g is larger than
that when they carry the momentum fractions f0.2; 0.8g or

f0.1; 0.9g. However, the argument is violated for n ¼ 2 and
n ¼ 3. Thus, we prefer n ¼ 1 in our work. The phenom-
enological correction with n ¼ 1 was recommended in
early papers [3,54–56].
The scale evolution of the DPD is complicated by the

fact that, in general, there can be two different scales
corresponding to the two different hard scatterings initiated
by the two partons having different virtualities. The
approximation in which the two different hard scales are
set to be the same is referred to as the collinear approxi-
mation. The first calculation of the generalized DGLAP
equation in the collinear approximation was shown in
Refs. [57,58]. The general case with two different virtual-
ities has been reported in Ref. [59]. In our framework, the
scale evolution of the DPDs could be studied using light-
front Hamiltonian perturbation theory along the lines of
Ref. [50] and including the effect of the normalization
of the state. This is beyond the scope of the current study.
The general expectation from the evolution would be a
reduction in the distribution, owing to the creation of new
partonic species carrying momentum, in particular, gluon
and sea quark distributions in the QCD system or photon
distributions in the QED system.
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FIG. 5. Plot for Fðx1; x2; y⊥Þ vs x1 for a fixed value of y⊥ ¼ 0.2 MeV−1 and x2 ¼ ð0.1; 0.2; 0.3Þ. The plots ða; b; cÞ are for three
different values of the parameter n ¼ ð1; 2; 3Þ. The numbers on the vertical axis are in units of MeV2.
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IV. CONCLUSION

We have presented a calculation of the electron-positron
unpolarized DPD for a positroniumlike bound state in LF
QED. We have expressed the DPDs as overlaps of the
three-particle LFWFs that include a photon. The analytic
form of the LFWFs is obtained using the LF QED
Hamiltonian. Our approach allows us to investigate the
correlation between the momentum fractions x1 adn x2 and
the transverse separation y⊥ of the DPDs without assuming
any factorization between them and may help in improving
model parametrizations of mesons DPDs. The DPDs show
strong correlations between these variables. The behavior
near the kinematical boundary x1 þ x2 ¼ 1 is improved by
introducing a phenomenological factor. Our calculation
may act as a guide to develop models for the DPDs of
mesons at the low momentum scale.
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APPENDIX

The operators for two unpolarized fermions correlator
are given by

O1ðy; z1Þ ¼ ψ̄

�
y −

z1
2

�
γþψ

�
yþ z1

2

�

¼ 2ξ†
�
y −

z1
2

�
ξ

�
yþ z1

2

�

O2ð0; z2Þ ¼ ψ̄

�
z2
2

�
γþψ

�
−
z2
2

�

¼ 2ξ†
�
z2
2

�
ξ

�
−
z2
2

�
ðA1Þ

with

ξðxÞ ¼
X
λ

χλ

Z
dkþd2k⊥

2ð2πÞ3
ffiffiffiffiffiffi
kþ

p ðbλðkÞe−ikx þ d†−λðkÞeikxÞ:

ðA2Þ

The fermionic operators for the DPD correlator is

O2ð0; z2ÞO1ðy; z1Þ ¼
X
spin

Z
dkþ1 d

2k⊥
1

2ð2πÞ3 ffiffiffiffiffiffi
kþ1

p
Z

dk01
þd2k0⊥

1

2ð2πÞ3 ffiffiffiffiffiffiffi
k0þ1

p
Z

dkþ2 d
2k⊥

2

2ð2πÞ3 ffiffiffiffiffiffi
kþ2

p
Z

dk0þ2 d2k0⊥
2

2ð2πÞ3 ffiffiffiffiffiffiffi
k0þ2

p
× ½b†σ2ðk2Þbσ02ðk02Þb†σ1ðk1Þbσ01ðk01Þeik1:ðy−

z1
2
Þe−ik01:ðyþ

z1
2
Þe

i
2
k0
2
:z2e

i
2
k2:z2

þ b†σ2ðk2Þbσ02ðk02Þd−σ1ðk1Þd†−σ01ðk01Þe−ik1:ðy−
z1
2
Þeik01:ðyþ

z1
2
Þe

i
2
k0
2
:z2e

i
2
k2:z2

þ b†σ2ðk2Þd†−σ02ðk02Þd−σ1ðk1Þbσ01ðk01Þe−ik1:ðy−
z1
2
Þe−ik01:ðyþ

z1
2
Þe−

i
2
k0
2
:z2e

i
2
k2:z2

þ d−σ2ðk2Þbσ02ðk02Þb†σ1ðk1Þd†−σ01ðk01Þeik1:ðy−
z1
2
Þeik01:ðyþ

z1
2
Þe

i
2
k0
2
:z2e−

i
2
k2:z2

þ d−σ2ðk2Þd†−σ02ðk02Þb
†
σ1ðk1Þbσ01ðk01Þeik1:ðy−
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2
Þe−ik01:ðyþ

z1
2
Þe−

i
2
k0
2
:z2e−

i
2
k2:z2

þ d−σ2ðk2Þd†−σ02ðk02Þd−σ1ðk1Þd
†
−σ01

ðk01Þe−ik1:ðy−
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2
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Þe−
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2
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