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We employ a scalar model to exemplify the use of contour deformations when solving Lorentz-invariant
integral equations for scattering amplitudes. In particular, we calculate the onshell 2 → 2 scattering
amplitude for the scalar system. The integrals produce branch cuts in the complex plane of the integrand
which prohibit a naive Euclidean integration path. By employing contour deformations, we can also access
the kinematical regions associated with the scattering amplitude in Minkowski space. We show that in
principle a homogeneous Bethe-Salpeter equation, together with analytic continuation methods such as
the Resonances-via-Padé method, is sufficient to determine the resonance pole locations on the second
Riemann sheet. However, the scalar model investigated here does not produce resonance poles above
threshold but instead virtual states on the real axis of the second sheet, which pose difficulties for analytic
continuation methods. To address this, we calculate the scattering amplitude on the second sheet directly
using the two-body unitarity relation which follows from the scattering equation.
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I. INTRODUCTION

The study of resonances is a central task in the non-
perturbative treatment of quantum field theories. Among
the observable states of a theory are bound states but also
unstable resonances, which appear as bumps in cross
sections and correspond to poles in the complex momen-
tum plane on higher Riemann sheets. Among the prominent
examples in QCD are the σ meson, whose resonance
pole position is now well-established [1], the excitations
of light baryons, where multichannel partial-wave analyses
of experimental precision data have led to the addition of
several new states to the particle data group [2], or the
recently observed pentaquark states, where the nature of the
neighboring peaks is still under debate [3,4].
The theoretical investigation of scattering amplitudes

and their resonance structure comes with technical chal-
lenges that appear in different guises. In a lattice formu-
lation, one calculates the finite-volume energy spectrum of
the theory and extracts the resonance information through
the Luescher method [5], where current efforts focus on
resonances above two- and three-particle thresholds; see,
e.g., [6–10] and references therein.

In continuum approaches, scattering amplitudes and
their resonance information are accessible through scatter-
ing equations or Bethe-Salpeter equations (BSEs). Here the
technical difficulties concern the numerical solution of
four-dimensional scattering equations in the full kinemati-
cal domain and the extraction of resonance poles on higher
Riemann sheets. On the one hand, the internal poles in the
loop diagrams put restrictions on the accessible kinematic
regions beyond which residue calculus or contour defor-
mations into the complex momentum plane become inevi-
table. For example, without contour deformations, one can
only access low-lying excitation spectra or matrix elements
in certain kinematic windows (the “Euclidean region”). On
the other hand, to extract the properties of resonances it is
necessary to access unphysical Riemann sheets, whereas
straightforward numerical calculations are restricted to the
first sheet only.
Both issues are typical obstacles in the functional

approach of Dyson-Schwinger equations (DSEs) and
BSEs, where one determines quark and gluon correlation
functions and solves BSEs to arrive at hadronic observ-
ables. Progress has been made in the calculation of hadron
spectra and matrix elements, see, e.g., [11–14] and refer-
ences therein, but the treatment of resonances is still in its
early stages. Beyond technical aspects there are also
conceptual challenges: when constructing hadron matrix
elements from quarks and gluons, the bound states (such as
π and ρ mesons, N and Δ baryons) and decay mechanisms
that turn these bound states into resonances (e.g., ρ → ππ
or Δ → Nπ) must both emerge from the underlying

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 094001 (2019)

2470-0010=2019=100(9)=094001(22) 094001-1 Published by the American Physical Society

https://orcid.org/0000-0002-0546-2533
https://orcid.org/0000-0002-2463-3449
https://orcid.org/0000-0002-3529-2408
https://orcid.org/0000-0002-9596-0770
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.094001&domain=pdf&date_stamp=2019-11-01
https://doi.org/10.1103/PhysRevD.100.094001
https://doi.org/10.1103/PhysRevD.100.094001
https://doi.org/10.1103/PhysRevD.100.094001
https://doi.org/10.1103/PhysRevD.100.094001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


quark-gluon interactions. The resonance mechanism corre-
sponds to the dynamical emergence of internal hadronic
poles in matrix elements (ππ, Nπ, etc.), which are also
responsible for the so-called “meson cloud” effects. Such
properties have been studied by resumming quark and gluon
topologies to intermediate meson propagators [15–18] or by
going to multiquark systems where these poles are generated
dynamically [19–21]. In addition to internal hadronic poles,
however, also the dynamical singularities encoded in the
elementary quark and gluon correlation functions restrict the
kinematical domains of matrix elements and must be taken
into account when calculating observables in the far space-
like, timelike, or lightlike regions.
In this work, we focus on the methodological aspects,

namely how to calculate scattering amplitudes in the
kinematical domains where contour deformations become
necessary (which is usually referred to as “going to
Minkowski space”), and how that information can be
used to extract the resonance information on higher
Riemann sheets. Numerical contour deformations have been
employed in the literature in the calculation of two- and
three-point functions; see, e.g., Refs. [17,18,22–29]; here
we apply them to a four-point function in the form of a
two-body scattering amplitude.
To illustrate the generic features, we exemplify the

procedure for the simplest example, namely a scalar theory
with a scalar exchange, which for a massless exchange
particle becomes the well-known Wick-Cutkosky model
[30–32]. We calculate the 2 → 2 scattering amplitude of the
theory as well as its homogeneous Bethe-Salpeter (BS)
amplitude and inhomogeneous BS vertex. We will see that
in principle already the eigenvalues of the homogeneous
BSE are sufficient to extract the resonance information.
It turns out, however, that the model does not produce
resonances above threshold but virtual states on the second
Riemann sheet, which will pose difficulties for standard
analytic continuation methods. Instead, we solve the
scattering equation directly and employ the two-body
unitarity property which allows us to calculate the scatter-
ing amplitude also on the second sheet.
Recent progress has also been made in calculating

propagators and BS amplitudes in Minkowski space; see
[33–45] and references therein. Here we want to point out
that there is no intrinsic difference between Euclidean and
Minkowski space approaches: to obtain scattering ampli-
tudes in the complex plane, contour deformations are
necessary both in a Euclidean and Minkowski metric.
When implemented properly, the resulting amplitude
obtained with a Euclidean path deformation is identical
to the Minkowski space amplitude. We discuss this in
Sec. II and use a Euclidean metric for the remainder of this
work; Euclidean conventions can be found in Appendix A
of Ref. [46].
The paper is organized as follows. After illustrating

contour deformations for simple examples in Sec. II, we

establish the scalar model that we employ in Sec. III. In
Sec. IV we solve its homogeneous and inhomogeneous
BSEs, explain the contour deformation procedure and the
analytic continuation to the second Riemann sheet. In
Sec. V, we solve the 2 → 2 scattering equation of the
theory, discuss the two-body unitary relation, and present
our results. We conclude in Sec. VI. Technical details on
contour deformations are relegated to the Appendix.

II. CONTOUR DEFORMATIONS

To motivate the idea of contour deformations, we first
illustrate the problem with simple examples. To begin with,
consider an integral with only one propagator pole in the
loop such as, e.g., in a Fourier transform

i
Z

d4k
1

k2 −m2 þ iϵ
� � �

¼ i
Z

d3k
Z

∞

−∞
dk0

1

k20 − ω2 þ iϵ
� � � ; ð1Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The integrand has poles on the real

k0 axis, whose locations depend on k2 and start at k0 ¼ �m
(see Fig. 1). In the standard Minkowski treatment, one
exploits the iϵ term to shift the poles away from the real
axis, performs the k0 integration by closing the integration
contour at complex infinity, picks up the appropriate
residues, and finally integrates over the k2 dependence
of those residues.
In Euclidean conventions, one defines k4 ¼ ik0, but

because real and momentum space rotate in opposite direc-
tions one has d4kE ¼ −id4k. The integral then becomes

Z
d3k

Z
∞

−∞
dk4

1

k24 þ ω2
� � � ¼

Z
d4kE

1

k2E þm2
� � � ; ð2Þ

where the integration proceeds from left to right in the
complex k4 plane and the poles lie on the imaginary axis.

FIG. 1. Poles in the complex k0 plane and cuts in the k4 plane
for a simple integral with one propagator pole. M stands for the
Minkowski path and E for the Euclidean contour.
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Now suppose we interchange the d3k and dk4 integra-
tions and integrate over d3k first. Along the former pole
positions we now find branch cuts in the complex k4 plane
starting at k4 ¼ �im, illustrated in the right panel of Fig. 1,
and instead of closing the contour analytically we integrate
numerically by avoiding the cuts. Clearly, the two strategies
are equivalent: if the integration path crossed a cut, one
would not pick up all the poles and obtain a wrong result.
The Euclidean and Minkowski paths give identical

results in this example. One can rotate the Minkowski
path counterclockwise because there are no further poles
in its way and the opposite integration direction is canceled
by the sign in the integration measure—a Wick rotation is
possible. In the following, we drop the subscript “E” and
continue to work with Euclidean conventions.
Now consider an integral with two poles in it, such as the

loop diagram in Fig. 2,

IðtÞ ¼
Z

d4k
1

k2þ þm2

1

k2− þm2
: ð3Þ

The total momentum is Pμ, the internal momenta are
kμ� ¼ kμ � Pμ=2, and we defined1 the dimensionless var-
iable t ¼ P2=ð4m2Þ. The integral is Lorentz invariant and
thus only depends on t. This is the simplest example of a
two-point correlation function like a self-energy or vacuum
polarization, which in principle can produce the singularity
structure shown in Fig. 2. Bound states appear on the
negative real axis of t and resonances above the threshold
t < −1 on higher Riemann sheets. The perturbative integral
(3) can at best produce a two-particle cut but if the internal
propagators and vertices were dressed and nonperturbative,
the integral could also generate bound-state and reso-
nance poles.
Because IðtÞ ¼ I�ðt�Þ is an analytic function, it is

sufficient to consider the upper half plane in t only: the
real part is symmetric around the real axis and the
imaginary part is antisymmetric. It is then more convenient
to plot the function in the complex

ffiffi
t

p
plane, which

confines it to the upper right quadrant (Fig. 3). In this
case, the bound states appear on the imaginary axis below
threshold (Im

ffiffi
t

p
< 1), the cut starts at the threshold,

and the resonances lie above threshold on a higher
Riemann sheet. In this way, one can directly read off the
real and imaginary parts of the masses Mi, which appear
at Im

ffiffi
t

p ¼ ReMi=ð2mÞ.
Suppose we want to calculate IðtÞ for some t ∈ C.

Figure 4 shows the resulting cuts in the complex plane of
r4 ¼ k4=m. There are four vertical cuts centered around the
external point � ffiffi

t
p

. Since we divided out the mass, the
vertical distance between

ffiffi
t

p
and the onset of the cuts is

equal to 1. As before, the Euclidean integration path
proceeds from left to right.
If Im

ffiffi
t

p
> 1, however, the cuts cross the real axis and the

straight Euclidean path (we denote it by E’) would cross the
cuts. Hence, we must deform the contour to avoid the cuts:
The correct Euclidean path is E. As a consequence, E ¼ E’
only below the threshold Im

ffiffi
t

p
< 1, i.e., in the colored

region in Fig. 3, where a naive Euclidean integration is
sufficient and gives the correct result. Above threshold, one
has to deform the contour to obtain the correct value of the

FIG. 2. Complex t plane for a typical current correlator. The
leading perturbative loop diagram only produces the cut.

FIG. 3. Singularity structure in the complex
ffiffi
t

p
plane.

FIG. 4. Cuts in the complex r4 plane for an integral with two
poles. In the left panel, Im

ffiffi
t

p
< 1 and thus a straight integration

path is sufficient; in the right panel, Im
ffiffi
t

p
> 1, which requires a

contour deformation.

1Note that t is related to the usual definition of the Mandelstam
variable s̃ through s̃ ¼ −4m2t. We adapted our notation to the
Compton scattering kinematics in Sec. V C; in the following, we
therefore refer to the resonant channel as the t channel and to the
crossed channels as s and u channels.
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integral. The situation can be generalized to unequal masses
or complex propagator poles, but the principle is the same:
a straight Euclidean integration path is only valid in a
limited domain of complex t.
What would be the corresponding Minkowski path?

Apparently, it cannot proceed along the vertical axis as in
Fig. 1: it does not matter whether we start slightly on the
right and end up slightly on the left because there are
no singularities on the imaginary axis. In fact, the iϵ
prescription entailsZ

∞ð1þiϵÞ

−∞ð1þiϵÞ
dk0 ⇔

Z
∞ði−ϵÞ

−∞ði−ϵÞ
dr4; ð4Þ

since it originates from the need to isolate the interacting
vacuum jΩi in a correlation function,

X∞
n¼0

e−iEnT jnihnjΩi⟶T→∞ð1−iϵÞ
e−iE0T j0ih0jΩi;

and thereby remove the higher energy contributions En
of the free n-particle states jni. The integration path
between T ¼ �∞ð1 − iϵÞ in the action of the quantum
field theory thus corresponds to k0 → �∞ð1þ iϵÞ and
r4 → �∞ði − ϵÞ. Therefore, the proper Minkowski path is
the diagonal line from bottom right to top left, which must
also be deformed to avoid the cuts, cf. Fig. 5.
That this is indeed the correct path can also be seen by

putting the point
ffiffi
t

p
back onto the imaginary axis (right

panel in Fig. 5). In that case, all cuts also lie on the
imaginary axis and one can use the iϵ term to displace the
cuts, while the Minkowski path is the straight line from
bottom to top. As a consequence, all cuts in the upper half
plane of r4 are shifted to the right of the path and all cuts in
the lower half plane to its left; closing the contour on either
side gives the same result. This is also what happens in the
left panel of Fig. 5, where the upper cuts appear on the right
of the Minkowski path and the lower cuts on its left—but
that path is just the same as the Euclidean contour.

In general, there is no intrinsic difference between
quantities in “Euclidean” or “Minkowski space.” In both
cases, one has to deform integration contours to avoid
cuts and the final result is the same. A naive Euclidean
integration path would give the wrong result above thresh-
old, whereas a naive Minkowski integration (in the sense of
a straight vertical path) becomes meaningless once t is
complex. The iϵ prescription in the action only tells us
where the integration starts and ends; that one additionally
has to deform contours at the level of correlation functions
is implicit in their definition. We also refrain from referring
to “Euclidean” or “Minkowski” as different regions where
the resulting functions are tested in the complex plane
(cf. Fig. 3) because for that purpose the terminology
“spacelike” and “timelike” is more appropriate. What we
mean by “Euclidean conventions” is merely a Euclidean
metric with metric tensor δμν as opposed to a Minkowski
metric gμν. A collection of Euclidean conventions can be
found, e.g., in Appendix A of Ref. [46].
As an aside, there is also no inherent problem with

perturbation theory which is usually done in Euclidean
space. The “Wick rotation” only amounts to rewriting the
integrals in a Euclidean metric, which is always possible as
long as the singularities of their integrands are kept in mind
and there is no contribution from the contour at complex
infinity. If one employs Feynman parametrizations, then
the integrals in momentum space become integrals over
Feynman parameters and one has to analyze the singularity
structure of the integrands in Feynman parameter space
instead of momentum space.
In the remainder of this paper, we will need contour

deformations for integrals with three and four internal
poles, which are also not just integrals but appear in integral
equations. Because all expressions are Lorentz invariant,
it is convenient to preserve manifest Lorentz invariance by
splitting the loop integral into k2 and a three-dimensional
solid angle via hyperspherical variablesZ

d4k ¼ 1

2

Z
∞

0

dk2k2
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p Z
1

−1
dy

Z
2π

0

dψ :

ð5Þ

Equivalently, one could use the radial variable k ¼
ffiffiffiffiffi
k2

p
such that dk2k2=2 ¼ dkk3. As a consequence, the cuts are
no longer vertical lines in the complex k2 plane but pick up
more complicated shapes which we discuss in Sec. IV B.
In any case, the strategy is the same: depending on the
external kinematics, one must deform the straight
Euclidean integration path from k2 ¼ 0 to k2 → ∞ to
avoid the cuts in the complex k2 plane.

III. SCALAR MODEL

We consider the simplest scalar model that is capable of
producing resonances: Two scalar particles ϕ and φ with

FIG. 5. Left: same as in Fig. 4; the Euclidean and Minkowski
paths are equivalent. Right: situation for Re

ffiffi
t

p ¼ 0, where the
cuts are shifted by iϵ.
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masses m and μ, respectively, and a three-point interaction
∼gϕϕφ. This leaves two parameters,

c ¼ g2

ð4πmÞ2 ; β ¼ μ

m
: ð6Þ

β is the mass ratio and the coupling g is dimensionful, so we
defined a dimensionless coupling constant c. As a conse-
quence, the mass m drops out from all equations and only
sets the scale.
In principle, one should dress the propagators by solving

their coupled Dyson-Schwinger equations (DSEs) shown in
Fig. 6. However, tree-level propagators are good enough for
our purposes because the dressing effects in the scalar
theory are relatively small. If we define a mass function for
each propagator, Mðp2Þ and M0ðp2Þ, via

Dðp2Þ ¼ 1

Z
1

p2 þMðp2Þ2 ;

D0ðp2Þ ¼ 1

Z0
1

p2 þM0ðp2Þ2 ; ð7Þ

where Z and Z0 are the respective renormalization con-
stants, then an exemplary solution of the coupled DSEs for
a given value of c (and using tree-level vertices only) is
shown in Fig. 7. The three dots on each curve correspond to
three different renormalization points at which the renor-
malized masses m and μ were specified as input; the
renormalization constants Z and Z0 are determined in the
solution process. One can see that both mass functions are
essentially flat over a large momentum range and only
begin to drop in the ultraviolet.
If the coupling c becomes large enough, both curves

for the squared mass functions eventually cross zero and

become negative in the ultraviolet. This reflects the vacuum
instability of the ϕϕφ theory and implies that the model is
only physically acceptable for small couplings, which has
also consequences for the so-called anomalous BSE sol-
utions [47]. Since we employ the scalar theory only as a toy
model for calculating resonance properties, we will not
further consider this point and restrict ourselves to tree-
level propagators in what follows.
To extract the bound state and resonance properties of

the model, we consider the three equations depicted in
Fig. 8. The first is the homogeneous BSE for the BS
amplitude Ψ, which in a compact form reads

Ψ ¼ KG0Ψ: ð8Þ

K stands for the BS kernel andG0 for the product of the two
propagators. We employ a simple ladder exchange, which
for a vanishing exchange-particle mass μ ¼ 0 becomes the
Wick-Cutkosky model [30–32]. The homogeneous BSE
yields the eigenvalues of KG0 for given quantum numbers
JPC, which depend on the total momentum variable t ∈ C.
If an eigenvalue satisfies λiðtÞ ¼ 1, this corresponds to a
pole in the scattering amplitude. Hence, in principle, one
can extract both the bound-state and resonance information
from the homogeneous BSE.
The second equation in Fig. 8 is the inhomogeneous

BSE for the vertex Γ,

Γ ¼ Γ0 þ KG0Γ: ð9Þ

The three-point vertex is essentially the scattering ampli-
tude in a given JPC channel: if G denotes the full four-point
function satisfying G ¼ G0 þG0KG, then the vertex is
defined as G0Γ ¼ GΓ0, i.e., modulo external propagators it
is the contraction ofGwith the tree-level vertex Γ0 carrying
quantum numbers JPC. Thus, it contains the bound-state
and resonance poles in that channel. In a symbolic form,
one can write the solution of Eq. (9) as

Γ ¼ Γ0

1 − KG0

; ð10Þ

FIG. 6. Coupled propagator DSEs for the scalar model.

FIG. 7. Mass functions of the scalar theory in the timelike and
spacelike region for three renormalization points and fixed
coupling c (in arbitrary units).

FIG. 8. From top to bottom: homogenous BSE, inhomogeneous
BSE, and scattering equation.
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which shows explicitly that whenever an eigenvalue of
KG0 becomes 1, one has found a pole in the vertex.
Finally, the third equation in Fig. 8 is the scattering

equation for the full scattering amplitude T,

T ¼ K þ KG0T; ð11Þ

where T is the connected and amputated part of G defined
via G ¼ G0 þ G0TG0. Since we denoted the total momen-
tum variable by t, we will refer to the “horizontal” channel
as the t channel in the following. To ensure crossing
symmetry in the s and u channels, we have symmetrized
the kernel in the scattering equation; for the two preceding
equations, this is not necessary because both terms yield the
same result. Symbolically, the solution of the scattering
equation has the form

T ¼ K
1 − KG0

; ð12Þ

and therefore T contains all singularities, including the
exchange-particle poles encoded in the kernel K.
In the following, we investigate these equations in detail:

the homogeneous and inhomogeneous BSEs in Sec. IVand
the scattering equation in Sec. V.

IV. RESONANCES FROM THE BSE

A. Explicit form of the BSE

The homogeneous BSE reads explicitly

Ψðq; PÞ ¼
Z
k
Kðq; kÞG0ðk; PÞΨðk; PÞ; ð13Þ

where
R
k ¼ d4k=ð2πÞ4 is the integral measure, q is the

relative and P the total momentum, k is the relative
momentum in the loop, and the propagator momenta are
q� ¼ q� P=2 and k� ¼ k� P=2. We restrict ourselves to
scalar bound states with quantum numbers JPC ¼ 0þþ; in
that case, Ψðq; PÞ is a scalar as well.
The internal propagators are given by

Dðk�Þ ¼
1

k2� þm2
¼ 1

k2 þ 1
4
P2 þm2 � k · P

; ð14Þ

so their product G0ðk; PÞ ¼ DðkþÞDðk−Þ becomes

G0ðk; PÞ ¼
1

ðk2 þ 1
4
P2 þm2Þ2 − ðk · PÞ2 : ð15Þ

Symmetrizing the kernel is not necessary at this stage but
we do it nevertheless for later convenience. The kernel is
then the sum of s- and u-channel exchanges,

Kðq; kÞ ¼ g2

2

�
1

ðq − kÞ2 þ μ2
þ 1

ðqþ kÞ2 þ μ2

�

¼ g2ðq2 þ k2 þ μ2Þ
ðq2 þ k2 þ μ2Þ2 − 4ðq · kÞ2 : ð16Þ

Using the hyperspherical variables from Eq. (5), we
choose the rest frame

P ¼ 2m
ffiffi
t

p
2
6664
0

0

0

1

3
7775; q ¼ m

ffiffiffiffi
X

p
2
6664

0

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p

Z

3
7775;

k ¼ m
ffiffiffi
x

p

2
666664

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
sinψffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

cosψffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
y

z

3
777775; ð17Þ

so that the radial integration variable is k2 ¼ m2x and its
external counterpart is q2 ¼ m2X. In principle, however,
we never need to specify a frame if we define those
variables in a Lorentz-invariant way

P2 ¼ 4m2t; q · P ¼ 2m2
ffiffiffiffiffi
Xt

p
Z;

q2 ¼ m2X; k · P ¼ 2m2
ffiffiffiffi
xt

p
z;

k2 ¼ m2x; q · k ¼ m2
ffiffiffiffiffiffi
Xx

p
Ω; ð18Þ

where Ω ¼ zZ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
y. As a result, the kernel

and two-body propagator become

KðX; x;ΩÞ ¼ g2

m2

X þ xþ β2

ðX þ xþ β2Þ2 − 4XxΩ2
;

G0ðx; z; tÞ ¼
1

m4

1

ðxþ tþ 1Þ2 − 4xtz2
; ð19Þ

and the BSE takes the form

ΨðX; Z; tÞ ¼ m4

ð2πÞ3
1

2

Z
∞

0

dxx
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p

×
Z

1

−1
dyKðX; x;ΩÞG0ðx; z; tÞΨðx; z; tÞ; ð20Þ

where the mass m drops out. The integration over the angle
ψ is trivial because no Lorentz invariant depends on it and
the integral over y can be performed analytically,

Z
1

−1
dy

1

1 − ðaþ byÞ2 ¼
1

b
ðatanhδþ þ atanhδ−Þ; ð21Þ

with atanhδ¼½lnð1þδÞ− lnð1−δÞ�=2 and δ�¼b=ð1�aÞ.
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The inhomogeneous BSE has the same form as Eq. (20)
if we replace ΨðX; Z; tÞ → ΓðX; Z; tÞ and add an inhomo-
geneous term Γ0 ¼ 1 on the right-hand side corresponding
to quantum numbers JPC ¼ 0þþ.

B. Contour deformation

To proceed, we analyze the singularity structure of the
integrand in Eq. (20). The equation is solved at fixed t,
which remains an external parameter. After performing the
y and z integrations, the poles in K and G0 produce cuts
in the complex plane of the radial variable x, and if those
cuts cross the positive real axis the “naïve” integration path
0 < x < ∞ is forbidden. Since we discuss the complex

ffiffi
t

p
plane instead of t, we also analyze the cut structure in the
complex

ffiffiffi
x

p
plane; and we do not change the integration

domain of the variable z which remains in the interval
−1 < z < 1.
The singularities encoded in the quantities (19) can be

written in a closed form by defining the function

f�ðt; α; zÞ ¼
ffiffi
t

p
z� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − z2Þ þ α2

q
; ð22Þ

where t ∈ C and α > 0 are parameters and the resulting cut
is parametrized by −1 < z < 1:

(i) The propagator poles encoded in G0 generate a
cut

ffiffiffi
x

p ¼ C1 ¼ f�ðt; 1; zÞ.
(ii) The exchange particle poles in K produce a cutffiffiffi

x
p ¼ C3 ¼ f�ðX; β;ΩÞ, withΩ defined below (18).

(iii) We may need the vertex ΓðX; Z; tÞ at the kinematical
point where also the constituent particles are onshell.
In that case,

q2� ¼ −m2 ⇒ Z ¼ 0; X ¼ −ð1þ tÞ; ð23Þ

so that the kernel produces another cut atffiffiffi
x

p ¼ C2 ¼ f�ð−ð1þ tÞ; β;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
yÞ. The combi-

nation of C1 and C2 will become especially relevant
for the onshell scattering amplitude in Sec. V.

(iv) By means of the inhomogeneous BSE, the vertex
ΓðX; Z; tÞ develops bound-state poles and multi-
particle cuts which are functions of t only. Since
the equation is solved at a given t, the only
constraints that these singularities provide is that
one cannot obtain a solution directly along the cut or
at a pole location. In practice, we avoid the imagi-
nary

ffiffi
t

p
axis and solve the equation for Re

ffiffi
t

p
> 0,

which circumvents both problems.
(v) In principle, the BS amplitude or vertex can dynami-

cally develop singularities in the relative momentum
variables X and Z. The variable Z is protected
because we keep it in the interval −1 < Z < 1,
and as long as the singularities in X only appear
on the timelike X axis they do not pose any
restriction.

Let us analyze the function
ffiffiffi
x

p ¼ f�ðt; α; zÞ in the
complex

ffiffiffi
x

p
plane depending on the values of t ∈ C and

α > 0. We denote
ffiffi
t

p ¼ aþ ib, where a, b ≥ 0 because
ffiffi
t

p
is in the upper right quadrant. Because we can identify−

ffiffiffi
x

p
with þ ffiffiffi

x
p

, it is sufficient to consider only one of the cuts,
for example, f−ðt; α; zÞ. The end points of the cut corre-
spond to z ¼ �1 and thus

ffiffiffi
x

p ¼ � ffiffi
t

p
− iα. The cut starts

on the vertical line Re
ffiffiffi
x

p ¼ a with distance α below the
point

ffiffi
t

p
and ends on the opposite line Re

ffiffiffi
x

p ¼ −a with
distance α below −

ffiffi
t

p
.

For α ¼ 0, the cut becomes a half-circle

f�ðt; 0; zÞ ¼
ffiffi
t

p ðz� i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
Þ ¼ ffiffi

t
p

e�iφ; ð24Þ

with z ¼ cosφ. For α > 0, it produces more complicated
shapes as shown in Fig. 9. When lowering z fromþ1 to −1,
the modulus of f−ðt; α; zÞ always grows; and as long as
α < 2b, any cut passes through the complex conjugate
point

ffiffiffiffi
t�

p ¼ a − ib when

z ¼ a2 − b2 þ α2=2
a2 þ b2

: ð25Þ

In other words, all possible cuts remain inside the colored
region in Fig. 9, which is defined by the vertical lines
Re

ffiffiffi
x

p ¼ �a and the circle with radius j ffiffi
t

p j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. If

α > b, a contour deformation is not necessary because the
cut does not cross the real axis.
Let us apply our findings to Eq. (20). The propagator

cut C1 has the form discussed above with α ¼ 1. If
b ¼ Im

ffiffi
t

p
< 1, it does not cross the real axis and no

FIG. 9. The functions f�ðt; α; zÞ for
ffiffi
t

p ¼ 0.5þ 2i and three
values α ¼ 1, 1.7, and 2.7. The dashed line is a possible
integration path that avoids all cuts.
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action is required—a “naïve” Euclidean integration is
possible. If b > 1, we must deform the integration contour;
at this point any possible path that avoids the cut is
sufficient.
The kernel cut C3 is analogous but with t replaced by X

and α ¼ β. If Eq. (20) were just an integral and not an
integral equation, then for Im

ffiffiffiffi
X

p
< 1 no further steps

would be necessary. However, the fact that we feed the
amplitude ΨðX; Z; tÞ back into the integral on the r.h.s.
entails that the paths for X and x must match, i.e., we solve
the equation along the same path for X and x. Therefore, at
every point

ffiffiffi
x

p
along the path, the kernel generates another

cut C3 that must be avoided.
All those cuts are still confined inside regions analogous

to Fig. 9, so that each point
ffiffiffi
x

p
defines a corresponding

cut region. To ensure that we never cross any cut along
the path, we must stay outside of the regions belonging to
the previous points on the path. This means once we have
reached the point

ffiffiffi
x

p
, the allowed region to proceed is

bounded by a vertical line and a circle. For
ffiffiffi
x

p
in the upper

right quadrant, we may turn left only up to a vertical line
and we may turn right and return to the real axis not faster
than on a circle. In other words, both Re

ffiffiffi
x

p
and j ffiffiffi

x
p j must

never decrease along the path.
A possible path satisfying these constraints is drawn in

Fig. 9: The first section is a straight line connecting the
origin with the point

ffiffi
t

p
; the second is an arc that starts atffiffi

t
p

and returns to the real axis with increasing modulus; and
the third is a straight line along the real axis up to infinity. In
this way, we can cover the entire complex plane and solve
the homogeneous BSE (20) as well as the inhomogeneous
BSE for any

ffiffi
t

p
∈ C.

If the BS amplitude or vertex is taken fully onshell, we
must also consider the cut C2. Its form is analogous except
that the point t is replaced by −ð1þ tÞ, so that for fixed t
one must circumvent two cuts in the complex

ffiffiffi
x

p
plane.

This situation is discussed in the Appendix.

C. Eigenvalues of the homogeneous equation

To solve the homogeneous BSE (20), we write it as

ΨðX; Z; tÞ ¼ c
Z

dx
Z

dzKðX; Z; x; z; tÞΨðx; z; tÞ: ð26Þ

We pulled out the coupling c since in this model it is just a
constant overall factor in the kernel, and the propagators
do not depend on it because they remain at tree level. The
contour deformation discussed above only enters in the
integral measure dx. Equation (26) can be written as a
matrix-vector equation

ΨσðtÞ ¼ cKστðtÞΨτðtÞ; ð27Þ

where the matrix indices σ, τ absorb the momentum
dependence in the variables X and Z. In practice, we

calculate the eigenvalues λiðtÞ of the matrix KðtÞ, which
aside from t only depend on the mass ratio β but no longer
on the coupling c. A solution of the equation and thus a
pole in the scattering amplitude corresponds to the points ti
where the condition

1

λiðtiÞ
¼! c; i ¼ 0; 1; 2;… ð28Þ

is satisfied. The respective eigenvector ΨσðtiÞ is the onshell
BS amplitude of that state.
The situation is illustrated in Fig. 10. The left panel

shows the first three inverse eigenvalues of KðtÞ as a
function of Im

ffiffi
t

p
, i.e., along the imaginary axis up to the

threshold in Fig. 3. The right panel magnifies the eigen-
value for the ground state. We chose a mass ratio β ¼ 4
where the eigenvalues are well separated. For c≲ 6, there is
no bound state. For 6≲ c≲ 11, the ground state is bound
since the condition 1=λ0 ¼ c can be satisfied; its mass
corresponds to Im

ffiffiffiffi
t0

p ¼ M0=ð2mÞ.
For larger couplings, the condition is still satisfied for

spacelike values of t: the eigenvalues continue to drop for
P2 > 0 and the inverse eigenvalues grow for

ffiffi
t

p
> 0 on the

real axis. Therefore, with increasing coupling, the pole in
the scattering amplitude slides down on the imaginary axis
of

ffiffi
t

p
in Fig. 3, becomes tachyonic, and continues to move

along the positive real axis toward infinity. Recalling
Sec. III, this signals again that for physically acceptable
solutions the coupling of the model must be restricted to
small enough values.
If we increase the coupling further, then from Fig. 10

eventually also the first excited state becomes bound, until
its mass drops to zero and becomes tachyonic, followed by
the second excited state, etc. Hence the question: what is
the nature of a state before it becomes bound? In particular,
what happens for small couplings where all states, includ-
ing the ground state, are above threshold (here for c≲ 6)?

FIG. 10. Inverse eigenvalues of the Bethe-Salpeter equation for
β ¼ 4 along the line Re

ffiffi
t

p ¼ 0 below threshold.

EICHMANN, DUARTE, PEÑA, and STADLER PHYS. REV. D 100, 094001 (2019)

094001-8



One should note that the onshell BS wave function
χðq; PÞ ¼ G0ðq; PÞΨðq; PÞ, which in quantum field theory
is defined as the Fourier transform of the matrix element of
two field operators between the vacuum and the asymptotic
one-particle state jPi, technically only refers to the solution
of Eq. (27) at a particular bound-state pole for real ti.
Equation (27), on the other hand, provides an analytic
continuation of ΨðtÞ for general t ∈ C which follows from
the scattering equation, so that ΨðtÞ is the residue of the
scattering amplitude also for resonance poles in the com-
plex plane. In particular, the matrix KðtÞ contains the
scattering information in the t channel for given quantum
numbers, and Eq. (28) is the general condition for a pole in
the scattering matrix, irrespective of whether it is real or
complex.
Figure 11 shows the same three eigenvalues as before

(the lower panels zoom in on the ground state), but now
including the results above threshold obtained with the
contour deformation. The 15 different curves correspond
to evenly spaced vertical lines in the complex

ffiffi
t

p
plane

between 0.01 < Re
ffiffi
t

p
< 0.65, where the smallest curve in

each plot is the result closest to the imaginary axis.
Very close to the axis one requires better and better
numerics to get stable results above threshold; the curve
for the ground state in Fig. 11 is stable but artifacts in

the excited states can already be seen and they grow for
higher-lying states.
In Fig. 11, one clearly sees the nonanalyticity at the

threshold, where the real and imaginary parts of all three
eigenvalues have a kink and a branch cut opens in the
imaginary parts. The condition 1=λiðtÞ ¼ c is never sat-
isfied in the complex plane and thus the first Riemann sheet
is free of singularities as expected. In principle, however, it
can be met on the second Riemann sheet, which is the
analytic continuation of the first sheet above threshold.
Because the coupling is real, the pole position is the
intersection of

Re
1

λiðtÞ
¼ c and Im

1

λiðtÞ
¼ 0: ð29Þ

D. Continuation to the second sheet

To analytically continue the eigenvalues to the second
Riemann sheet, we employ the Schlessinger point method
or Resonances-via-Padé (RVP) method [48], which has
been advocated recently as a tool for locating resonance
positions in the complex plane [49–52]. It amounts to a
continued fraction

fðzÞ ¼ c1

1þ c2ðz − z1Þ
1þ c3ðz − z2Þ

1þ c4ðz − z3Þ
…

ð30Þ

which is simple to implement by an iterative algorithm.
Given n input points zi with i ¼ 1…n and a function whose
values fðziÞ are known, one determines the n coefficients ci
and thereby obtains an analytic continuation of the original
function for arbitrary values z ∈ C. The continued fraction
can be recast into a standard Padé form in terms of a
division of two polynomials.
The situation in the complex

ffiffi
t

p
plane is shown in the

upper panel of Fig. 12. If the two Riemann sheets are plotted
next to each other, then crossing over from the first to the
second sheet is analytic above the threshold Im

ffiffi
t

p ¼ 1. The
alignment of the two sheets (left or right) is not important
because on each sheet the eigenvalues are analytic functions
whose real parts are symmetric around the imaginary

ffiffi
t

p
axis

and whose imaginary parts are antisymmetric. Bound states
can appear on the first sheet along the imaginary

ffiffi
t

p
axis

below the threshold and resonances in the complex plane of
the second sheet above threshold. In addition, typical
features of s-wave amplitudes are virtual states [1,53,54],
which are poles on the imaginary

ffiffi
t

p
(or real t) axis on the

second sheet below threshold.
Note that with the two sheets aligned side by side there

is now a cut below threshold, for 0 < Im
ffiffi
t

p
< 1, which

separates the two sheets—crossing over to the second
sheet is smooth above threshold whereas below it is not.

FIG. 11. Inverse eigenvalues of the Bethe-Salpeter equation
for β ¼ 4 below and above threshold. The upper panels show the
first three eigenvalues, and the lower panels zoom in on the
ground state.
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This poses a difficulty for the RVP method because a Padé
ansatz cannot reproduce branch cuts but only poles. We
therefore adapt the strategy of Ref. [54] and unfold the two
sheets by considering the

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
plane shown in the

bottom panel of Fig. 12. Bound states now appear on
the positive real axis, which eventually turns into the

spacelike axis, whereas virtual states would appear as
poles on the negative real axis. The lower half plane is
again mirror-symmetric and does not provide new infor-
mation. Importantly, there is no longer a cut in the complexffiffiffiffiffiffiffiffiffiffi
1þ t

p
plane, so one can analytically continue to the

second sheet also below threshold.
Our setup is shown in the left panel of Fig. 13. The right

half plane is the first Riemann sheet in
ffiffi
t

p
, where we

calculate the BSE eigenvalues either below threshold
without or above threshold with contour deformations.
The left half plane is the second sheet. To determine the
sensitivity of the RVP algorithm to the input region where
the function is defined, we choose five different domains
which are shown by the colored rectangles. Inside each
rectangle we pick n ¼ 20; 21;…80 input points randomly.
For each rectangle and each n, we then determine the
resulting pole positions from Eq. (29). Finally, we average
those pole positions over n to get an estimate on the
sensitivity to n. For each of the five input regions, the
resulting pole averages with their standard deviations are
given by the circles in Fig. 13.
The center panel in Fig. 13 shows the result for β ¼ 4

and c ¼ 8. This merely serves as a check because in this
case we already know the result; from Fig. 10 and Eq. (28)
one can read off the bound-state pole position

ffiffi
t

p
≈ 0.84i.

Indeed, the RVP method accurately reproduces this value
for either of the three input regions below threshold,
whereas the two upper regions lead to scattered poles
around that value and thus larger circles.
In the right panel of Fig. 13, we show the result for a

weak coupling c ¼ 1where the bound state has presumably
turned into a resonance (cf. Fig. 10). In this case, however,
we do not find resonance poles above threshold but rather
below the threshold on the second sheet. For a given n, the
method typically finds one pole in the

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
plane slightly

above or below the negative real axis but sometimes

FIG. 12. Top: singularity structure in the complex
ffiffi
t

p
plane,

with the first and second Riemann sheets plotted side by side. The
cut that distinguishes the two sheets now appears below thresh-
old. Bottom: the same situation in the complex

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
plane

where the cut no longer appears.
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FIG. 13. Analytic continuation using the RVP method. For each input region in the left panel, the corresponding circles are the
resulting pole positions. For c ¼ 8, one recovers the bound-state pole on the first sheet, whereas c ¼ 1 produces a pole on the second
sheet below threshold.
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also two. Transformed back to
ffiffi
t

p
, the poles can dive under

the cut and thus appear on the right half plane but they still
lie on the second sheet. This is of course an artifact since
the method is not aware of the analyticity property where
the resulting function on the lower half plane of

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
must be the complex conjugate of that on the upper half
plane; it merely performs an analytic continuation. Keeping
this in mind, the results indeed point toward the occurrence
of virtual states instead of resonances above the threshold.
As an independent check we also solve the inhomo-

geneous BSE (9) for the vertex ΓðX; Z; tÞ. Its practical form
is analogous to Eqs. (26)–(27) with the addition of an
inhomogeneity

ΓσðtÞ ¼ Γ0;σ þ cKστðtÞΓτðtÞ; ð31Þ
and instead of the eigenvalues of KðtÞ the inhomogeneous
BSE determines the vertex ΓσðtÞ directly. Its singularity
structure coincides with the singularities of the full
scattering amplitude for quantum numbers JPC ¼ 0þþ.
Equation (31) can be solved by iteration, except in the
vicinity of the poles where we employ matrix inversion to
avoid convergence problems

ΓσðtÞ ¼ ½1 − cKðtÞ�−1στ Γ0;τ: ð32Þ

Once ΓðX; Z; tÞ is known, we solve the equation one more
time to obtain the onshell vertex Γð−ð1þ tÞ; 0; tÞ which is
a function of t only, cf. Eq. (23).

Figure 14 shows the resulting onshell vertex for β ¼ 4
and five different values of the coupling. The different
curves correspond to the same grid as for the eigenvalues in
Fig. 11. For c ¼ 7 and c ¼ 6, there is a clear bound-state
pole. For c ≤ 5, the coupling is below the value where
bound states can occur and the ground state becomes
unbound (cf. Fig. 10). Instead of producing a resonance
bump, however, the pole simply disappears and what
remains is just the threshold cusp. The cusp is the onset
of the cut below threshold: on the Im

ffiffi
t

p
axis, the continu-

ation of ReΓ from above threshold becomes the function on
the second sheet, just like for the eigenvalues in Fig. 11.
Combined with the RVP method, the resulting pole
positions from the inhomogeneous BSE are compatible
with those in Fig. 13 obtained from the ground-state
eigenvalue of the homogeneous BSE.
We therefore conclude that the scalar model does not

produce resonances above threshold. Our results so far
yield poles on the second sheet below threshold, which
suggests virtual states. This poses an obstacle for analytic
continuation methods since one has to bridge a consid-
erable distance in the complex

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
plane. That the RVP

method is well suited for finding resonance poles above
thresholds has been demonstrated in Ref. [50]. Thus, if the
model did produce clear resonance bumps, the homo-
geneous (or inhomogeneous) BSE in combination with
contour deformations and the RVP method would form an
adequate toolbox to determine the pole locations in the
complex plane.
On the other hand, there is a method that provides direct

access to the second sheet: two-body unitarity, which
follows from the scattering equation and allows one to
calculate the scattering amplitude on the second sheet if it is
known on the first sheet. We discuss it in more detail in
Sec. V B; to utilize it, we must first solve the full scattering
equation in Eq. (11).

V. SCATTERING AMPLITUDE

A. Onshell scattering amplitude

The scattering equation for the 2 → 2 scattering ampli-
tude Tðq; p; PÞ is shown in Fig. 15 and reads explicitly

Tðq; p; PÞ ¼ Kðq; pÞ þ
Z
k
Kðq; kÞG0ðk; PÞTðk; p; PÞ:

ð33Þ

The ingredients are the same as before, Eqs. (15) and (16),
except that the amplitude depends on a second relative
momentum p with p� ¼ p� P=2.
Ultimately we are only interested in the onshell scatter-

ing amplitude where all particles are on their mass shells,
p2
� ¼ q2� ¼ −m2, which entails p ·P¼q ·P¼0 and p2 ¼

q2 ¼ −m2ð1þ tÞ. This leaves two independent variables:
the total momentum transfer t ¼ P2=ð4m2Þ and the

FIG. 14. Onshell vertex for different couplings. Once the bound
state pole disappears, only the threshold cusp survives.
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crossing variable λ ¼ p · q=m2. The latter can be written as
λ ¼ ð1þ tÞY, where the hyperspherical variable Y ¼ cos θ
is the cosine of the scattering angle θ in the CM frame. In
the following, we denote the onshell scattering amplitude
by Tonðt; YÞ.
In Fig. 16, we illustrate the singularity structure of

Tonðt; YÞ in the Mandelstam plane of the variables t and
λ. The bound states, resonance poles, and t-channel cuts
generated in the nonperturbative solution of the scattering
equation are identical to those obtained with the (in-)
homogeneous BSEs. They appear at fixed t and are
independent of λ, so they form horizontal lines in the
Mandelstam plane. The physical t channel opens above
threshold t < −1.
By contrast, the singularities that depend on λ are purely

perturbative. On the one hand, the exchange kernel Kðq; pÞ
has poles in the s and u channels. The Mandelstam
variables s and u are given by�

s

u

�
¼ −ðq ∓ pÞ2 ¼ 2m2ð1þ t� λÞ; ð34Þ

and thus λ ¼ ðs − uÞ=ð4m2Þ. The exchange poles appear at
s ¼ μ2 or u ¼ μ2, which corresponds to

�λ ¼ β2

2
− ð1þ tÞ; ð35Þ

as shown in Fig. 16. On the other hand, by expanding the
scattering equation into a ladder series, each perturbative

loop diagram produces further cuts if s > 4μ2 or u > 4μ2

and therefore

�λ > 2β2 − ð1þ tÞ: ð36Þ

The boundaries of the three channels are the lines with
s ¼ 0 and u ¼ 0 corresponding to λ ¼∓ ð1þ tÞ and
therefore Y ¼∓ 1.
Because Tonðt; YÞ is invariant under the transformations

p → −p or q → −q, the scattering amplitude is symmetric
in the crossing variable λ and thus can depend on Y only
quadratically. The Y dependence can be absorbed in a
partial-wave expansion

Tonðt; YÞ ¼
X∞
l¼0

ð2lþ 1ÞflðtÞPlðYÞ; ð37Þ

where PlðYÞ are the Legendre polynomials and inside
the t-channel region one has −1 < Y < 1. Because the
dependence on Y is quadratic, only even partial waves
l ¼ 0; 2; 4… survive.
If β is large enough and the exchange-particle poles are

far away from the t-channel region, the λ dependence is
small and the partial-wave expansion converges rapidly.
Moreover, the exchange poles only appear in the inhomo-
geneous term of Eq. (33), so they drop out in the difference
Ton − Kon whose remaining λ-dependent singularities are
the cuts in the s and u channels. Thus, the only non-
perturbative singularities of the scattering amplitude are
those in the variable t.

B. Two-body unitarity

The scattering equation provides a direct way to access
the second Riemann sheet via two-body unitarity; see, e.g.,
Ref. [55] for a detailed discussion. If we take the inverse of
the scattering equation, T−1 ¼ K−1 − G0, and subtract it for
two different kinematical configurations, we obtain

T−1þ − T−1
− ¼ ðK−1þ − K−1

− Þ − ðG0þ −G0−Þ: ð38Þ

Multiplying with Tþ from the left and T− from the right
yields

Tþ − T− ¼ TþðG0þ −G0−ÞT− − TþðK−1þ − K−1
− ÞT−:

ð39Þ

FIG. 15. Scattering equation (33).

FIG. 16. Mandelstam plane for the onshell scattering amplitude
in the variables t and λ.
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Using G ¼ G0 þ G0KG ¼ G0 þ G0TG0, the second term
on the r.h.s. above can be rearranged as

ð…Þ ¼ TþK−1þ ðKþ − K−ÞK−1
− T−

¼ G−1
0þGþðKþ − K−ÞG−G−1

0−: ð40Þ
If Tþ and T− are the scattering amplitudes along the

t-channel cut (t < −1) with t� ¼ t� iϵ slightly displaced
on either side, then the difference of the kernels drops out
because the ladder kernel K does not depend on t. The
difference of the tree-level propagators forces the scattering
amplitudes inside the loop integral onto the mass shell and
results in the unitarity relation

ImTonðt; YÞ ¼
τðtÞ
4π

Z
1

−1
dy

Z
2π

0

dψTonðt;ϒÞT�
onðt; yÞ;

ð41Þ
where

ϒ ¼ yY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
cosψ ;

τðtÞ ¼ 1

16π

ffiffiffiffiffiffiffiffiffiffi
1þ t
t

r
: ð42Þ

From the knowledge of the discontinuity along the cut,
one therefore arrives at a relation between the onshell
scattering amplitude on the first and second sheets,

TIIðt; YÞ ¼ TIðt; YÞ þ
iτðtÞ
2π

Z
1

−1
dy

Z
2π

0

dψTIIðt;ϒÞTIðt; yÞ;

ð43Þ
which is an inhomogeneous integral equation that deter-
mines the amplitude TII on the second sheet once TI is
known. Inserting the partial-wave decomposition (37), it
becomes the algebraic relation

flðtÞII ¼
flðtÞI

1 − 2iτðtÞflðtÞI
; ð44Þ

where flðtÞI and flðtÞII denote the partial waves on the first
and second sheets. Thus, the poles on the second sheet
correspond to the zeros of the denominator on the first sheet

flðtÞI¼!
1

2iτðtÞ : ð45Þ

Once the scattering amplitude is solved from its scatter-
ing equation (33), unitarity is therefore automatic and one
has direct access to the second Riemann sheet.

C. Half-offshell amplitude

There is one complication that remains to be addressed.
Because the internal momenta k� in Eq. (33) are sampled in

offshell kinematics, the scattering equation does not pro-
vide a self-consistent relation for the onshell amplitude but
only for its half-offshell counterpart. Therefore, we must
first solve the equation for the half-offshell amplitude; once
completed, we perform “one more iteration” to arrive at the
scattering amplitude for onshell external kinematics.
For the half-offshell amplitude, we relax the conditions

q2� ¼ −m2 so that q · P and q2 remain general. As a con-
sequence, the amplitude now depends on four independent
variables. On kinematical grounds, the half-offshell ampli-
tude is similar to onshell Compton scattering with two
virtual photons, so we can use the same Lorentz-invariant
momentum variables to analyze it [46],2

ηþ ¼ 1

m2

�
q2 þ P2

4

�
¼ q2þ þ q2−

2m2
;

η− ¼ 1

m2

�
q2 −

P2

4

�
¼ qþ · q−

m2
;

ω ¼ −
q · P
m2

¼ −
q2þ − q2−
2m2

;

λ ¼ p · q
m2

¼ p · q�
m2

: ð46Þ

The amplitude then depends on four variables ηþ, η−, ω,
and λ, where ω and λ can again only enter quadratically.
In analogy to (17), we alternatively use the hyper-

spherical variables t, X, Y, Z defined by

P ¼ −2m
ffiffi
t

p
2
6664
0

0

0

1

3
7775; p ¼ −im

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
2
6664
0

0

1

0

3
7775;

q ¼ m
ffiffiffiffi
X

p
2
6664
0 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
Y

Z

3
7775;

k ¼ m
ffiffiffi
x

p

2
666664

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

p
sinψffiffiffiffiffiffiffiffiffiffiffiffi

1 − z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y2
p

cosψffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
y

z

3
777775; ð47Þ

where we attached minus signs to P and p to comply with
the Compton scattering kinematics. This corresponds to the
Lorentz-invariant definitions

2The kinematical analogue of Fig. 15 is the annihilation
process NN̄ → γ�γ�. To compare with the notation in Ref. [46],
replace the momenta fq; p; Pg with fΣ;−p;−Δg.
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η� ¼ X � t;

ω ¼ 2
ffiffiffiffiffi
tX

p
Z;

λ ¼ −i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ tÞX

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
Y ð48Þ

and likewise for the internal variables x, z, and ψ by taking
dot products with the loop momentum kμ.
The left panel of Fig. 17 shows the resulting kinematic

domain in ηþ and η− for ω ¼ 0. As before, bound states and
resonances appear at fixed t below and above threshold
t ¼ −1, respectively. At a given t, the domain of the
scattering equation where it is solved self-consistently is

X > 0; −1 < Z < 1; −1 < Y < 1: ð49Þ

The onshell scattering amplitude Tonðt; YÞ corresponds to
X ¼ −ð1þ tÞ and Z ¼ 0 and thus

ηþ ¼ −1; ω ¼ 0;

η− ¼ −ð1þ 2tÞ; λ ¼ ð1þ tÞY: ð50Þ

The onshell Mandelstam plane is then the line ηþ ¼ −1 in
Fig. 17. In the half-offshell case, the Mandelstam variables
s and u become

�
s

u

�
¼ −ðq ∓ pÞ2 ¼ m2ð1 − η− � 2λÞ; ð51Þ

and the Mandelstam plane is expressed through the
variables η− and λ. The exchange-particle poles correspond
to η− ¼ 1 − β2 � 2λ; for λ ¼ 0, the intersection of the two
poles at s ¼ u ¼ μ2 (cf. Fig. 16) would form a vertical line
η− ¼ 1 − β2 in Fig. 17.
If we also switch on the remaining variable ω, then for

t > 0 the integration domain forms a cone around the ηþ
axis, which is shown in the right panel of Fig. 17. This is so
because from Eq. (49) one has

−ηþ < η− < ηþ and Z2 ¼ ω2

η2þ − η2−
< 1: ð52Þ

For t < 0, the integration domain forms a similar cone
around the η− axis and with ω imaginary. Hence, to obtain a
self-consistent solution, one must first solve the equation
inside these cones, and afterward solve the equation once
more by setting X ¼ −ð1þ tÞ and Z ¼ 0, where the half-
offshell amplitude is integrated over to obtain the onshell
scattering amplitude Tonðt; λÞ.
To cast the scattering equation (33) into a form analo-

gous to Eq. (20), we express it in hyperspherical variables,

TðX; Y; Z; tÞ ¼ KðX;−ð1þ tÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
YÞ

þ m4

ð2πÞ4
1

2

Z
∞

0

dxx
Z

1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
G0ðx; z; tÞ

×
Z

1

−1
dy

Z
2π

0

dψKðX; x; Ω̃ÞTðx; y; z; tÞ;

ð53Þ

where K and G0 are the same as before,

KðX; x; Ω̃Þ ¼ g2

m2

X þ xþ β2

ðX þ xþ β2Þ2 − 4XxΩ̃2
;

G0ðx; z; tÞ ¼
1

m4

1

ðxþ tþ 1Þ2 − 4xtz2
; ð54Þ

except that the argument Ω̃ also depends on the angle ψ ,

Ω̃ ¼ zZ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Z2

p
ϒ;

ϒ ¼ yY þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Y2

p
cosψ : ð55Þ

The innermost ψ integration is no longer trivial, but it can
still be performed analytically,

1

2π

Z
2π

0

dψ
1

1 − ðaþ b cosψÞ2 ¼
γþ þ γ−

2b
; ð56Þ

where

γ� ¼ δ�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2�

p ; δ� ¼ b
1� a

: ð57Þ

The external kernel in the first line of Eq. (53) follows from
replacing the appropriate momentum arguments.
The analysis of branch cuts is analogous to Sec. IV B.

We keep the integration domains of z and y inside their
intervals in Eq. (49) and deform the integration contour inffiffiffi
x

p
only. In this way, we cover the area jλj < j1þ tj ⇔

jYj < 1, i.e., the region between the lines s ¼ 0 and u ¼ 0
in the Mandelstam plane. The cuts in the integrand are as
follows:

FIG. 17. Kinematic domain of the half-offshell scattering
amplitude for ω ¼ 0 (left) and ω ≠ 0 (right).
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(i) The propagator poles encoded inG0ðk; PÞ generate a
cut

ffiffiffi
x

p ¼ C1 ¼ f�ðt; 1; zÞ; the function f� has been
defined in Eq. (22).

(ii) The exchange particle poles in Kðq; kÞ produce a
cut

ffiffiffi
x

p ¼ C3 ¼ f�ðX; β; Ω̃Þ.
(iii) The exchange-particle poles in the s and u channels,

which are generated in the internal scattering am-
plitude Tðx; y; z; tÞ itself, produce cuts in the same
place as those in Kðk; pÞ, cf. Eq. (16), namely
at

ffiffiffi
x

p ¼ C2 ¼ f�ð−ð1þ tÞ; β;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
yÞ.

(iv) Finally, if we solve the equation once more in the
final step to obtain the onshell scattering amplitude,
the exchange-particle poles in Kðq; kÞ produce a
cut

ffiffiffi
x

p ¼ C4 ¼ f�ð−ð1þ tÞ; β;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
ϒÞ.

Since the third argument of f� always takes values in the
interval ð−1; 1Þ, the cuts C2 and C4 lead to the same
condition and do not need to be discussed separately. As
before, the bound-state poles and cuts which are dynami-
cally generated in the equation depend on t only and we
avoid them by discarding the imaginary axis Re

ffiffi
t

p ¼ 0.
The essential complication here is the appearance of two

cuts, C1 and C2, which both depend on the external point t
and must be avoided. As a consequence, the kinematically
safe region where no contour deformation is necessary
shrinks to the intersection of the two conditions

Im
ffiffi
t

p
< 1 and jIm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ tÞ

p
j < β: ð58Þ

Moreover, it is no longer possible to cover the entire
complex

ffiffi
t

p
plane using a contour deformation in

ffiffiffi
x

p
only;

to do so, one would have to deform contours in the
remaining variables z and/or y as well. The cut C3, on
the other hand, leads to the same condition as before,
namely that the deformed path in

ffiffiffi
x

p
avoiding the cuts C1

and C2 must be chosen such that Re
ffiffiffi
x

p
and j ffiffiffi

x
p j never

decrease along it. The details of the contour deformation
procedure are given in the Appendix.
In practice, the half-offshell scattering equation (53)

turns again into a matrix-vector equation analogous to
Eqs. (27) and (31),

T σðtÞ ¼ cK0
σðtÞ þ cK0

στðtÞT τðtÞ; ð59Þ

where the multi-indices σ, τ encode the dependence on the
variables X, Y, and Z. To avoid convergence problems in
the iterative solution in the vicinity of the poles, we solve
the equation through matrix inversion

T σðtÞ ¼ ½1 − cK0ðtÞ�−1στ cK0
τðtÞ: ð60Þ

D. Results for the scattering amplitude

Following the steps above, we first solve the half-offshell
amplitude TðX; Y; Z; tÞ from its scattering equation (53)
and obtain the onshell amplitude Tonðt; YÞ by solving the

equation once more for X ¼ −ð1þ tÞ and Z ¼ 0. Finally,
we extract the partial-wave amplitudes flðtÞ through

flðtÞ ¼
1

2

Z
1

−1
dYPlðYÞTonðt; YÞ; ð61Þ

and determine the amplitude on the second Riemann sheet
from Eq. (44).
The integration domain Y ∈ ½−1; 1� is the area enclosed

by the lines s ¼ 0 and u ¼ 0 in the Mandelstam plane of
Fig. 16. In the t-channel region (t < −1), the exchange-
particle poles do not enter in the integration domain,
whereas for t > −1 they do appear above a certain value
of t,

t > tP ¼ β2=4 − 1; ð62Þ

which follows from Eq. (34) as the intersection of s ¼ μ2

and u ¼ 0. As discussed above, the exchange-particle poles
only appear in the inhomogeneous term of the scattering
equation. If we split the partial waves into

flðtÞ ¼ fðKÞl ðtÞ þ fðT−KÞl ðtÞ; ð63Þ

then the exchange poles only contribute to the first term,
whose integrand from Eqs. (53) and (54) takes the form

Konðt; YÞ ¼ Kð−ð1þ tÞ;−ð1þ tÞ; YÞ

¼ g2

m2

1

2ð1þ tÞ
B

B2 − Y2
; ð64Þ

with B ¼ β2=½2ð1þ tÞ� − 1. The fðKÞl ðtÞ can thus be
obtained analytically

fðKÞ0 ðtÞ ¼ g2

m2

1

4ð1þ tÞ ln
Bþ 1

B − 1
;

fðKÞ2 ðtÞ ¼ g2

m2

1

4ð1þ tÞ
�
3B2 − 1

2
ln
Bþ 1

B − 1
− 3B

�
ð65Þ

and so on for higher partial waves. These expressions have
poles for t ¼ tP and branch cuts for t > tP. The dynami-
cally generated bound-state and resonance poles, on the

other hand, only appear in the second term fðT−KÞl ðtÞ whose
integrand Ton − Kon is almost independent of Y because the
only singularities in that variable are the s- and u-channel
cuts beginning at t > β2 − 1.
Figure 18 shows the leading partial wave f0ðtÞ in the

complex
ffiffi
t

p
plane for β ¼ 4 and four values of the coupling

c ¼ f1; 3; 5; 7g. In this case, the exchange poles are
relatively far away from the displayed region (tP ¼ 3) so
that only the dynamical poles are visible. As before we plot
the first Riemann sheet on the right half plane and the
second sheet on the left. Recalling Fig. 10, bound states can
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only appear in the interval 6≲ c≲ 11. One can clearly see
that below c ∼ 6 the ground state of the system is a virtual
state with its pole on the imaginary

ffiffi
t

p
axis (or real t axis)

on the second sheet. With increasing coupling strength c, it

moves up toward the threshold. At c ∼ 6, the pole crosses
over to the first sheet, where it becomes a bound state, and
slides down along the axis toward the origin. For c≳ 11, it
becomes tachyonic and continues on the real

ffiffi
t

p
axis.

The resulting pole trajectory is shown in Fig. 18. For
c ¼ 1, the location of the virtual pole is

ffiffi
t

p
≈ 0.40i, which

is compatible with the RVP estimate in Fig. 13 for the two
input regions above threshold. Thus, the homogeneous
BSE in combination with the RVP method did indeed
predict the poles of scattering amplitude on the second
sheet in the right ballpark. To determine the precise
locations, however, we had to solve the scattering equation
to have access to the unitarity relation (43).
The pattern in Fig. 19 repeats itself for the excited

states. If the coupling increases further, eventually the first
excited state appears as a virtual state and follows the same
trajectory, until it becomes bound (from Fig. 10 at c ∼ 66)
and then again tachyonic (c ∼ 93), followed by the second
excited state, and so on.
We should note that tachyonic bound states above a

critical value of the coupling are not necessarily tied to
the vacuum instability of the cubic interaction but they can
also appear as truncation artifacts. The conditions for
tachyonic poles are that (i) the eigenvalues of the system
are monotonically decreasing functions of t when passing
from the timelike (t < 0) to the spacelike side (t > 0), and
(ii) that the coupling, when pulled out of the kernel, can be
tuned independently without affecting the eigenvalues
λiðtÞ. The first condition is a generic feature of BSEs since
the eigenvalues of KðtÞ always inherit the falloff with t
encoded in the propagators; it means that in Fig. 10 the
inverse eigenvalues continue to grow when extending the
plots to the spacelike region on the left. Then, for a large
enough coupling, the condition (28) can always be met at
some value t > 0. The second feature, on the other hand, is
special to our model in the sense that there is only one

FIG. 19. Ground-state pole trajectory for β ¼ 4 as a function of
the coupling for c ¼ 1; 2; 3…13.

FIG. 18. Leading partial wave f0ðtÞ in the complex
ffiffi
t

p
plane

for β ¼ 4. In each plot, the first sheet is shown on the right
(Re

ffiffi
t

p
> 0) and the second on the left (Im

ffiffi
t

p
< 0), as in Fig. 13.

With increasing coupling c, the virtual state moves up along the
imaginary axis of the second sheet until it reaches the threshold
and comes back on the first sheet.
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overall coupling that can be pulled out of the kernel. In
general, when solving the DSEs for the propagators
they also become functions of c and so does the kernel
beyond simple truncations. Increasing the coupling typi-
cally increases the self-energies and thus the inverse BSE
eigenvalues, so that Eq. (28) may no longer have a solution
for spacelike t. This is effectively what happens in QCD,
where the coupling αs in the BSE kernel cannot be dialled
independently of the quark propagator; instead, the strong
dependence of the propagator on αs is manifest in dynami-
cal chiral symmetry breaking and also changes its singu-
larity structure in the process.
The results discussed so far for β ¼ 4 are generic and

qualitatively also hold for different values of β. This can be
inferred from Fig. 20, where the bound-state regions in the
ðβ; cÞ plane are plotted for the lowest three states of the
system. Inside the lowest band the ground state is bound;
for smaller values of c, it is a virtual state and for larger
values it becomes tachyonic. The same pattern repeats itself
for the excited states.
For smaller values of β, eventually also the exchange-

particle poles from Eq. (65) become important. Figure 21
exemplifies f0ðtÞ for β ¼ 2 and c ¼ 12, which lies between
the first and second bands in Fig. 20. In this case, the

ground state has become tachyonic and is no longer visible
in the plot; instead, the large structure on the first sheet is
the exchange-particle pole at tP ¼ β2=4 − 1 ¼ 0 from
Eq. (62). One can also see the first excited state on the
second sheet, which has not yet become bound and is still a
virtual state below threshold.
In the limit β ¼ 0 of a massless exchange particle,

which is the Wick-Cutkosky model, all “normal” eigen-
values in Fig. 10 would end at the threshold so that
1=λiðt ¼ −1Þ ¼ 0. In this case, there are only bound states
(and tachyons for large enough couplings) but no virtual
states. The states that do not satisfy this property, i.e.,
1=λiðt ¼ −1Þ ≠ 0, are the so-called anomalous states
[30–32,47]. To investigate what becomes of them when
they cross the threshold remains the subject of future work.

VI. CONCLUSIONS AND OUTLOOK

We have investigated contour deformations as a tool to
extract resonance properties from bound-state and scatter-
ing equations. As an example we have solved the homo-
geneous and inhomogeneous Bethe-Salpeter equation for a
scalar model with a ladder-exchange interaction and we
calculated the 2 → 2 scattering amplitude from its scatter-
ing equation. We find that the model does not produce
resonances above threshold but rather virtual states on the
second Riemann sheet.
Our analysis was carried out in several steps. First, we

employed contour deformations to access the kinematic
regions associated with amplitudes in “Minkowski space.”
We pointed out that there is no intrinsic difference between
Minkowski and Euclidean space approaches; in both cases,
one needs to deform integration contours and the result
must be the same. We used a Euclidean metric, which
allowed us to formulate the four-dimensional integrals in a
manifestly Lorentz-invariant way, and performed the con-
tour deformations in the radial variable.
We demonstrated that the resonance information is in

principle already contained in the homogeneous Bethe-
Salpeter equation, because it determines an analytic
continuation of the Bethe-Salpeter amplitude which in
quantum field theory is only defined at a particular (real)
bound-state pole. To extract that information, however,
one needs analytic continuation methods. We employed
the Schlessinger point or Resonances-via-Padé method,
which is well-suited for situations with resonances above
threshold. However, the scalar model we investigated here
produces virtual states below threshold whose pole loca-
tions are more difficult to determine accurately by analytic
continuation than nearby resonances.
To address this, we solved the half-offshell scattering

equations for the 2 → 2 scattering amplitude, from where
we extracted the onshell scattering amplitude and employed
the two-body unitarity relation which provides direct access
to the second Riemann sheet. This allows us to determine
the pole positions precisely and confirms that the resonance

FIG. 21. Same as in Fig. 18 but for β ¼ 2 and c ¼ 12. The
broad structure is the exchange-particle pole at t ¼ 0 and the
narrow peak is the first excited state on the second sheet.

FIG. 20. Parameter space of the scalar model. The bands show
the regions in ðβ; cÞ where the ground state, first excited or
second excited state are bound states.
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poles of the model are indeed virtual states below the
threshold.
Our analysis leaves room for several future investiga-

tions. One can study scattering amplitudes with complex
propagator poles, the nature of anomalous states, or extend
the approach to three-body systems. Our determination of
the cut structure does not depend on the scalar nature of the
system and can be applied without changes to the scattering
of particles with any spin, such as NN or Nπ scattering, as
long as self-energies can be neglected. Moreover, contour
deformations provide a general way to overcome singu-
larity restrictions, for example, in QCD, which can help to
access properties of resonances but also highly excited
states, form factors in the far spacelike and timelike
regions, or general matrix elements in kinematic regions
where a naive Euclidean integration contour is no longer
applicable.
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APPENDIX: CONTOUR DEFORMATION
WITH TWO CUTS

In this appendix, we provide details on our contour
deformation procedure in the calculation of the scattering
amplitude. As discussed in Sec. V C, the complication in
this case arises from the appearance of the two cuts

C1 ¼ f�ðt; 1; zÞ;
C2 ¼ f�ð−ð1þ tÞ; β;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − z2

p
yÞ; ðA1Þ

in the complex
ffiffiffi
x

p
plane which must be circumvented,

where the function f� is given by

f�ðt; α; zÞ ¼
ffiffi
t

p
z� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1 − z2Þ þ α2

q
: ðA2Þ

With
ffiffi
t

p
in the upper right quadrant, Im½−ð1þ tÞ� < 0

and therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ tÞp

is in the lower right quadrant.
Hence, we can write

ffiffi
t

p ¼ aþ ib;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ tÞ

p
¼ c − id; ðA3Þ

where a; b; c; d > 0 and

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A − B
2

r
; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ B
2

r
;

A2 ¼ ð1þ RetÞ2 þ ðImtÞ2 ¼ ð1þ a2 − b2Þ2 þ 4a2b2;

B ¼ 1þ Ret ¼ 1þ a2 − b2; ðA4Þ

with A > 0, jBj < A.

The typical situation in the complex
ffiffiffi
x

p
plane is

illustrated in Fig. 22. The point
ffiffi
t

p
in the upper right

quadrant defines the vertical line V1 and a circle with radius
R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. The point

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ tÞp

defines the line V2

and a circle with radius R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p
¼ ffiffiffiffi

A
p

. The two
relevant cuts are then given by

C1 ¼ f−ððaþ ibÞ2; 1; zÞ;
C2 ¼ fþððc − idÞ2; β; zÞ; ðA5Þ

where z ∈ ð−1; 1Þ is a generic variable parametrizing the
cuts and the opposite branches are not relevant for the
further discussion. At z ¼ 1, the cuts start on V1 and V2 at
the respective points

P1 ¼ aþ iðb − 1Þ; P2 ¼ cþ iðβ − dÞ: ðA6Þ

As z decreases, jC1j and jC2j increase. At z ¼ 0, C1 passes
through

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ tÞp

at V2. At the point
ffiffiffiffi
t�

p
, again at V1, the

cut C1 leaves the circle with radius R1 and continues until it
reaches its end point −a − iðbþ 1Þ. The cut C2 in Fig. 22
already starts outside of its circle with radius R2 and
progresses until its end point −cþ iðβ þ dÞ.
A proper integration path

ffiffiffi
x

p ¼ I in Fig. 22 would start
at the origin, pass through the region between P1 and P2,
and return to the real axis afterward. In addition, it must
satisfy the constraints arising from the exchange-particle
cut C3, namely that ReI and jI j must never decrease along
the path. For example, once I has picked up a nonvanishing

FIG. 22. Exemplary alignment of the two cuts C1 and C2 for
t ¼ 0.4þ 1.4i and α ¼ 1.3; see text for a discussion.
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real part, it is no longer possible to return to the imagi-
nary axis.
Depending on the alignment of the cuts, different path

deformations may be necessary. To this end, we identify the
following regions:

(i) C1 never crosses the positive real axis if jIm
ffiffi
t

p j < 1,
cf. Eq. (58), which entails b < 1.

(ii) C2 never crosses the real axis if jIm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1þ tÞp j < β,

which entails

d < β ⇔ b > β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − ðβ2 − 1Þ

β2 − a2

s
: ðA7Þ

(iii) The line V1 is on the left of V2 if

jtj > j1þ tj ⇔ Ret < −
1

2
; ðA8Þ

which corresponds to

a < c ⇔ b >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ a2

r
ðA9Þ

and implies R1 > R2. If V1 is on the right, the
situation is reversed and a > c.

(iv) If a < c, a contour deformation is possible as long as
P2 does not touch C1, which leads to the condition

β >
G −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 − 8a2ðc2 þ d2Þ

p
2a

; ðA10Þ

with G ¼ bcþ 3ad.
(v) If a > c, a contour deformation is possible as long as

P1 does not touch C2, which corresponds to

β >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cða2 þ ð1 − bÞ2Þ
cð1 − bÞ þ ad

s
: ðA11Þ

Based on these constraints, we divide up the complex
ffiffi
t

p
plane into regions which are distinguished by a different
contour deformation procedure. They are plotted in Fig. 23
for three values of the mass ratio β, where the constraints
b ¼ 1 and d ¼ β correspond to the dashed lines and a ¼ c
to the solid line. Figure 24 illustrates exemplary configu-
rations for each region:
Region I (b < 1, d < β): No contour deformation is

necessary because none of the cuts crosses the real axis, as
exemplified in the upper left panel of Fig. 24.
Region Ia: The simplest extension is to test whether the

cuts C1 and C2 can be passed by a straight line starting at
the origin, which is true if argP2 > argP1. Because both
points are on the right half plane, we can drop the arctan
and the condition becomes

aðβ − dÞ þ cð1 − bÞ > 0: ðA12Þ
An exemplary configuration is plotted in the bottom left
panel of Fig. 24. The optimal integration path is the average
of the two lines connecting the origin with P1 and P2,
respectively, where we integrate up to a radius which is
larger than both R1 andR2 before going back to the real axis.
The resulting region in the complex

ffiffi
t

p
plane is shown by

the dashed opaque areas in Fig. 23. They enclose region I
but also extend into the other regions discussed below.
Region II (b < 1, d > β, a > c): Only C2 crosses the real

axis, as illustrated in the top center panel of Fig. 24. Here
the path deformation is still simple because we only need to
circumvent C2 and can return to the real axis afterward.
To find the optimal integration path, consider the

function fþððc − idÞ2; α; zÞ. For α ¼ β, this is just the
cut C2. As we decrease α, we deform its shape; P2 slides
down along the line V2 until the contour eventually touches
the cut C1 at the point P1. The corresponding value of α is

FIG. 23. Regions in the complex
ffiffi
t

p
plane which require a different contour deformation.
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given by the r.h.s. of Eq. (A11). Decreasing α further, the
contour crosses the cut C1 and for α ¼ 0 it becomes the
half-circle starting at c − id. Therefore, the choice

IþðzÞ ¼ fþððc − idÞ2; αþ; zÞ;

αþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
β2 þ 2cða2 þ ð1 − bÞ2Þ

cð1 − bÞ þ ad

�s
; ðA13Þ

which averages over the cut C2 and the contour touching
P1, is guaranteed to lie between the cuts C1 and C2.
Our integration path thus proceeds from the origin to

the point

Iþðz ¼ 1Þ ¼ cþ iðαþ − dÞ ðA14Þ

on V2, goes along IþðzÞ until it reaches the real axis at

IþðzþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
2 − α2þ

q
; zþ ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 − α2þ

p ; ðA15Þ

and from there continues to
ffiffiffi
x

p
→ ∞. Because the real

part and modulus of the contour always increase along that
path, the constraints from the exchange-particle cut C3 are
satisfied. In this way, we can cover the entire region II
without crossing any branch cut.
Region III (b > 1, d < β, a < c): This is the opposite

case where only C1 crosses the real axis (Fig. 22 and top
right panels in Fig. 24). Here we employ the function
f−ððaþ ibÞ2; α; zÞ. For α ¼ 1, this is the cut C1 and for
α ¼ 0 it becomes the circle passing through aþ ib. As we
decrease α, P1 will slide up along the line V1 until the
contour touches the point P2 of the cut C2. The resulting
value for α, however, is not the one in Eq. (A10), which was
obtained by equating P2 and C1 with α ¼ 1. Instead, we
need to keep α general which results in

I−ðzÞ ¼ f−ððaþ ibÞ2; α−; zÞ;

α− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β̄

2

að2R2
2 þ β̄2Þ − β̄G

aðβ̄ − dÞ þ bc

s
; ðA16Þ

FIG. 24. Exemplary cut alignments in the complex
ffiffiffi
x

p
plane for the different regions, together with the corresponding integration

paths (dashed lines).
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where G ¼ bcþ 3ad and

β̄ ¼ min ðβ; dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 − c2

p
Þ: ðA17Þ

Here we took care of another subtlety: if jP2j > R1 (which
is the case in Fig. 24), then the cut C2 no longer reaches
f−ððaþ ibÞ2; α; zÞ which remains within the circle with
radius R1. In that case, we replace P2 by the intersection of
that circle with V2, which from jP2j ¼ R1 corresponds to
β ¼ dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 − c2

p
and leads to the above definition.

The analogous situation for region II can never happen
because jP1j < R2.
The integration path then proceeds from the origin to

I−ðz ¼ 1Þ ¼ aþ iðb − α−Þ; ðA18Þ

on V1, goes along I−ðzÞ until it reaches the real axis at

I−ðz−Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
1 − α2−

q
; z− ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1 − α2−

p ðA19Þ

and from there continues to
ffiffiffi
x

p
→ ∞. The constraints from

the exchange-particle cut C3 are again satisfied, so we can
cover the entire region III without crossing any branch cut.
Region IV (b > 1, a > c): This case is more complicated

and illustrated in the bottom center of Fig. 24. Here C1
crosses the real axis; whether C2 also crosses or not is not
relevant. The integration path is similar as in Region II,
except that one must still circumvent the cut C1 after
passing the real axis. Because the real part of the contour
must never decrease, one can stay on IþðzÞ only as long as
it does not become vertical. At that point we switch to
another contour that brings us back to the real axis. In
Fig. 23, one can see that Region IVonly appears for β > 1.
Region V (d > β, a < c) is the opposite case shown in

the bottom right of Fig. 24. Here C2 crosses the real axis,
whereas C1 may or may not intersect with the real axis. The
integration path is similar to Region III; once again, one
must switch contours if I−ðzÞ becomes vertical. One can
see in Fig. 23 that Region Vonly covers a small portion of
the complex

ffiffi
t

p
plane and it also only appears for β < 1.

The union of all Regions I–V covers the entire accessible
area in the complex

ffiffi
t

p
plane defined by Eqs. (A10)

and (A11). Region Ia also extends into the other areas
and provides a useful cross check since in the overlap
regions one can test different contour deformation strategies.
In principle, there are many possible ways to generalize

or even automatize the contour deformation. For example,
outside of Region Ia one could use the two rays connecting
the origin with P1 and P2 to define inner and outer zones
and construct integration paths accordingly. Alternatively,
one could connect the tangent on one cut with the end point
of the other and then integrate along straight lines. Such
techniques can be useful in more general situations, for
example, when the ingredients of the equation are non-
perturbative and contain not only tree-level poles but also
poles or cuts in the complex plane.
Finally, what turned out very useful was a pole analysis

in the complex z plane, which is the angular integration
variable in the BSE (20) or scattering equation (53). The z
integration goes from z ¼ −1 to z ¼ þ1 and for a given
path deformation in

ffiffiffi
x

p
the poles of the integrands never

cross the integration path in z. Still, the closer the path inffiffiffi
x

p
comes to one of those singularities (e.g., in region Ia of

Fig. 24, when it passes through the cuts), the closer the
poles in the complex z plane come to the real axis and
therefore the integrand as a function of z varies strongly in
the vicinity of those poles. Here it is useful to perform an
adaptive integration by splitting the z integration into
intervals and accumulate the grid points around the nearest
singularities as sketched in Fig. 25. For example, for the
propagator poles corresponding to C1, their locations are
determined by solving

ffiffiffi
x

p ¼ f�ðt; 1; zÞ for z. In that way,
we typically gain a factor ∼102…103 in CPU time while
maintaining the same numerical accuracy.
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