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Direct CP violation in the hadronic charm decays provides a good testing ground for the Kobayashi-
Maskawa mechanism in the Standard Model. Any significant deviations from the expectation would be
indirect evidence of physics beyond the Standard Model. In view of improved measurements from LHCb
and BESIII experiments, we reanalyze the Cabibbo-favored D — PP and VP decays in the topological
diagram approach. By assuming certain SU(3)-breaking effects in the tree-type amplitudes, we make
predictions for both branching fractions and CP asymmetries of the singly Cabibbo-suppressed decay
modes. While the color-allowed and -suppressed amplitudes are preferred to scale by the factor dictated by
factorization in the PP modes, no such scaling is required in the VP modes. The W-exchange amplitudes
are found to change by 10% to 50% and depend on whether the dd or s3 pair directly emerges from
W-exchange. The predictions of branching fractions are generally improved after these SU(3) symmetry
breaking effects are taken into account. We show in detail how the tree-type, QCD-penguin, and weak
penguin-annihilation diagrams contribute and modify CP asymmetry predictions. Future measurements
of sufficiently many direct CP asymmetries will be very useful in removing a discrete ambiguity in the
strong phases as well as discriminating among different theory approaches. In particular, we predict
acp(KYK™) —acp(atn™) = (=1.14 £0.26) x 1073 or (—=1.25 £ 0.25) x 1073, consistent with the latest
data, and acp(KTK*™) —acp(ntp~) = (=1.52 £ 0.43) x 1073, an attractive and measurable observable
in the near future. Moreover, we observe that such CP asymmetry differences are dominated by long-

distance penguin-exchange through final-state rescattering.

DOI: 10.1103/PhysRevD.100.093002

I. INTRODUCTION

Based on 0.62 fb~! of 2011 data, in 2012 the LHCb
collaboration has reported a result of a nonzero value for
the difference between the time-integrated CP asymmetries
of the decays D — K*K~ and D° — #*z~ [1]:

AAcp=acp(KTK™) —acp(nn”)

=—(0.82+£0.21 £0.11)% (LHCb2012). (1)
The time-integrated asymmetry can be further decomposed
into a direct CP asymmetry a‘éi}, and a mixing-induced

indirect CP asymmetry ai"$

T

acp(f) = alp(f) (1 + ) yCP) +<_;>ai3gv (2)
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where (¢) is the average decay time in the sample, 7 is the
DO lifetime and yp is the deviation from unity of the ratio
of the effective lifetimes of D° meson decays to flavor-
specific and CP-even final states. To a good approximation,

a™ is independent of the decay mode. Hence,

T

. ) Al .
Agp = Aags;<1 44 >ycp> +¥algg. (3)

Based on the LHCb averages of ycp and a8, it is
known that AAcp is primarily sensitive to direct CP
violation.

Since Aa%i}; in the Standard Model (SM) is naively
expected to be at most of order 1 x 1073, many new physics
models [2—15] had been proposed to explain the measure-
ment of large AAp, although it was also argued in [16-23]
that large CP asymmetries in singly Cabibbo-suppressed
(SCS) D decays were allowed in the SM due to some
nonperturbative effects or unexpected strong dynamics and
the measured Aalf, could be accommodated or marginally
achieved.
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On the experimental side, the large AA-p observed by
LHCDb in 2011 was subsequently confirmed by CDF [24]
and by Belle [25]. However, the effects disappeared in the
muon-tag LHCb analyses in 2013 and 2014 [26,27] and
were not seen in the subsequent pion-tag analysis in 2016
[28]. Finally, in this year LHCb announced the measure-
ments based on pion and muon tagged analyses [29].
Combining these with previous LHCb results in 2014 and
2016 leads to [29]

AAcp = (=154 +0.29) x 1073, (LHCb2019), (4)
which yields Aadl, = (=1.56 £0.29) x 1073, This is the
first observation of CP violation in the charm sector.

It is most important to explore whether the first obser-
vation of CP violation in the charm sector (4) is consistent
with the Standard Model or not." A common argument
against the SM interpretation of Eq. (4) goes as follows.
Consider the tree T and penguin P contributions to D° —
K*K~ and D° — 7t 7. A simplified expression of the CP
asymmetry difference between them is given by [for a

complete expression of AadL, see Eq. (28) below]

Aadt, ~ —1.3 x 10—3<

P
sin Qg + '? sin6’,,,,>,

(5)

where Oy is the strong phase of (P/T)gx and likewise
for 6,,. Since |P/T| is naively expected to be of order
(as(u.)/m) ~ O(0.1), it appears that Aadl, is most likely of
order 10~* even if the strong phases are allowed to be close
to 90°. Indeed, using the results of |P/T| obtained from
light-cone sum rules, the authors of [35] claimed an upper
bound in the SM, |AAPM| < (2.0 + 0.3) x 10~*. The notion
that this would imply new physics was reinforced by a
recent similar analysis [31].

In 2012, we have studied direct CP violation in charmed
meson decays based on the topological diagram approach
for tree amplitudes and QCD factorization for penguin
amplitudes [36,37]. We have pointed out the importance of
a resonantlike final-state rescattering which has the same
topology as the QCD-penguin exchange toplogical graph.
Hence, penguin annihilation receives sizable long-distance
contributions from final-state interactions. We have shown
that Aad¥, arises mainly from long-distance weak penguin
annihilation. Moreover, we predicted that Aadf, is about
(=0.139 £ 0.004)% and (—0.151 - 0.004)% for the two
solutions of W-exchange amplitudes [37]. Those were the
main predictions among others made in 2012. Since the
world average during that time was Aadl, = (-0.645 +
0.180)% [38], we concluded that if this CP asymmetry

KK

"There were a few theory papers [30-34] after the 2019 LHCb
measurement.

difference continues to be large with more statistics in the
future, it will be clear evidence of physics beyond the
Standard Model in the charm sector. Nowadays, we know
that the LHCb new measurement almost coincides with our
second solution. This implies that one does not need new
physics at all to understand the first observation of AadL,
by LHCb.?

The purpose of this work is twofold. First, we would like
to improve the analysis of CP asymmetries in D — PP
decays. For example, it is well known that the penguin-
exchange amplitude PE and the penguin-annihilation one
PA evaluated in the approach of QCD factorization is
subject to the end-point divergence. We need to address this
issue. Also in our previous study of the long-distance
contribution to PE, we did not consider the uncertainties
connected with final-state rescattering [37]. This will be
improved in this work. Second, although we have studied
CP asymmetries in D — VP decays before in [36], we
focused only to the neutral charmed meson ones. Owing to
the lack of information on W-annihilation amplitudes, no
prediction was attempted for D* — VP and D} — VP
decays. Thanks to the BABAR measurement of D} — 77 p°
[40], the amplitudes Ay p can be extracted for the first time
in [41]. Consequently, in this work we are able to complete
the analysis of CP violation in the VP sector.

The layout of the present paper is as follows. After a brief
review of the diagrammatic approach, we study various
mechanisms responsible for the large SU(3) violation in the
branching fraction ratio of D — K*K~to D° — z*z~ and
fix the SU(3) breaking effects in weak annihilation ampli-
tudes in Sec. II. Penguin amplitudes are studied in the
framework of QCD factorization as illustrated in Sec. II C.
We then discuss direct CP violation in SCS D — PP
decays in Sec. III and compare our results with other works
in the literature. Section IV is devoted to D — VP decays
and their direct CP asymmetries. Finally, in Sec. V we
come to our conclusions.

II. D - PP DECAYS

It is known that a reliable theoretical description of the
underlying mechanism for exclusive hadronic D decays
based on QCD is still not yet available as the mass of the
charm quark, being about 1.3 GeV, is not heavy enough to
allow for a sensible heavy quark expansion. It has been
established sometime ago that a more suitable framework
for the analysis of hadronic charmed meson decays is the
so-called topological diagram approach [42—44]. In this
diagrammatic scenario, the topological diagrams can be
classified into three distinct groups (see Fig. 1 of [36]). The
first two of them (see [45] for details) are:

’A similar result of Aadt, based on a variant of the diagram-

matic approach was obtained in [39].
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(1) Tree and penguin amplitudes: color-allowed tree
amplitude 7 color-suppressed tree amplitude C;
QCD-penguin amplitude P; singlet QCD-penguin
amplitude S involving flavor SU(3)-singlet mesons;
color-favored electroweak-penguin (EW-penguin)
amplitude Pgyw; and color-suppressed EW-penguin
amplitude Pgy,.

(2) Weak annihilation amplitudes: W-exchange ampli-
tude E; W-annihilation amplitude A; QCD-penguin
exchange amplitude PE; QCD-penguin annihilation
amplitude PA; EW-penguin exchange amplitude
PEgyw; and EW-penguin annihilation amplitude PAgy,.

In this approach, the topological diagrams are classi-

fied according to the topologies in the flavor flow of weak
decay diagrams, with all strong interaction effects included
implicitly in all possible ways. Therefore, analyses of
topological graphs can provide valuable information on
final-state interactions.

A. Topological amplitudes
The topological amplitudes T, C, E, A are extracted from
the Cabibbo-favored (CF) D — PP decays [46] to be (in
units of 107° GeV)
T=3.113+£0.011, C=(2.76740.029)¢~i(151.3+03)",
— (1.48 +0.04)¢i(120904)° 4 — (0,55 40.03) /230
(6)

for ¢p = 43.5° [47], where ¢ is the n —#' mixing angle

defined in the flavor basis
<n> B <cos¢ —singb)(nq) )
W) \sing cos¢ ns)’
with n, = \/. (uit + dd) and n, = s3. The fitted y? value is

0.135 per degree of freedom. Comparing with the ampli-
tudes obtained in a previous fit in [48]

T=314+006, C=
E— (1_53j8.8g)ei(122i2)°’

(2.61 4 0.08)e~/(1521)"
+20
= (0.39%00)e’1=) (8)

we see that the errors in 7, C, E and A are substantially
reduced, especially for the annihilation amplitude A, thanks
to the improved data precision from 2019 PDG [46].

We note in passing that since we will only fit to the
observed branching fractions, the results will be the same
if all the strong phases are subject to a simultaneous
sign flip. Throughout this paper, we only present one of
them. Presumably, such a degeneracy in strong phases can
be resolved by measurements of sufficiently many CP
asymmetries.

One of the most important moral lessons we have learnt
from this approach is that all the topological amplitudes

except the tree amplitude 7 given in Eq. (6) are dominated
by nonfactorizable long-distance effects. For example, in
the naive factorization approach, the topological ampli-
tudes T and C in CF D — Kr decays have the expressions

T = % (R) (= )R (),
c= %a2<kﬂ>fK<m% —m2)FP(mY),  (9)

with a; = ¢ + ¢,/3 and a, = ¢, + ¢ /3. It turns out that
a,(Kz) ~ 122 and a,(Kr) ~0.82¢~151)" [48] extracted
from the experimental values of 7 and C given in
Eq. (6) and the phenomenological model for the D to K
and x transition form factors. Since c;(m,.)~1.274
and ¢, (m,) ~ —0.529, it is evident that a; = ¢; + ¢,/3 ~
1.09 is close to a,(Kr), while a, = ¢, +¢;/3 =~ —0.11
expected from naive factorization is far off from a,(Kx),
including its size and phase. This implies that the short-
distance contribution to C is very suppressed relative to
the long-distance one. In the topological approach, the
long-distance color-suppressed C is induced from the
color-allowed T through final-state rescattering with quark
exchange. The nontrivial relative phase between C and T
indicates that final-state interactions (FSIs) via quark
exchange are responsible for this.

Likewise, short-distance weak annihilation diagrams are
helicity suppressed, whereas data imply large sizes of them.
This is because they receive large 1/m,. power corrections
from FSIs and large nonfactorizable contributions for a,.
For example, the topological amplitude E receives con-
tributions from the tree amplitude 7 via final-state rescat-
tering with nearby resonance effects. The large magnitude
and phase of weak annihilation can be quantitatively and
qualitatively understood as elaborated in Refs. [49,50].

As emphasized in [36], one of the great merits of
the topological approach is that the magnitude and the
relative strong phase of each individual topological tree
amplitude in charm decays can be extracted from the data.
Consequently, direct CP asymmetries in charmed meson
decays induced at the tree level can be reliably estimated as
we shall discuss in Sec. IIT A.

B. Flavor SU(3) symmetry breaking

Using the topological amplitudes in Eq. (6) extracted
from the CF modes, we can predict the rates for the SCS
decays (see the second column of Table II below). It is
known that there exists significant SU(3) breaking in some
of the SCS modes from the flavor SU(3) symmetry limit.
For example, the rate of D® — KK~ is larger than that of
D° — 7z~ by a factor of 2.8 [46], while the magnitudes
of their decay amplitudes should be the same in the SU(3)
limit. This is a long-standing puzzle since SU(3) sym-
metry is expected to be broken roughly at the level of 30%.
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Also, the decay D° — K°K® is almost prohibited in the
SU(3) symmetry limit, but the measured branching fraction

is of the same order of magnitude as that of D — 7%2°.

Since SU(3) breaking effects in D — PP decays have
been discussed in detail in [37], in this section we will
recapitulate the main points and update some of the results.

As stressed in [51], a most natural way of solving the
above-mentioned long-standing puzzles is that the overall
seemingly large SU(3) symmetry violation arises from the
accumulation of several small and nominal SU(3) breaking
effects in the tree amplitudes 7 and E. We will illustrate this
point. Following [21], we write

AD® - 7t77) = 24(T + E+ Py + PE; + PA),,
+ A(Ps + PE; + PAy),,

1
= E(ld _)*S)(T +E+ AP)mr

1
~54(T + E+XP) (10)

nr’

where 4, = Vi, V,, (p = d, s, b), the subscript refers to the
quark involved in the associated penguin loop, and

AP = (Py+ PE,+ PAy) — (P, + PE, + PA,),
Likewise,
A(D® - K*K™) = 24(Py + PE; + PA,)xx

+ A,(T+ E+ P+ PE, + PA,)xx

1
= 5(’13 —4a)(T + E — AP) gk
1
5 2(T + E+ZP)g. (12)

As far as the rate is concerned, we can neglect the term with
the coefficient 4, which is much smaller than (1, — 4;).
SU(3)-breaking effects in the tree amplitudes 7" can be
estimated in the factorization approach as

TKK _ fK FODK(m%() Tlm _ sz - m721 FOD”(mlzr)

TiﬁFODK(m,%)’ Tim%—m%(FgK(m,zr)’
(13)

where T is the tree amplitude in CF D — Kz decays given

in Eq. (9). Using the form-factor ¢ dependence determined
experimentally from Ref. [52], we find

|Txk/T| = 1.269, |T,./T| = 0.964. (14)

SU@B) symmetry should be also broken in the

W-exchange amplitudes. This can be seen from the

observation of the decay D° — K°K° whose decay ampli-
tude is given by

A(D° - K°K®) = A4(E; + 2PA,) + A,(E; + 2PA),
(15)

with E, referring to the W-exchange amplitude associated
with cit - qgq (¢ = d, s). In the SU(3) limit, the decay
amplitude is proportional to 4, and hence its rate is
negligibly small, while experimentally B(D° — K°K?) =
(0.282 4 0.010) x 10~ [46]. This implies sizable SU(3)
symmetry violation in the W-exchange and QCD-penguin
annihilation amplitudes. Neglecting PA and 4, terms and
assuming that the 7" and E amplitudes are responsible for
the SU(3) symmetry breaking, we can fix the SU(3)
breaking effects in the W-exchange amplitudes from the
following four D° decay modes: K*K~, ntz~, 2°2° and
K°K® [37]. A fit to the data yields two possible solutions:

I: E, = 1.10e'>VE,
II: E;, = 1.10>VE,

E, = 0.62e1°7E;
E, = 1.42¢7135°E, (16)

The corresponding y? vanishes as these two solutions can
be obtained exactly.

If the SU(3)-breaking effects in the 7" and C topologies
are ignored, we find that y> will become very large, of order
340. This is understandable because the large rate disparity
between K™K~ and z* z~ cannot rely solely on the nominal
SU(3) breaking in the tree or W-exchange amplitudes.
When considering SU(3)-breaking effects in 7, we find that
B(D° — ntx7) is reduced slightly from 2.27 (in units of
1073) to 2.11, while B(D® — K*K~) is increased substan-
tially from 1.91 to 3.15 [see Eq. (14)]. When E is replaced
by E, = 1.10¢''YE in the amplitude of D° — 7z z~, the
magnitude of (0.96T + E,) in A(D° - z*z~) becomes
smaller than that of (0.96T + E) as the phase of E is about
121°, so that B(D® — z"z~) is decreased further from
2.11 to 1.47. Likewise, with E being replaced by E, =
0.62¢72"E or E, =1.42¢7"WE in the amplitude of
D® — K*K~, the magnitude of (1.277 + E,) is enhanced
relative to (1.27T + E). It follows that B(D® — K*K~) is
increased further from 3.15 to 4.03 or 4.05. This shows
that the seemingly large SU(3) symmetry violation in
I'(D° - K*K~) and T'(D° — ztz~) simply follows from
the accumulation of several smaller and nominal SU(3)
breaking effects in the tree amplitudes 7" and E.

At the hadron level, flavor SU(3) breaking due to the
strange and light quark differences will manifest in the
decay constants, form factors, wave functions and hadron
masses, etc. That is how we evaluate the SU(3)-breaking
effect in the 7 amplitude via Eq. (13). Since the
W-exchange is governed by long-distance effects, we do
not know how to estimate its SU(3) symmetry violation.
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TABLEIL. Topological amplitudes for singly Cabibbo-suppressed decays of charmed mesons to two pseudoscalar mesons where flavor
SU(3) symmetry breaking effects are included. Summation over p = d, s is understood.

Mode Representation
D° 't~ 24(0.96T + E;) + A (P + PE, + PA,)

7070 Fha(= 078C+Ed) 54p(P, + PE, + PA,)

5 —24(Ey) cos ¢ — 2’1‘ (1.28C) sin¢p + 4, (P, + PE,) cos ¢

= —Aq(Eg) sing + \/LEAS(I.ZSC) cos ¢ + A, (P, + PE,)sing

nm %ﬂd(OJSC + Eg)cos’p + A(—11.08C sin2¢) + V2E sin’¢) + - Ap(P, + PE, + PA,)cos’¢

' 124(0.78C + E,) sin2¢p + A, (% 1.08Ccos2¢ — E, sin2¢) + 11,

e
(P, + PE, + PA,)sin2¢

KTK~ A,(1.27T + E,) + 2,(P, + PE, + PA,)
KOI_{O Ad(Ed) +’1s(Es) +2/1p(PAp)
D+ ata® 544(0.97T +0.78C)
o J524(0.82T + 0.93C + 1.194) cos  — 4,(1.28C) sin ¢ + V22, (P, + PE,,) cos ¢
7ty T54a(0.82T +0.93C + 1.61A) sin ¢ + 4,(1.28C) cos ¢ + V22, (P, + PE,) sin¢p
K+ KO 24(0.85A) + A,(1.28T) + 4,(P, + PE,)
D} 7t K° ﬂd(l 007T) + 4,(0.84A) + 4,(P, + PE,)
2K+ 7 [-24(0.81C) + 2,(0.84A) + A,(P, + PE,)]
Ky T54p[0.92C8, + 11448, + P, + PE, | cos ¢ — 2,[(1.31T + 1.27C + 1.144)5,, + P, + PE, | sin ¢
Kty F54p[0.92C6,4 + 1.14A8, + P, + PE,] sin + 4,[(1.31T + 1.27C + 1.14A)5,, + P, + PE,| cos ¢

079 and

Hence, we rely on the four modes: K"K~, n7z~, «
K°KY to extract E; and E,.

Different mechanisms have been proposed in the liter-
ature for explaining the large rate difference between D —
atz~ and D° — K*K~. For example, it has been argued
that AP dominated by the difference of s- and d-quark
penguin contractions of 4-quark tree operators is respon-
sible for the large SU(3) breaking in K*K~ and ztz~
modes [21]. However, this requires that |AP/T| ~ 0.5. This
mechanism demands a large penguin which is comparable
or even larger than 7. Moreover, it requires a large
difference between s- and d-quark penguin contractions.
In Sec. I1I B, we shall see that |AP/T| is estimated to be of
order 0.01 for the short-distance AP. Because of the
smallness of AP, we need to rely on SU(3) violation in
both 7" and E amplitudes to explain the large disparity in the
rates of D° — K*K~ and zt7~

Another scenario in which the dominant source of SU(3)
breaking lies in final-state interactions was advocated
recently in [53]. To fit the data, several large strong phases
such as &), 6; and 6, from final-state interactions are
needed [53]. They deviate substantially from the SU(3)
llmlt, namely, 50 = 51 = 51/2.

SU(3) breaking effects in the topological amplitudes for
SCS D — PP decays are summarized in Table I. For
simplicity, flavor-singlet QCD penguin, flavor-singlet weak
annihilation and electroweak penguin annihilation ampli-
tudes have been neglected in subsequent numerical analy-
ses. The reader is referred to Refs. [37,48] in which we have
illustrated SU(3) breaking effects in some selective SCS

modes. The predicted and measured branching fractions
are given in Table II.> While the agreement with experiment
is improved for most of the SCS modes after taking into
account SU(3) breaking effects in decay amplitudes, there
are a few exceptions. For example, the predicted rate
for D° — 7% () becomes slightly worse compared to the
prediction based on SU(3) symmetry even though D™ —
7tn') works better in the presence of SU(3) breaking.

C. Penguin amplitudes in QCD factorization

Although the topological tree amplitudes 7', C, E and A
for hadronic D decays can be extracted from the data,
information on penguin amplitudes (QCD penguin, pen-
guin annihilation, etc.) is still needed in order to estimate
CP violation in the SCS decays. To calculate the penguin
contributions, we start from the short-distance effective
Hamiltonian

Heff -

4

2/1 C10 +C202+C8g08g ﬂbZC 01:|7
p=d.s i=3

(17)

Throughout this paper, predictions are made by sampling 10*
points in the parameter space, assuming that each of the
parameters has a Gaussian distribution with the corresponding
central value and symmetrized standard deviation. Then the
predicted values are the mean and standard deviation of data
computed using the 10* points.
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TABLE II. Branching fractions (in units of 1073) of singly
Cabibbo-suppressed D — PP decays. The column denoted by
Bsy(3) shows the predictions based on our best-fitted results in
Eq. (6) with exact flavor SU(3) symmetry, while SU(3) symmetry
breaking effects are taken into account in the column denoted by
Bsu(3)-breaking- The first (second) entry in D® — ny, ', KTK~
and K°K° modes is for Solution I (IT) of E, and E, in Eq. (16).
Experimental results of branching fractions are taken from

PDG [46].

Decay Mode BSU(3) BSU(3)7brea.king Bexpt

D > gtz 2.28 £0.02 1.47 £0.02 1.455 + 0.024

D - 7070 1.50 +0.03 0.82 +0.02 0.826 £ 0.025

D = 2% 0.83 +0.02 0.92 +0.02 0.63 + 0.06

DO — 2% 0.75 +£0.02 1.36 +0.03 0.92 +0.10

D% =y 1.52 £0.03 1.82 £0.04 2.11 £0.19
1.52 +0.03 2.11 +£0.04

D — i 1.28 +0.05 0.69 +0.03 1.01 £0.19
1.28 £ 0.05 1.63 £0.08

DY - KTK- 1.91+£0.02 4.03 +0.03 4.08 + 0.06
1.91 £0.02 4.05 +0.05

D% - KK 0 0.141 £0.007  0.141 £ 0.005

0 0.141 £ 0.007

Dt - zt7° 0.89 +0.02 0.93 +0.02 1.247 + 0.033

DT - 'y 1.90 +£0.16 4.08 +0.16 3.77 £0.09

Dt - ntyf 421 +£0.12 4.69 +0.08 497 +£0.19

DT - K™Ky 2.29+0.09 4.25+0.10 3.04 £0.09

D - 7K 1.20 £ 0.04 1.27 £0.04 1.22 £0.06

D} — %K+ 0.86 + 0.04 0.56 +0.02 0.63 +0.21

D - K™y 0.91 +£0.03 0.86 +0.03 1.77 £0.35

D - K¢/ 1.23 £0.06 1.49 +0.08 1.8+£0.6

where

07 = (pc)y_a(ap)y_s»

O35y = (l1c)y_,4

q

05 = (pacﬁ)V—A(ﬁﬁpa)V—A’

(QQ)Vq:A?

Oy6) = (ﬁacﬁ>V—AZ(ZIﬁq(x)v:|:A’

q

Ys _
Os, = —émcuaﬂy(l +75)G*c,

(18)

with O3—0O¢ being the QCD penguin operators and
(@192)v+a = @17,(1 £75)g,. We shall work in the QCD
factorization (QCDF) approach [54,55] to evaluate the
hadronic matrix elements, but keep in mind that we employ
this approach simply for a crude estimate of the penguin
amplitudes because the charm quark mass is not heavy
enough and 1/m, power corrections are so large that a
sensible heavy quark expansion is not allowed.

Let us first consider the penguin amplitudes in
D — PP, decays:

G
b, = = [af (P\P2) + 172af (P Py)]fp, (m — m3, )

PP1P2 \/§

DP
x Fy 1(’"1202)7

G
PE}r, = ol r) 0

G
PAL b, = 2 (Fof o ) ¥l (19)
where p =d, s and
2m>
rf(ﬂ) = - (20)

me(p)(my + my)(u)

is a chiral factor. Here we have followed the conventional
Bauer-Stech-Wirbel definition for the form factor F5¥ [56].
The explicit expressions of the flavor operators aj and af
will be given in Eq. (41) below. The annihilation operators
bY , are given by

C . .
by = N—§ [c3A] + c5(A} + AL) + N.csAl].

c

C ) .
by = N_i [c4A} + c6A]. (21)

c
where the annihilation amplitudes Ai’,};,s are defined
in Ref. [55].

In practical calculations of QCDF, the superscript “p”
can be omitted for a3, as, by and b,. Hence, we have
PE* = PEY, for instance. For a and af, the terms dictating
the p dependence are Gy, (s,) and GMZ(S »)» respectively,
defined in Eq. (43) below.

III. DIRECT CP VIOLATION IN D — PP DECAYS

In Ref. [37], we have discussed direct CP violation in
D — PP decays. Here we will update and improve the
results. For example, we will discuss the issue of end-point
divergences with the penguin-exchange and penguin-
annihilation amplitudes. We will also consider the uncer-
tainties connected with long-distance contribution to the
penguin-exchange amplitude. We shall keep some necessary
formula presented in [37] for ensuing discussions.

A. Tree-level CP violation

Direct CP asymmetry in hadronic charm decays
defined by

_T(D-f)-T(D )

" I(D- f)+T(D - f)

agp(f) (22)
can occur even at the tree level [57]. As stressed in [36,37],

the estimate of the tree-level CP violation a\* should be
trustworthy since the magnitude and the relative strong
phase of each individual topological tree amplitude in
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TABLE III.

Direct CP asymmetries (in units of 107) of D — PP decays, where ag,

(e) Jenotes CP asymmetry

arising from purely tree amplitudes. The superscript (t + p) denotes tree plus QCD-penguin amplitudes, (t + pa) for
tree plus weak penguin-annihilation (PE and PA) amplitudes and “tot” for the total amplitude. The first (second)
entry in D° — un, iy, KY K~ and KK is for Solution I (I) of E; and E, [Eq. (16)]. For QCD-penguin exchange
PE, we assume that it is similar to the topological E amplitude [see Eq. (33)]. For comparison, The predicted results

(tot

of adir) in [53] for both the negative (former) and positive (latter) solutions for the phase §; are also presented.

Decay mode i ag," ag™ g (this work) ag, [53]
D > ztn~ 0 0.03 +0.01 0.78 £0.22 0.80 +0.22 1.17 £0.20/1.18 +0.20
DY — 7079 0 0.27 £0.01 0.55 £0.30 0.82 £ 0.30 0.04 +£0.09/0.79 £ 0.10
D% — 7% 0.78 £ 0.01 0.48 +0.01 0.24 +0.28 —0.05 £0.28
D = 2% —-0.43+0.01 -0.56+0.01 -0.01=+0.17 —-0.15+0.17
D% — yy —-0.28 +£0.01 -0.28+0.01 -0.51=+0.07 —0.52 £ 0.07
—-0.37£0.01 -0.444+0.01 -0.58=+0.07 —0.65 £ 0.07
DO — ny/ 0.51 £ 0.00 0.09 + 0.00 0.72 £ 0.22 0.29 +0.21
0.46 + 0.01 0.16 + 0.00 0.52 +£0.15 0.22 +0.15
DY - KtK~ 0 0.08 £0.00 -0.41=+0.14 —-0.33 £0.14 —0.47 £0.08/ — 0.46 £ 0.08
0 —0.01 £0.00 -0.43+0.12 —-0.44 £0.12
D - KK —1.05 —1.05 —1.05 —-1.05 0.43 +0.07/0.38 + 0.07
-1.99 -1.99 -1.99 -1.99
Dt - ztA° 0 0 0 0
DT > 'y 0.37 £ 0.02 0.07+£0.01 —-0.34 £0.22 —0.63 +£0.23
D" - ntyf —-0.26 +0.02 -0.45+0.03 0.30 +0.18 0.11 £0.18
D" - K"Ky —0.07+£0.02 0.10£0.02 -0.46=+0.18 —-0.30+£0.18 —0.40 £0.07/ — 0.26 £+ 0.05
Dy - n7Ky 0.09 +£0.03 -0.08 £0.03 0.61 £0.24 0.42 +0.24 —0.40 +£0.07/ — 0.36 + 0.07
D} —» n°k+t —0.04+0.06 -0.02+0.04 0.89 +0.27 0.91 +0.27 0.48 +0.06/ — 0.03 £+ 0.04
D - K™ —-0.75+£0.01 -0924+0.02 -0.64+0.08 —0.81 £0.08
D - K¢/ 0.34 +£0.02 0.63£0.03 -0.22+0.24 0.07 £0.25

charm decays can be extracted from the data. The predicted
tree-level CP asymmetries for SCS modes are shown in
Table III. We see that larger CP asymmetries can be
achieved in those decay modes with interference between

T and C or C and E. For example, a((itirree) is of order 0.78 x
1073 for D° — 2% and —0.75 x 103 for D — K*n.
Direct CP violation in D° — KK is given by

2Im(A,A8) Im(ELE
ac(jtirree)(DO—’KsKs) = /1(d|[é - Ed(—dE S|2
N
E,
=1.3x1073 |E4E| 58I 5, (23)
|Ed_Es|

where J, is the strong phase of E| relative to E;. From the
two solutions of E,; and E given in Eq. (16), we find*

—1.05%x 1073 Solutionl,
—1.99%x 1073 SolutionII.

(tree)

ag; (D°—KsKg)= { (24)
For comparison, various predictions available in the liter-

ature are discussed here. afitirree)(K sKg) = 1.11 x 1073 was
predicted in [39]. It ranges in (0.38-0.43) x 10~ according

“In our previous work [37], we obtained a\™ (D0 —
K¢Kg) = —0.7 x 1073 for Solution I and —1.7 x 1073 for
Solution II.

to [53] (see also the last column of Table III). Both
predictions are of the opposite sign from ours. As explained

in [37], the positive sign of affirree>(K sK) given in [39] can
be traced back to the phase of the W-exchange amplitude.
In our case, the W-exchange amplitude is always in the
second quadrant, while it lies in the third quadrant in [39]
due to a sign flip. As noticed in passing, all the strong
phases extracted from a fit to branching fractions are
equivalent to those with a simultaneous sign flip. This
explains why the strong phases of C and E in [39] are

simultaneously opposite to ours in sign, and the sign
difference between this work and [39] for a((firree)(l( sKs).
A measurement of all (D — K¢Kg) will resolve the
discrete phase ambiguity. If it is measured to be negative
as predicted by us, then the W-exchange amplitude should
be in the second quadrant.

In [23], the direct CP violation in D° - K(Kg was
connected to that of D® — KTK~ via the relation

. . 25
adin(D® - KTK™) 2B(D° — K4Ky) (25)

aly(D° - KKy) \/B(DO - K*K")
Taking adiL(D® - K*K~) to be (—0.48 +0.09) x 1073
from Table III and the measured branching fractions,
the obtained result adil,(D® - K¢Kg) ~—1.8 x 1073 is in
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agreement in magnitude and sign with ours. alih,(D? —
KsKg) was estimated to be 0.6% in [21], while an upper
bound |ag;,(D° — KgK)| < 1.1% was set in [58].

The current experimental measurements are

(-294£52+22)%  LHCb[59),
a%t (KgKg) = { (43 +£34+1.0)% LHCb [60],
(=0.02+1.53+0.17)% Belle [61].
(26)

Since LHCb has measured AA¢p to the accuracy of 1073, it
is conceivable that an observation of CP violation in the
decay D° — KK will be feasible in the near future.

B. Penguin-induced CP violation
Direct CP violation does not occur at the tree level in
D° - KTK~ and D° — 7"z~ In these two decays, the CP

asymmetry arises from the interference between tree and
penguin amplitudes. From Eq. (10), we obtain

AIm[(Ay — A,)25) Im[(T* + E* + AP*)(T + E + AP + P — AP)],,

atpra) ==
A

~1.30 x 1073

P, + PE, 4+ PA;
T+ E+ AP

T +E+ AP|2,

sin é,,, (27)

nr

where 3, is the strong phase of (P, + PE, + PA,),, relative to (T + E + AP),, and likewise for aJi,(K*K~). Hence,

P,+ PE, + PA,

Aadis = —1.30 x 10
der % (‘ T+E—AP

KK

P, + PE, + PA,
T+ E+ AP

sin 6,,,,) , (28)

sin 6xx + ‘

with g being the strong phase of (P; + PE; + PA,)gk relative to (T + E — AP)gk.
Using the input parameters for the light-cone distribution amplitudes of light mesons, quark masses and
decay constants from Refs. [62,63] and form factors from Refs. [48,64], we find to the leading order in Agcp/my, in

QCDF that

<ﬂ> = (0.226¢1150°
T nr

P 15
(—S) =0.231e7117,
T T

P . P. e
(—d> = (0.2207115%°, (—) = 0.227¢7115%,
T KK T KK

AP 50
(—) = 0.010e7",
T %/

AP -
<—) = 0.010¢=3%, (29)
T KK

It is obvious that AP = P, — P, arising from the difference in the d- and s-loop penguin contractions [see Eq. (41)] is very
small compared to the tree amplitude. It is straightforward to show

P e
) =032,
T+E+AP),,

P, _ [0.23e7116% (30)
T+ E-AP KK B 0.236“780 ’

for Solutions I and II of W-exchange amplitudes E; and E, [see Eq. (16)]. It follows from Eq. (28) that

adin(z+27) = 0.029 x 1073, and

0.082 x 1073

dir + -\ —
acy(KTK™) = {—0.010 x 1073’

Evidently, CP asymmetries in D° — z*z~, K* K~ induced
by QCD penguins are very small mainly due to the strong
phases §,, and 6xx being not far from 180°.

So far we have only discussed leading-order QCDF
calculations except for the chiral enhanced penguin con-
tributions, namely, the a¢ terms in Eq. (19). For QCD-
penguin power corrections, we shall consider weak
penguin annihilation, namely, QCD-penguin exchange

Solution I,

Solution II.

dir ~
cP ™

0.05 x 1073
{ ) (31)

-0.02 x 1073

|

PE and QCD-penguin annihilation PA which are for-
mally of order 1/m,.. However, it is well known that
the weak penguin annihilation amplitudes in QCDF
derived from Eq. (19) involve troublesome end-point
divergences [54,55]. Hence, subleading power corrections
generally can be studied only in a phenomenological way.
For example, the end-point divergence is parametrized
as [54,55]
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I dx mp .
X, = =Inl —2)(1 i 32
o= [ () e, @2

with A, being a typical hadronic scale of order
500 MeV, and p,, ¢4 being unknown real parameters.
In hadronic B decays, the values of p, and ¢4 can be
obtained from a fit to B — PP, VP and VV decays [65].
However, this is not available in charmed meson decays
since penguin effects manifest mainly in CP violation.
Therefore, we will not evaluate PE and PA in this
way in the charm sector. Nevertheless, if we borrow
typical values of p, and ¢, from the B system, we
find weak penguin annihilation contributions smaller
than QCD penguin; for instance, (PE/T),, ~0.04 and
(PA/T),, ~ —0.02. Therefore, it is safe to neglect short-
distance contributions to weak penguin annihilation
amplitudes.

As pointed out in [36], long-distance contributions to
SCS decays, for example, D’ — z7z~, can proceed
through the weak decay D° — KTK~ followed by a
resonantlike final-state rescattering as depicted in
Fig. 2 of [36]. It has the same topology as the QCD-
penguin exchange topological graph PE. Since weak
penguin annihilation and FSIs are both of order 1/m, in
the heavy quark limit, this means FSIs could play an
essential role in charm decays. Hence, it is plausible to
assume that PE is of the same order of magnitude as E. In
[36], we took (PE)'P = 1.60e/!15” (in units of 107 GeV).
In this work we will assign by choice the same magnitude
and phase as E with 20% and 30° uncertainties, respec-
tively, so that

(PE)'P x (1.48 4 0.30)e!(1209430.0)° (33)

For simplicity, we shall assume its flavor independence,
that is, (PE)LP = (PE)LP.
Including the long-distance contribution to penguin
exchange PE, we get
|

P PELD e
L+ PES = 0.77¢M%,
T+E+AP) ,,
P,+PEPPY {04567 (34)
T+E_ AP KK N 0.456”20‘3'

As shown in Table III, we see that the predicted CP

violation denoted by a((;i‘;[) or a((;irree)

in the SM. Specifically, we have’

is at most of order 1073

adit (zt72~) = (0.80 £ 0.22) x 1073, (35)
b (K K-) { (=0.33 +0.14) x 10 Solution],
a =
P (=0.44 +0.12) x 10~ Solution 1.

(36)

Theoretical uncertainties are dominated by that of (PE)"P.
Hence, the CP asymmetry difference between D° —
K*K~ and D° — n*z~ is given by
dir

Aack { (=1.25 £ 0.25) x 1073
Although our new results of AadlL are slightly smaller
than the previous ones in [37], they have more realistic
estimates of uncertainties and are consistent with the
LHCb’s new measurement in Eq. (4) within 1o. Here we
note in passing that the CP asymmetry predictions are
very sensitive to (PE)'P. Had we chosen to use the
value of 1.60 x 107021 GeV, as done in [36], Aadl,

would become (—1.24 4 0.26) x 103 for Solution I and
(=1.34 +0.25) x 1073 for Solution II.

(—=1.14 +0.26) x 10 Solution],

. (37)
Solution II.

C. Comparison with Li et al. [39]

Based on the so-called factorization-assisted topological-
amplitude approach, an estimate of Aacp = —1.00 x 1073
in the SM was made in [39]. In this work, the topological
amplitudes in units of 10~® GeV are given by®

(T,E,P,PE,PA),, = (2.73,0.82¢71142° 0.87¢3% 0.81¢/111",0.25¢4%"),

(T,E,P,PE,PA)gx = (3.65,1.20e785 1.21¢/13,0.87¢111°, 0.45¢°). (38)
As a result,
P+ PE+PA e P+ PE + PA e
PRPETDA)N _ g66e, PEPEFPAY o456, (39)
T+E . T+E KK

This leads to the aforementioned value of Aacp. For comparison, in our case we have

>Since Egs. (34) and (27) lead to adih,(ztz7) = 0.91 x 1073 and a%ih,(K*K~) = —0.40 x 1072 for Solution I and —0.51 x 1073 for
Solution II, the reader may wonder why they are slightly larger in magnitude than the final results presented in Table III. Such a
difference is related to the fact that the predictions are made, as alluded to in footnote 3, statistically and the fact that CP asymmetries are

not linear in the parameters.

®In terms of the notation of [39], P, PE, PA correspond to P, P and P, respectively.
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(T,E,P,PE),, = (3.00,1.64¢"13¢,
K — {

There are three crucial differences between this work and
[39]: (i) the phase of E amplitudes is in the second quadrant
in the former while in the third or fourth quadrant in the
latter, (ii) the phase of the penguin amplitude P is in the
third quadrant in our work while in the second quadrant in
[39], and (iii) our PE amplitude comes from long-distance
final-state rescattering as we have neglected short-distance
contributions to weak penguin annihilation amplitudes PE
and PA. As discussed in passing, there is a discrete phase
ambiguity for the phases of C, E and A topological
amplitudes in our analysis. Presumably, a measurement

|

(T,E,P,PE)x

c3 Crag
aj(P,Py) = <c4 +N ) +—N3 .
cs Crag
al(P,Py) = (cf, +N ) +—N5 .

(3.96,0.93¢™10°,0.88¢7715%", 1.48¢121")
(3.96,2.10€/197°,0.88¢ 71157, 1.48¢121")

0.69¢7152° 1.48¢1121°),

Solution I,
. (40)
Solution II.

of adit(D® — KKy) will resolve the discrete phase ambi-
guity for the E amplitude. However, the phase of the
penguin amplitude is calculated in theory. Let us examine
this issue as follows.

Consider the penguin amplitude P’;] p, given in Eq. (19).
Within the framework of QCDF, the flavor operators a
are basically the Wilson coefficients in conjunction with
short-distance nonfactorizable corrections such as vertex
corrections V;, penguin contractions P; and hard spectator
interactions H;:

47?
[V4(P2) +— N
iy 2
|:V6(P2) + N

H4(P1P2)] +Pi(Py),

Hq(P, m] ) (41)

c

where the explicit expressions of V; and H; can be found in [55]. The order a, corrections from penguin contraction

read [55]
Cra, 2 8
b= InN, { Ll ——|—§ GMZ(SP)] +c3 L
(16 m,
+ (c4 + c6) ?1117— G, (s4) = G, (5q)
Crag 4. m, 2 4 8
g = F[\/c {Cl §1n7 +§ - GMZ(SP):| + C3 |:§
(16 m, R
+ (¢4 + cg) ?ln7— G, (54) = G, (54)
where ¢§ = cg, + s, 5; = m;/mg,
1
Gy, (s) :/ dxG(s, 1 —x)®@y, (x),
0
and G(s, x)

the meson M,.

4
ln7+§—GM2 G[u2 :|
. Ly
= Gu (5 = G (0] =26 [ 0w .
0
m. 4
ln7—|—§ GMZ( Sy) _GMZ 1)}
- G5 = Gu (1) - 255 . ()
R 1
Gy, (s) = / dxG(s, 1 = x)®,, (x), (43)
0

= —4 [¢ duu(1 — u) In[s — u(1 — u)x]. Here @y, (®,,,) is the twist-2 (-3) light-cone distribution amplitude for

In [39], the flavor operators a,¢ and a, , are taken to be

a0 = 00+ 22 ) = s+ 10 [+ 20
age(n) = caou) +c35(n) {NL +anei(/):| (44)
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Comparing Eq. (44) with Eq. (41), we see that the source of
the QCD penguin’s strong phase is assumed to be the same
as that of a, in [39], while it arises from nonfactorizable
contributions in QCDEF. In other words, while we consider
the effects of vertex corrections, penguin contractions and
hard spectator interactions for the QCD penguin amplitude,
these effects are parametrized in [39] in terms of y,, and ¢,
which are determined from a global fit to the measured
branching fractions. Since the color-suppressed C ampli-
tude in [39] is in the second quadrant, so is the penguin
amplitude. This explains the difference between our work
and [39] for the QCD penguin amplitudes.

D. Comparison with Chala ef al. [31]

Based on the light-cone sum rule calculations of

)L — 0.093 £ 0,011,
T + E nn
P
’ —— | =0.075+0.015, (45)
T+ E|x

Khodjamirian and Petrov [35] argued an upper bound in the
SM, |Aa¥| < (2.0 £0.3) x 107*. Including higher-twist
effects in the operator product expansion for the underlying
correlation functions which are expected to be

' P 0093 +0.030,
T + E nr
P
‘ —~ | =0.075+0.035, (46)
T +E|cx

Chala er al. [31] claimed a modification of the SM
bound, [Aagh| < (2.0 £1.0) x 107*.

This conclusion seems to be very naive. First, as stated in
[35], Khodjamirian and Petrov have neglected the contri-
butions from the penguin operators O;_3 ¢, due to their
small Wilson coefficients. This means they only considered
the penguin contraction from the tree operators O ;.
Consequently,

CF Ay
4zN..

4 m, 2
Cq §1n7+§—GM2(Sp) . (47)

P_ P
ay = ag =

Second, penguin-exchange and penguin-annihilation con-
tributions have not been considered, not mentioning the
possible final-state resattering effect on PE. They play an
essential role in understanding the LHCb measurement of
Aacp. Otherwise, it is premature to claim the necessity of
new physics in this regard.

IV. D - VP DECAYS

In the treatment of D — VP decays, we continue to use
the same topological diagram notation as in the PP decays,

except that a subscript of V or P is attached to the flavor
amplitudes and the associated strong phases to denote
whether the spectator quark in the charmed meson ends up
in the vector or pseudoscalar meson in the final state. The
V-type and P-type parameters are completely independent
a priori, though certain relations can be established under
the factorization assumption.

A. Topological amplitudes

The partial decay widths of the D meson into a vector
and pseudoscalar mesons are usually expressed in two
different ways:

(D - VP) = 8:31,23 M, (48)
and
pe >
M(D ~ V) = gh P (49)

Even though both formulas have the same cubic power
dependence on p,. (as required for a P-wave configuration),
a main difference resides in the fact that the latter has
incorporated an additional SU(3)-breaking factor for the
phase space, resulting from the sum of possible polar-
izations of the vector meson in the final state.

By performing a y? fit to the CF D — VP decays, we
extract the magnitudes and strong phases of the topological
amplitudes Ty, Cy, Ey, Ay and Tp, Cp, Ep, Ap from the
measured partial widths through Eq. (48) or (49) and find
many possible solutions with local y*> minima. Here we take
the convention that all strong phases are defined relative to
the T amplitude. In 2016 we have performed a detailed
analysis and obtained some best y? fit solutions (A) and (S)
through Eqs. (48) and (49), respectively [41]. It turns
out that solutions (S) give a better description for SCS
decays such as D° — ztp~, 71%° and D — 77p°, pos-
sibly because the additional SU(3)-breaking factor in
phase space has been taken care of, as mentioned above.
Hence, we will confine ourselves to using Eq. (49) and thus
solutions (S) in this work.

The six best x2-fit solutions (S1)~(S6), with y2. < 10,
are listed in Table IV, where we have chosen the convention
such that the central values of strong phases fall between 0
and 360 degrees, while noting again that a simultaneous
sign flip of all strong phases is equally viable. The flavor
amplitudes of all these solutions respect the hierarchy
pattern, |T'p| > |Ty| X [Cp| > |Cy|Z |Ep| > |Ev|Z [Apyl-
As stressed in [41], the decay D} — p’z* plays an
essential role in the determination of the annihilation
amplitudes Ay p. Its large error in the branching fraction
reflects in the large uncertainties in the magnitudes and
strong phases of Ay p, which will be improved once we
have a better measurement of D} — p'z+.

While the size of each topological amplitude is similar
across all solutions, the strong phases vary among the
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TABLEIV. Fitresults using Eq. (49) and ¢ = 43.5°. The amplitude sizes are quoted in units of 10~ and the strong
phases in units of degrees.

(SD) (S2) (S3) (S4) (S5) (S6)
ITy| 2182008 218190 2.17£0.06 2.191009 2187009 2.18 £0.06
ITp| 3414£006  336+006  351+£006  348+006  3.50+£006  339+0.06
o1, 69 +3 286 + 3 40*3 30744 7913 12+3
Cy| 176 £0.04 176 £0.04  1.74+004 1754004 1744004  1.76£0.04
dc, 278 +£3 76 +3 19513 15273 23515 22143
|Cp| 210£0.03  2074+003  204£003  214+003  207+£003  2.07+0.03
sc, 201+ 1 201 + 1 201 +1 159 £ 1 159+ 1 201 +1
|Ey| 027+£0.04  026+004  040+£006  033+£005  038+005  0.26+0.04
Sk, 260150 6975 24518 1134} 28278 224132
|Ep| 1.66200% 1.667395 1.66 +0.05 1.66200% 1.66 + 0.05 1.6670 06
8r, 108 + 3 108 + 3 107 +3 25143 25243 108 + 3
Ay 0.19£0.02  020+003  022+003  025+0.02  026+002  0.24+0.03
da, 1749, 349" 3+7 355113 271§ 68 +38
|Ap| 022+£0.03  022+003  0.19+003  0.15+0.03 0.141043 0.16 £ 0.03
Sa, 342132 2477, 10817, 2012 13475 981
Hin 5.438 5.603 5.604 7.345 7.495 7.956
Fit quality 0.1424 0.1326 0.1096 0.062 0.058 0.047

solutions except for those of Cp and Ep. We find (¢, 6g,)to  exceptfor|Ay | and |Ap|, and the corresponding strong phases
be either (201°, 108°) or (159°, 252°). A close inspection tells add up to roughly 360°. So are Solutions (S2) and (S5).

us that Solutions (S1) and (S4) are close to each other in the Although solutions in set (S) generally fit the
sense that the corresponding amplitudes are similar in size, =~ Cabibbo-favored modes well [see Table V for results

TABLE V. Flavor amplitude decompositions, experimental branching fractions, and predicted branching fractions for the Cabibbo-
favored D — VP decays. Here 54 =sin¢, ¢, = cos ¢ and A,; = Vi, V,,. The columns of Bieory (S3) and Bypeory (S6) are predictions
based on Solutions (S3) and (S6) shown in Table IV, respectively. All branching fractions are quoted in units of %.

Meson Mode Representation Bexp Bineory (S3) Bineory (56)
D° K*~nt Asa(Ty + Ep) 534 +0.41 5.39 +£0.40 5.35+£0.40
Kpt Asa(Tp + Ey) 11.3+0.7 114406 11.7+0.8
K07° J34sa(Cp = Ep) 3.74 £0.27 3.67 £0.21 3.69 +£0.21
K%p0 %xsd(cv - Ey) 1267012 1.30 £0.12 1.35+0.13
o
K0y Ay [#5 (Cp + Ep)ey - Evsd)} 1.02 £ 0.30 0.92 +0.08 0.86 +0.12
1 %0,/
K0y iy [% (Cp + Ep)sy + Ev%} <0.10 0.0048 =+ 0.0004 0.0052 =+ 0.0007
K ~J545a(Cy + Ey) 2.22+0.12 223 +0.16 2.17 £0.16
K% —~AaEp 0.830 + 0.061 0.835 4+ 0.054 0.838 4 0.054
D+ KOzt Asa(Ty + Cp) 1.57£0.13 1.59 £0.15 1.58 £0.15
KOt Asa(Tp + Cy) 12.3%)2 125+ 1.5 123+1.5
D} KK+ 2sa(Cp + Ay) 3.92+0.14 3.94 +0.18 3.944+0.18
KOK*+ 4sa(Cy + Ap) 54+12 3.39+0.21 3.10+0.21
pta® T Asa(Ap = Ay) . 0.024 +0.014 0.025 +0.016
.
P A [% (Ap +Ay)ey — TW} 89+0.8 9.02+0.37 8.86 +0.38
+,/
P Ay [42 (Ap + Ay)s, + TP%} 58+1.5 3.2540.12 2.92+0.11
atp? T Asa(Ay = Ap) 0.020 +0.012 0.023 +0.014 0.024 +0.016
to Tshsa(Av + Ap) 0.19 +0.03" 0.19 +0.04 0.19 +0.04
te AsaTy 45404 4.45+0.24 4.49 +0.25

*New measurement from BESIII [67] has been taken into account in the world average.
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TABLE VI. Same as Table V, but for the singly Cabibbo-suppressed decay modes. All branching fractions are

quoted in units of 1073,

Mode Representation Bexp Bineo(S3)  Biheo(S6)

D ztp~ Ay(Ty + Ep) + 4,(P} + PAp + PEp) 5.154+0.25 4.72+£0.35 4.68 £0.35
7 pt A(Tp+ Ey)+,(P} + PAy + PEy) 10.1 £04 8.81£0.46 9.14 +0.60
7°p° %gd(_cp —Cy+ Ep+Ey) 3.86£0.23 3.18+0.19 3.92+0.20

+4,(Pp + Py + PAp + PAy + PEp + PEy)
K*K*=2,(Ty + Ep) + 1,(P}, + PEp + PAp) 1.65£0.11 1.814+0.14 1.79+0.13
K~ K*"A{(Tp + Ey) + A,(P} 4+ PEy + PAy) 4.56+0.21 335£0.17 3.44+0.23
K°K*0 24Ey + AEp + 1,(PAp + PAy) 0.246 £0.048 1.27 £0.10 1.04 £0.14
K°K*0 24Ep + A,Ey + ,(PAp + PAy) 0.336 £0.063 1.27 £0.10 1.04 +£0.14
o %ld(—CV +Cp—Ep—Ey) +4,(Pp + P, + PEp + PEy) 0.117+£0.035 0.53 +£0.09 0.22+0.06
¢ \/%ﬂs Cp 1.20 +0.04* 0.64 0.02 0.65 £ 0.02
nw %[xld(CV—FCP—FEV+Ep)cosd)—/lSCV sin ¢ 198 £0.18 2.96+0.13 2.56 £0.14
+2,(P} + Py + PEp + PEy + PAp + PAy) cos ¢f]
V[/CU %Md(cv + CP + EV + EP) Sil’l¢ + ASCV COSg{) 0.03 £0.00 0.05+0.01
+A4,(P} + Py, 4+ PEp + PEy + PAp + PAy) sin ¢
neg Ag [ﬁ Cpcos¢p— (Ey + Ep)sing] 4 1,(PAp + PAy)sing 0.167 £ 0.034* 0.24 +0.02 0.29 £+ 0.03
np° %W(Cv —Cp—Ey —Ep)cos¢ — A,\V/2Cy sing 0.31+£0.05 0.84 £0.10
+2,(P} + Py, 4+ PEp + PEy) cos ¢
17 p° %Hd(cv—CP—EV—EP)SiH¢+ﬂs\/§CvCOS¢ 0.11 £0.01 0.10+£0.01
+2,(P% + Py, 4+ PEp + PEy) sin @]

Dt ztp0 J% [24(Ty + Cp —Ap + Ay) + A,(PY — Ph + PEp — PEy)] 0.83+0.15 0.70£0.10 0.61 £0.10
op* J% [24(Tp + Cy + Ap — Ay) + 4,(P} — P, + PEy — PEp)] 443 4+0.61 453 +£0.64
rtw \/Li [A4(Ty + Cp +Ap +Ay) + 4,(Pp + P, + PEp + PEy)] 0.28£0.06 0.22+0.06 0.26 +0.07
at¢  ACp 5.68 £0.11" 327 +0.11 3.354+0.11
np* \/LE 1a(Tp + Cy + Ay + Ap) cosp — A,v/2Cy sin b 1.53+0.49 1.02+0.34

+A,(P} + Py 4+ PEp + PEy) cos ¢
np™ \/LZ[/{d(TP+CV+AV+AP)Sin¢+/1s\/§CVCOS¢ 1.16 £ 0.11 1.03 £0.11

+A,(P% + Py, 4+ PEp + PEy) sin @]
KTK* 24Ay + ATy + 4,(PY, + PEp)
K°K** 24Ap + A, Tp + A, (Ph + PEy)

Dfat K 2,Ty + AAy + 4,(P} + PEp)

3.837014  387+023 3.82+£025
34416 10.20 4 0.40 9.80 + 0.41

2.134+0.36 3.69+£0.23 3.65£0.24

2K \/Li[/ldcv — 2Ay = 2,(P} + PEp)] 1.12£0.07 1.0240.07

K*p° 5[44Cp = AAp = A4y (Ph + PEy)] 25404 2104010 2.10+0.10

K°%*t 24Tp + AAp + 4,(Ph + PEy) 11.80 4 0.4711.47 £ 0.48

K™ 25 {[24Cv + AAy + 4, (P} + PEp)] cos ¢ 0.60 +0.21 0.64 £0.20
=[4(Tp + Cy + Ap) + 4, (Pp + PEy)] sin ¢}

WK B4 [4Cy + LAy + 4, (P} + PEp)]sin ¢ 038 +0.02 0.33 +0.02
~[4s(Tp + Cy + Ap) + 2, (P} + PEy)] cos ¢}

K*0  L[3,Cp+ AAp +1,(Ph+ PE,)] 0.87 £0.25" 2.024+0.09 2.1240.10

K'¢ 2Ty + Cp+Ay) + 4,(P} + PEp) 0.182 £ 0.041 0.13£0.02 0.12+0.02

*New measurements from BESIII [68] have been taken into account in the world average.
®Data from BESIII [67].

based on Solutions (S3) and (S6)], there are two exce-
ptions, namely, D} — K°K** and p*y/, where the
predictions are smaller than the experimental results.
The first mode was measured three decades ago with a

relatively large uncertainty [66], and the experi-
mental result was likely to be overestimated. The
second mode has a decay amplitude respecting a sum
rule [41]:
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M(D} - ntw) = cosp M (D} — ptn)
+singpM (DY — pt').  (50)

Assuming this relation, the current data of B(D{” — ntw)
and B(Dj — p*tn) give the bounds 1.6% < B(D{ —
ptn') <3.9% at 1o level, significantly lower than the cur-
rent central value. A better determination of these branch-
ing fractions will be very helpful in settling the issues.
Various (S) solutions lead to very different predictions
for some of the SCS decays. Especially, the D° — 7% and
DT — ztw decays are very useful in discriminating among
different solutions. We first consider the 7°p°, 7% and nw
modes. Their topological amplitudes are given by

1

M(DO b 7[060) = Elld(CV - CP + EP + Ev),
1

M(D° - %) = E}“d(cv +Cp—Ep—Ey),

1
M(DO e na)) = zld(c‘/ + Cp + Ep + Ev) COS(f)
1

V2

Since the magnitude of Cy, is comparable to that of Cp, the
smallness of B(D° — 7°w), the sizable B(D® — nw) and
the large B(D® — 7°p°) imply that the strong phases of Cy,
and Cp should be close to each other. An inspection of
Table IV indicates that the phase difference between Cy, and
Cp is large for Solutions (S1), (S2) and (S5). It turns out
that (S2) and (S5) are definitely ruled out as they predict too
large B(D° — n°w), with the central values of 4.65 and
3.91 (in units of 1073), respectively, while the measured
value is 0.117 % 0.035 (see Table VI). Solution (S1) gives a
relatively better prediction of B(D°? — 7z°w) = 0.62 £ 0.13
among the three solutions.

We next turn to the 77 p° and 7w modes. Neglecting the
penguin contributions, their topological amplitudes read
(see Table VI)

A,Cy sin ¢p. (51)

1
./\/l(DJr - T[+p0) = ﬁld(’rv + Cp _AP +Av),
1
V2

It is well known that the CF decays D} — z7p° and 7t o
can only proceed through the W-annihilation topology

./\/l(DjL i ﬂ'+a)) = ld(TV + CP +AP +Av) (52)

1
M(D;‘r - 7[+p0) = _Visvud(AV _AP)y

V2

M(D} - 70) = \i@vzxvudmv LA (53)

The extremely small branching fraction of D — z7p
compared to D] — z7w (see Table V) implies that Ay, and

0

Ap should be comparable in magnitude and roughly
parallel to each other with a phase difference not more
than 30°. At a first glance, it is tempting to argue from
Eq. (52) that D" — ztw should have a rate larger
than D* — z7p°. Experimentally, it is the other way
around [46]:

B(D* = 7tp°) = (0.83 £ 0.15) x 1073,
B(D* = ntw) = (0.28 +0.06) x 1073. (54)

Since Cp is comparable to Ty, in magnitude, there is a large
cancellation between T, and Cp. As a consequence, the
rates of 7tp? and 7tw become sensitive to the strong
phases of the small annihilation amplitudes Ay and Ap.
It turns out that Ay, should be in the fourth quadrant while
Ap in the third quadrant in order to satisfy the experimental
constraints from Eq. (54). We find only Solutions (S3) and
(S6) in line with this requirement (see Table IV) and
yielding predictions in agreement with experiment for 7+ p°
and 7w (see Table VI). For Solutions (S1), (S2), (S4) and
(S5), the branching fractions of D* — z*p? and D* —
7t (in units of 1073) are found to have the central values
(0.45, 1.06), (0.87, 0.98), (0.67, 1.05), (0.96, 1.76),
respectively. All these solutions imply that the latter is
larger than the former in rates, in contradiction with
experiment.

Finally, we comment on two of the D{ decay modes:
K*p°? and K* . From Table VI, we see that

1
M(Dy - K*p°) = ﬁ(ﬂdcp — 4Ap),
1

Since |Cp| > |Ap|, it is expected that the two modes have
similar branching fractions of order 2 x 1073, However,
the recent BESIII experiment yields B(D{ — K'w) =
(0.87 £0.25) x 1073 [67]. The p — @ mixing effect to
be mentioned below in Eq. (63) in principle can push up
(down) the rate of K*p® (K*w). For the mixing angle
€ = —0.12 [see Eq. (63) and note a sign difference from
[69]], we find B(D} — K*p®) = (2.63+0.11) x 1073
and B(D{ — K*w) = (1.65 £0.09) x 1073, The former
is now in better agreement with experiment, but the latter is
still too large compared to the data. The @ — ¢ mixing also
does not help much. Moreover, in our framework we do not
need p — w mixing to explain the smallness of D° — 7%
and D™ — ztw. Therefore, the issue with Df - KTw
remains to be resolved.

B. Flavor SU(3) symmetry breaking

As noted in passing, a most noticeable example of SU(3)
breaking in the PP sector lies in the decays D° — K+tK~
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and D° — z*z~. Experimentally, the rate of the former is
larger than that of the latter by a factor of 2.8. More
precisely, |T + E|gx/|T + E|,, ~ 1.80, implying a large
SU@3) breaking effect in the amplitude of T + E.
However, it is the other way around for the counterparts
in the VP sector where we have I'(K*K*~) < I'(z"p~) and
['(K~K**) < T'(z~p"). Since the available phase space is
proportional to p?/m? in the convention of Eq. (49), this
explains why ['(D° - KK*) < T'(D° - zp) owing to the
fact that p.(zp) = 764 MeV and p.(KK*) = 608 MeV.
From the measured branching fractions, we find by ignor-
ing the penguin amplitudes that

|TV + EP|n"p‘

|TP + EV‘n"pJr
Ty + Eplg+g-

= 1.08,
[Ty + Ep|g-x-

=091. (56)

This implies that SU(3) breaking in the amplitudes of
Ty + Ep and Tp + Ey is small, contrary to the PP case.

In Table VI, we show the calculated branching frac-
tions of SCS D — VP decays using Solutions (S3) and
(S6). It is clear that Solution (S6) is slightly better, though
the predicted K°K*® and K°K*" branching fractions are
too large compared to the data in both solutions. SU(3)
breaking effects in the color-allowed and color-suppressed
amplitudes can be estimated provided they are factorizable:

G - .
Ty = —Fal(K*”)zfan*AoDK (m3).

V2
_ GF I_(* 2 FD;z 2

Cp —ﬁaz( 7)2f g-my-FY" (my.),

G _
Ty = e (Kp)2fm FP¥ m),

G _
Cy = 7‘%@(1@)2 Fxm,Aq” (m%). (57)

|
M(D® = 7tp) = 24(Ty + E$ %),

M(D® - KTK*™) = A,(Ty + ES),
M(D® — K'K*0) = J,E} + A4E,

and

M(D® - 7%°) = %ld(Cp + Cy — E4 — EY),

M(D® = Pw) = %ﬂd( CCpEL+ED),  (59)
with

E} = eleVE,,  Ej = e} eVEy,

E} = ede®rEp,  ES = ebhe®rEp, (60)

Hence,

17 alpn) my A ()
Ty  a\(K*'m)mg APK (m3)’
Ty _ 611(@”) FP7(m})

1(Kp) F?K(m;%)

(58)

~
o
1N

Assuming that a,(pr) is similar to a;(K*z) and a,(Kp),
we find Ty(zTp~) ~0.82Ty, Tp(npt) =~0.92Tp,
Ty(K"K*")~1.29Ty and Tp(K~K*7) =~ 1.28Tp. Similar
relations can be derived for the Cy and Cp amplitudes
as well. These lead to two difficulties: (i) The sizable
SU(3) breaking in the ratios |Ty |+, /|Ty|g+ g~ = 0.64 and
T plzp+/|Tv|g-g+ = 0.72 are not consistent with Eq. (56),

and (ii) the branching fractions of D° — z*p~ and D° —
7n~p* will become smaller, while B(D° - K*K*~) and
B(D® - K~K**) become larger. Hence, the discrepancy
becomes even worse. In other words, the consideration of
SU(3) breaking in the tree amplitudes 7'y p and Cy, p alone
will render even larger deviations from the data in both
Solutions (S3) and (S6).

A way out is to consider SU(3) breaking in the
W-exchange amplitudes. Indeed, the too large rates pre-
dicted for K°K*? and K°K*° modes call for SU(3) breaking
in the W-exchange amplitudes as both modes proceed
through Ep and Ey. In the PP sector, we need SU(3)
breaking in W-exchange in order to induce D° — KKj.
Here we need SU(3) breaking again for a different reason,
otherwise, the calculated D° — K9K*0 and K°K*° will be
too large in rates. Since |Ep| > |Ey/|, it is natural to expect
that |Ep| (|Ey|) has to be reduced (increased) after SU(3)
breaking in order to accommodate the data. Writing

M(D® - 7=p*) = 2,(Tp + ES),
M(DY > K~K**) = 2,(Tp + E})),
M(D® = ROK™) = A, Ef) + A4ES.

we are able to determine the eight unknown parameters

d ,d ,s s d d s s :
ey, €5, ey, ep and dey, def, dey,, dep from the branching

fractions of these eight modes. In the SU(3) limit, eﬁi,sp =1

and 56‘(,’} = 0. Note that among all the best-fit solutions
(S), only (S3) and (S6) give exact solutions for the
parameters eV » and the phases 5e " (e, y>?=01in a
fit to the eight SCS modes). There are six solutions for
Solution (S6), listed in Table VII. All these schemes are
equally good in explaining the first eight SCS modes in
Table VI, whereas Scheme (iv) yields smallest SU(3)
symmetry violation in e’é’:},; namely, the deviations of them
from unity are less than 50%.
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TABLE VII. Solutions of the parameters e[‘ﬂ‘fp and the phases
56‘\1,';, describing SU(3) breaking effects in the W-exchange
amplitudes for Solution (S6).

d d d d s s s s
e, Sef, e} beb ey  dey  ep  Oep

) 1.50 241 0.18 290 3.44 69 029 159
@) 1.50 241 0.18 290 3.44 69 0.76 358
(i) 1.12 55 051 336 6.67 243 635 347
Gv) L.I2 55 051 336 130 111 0.68 149
(v)  2.09 53 1.03 356 290 222 0.19 341
(vi)  2.09 53 1.03 356 290 222 0.81 146

Branching fractions of SCS D — VP decays are pre-
dicted in Table VIII using the topological amplitudes given
in Solution (S6). For SU(3) breaking effects in W-exchange
amplitudes Ey, and Ep, we specifically choose solution
(iv) for SU(3) breaking parameters given in Table VII,
though the results are very similar in other schemes. The
decays D° — 7°¢ and D' — n7¢ are special as they
proceed only through the internal W-emission diagram
Cp. Its SU(3) breaking can be estimated from Eq. (58) to be

C _ Jy my FP70m5)

= - . (61)
CP fK* m g« F? (m%(*)
For the ¢*> dependence of the form factor we use
FP7(0
Fpr(q?) = L0 (62)

(1= (g*/mp)][1 = aP"(q?/miy)]

with FP7(0) = F§7(0) = 0.666 and of" =0.24, and
find C% =137Cp. The resulting B(D° — 7%) =
(1.224+0.04) x 10>  and B(D" - n7¢) = (6.29 +
0.21) x 10~* are consistent with experiment, though the
latter is slightly large in the central value.

Comparison with the work of Qin et al. [69].—In
Table VIII, we have compared our results of SCS D —
VP branching fractions with that in the factorization-
assisted topological approach [69] without and with the
p — o mixing, denoted by FAT and FAT[mix], respectively.
The predicted B(D® — 7°w) = 0.85 (in units of 1072) in
FAT is far too large compared to the data of 0.117 £ 0.035.
In order to resolve this discrepancy, Qin et al. considered
the p — @ mixing defined by

00 = 100) —elwr),  |w) = elp) + wr). (63)
where [pY9) and |w;) denote the isospin eigenstates. Using
the mixing angle ¢ = 0.12, the predicted branching fraction
of DY - 7% ia reduced to 0.18, while B(D® — z%°) is
increased from 3.55 to 3.83. However, the calculated
B(D" — ztw) = 0.80 after taking into account of p — @
mixing is still too large compared to the experimental value
of 0.28 & 0.06. As for the D] — KTw mode, it appears

TABLE VIII. Branching fractions (in units of 1073) of D — VP
decays. The predictions made in the (S6) scheme have taken
into account SU(3) breaking effects under solution (iv) (see
Table VII). For QCD-penguin exchanges PEy and PEp, we
assume that they are similar to the topological Ey and Ep
amplitude, respectively [see Eq. (64)]. The results from [69] in
the factorization-assisted topological approach without and with
the p—® mixing (denoted by FAT and FAT[mix], respectively)
are listed for comparison.

Mode B(Thiswork) B(FAT) B(FAT[mix]) Bexp

D° mtp~ 5124029 474 4.66 5154025
7pt  1021£091 102 10.0 10.14+0.4
%% 3904026 355 3.83 3.86+£0.23
K*K*~ 1.68+0.11 1.72 1.73 1.65+0.11
K-K*" 4434031 437 4.37 4.56+0.21
K°K*®  0.27+0.06 1.1 11 0.2460.048
KK 0.32+0.09 1.1 11 0.336:0.063
o 0.12£0.05 085 0.18  0.117+0.035
¢ 1224004 111 111 1.2040.04
ne 225+0.14 24 2.0 1.9840.18
nw  0.01+0.00 0.04 0.02
ne 0.16+0.02  0.19 0.18  0.16740.034
np®  0.59+0.07  0.54 045
np®  0.06£001 021 0.27

Dt ztp®  0.61+0.10  0.42 0.58 0.83£0.15
apt 4531064 27 25
mtw  026£0.07 095 0.80 0.28+£0.06
mtp 6294020 5.65 5.65 5.68+0.11
npt 1.02£034 07 22
npt  103+£0.11 07 0.8
K*K*® 3824025 3.6l 3.60 3.83105)
K°K*+ 9.80+0.41 11 11 34+16

D z*K*® 3.65+024 252 235 2.13£0.36
2K 1.02+£0.07 0.8 1.0
Ktp®  210+0.10 19 25 25+0.4
K%+ 11.47+048 9.1 9.6 :
nK**  0.64+020 0.2 0.2
7K 033£002 02 02
Ko 2124010 0.6 0.07 0.87+£0.25
K*¢ 0124002 0166  0.166 0.182+0.041

that the predicted branching fraction of 0.6 before p — @
mixing agrees with the data of 0.87 £ 0.25 [67], while the
predicted value of 0.07 after the mixing effect is far too
small. Therefore, irrespective of p — @ mixing, D° — 7%w
and DY — K" cannot be explained simultaneously in the

FAT or modified FAT approach.

C. Direct CP violation

It has been noticed that weak penguin annihilation will
receive sizable long-distance contributions from final-state
rescattering. We shall assume that the long-distance PE)y,
and PEp are of the same order of magnitude as Ey and Ep
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TABLE IX. Same as Table VIII except for the direct CP asymmetries of D — VP decays in units of 10~3, where

(tree

g ) denotes CP asymmetry arising from purely tree amplitudes. The superscript (t + p) denotes tree plus QCD-
penguin amplitudes, (t + pa) for tree plus weak penguin-annihilation (PE and PA) amplitudes and “tot” for the total

amplitude.
Mode i ag," ag, " agy (this work) ag;) [69]
D0 xtp~ 0 0.01 £+ 0.00 0.76 £0.22 0.77 £0.22 —0.03
zpt 0 —0.09 +0.01 —0.05 £ 0.04 —0.14 £ 0.04 —0.01
7°p0 0 —0.03 £ 0.00 0.40 £0.15 0.37 £0.15 —0.03
KtK* 0 —0.19 +0.01 —0.56 +0.37 —0.75 £ 0.37 —0.01
K K*t 0 0.11 £ 0.01 0.05 £0.04 0.15 £ 0.04 0
KOK*0 —0.15+0.21 —0.15+0.21 —0.15+0.21 —0.15+0.21 -0.7
KOK+0 —0.34 £0.16 -0.34 +£0.16 —0.34 £0.16 —0.34 £0.16 -0.7
0] 0 0.18 £ 0.04 —2.31+£0.96 —2.14 +0.95 0.02
) 0 0 0 0 —0.0002
now —0.10 £ 0.01 —0.08 = 0.01 —0.40 £0.10 —-0.38 £0.10 —0.1
7w 2.40 +0.34 1.91 £ 0.25 1.42+0.71 0.96 £+ 0.66 2.2
ng 0 0 0 0 0.003
np° 0.39 £ 0.05 0.59 £0.08 —0.10£0.29 0.10 £0.30 1.0
i p° —0.55 £ 0.07 —0.51 +0.07 0.12+£0.22 0.16 £0.22 —0.1
DT atp? 0 1.44 +0.11 0.78 £1.30 2.20 £ 1.38 0.5
pt 0 —0.40 +0.03 0.90 + 0.37 0.49 +0.37 0.2
Ttw 0 —0.13+0.03 0.84 +£2.05 0.74 +£2.03 —0.05
zte 0 0 0 0 —0.0001
np* 1.55+£0.26 2.12+£0.36 1.22 + 0.65 1.78 £ 0.69 -0.6
npt —0.25£0.05 —0.24 + 0.04 0.10£0.12 0.08 £ 0.11 0.5
KTK*0 —0.14 £0.02 —0.27 £ 0.02 —-0.94 +£0.30 —1.06 £+ 0.30 0.2
KoK+ —0.06 £ 0.01 0.06 £ 0.01 —0.01 £0.04 0.10 £0.04 0.04
Dy at K0 0.14 £0.02 0.24 £0.02 0.94 +£0.30 1.05 £ 0.30 —-0.1
K+t 0.10 £ 0.03 0.04 +£0.04 1.21 £ 0.39 1.15+0.40 -0.2
K*p° 0.10 £0.02 —0.02 £0.02 0.03 £0.07 —0.08 £ 0.07 0.3
Ko+ 0.06 +0.01 —0.03 +0.01 0.01 £0.04 —0.08 £ 0.04 0.3
nK**+ —-1.03 £0.17 —0.33 £ 0.06 —0.61 £0.47 0.10 £0.48 1.1
n K** 0.25 £ 0.04 0.24 £0.03 -0.11 £0.14 -0.12£0.13 -0.5
Ktw —0.09 £0.02 —0.03 +0.02 —0.05 £+ 0.07 0.01 £0.08 -2.3
K*¢ 0 0 0 0 —0.8

in Solution (S6), respectively. For concreteness, we take (in
units of 107°)

(PEy)'™° ~ (0.26 £ 0.05)¢!(?24+30)",

(PEp)'P ~ (1.66 + 0.33) ¢~ (108+30)" (64)
The calculated results are shown in Table IX. In compari-
son, the predictions given in [69] in general are substan-
tially smaller than ours in magnitude. We find several
golden modes for the search of CP violation in the VP
sector:
D = ztp~ KTK*, Dt = KK ypt,
D} -zt K0 29Kk, (65)

These modes are “golden” in the sense that they have large
branching fractions and sizable CP asymmetries of order

1 x 1073, It is interesting to notice that the CP asymmetry
difference defined by

AALE = acp(KTK*™) —acp(ntp”), (66)

in analogy to AAPE defined in Eq. (1), is predicted to
be (—1.52 £0.43) x 1073, which is very similar to the
recently observed CP violation in D° — K*K~ and
D° — 7z, It is thus desirable to first search for CP
violation in the aforementioned golden modes.

V. DISCUSSIONS AND CONCLUSIONS

In this analysis, we have revisited two-body hadronic
charmed meson decays to PP and V P final states, where P
and V denote light pseudoscalar and vector mesons,
respectively. Taking flavor SU(3) symmetry as our working
assumption for the Cabibbo-favored decays, we extract
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tree-type flavor amplitudes through a global fit to the latest
experimental data. We then discuss whether and how SU(3)
symmetry breaking factors should be taken into account
when moving on to the singly Cabibbo-suppressed
decay modes. We have made predictions for the branching
fractions as well as the CP asymmetries for these
decay modes where we observe that the importance of
penguin-type amplitudes, if present, often significantly
modify the latter.

In the PP sector, several SU(3) breaking effects are
crucial in explaining the measured branching fractions
of singly Cabibbo-suppressed decay modes, as already
noticed in Ref. [37]. The T and C amplitudes should be
scaled by a factor given under the factorization assumption.
We acknowledge that the E amplitude is governed mainly
by long-distance rescattering effects and, therefore, the
associated symmetry breaking factors need to be obtained
via a fit to the four D° decays. In particular, one has to
distinguish between two types of W-exchange amplitudes:
E, and E,, depending upon whether it is dd or s5 pair
coming out of the exchange diagram. While |E,| is about
10% larger in magnitude than |E| of the Cabibbo-favored
modes, |E,| has two possibilities: either larger or smaller
than |E| by about 40%, as given in Eq. (16). The above-
mentioned SU(3) symmetry breaking effects are most
notably successful in explaining the large disparity between
B(D® - ztz7) and B(D® - K*K~).

To test among different theory models, we have pro-
posed to have a better precision in the measurement of
acp(D® = K¢Ky), which is primarily due to interference
between E,; and E, amplitudes. We also revisit the CP
asymmetry difference between D° — KK~ and D° —
7z~ and find two results: Aadl, = (—1.14 £ 0.26) x 1073
for Solution I and (—1.25 4 0.25) x 10~* for Solution II.
Both of them are consistent with the latest LHCb result [29]
within 1o. We have also observed that these predictions
are sensitive to the assumed contribution from weak
penguin annihilation diagrams. Comparisons with a few
other works are made to highlight the distinctive features
of our approach.

In contrast to the PP sector, a global fit to the Cabibbo-
favored modes in the VP sector gives many solutions
with similarly small local minima in y? (six of them, as
listed in Table IV, when we restrict ourselves to y2. < 10),
revealing significant degeneracy in the current data. These
solutions can explain the Cabibbo-favored decay branching
fractions well except for the DY — K°K** and p*#/

modes. For the former, we urge the experimental colleagues
to update the figure. For the latter, an amplitude sum rule
confines its branching fraction in the range (1.6,3.9)% at
the 1o level.

The above-mentioned solution degeneracy is lifted once
we use them to predict for the singly Cabibbo-suppressed
modes. In the end, we find that only Solutions (S3) and (S6)
which have a common feature that Cy, and Cp are close in
phase in order to simultaneously explain the small B(D° —
7w) and large B(D° — 7°p°). Another common feature is
that Ay and Ap are comparable in size and similar in phase,
in order to simultaneously explain the small B(D" — 7t w)
and large B(D" — ztpY). We note that the recent BESIII
result of B(D] — K'w) is a factor of 2 to 3 smaller than
our prediction, and remains an issue to be resolved.

Unlike the PP sector, the singly Cabibbo-suppressed
decay data in the VP sector do not call for an introduction
of SUQ3) breaking for the Ty p and Cy p amplitudes
dictated by the factorization assumption. Instead, SU(3)
breaking in Ey p is still required and, analogous to the PP
sector, one should consider different long-distance effects
on diagrams with dd and s5 emerging from the W
exchange. A fit to eight singly Cabibbo-suppressed D°
decays shows that the symmetry breaking effects are
often large. We have identified the set with the smallest
SU(3) breaking in the E-type amplitudes (<50%) of
Solution (S6) as our best solution and make predictions
for the branching fractions and CP asymmetries of the
singly Cabibbo-suppressed decays. In particular, we point
out that the D° — ztp~, KTK*~, D* - K*K*0, np*,
and D} — 77K*°, 2°K** modes have sufficiently large
branching fractions and CP asymmetries at per mille
level. Interestingly, Aalt = acp(KTK*™) —acp(ntp™)=
(=1.524+0.43) x 107, very similar to the recently
observed CP violation in D° — K*K~ and D° — 7t 7™,
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