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Direct CP violation in the hadronic charm decays provides a good testing ground for the Kobayashi-
Maskawa mechanism in the Standard Model. Any significant deviations from the expectation would be
indirect evidence of physics beyond the Standard Model. In view of improved measurements from LHCb
and BESIII experiments, we reanalyze the Cabibbo-favored D → PP and VP decays in the topological
diagram approach. By assuming certain SU(3)-breaking effects in the tree-type amplitudes, we make
predictions for both branching fractions and CP asymmetries of the singly Cabibbo-suppressed decay
modes. While the color-allowed and -suppressed amplitudes are preferred to scale by the factor dictated by
factorization in the PP modes, no such scaling is required in the VP modes. The W-exchange amplitudes
are found to change by 10% to 50% and depend on whether the dd̄ or ss̄ pair directly emerges from
W-exchange. The predictions of branching fractions are generally improved after these SU(3) symmetry
breaking effects are taken into account. We show in detail how the tree-type, QCD-penguin, and weak
penguin-annihilation diagrams contribute and modify CP asymmetry predictions. Future measurements
of sufficiently many direct CP asymmetries will be very useful in removing a discrete ambiguity in the
strong phases as well as discriminating among different theory approaches. In particular, we predict
aCPðKþK−Þ − aCPðπþπ−Þ ¼ ð−1.14� 0.26Þ × 10−3 or ð−1.25� 0.25Þ × 10−3, consistent with the latest
data, and aCPðKþK�−Þ − aCPðπþρ−Þ ¼ ð−1.52� 0.43Þ × 10−3, an attractive and measurable observable
in the near future. Moreover, we observe that such CP asymmetry differences are dominated by long-
distance penguin-exchange through final-state rescattering.

DOI: 10.1103/PhysRevD.100.093002

I. INTRODUCTION

Based on 0.62 fb−1 of 2011 data, in 2012 the LHCb
collaboration has reported a result of a nonzero value for
the difference between the time-integrated CP asymmetries
of the decays D0 → KþK− and D0 → πþπ− [1]:

ΔACP ≡ aCPðKþK−Þ − aCPðπþπ−Þ
¼ −ð0.82� 0.21� 0.11Þ% ðLHCb 2012Þ: ð1Þ

The time-integrated asymmetry can be further decomposed
into a direct CP asymmetry adirCP and a mixing-induced
indirect CP asymmetry aindCP

aCPðfÞ ¼ adirCPðfÞ
�
1þ hti

τ
yCP

�
þ hti

τ
aindCP; ð2Þ

where hti is the average decay time in the sample, τ is the
D0 lifetime and yCP is the deviation from unity of the ratio
of the effective lifetimes of D0 meson decays to flavor-
specific andCP-even final states. To a good approximation,
aindCP is independent of the decay mode. Hence,

ΔACP ¼ ΔadirCP

�
1þ hti

τ
yCP

�
þ Δhti

τ
aindCP: ð3Þ

Based on the LHCb averages of yCP and aindCP, it is
known that ΔACP is primarily sensitive to direct CP
violation.
Since ΔadirCP in the Standard Model (SM) is naively

expected to be at most of order 1 × 10−3, many new physics
models [2–15] had been proposed to explain the measure-
ment of large ΔACP, although it was also argued in [16–23]
that large CP asymmetries in singly Cabibbo-suppressed
(SCS) D decays were allowed in the SM due to some
nonperturbative effects or unexpected strong dynamics and
the measured ΔadirCP could be accommodated or marginally
achieved.
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On the experimental side, the large ΔACP observed by
LHCb in 2011 was subsequently confirmed by CDF [24]
and by Belle [25]. However, the effects disappeared in the
muon-tag LHCb analyses in 2013 and 2014 [26,27] and
were not seen in the subsequent pion-tag analysis in 2016
[28]. Finally, in this year LHCb announced the measure-
ments based on pion and muon tagged analyses [29].
Combining these with previous LHCb results in 2014 and
2016 leads to [29]

ΔACP ¼ ð−1.54� 0.29Þ × 10−3; ðLHCb 2019Þ; ð4Þ

which yields ΔadirCP ¼ ð−1.56� 0.29Þ × 10−3. This is the
first observation of CP violation in the charm sector.
It is most important to explore whether the first obser-

vation of CP violation in the charm sector (4) is consistent
with the Standard Model or not.1 A common argument
against the SM interpretation of Eq. (4) goes as follows.
Consider the tree T and penguin P contributions to D0 →
KþK− and D0 → πþπ−. A simplified expression of the CP
asymmetry difference between them is given by [for a
complete expression of ΔadirCP, see Eq. (28) below]

ΔadirCP ≈ −1.3 × 10−3
�����PT

����
KK

sin θKK þ
����PT

����
ππ

sin θππ

�
;

ð5Þ

where θKK is the strong phase of ðP=TÞKK and likewise
for θππ. Since jP=Tj is naively expected to be of order
ðαsðμcÞ=πÞ ∼Oð0.1Þ, it appears that ΔadirCP is most likely of
order 10−4 even if the strong phases are allowed to be close
to 90°. Indeed, using the results of jP=Tj obtained from
light-cone sum rules, the authors of [35] claimed an upper
bound in the SM, jΔASM

CP j ≤ ð2.0� 0.3Þ × 10−4. The notion
that this would imply new physics was reinforced by a
recent similar analysis [31].
In 2012, we have studied direct CP violation in charmed

meson decays based on the topological diagram approach
for tree amplitudes and QCD factorization for penguin
amplitudes [36,37]. We have pointed out the importance of
a resonantlike final-state rescattering which has the same
topology as the QCD-penguin exchange toplogical graph.
Hence, penguin annihilation receives sizable long-distance
contributions from final-state interactions. We have shown
that ΔadirCP arises mainly from long-distance weak penguin
annihilation. Moreover, we predicted that ΔadirCP is about
ð−0.139� 0.004Þ% and ð−0.151� 0.004Þ% for the two
solutions of W-exchange amplitudes [37]. Those were the
main predictions among others made in 2012. Since the
world average during that time was ΔadirCP ¼ ð−0.645�
0.180Þ% [38], we concluded that if this CP asymmetry

difference continues to be large with more statistics in the
future, it will be clear evidence of physics beyond the
Standard Model in the charm sector. Nowadays, we know
that the LHCb new measurement almost coincides with our
second solution. This implies that one does not need new
physics at all to understand the first observation of ΔadirCP
by LHCb.2

The purpose of this work is twofold. First, we would like
to improve the analysis of CP asymmetries in D → PP
decays. For example, it is well known that the penguin-
exchange amplitude PE and the penguin-annihilation one
PA evaluated in the approach of QCD factorization is
subject to the end-point divergence. We need to address this
issue. Also in our previous study of the long-distance
contribution to PE, we did not consider the uncertainties
connected with final-state rescattering [37]. This will be
improved in this work. Second, although we have studied
CP asymmetries in D → VP decays before in [36], we
focused only to the neutral charmed meson ones. Owing to
the lack of information on W-annihilation amplitudes, no
prediction was attempted for Dþ → VP and Dþ

s → VP
decays. Thanks to the BABARmeasurement ofDþ

s → πþρ0
[40], the amplitudes AV;P can be extracted for the first time
in [41]. Consequently, in this work we are able to complete
the analysis of CP violation in the VP sector.
The layout of the present paper is as follows. After a brief

review of the diagrammatic approach, we study various
mechanisms responsible for the large SU(3) violation in the
branching fraction ratio ofD0 → KþK− toD0 → πþπ− and
fix the SU(3) breaking effects in weak annihilation ampli-
tudes in Sec. II. Penguin amplitudes are studied in the
framework of QCD factorization as illustrated in Sec. II C.
We then discuss direct CP violation in SCS D → PP
decays in Sec. III and compare our results with other works
in the literature. Section IV is devoted to D → VP decays
and their direct CP asymmetries. Finally, in Sec. V we
come to our conclusions.

II. D → PP DECAYS

It is known that a reliable theoretical description of the
underlying mechanism for exclusive hadronic D decays
based on QCD is still not yet available as the mass of the
charm quark, being about 1.3 GeV, is not heavy enough to
allow for a sensible heavy quark expansion. It has been
established sometime ago that a more suitable framework
for the analysis of hadronic charmed meson decays is the
so-called topological diagram approach [42–44]. In this
diagrammatic scenario, the topological diagrams can be
classified into three distinct groups (see Fig. 1 of [36]). The
first two of them (see [45] for details) are:

1There were a few theory papers [30–34] after the 2019 LHCb
measurement.

2A similar result of ΔadirCP based on a variant of the diagram-
matic approach was obtained in [39].
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(1) Tree and penguin amplitudes: color-allowed tree
amplitude T; color-suppressed tree amplitude C;
QCD-penguin amplitude P; singlet QCD-penguin
amplitude S involving flavor SU(3)-singlet mesons;
color-favored electroweak-penguin (EW-penguin)
amplitude PEW; and color-suppressed EW-penguin
amplitude PC

EW.
(2) Weak annihilation amplitudes: W-exchange ampli-

tude E; W-annihilation amplitude A; QCD-penguin
exchange amplitude PE; QCD-penguin annihilation
amplitude PA; EW-penguin exchange amplitude
PEEW; andEW-penguinannihilation amplitudePAEW.

In this approach, the topological diagrams are classi-
fied according to the topologies in the flavor flow of weak
decay diagrams, with all strong interaction effects included
implicitly in all possible ways. Therefore, analyses of
topological graphs can provide valuable information on
final-state interactions.

A. Topological amplitudes

The topological amplitudes T, C, E, A are extracted from
the Cabibbo-favored (CF) D → PP decays [46] to be (in
units of 10−6 GeV)

T ¼ 3.113� 0.011; C¼ ð2.767� 0.029Þe−ið151.3�0.3Þ∘ ;

E¼ ð1.48� 0.04Þeið120.9�0.4Þ∘ ; A¼ ð0.55� 0.03Þeið23þ7
−10Þ∘

ð6Þ

for ϕ ¼ 43:5° [47], where ϕ is the η − η0 mixing angle
defined in the flavor basis

�
η

η0

�
¼

�
cosϕ − sinϕ

sinϕ cosϕ

��
ηq

ηs

�
; ð7Þ

with ηq ¼ 1ffiffi
2

p ðuūþ dd̄Þ and ηs ¼ ss̄. The fitted χ2 value is

0.135 per degree of freedom. Comparing with the ampli-
tudes obtained in a previous fit in [48]

T ¼ 3.14� 0.06; C ¼ ð2.61� 0.08Þe−ið152�1Þ∘ ;

E ¼ ð1.53þ0.07
−0.08Þeið122�2Þ∘ ; A ¼ ð0.39þ0.13

−0.09Þeið31
þ20
−33 Þ∘ ð8Þ

we see that the errors in T, C, E and A are substantially
reduced, especially for the annihilation amplitude A, thanks
to the improved data precision from 2019 PDG [46].
We note in passing that since we will only fit to the

observed branching fractions, the results will be the same
if all the strong phases are subject to a simultaneous
sign flip. Throughout this paper, we only present one of
them. Presumably, such a degeneracy in strong phases can
be resolved by measurements of sufficiently many CP
asymmetries.
One of the most important moral lessons we have learnt

from this approach is that all the topological amplitudes

except the tree amplitude T given in Eq. (6) are dominated
by nonfactorizable long-distance effects. For example, in
the naive factorization approach, the topological ampli-
tudes T and C in CF D → K̄π decays have the expressions

T ¼ GFffiffiffi
2

p a1ðK̄πÞfπðm2
D −m2

KÞFDK
0 ðm2

πÞ;

C ¼ GFffiffiffi
2

p a2ðK̄πÞfKðm2
D −m2

πÞFDπ
0 ðm2

KÞ; ð9Þ

with a1 ¼ c1 þ c2=3 and a2 ¼ c2 þ c1=3. It turns out that
a1ðK̄πÞ ≈ 1.22 and a2ðK̄πÞ ≈ 0.82e−ið151Þ∘ [48] extracted
from the experimental values of T and C given in
Eq. (6) and the phenomenological model for the D to K
and π transition form factors. Since c1ðmcÞ ≈ 1.274
and c2ðmcÞ ≈ −0.529, it is evident that a1 ¼ c1 þ c2=3 ≈
1.09 is close to a1ðK̄πÞ, while a2 ¼ c2 þ c1=3 ≈ −0.11
expected from naive factorization is far off from a2ðK̄πÞ,
including its size and phase. This implies that the short-
distance contribution to C is very suppressed relative to
the long-distance one. In the topological approach, the
long-distance color-suppressed C is induced from the
color-allowed T through final-state rescattering with quark
exchange. The nontrivial relative phase between C and T
indicates that final-state interactions (FSIs) via quark
exchange are responsible for this.
Likewise, short-distance weak annihilation diagrams are

helicity suppressed, whereas data imply large sizes of them.
This is because they receive large 1=mc power corrections
from FSIs and large nonfactorizable contributions for a2.
For example, the topological amplitude E receives con-
tributions from the tree amplitude T via final-state rescat-
tering with nearby resonance effects. The large magnitude
and phase of weak annihilation can be quantitatively and
qualitatively understood as elaborated in Refs. [49,50].
As emphasized in [36], one of the great merits of

the topological approach is that the magnitude and the
relative strong phase of each individual topological tree
amplitude in charm decays can be extracted from the data.
Consequently, direct CP asymmetries in charmed meson
decays induced at the tree level can be reliably estimated as
we shall discuss in Sec. III A.

B. Flavor SU(3) symmetry breaking

Using the topological amplitudes in Eq. (6) extracted
from the CF modes, we can predict the rates for the SCS
decays (see the second column of Table II below). It is
known that there exists significant SU(3) breaking in some
of the SCS modes from the flavor SU(3) symmetry limit.
For example, the rate of D0 → KþK− is larger than that of
D0 → πþπ− by a factor of 2.8 [46], while the magnitudes
of their decay amplitudes should be the same in the SU(3)
limit. This is a long-standing puzzle since SU(3) sym-
metry is expected to be broken roughly at the level of 30%.
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Also, the decay D0 → K0K̄0 is almost prohibited in the
SU(3) symmetry limit, but the measured branching fraction
is of the same order of magnitude as that of D0 → π0π0.
Since SU(3) breaking effects in D → PP decays have

been discussed in detail in [37], in this section we will
recapitulate the main points and update some of the results.
As stressed in [51], a most natural way of solving the

above-mentioned long-standing puzzles is that the overall
seemingly large SU(3) symmetry violation arises from the
accumulation of several small and nominal SU(3) breaking
effects in the tree amplitudes T and E. We will illustrate this
point. Following [21], we write

AðD0 → πþπ−Þ ¼ λdðT þ Eþ Pd þ PEd þ PAdÞππ
þ λsðPs þ PEs þ PAsÞππ

¼ 1

2
ðλd − λsÞðT þ Eþ ΔPÞππ

−
1

2
λbðT þ Eþ ΣPÞππ; ð10Þ

where λp ≡ V�
cpVup (p ¼ d, s, b), the subscript refers to the

quark involved in the associated penguin loop, and

ΔP≡ ðPd þ PEd þ PAdÞ − ðPs þ PEs þ PAsÞ;
ΣP≡ ðPd þ PEd þ PAdÞ þ ðPs þ PEs þ PAsÞ: ð11Þ

Likewise,

AðD0 → KþK−Þ ¼ λdðPd þ PEd þ PAdÞKK
þ λsðT þ Eþ Ps þ PEs þ PAsÞKK

¼ 1

2
ðλs − λdÞðT þ E − ΔPÞKK

−
1

2
λbðT þ Eþ ΣPÞKK: ð12Þ

As far as the rate is concerned, we can neglect the term with
the coefficient λb which is much smaller than ðλd − λsÞ.
SU(3)-breaking effects in the tree amplitudes T can be
estimated in the factorization approach as

TKK

T
¼ fK

fπ

FDK
0 ðm2

KÞ
FDK
0 ðm2

πÞ
;

Tππ

T
¼ m2

D −m2
π

m2
D −m2

K

FDπ
0 ðm2

πÞ
FDK
0 ðm2

πÞ
;

ð13Þ

where T is the tree amplitude in CF D → K̄π decays given
in Eq. (9). Using the form-factor q2 dependence determined
experimentally from Ref. [52], we find

jTKK=Tj ¼ 1.269; jTππ=Tj ¼ 0.964: ð14Þ

SU(3) symmetry should be also broken in the
W-exchange amplitudes. This can be seen from the

observation of the decay D0 → K0K̄0 whose decay ampli-
tude is given by

AðD0 → K0K̄0Þ ¼ λdðEd þ 2PAdÞ þ λsðEs þ 2PAsÞ;
ð15Þ

with Eq referring to the W-exchange amplitude associated
with cū → qq̄ (q ¼ d, s). In the SU(3) limit, the decay
amplitude is proportional to λb and hence its rate is
negligibly small, while experimentally BðD0 → K0K̄0Þ ¼
ð0.282� 0.010Þ × 10−3 [46]. This implies sizable SU(3)
symmetry violation in the W-exchange and QCD-penguin
annihilation amplitudes. Neglecting PA and λb terms and
assuming that the T and E amplitudes are responsible for
the SU(3) symmetry breaking, we can fix the SU(3)
breaking effects in the W-exchange amplitudes from the
following four D0 decay modes: KþK−, πþπ−, π0π0 and
K0K̄0 [37]. A fit to the data yields two possible solutions:

I∶ Ed ¼ 1.10ei15:1°E; Es ¼ 0.62e−i19:7°E;

II∶ Ed ¼ 1.10ei15:1°E; Es ¼ 1.42e−i13:5°E: ð16Þ

The corresponding χ2 vanishes as these two solutions can
be obtained exactly.
If the SU(3)-breaking effects in the T and C topologies

are ignored, we find that χ2 will become very large, of order
340. This is understandable because the large rate disparity
betweenKþK− and πþπ− cannot rely solely on the nominal
SU(3) breaking in the tree or W-exchange amplitudes.
When considering SU(3)-breaking effects in T, we find that
BðD0 → πþπ−Þ is reduced slightly from 2.27 (in units of
10−3) to 2.11, while BðD0 → KþK−Þ is increased substan-
tially from 1.91 to 3.15 [see Eq. (14)]. When E is replaced
by Ed ¼ 1.10ei15°E in the amplitude of D0 → πþπ−, the
magnitude of ð0.96T þ EdÞ in AðD0 → πþπ−Þ becomes
smaller than that of ð0.96T þ EÞ as the phase of E is about
121°, so that BðD0 → πþπ−Þ is decreased further from
2.11 to 1.47. Likewise, with E being replaced by Es ¼
0.62e−i20°E or Es ¼ 1.42e−i14°E in the amplitude of
D0 → KþK−, the magnitude of ð1.27T þ EsÞ is enhanced
relative to ð1.27T þ EÞ. It follows that BðD0 → KþK−Þ is
increased further from 3.15 to 4.03 or 4.05. This shows
that the seemingly large SU(3) symmetry violation in
ΓðD0 → KþK−Þ and ΓðD0 → πþπ−Þ simply follows from
the accumulation of several smaller and nominal SU(3)
breaking effects in the tree amplitudes T and E.
At the hadron level, flavor SU(3) breaking due to the

strange and light quark differences will manifest in the
decay constants, form factors, wave functions and hadron
masses, etc. That is how we evaluate the SU(3)-breaking
effect in the T amplitude via Eq. (13). Since the
W-exchange is governed by long-distance effects, we do
not know how to estimate its SU(3) symmetry violation.
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Hence, we rely on the four modes: KþK−, πþπ−, π0π0 and
K0K̄0 to extract Ed and Es.
Different mechanisms have been proposed in the liter-

ature for explaining the large rate difference betweenD0 →
πþπ− and D0 → KþK−. For example, it has been argued
that ΔP dominated by the difference of s- and d-quark
penguin contractions of 4-quark tree operators is respon-
sible for the large SU(3) breaking in KþK− and πþπ−
modes [21]. However, this requires that jΔP=Tj ∼ 0.5. This
mechanism demands a large penguin which is comparable
or even larger than T. Moreover, it requires a large
difference between s- and d-quark penguin contractions.
In Sec. III B, we shall see that jΔP=Tj is estimated to be of
order 0.01 for the short-distance ΔP. Because of the
smallness of ΔP, we need to rely on SU(3) violation in
both T and E amplitudes to explain the large disparity in the
rates of D0 → KþK− and πþπ−.
Another scenario in which the dominant source of SU(3)

breaking lies in final-state interactions was advocated
recently in [53]. To fit the data, several large strong phases
such as δ0, δ1 and δ1=2 from final-state interactions are
needed [53]. They deviate substantially from the SU(3)
limit, namely, δ0 ¼ δ1 ¼ δ1=2.
SU(3) breaking effects in the topological amplitudes for

SCS D → PP decays are summarized in Table I. For
simplicity, flavor-singlet QCD penguin, flavor-singlet weak
annihilation and electroweak penguin annihilation ampli-
tudes have been neglected in subsequent numerical analy-
ses. The reader is referred to Refs. [37,48] in which we have
illustrated SU(3) breaking effects in some selective SCS

modes. The predicted and measured branching fractions
are given in Table II.3 While the agreement with experiment
is improved for most of the SCS modes after taking into
account SU(3) breaking effects in decay amplitudes, there
are a few exceptions. For example, the predicted rate
for D0 → π0ηð0Þ becomes slightly worse compared to the
prediction based on SU(3) symmetry even though Dþ →
πþηð0Þ works better in the presence of SU(3) breaking.

C. Penguin amplitudes in QCD factorization

Although the topological tree amplitudes T, C, E and A
for hadronic D decays can be extracted from the data,
information on penguin amplitudes (QCD penguin, pen-
guin annihilation, etc.) is still needed in order to estimate
CP violation in the SCS decays. To calculate the penguin
contributions, we start from the short-distance effective
Hamiltonian

Heff ¼
GFffiffiffi
2

p
�X
p¼d;s

λpðc1Op
1 þc2O

p
2 þc8gO8gÞ−λb

X6
i¼3

ciOi

�
;

ð17Þ

TABLE I. Topological amplitudes for singly Cabibbo-suppressed decays of charmed mesons to two pseudoscalar mesons where flavor
SU(3) symmetry breaking effects are included. Summation over p ¼ d, s is understood.

Mode Representation

D0 πþπ− λdð0.96T þ EdÞ þ λpðPp þ PEp þ PApÞ
π0π0 1ffiffi

2
p λdð−0.78Cþ EdÞ þ 1ffiffi

2
p λpðPp þ PEp þ PApÞ

π0η −λdðEdÞ cosϕ − 1ffiffi
2

p λsð1.28CÞ sinϕþ λpðPp þ PEpÞ cosϕ
π0η0 −λdðEdÞ sinϕþ 1ffiffi

2
p λsð1.28CÞ cosϕþ λpðPp þ PEpÞ sinϕ

ηη 1ffiffi
2

p λdð0.78Cþ EdÞcos2ϕþ λsð− 1
2
1.08C sin 2ϕþ ffiffiffi

2
p

Essin2ϕÞ þ 1ffiffi
2

p λpðPp þ PEp þ PApÞcos2ϕ
ηη0 1

2
λdð0.78Cþ EdÞ sin 2ϕþ λsð 1ffiffi

2
p 1.08C cos 2ϕ − Es sin 2ϕÞ þ 1

2
λpðPp þ PEp þ PApÞ sin 2ϕ

KþK− λsð1.27T þ EsÞ þ λpðPp þ PEp þ PApÞ
K0K̄0 λdðEdÞ þ λsðEsÞ þ 2λpðPApÞ

Dþ πþπ0 1ffiffi
2

p λdð0.97T þ 0.78CÞ
πþη 1ffiffi

2
p λdð0.82T þ 0.93Cþ 1.19AÞ cosϕ − λsð1.28CÞ sinϕþ ffiffiffi

2
p

λpðPp þ PEpÞ cosϕ
πþη0 1ffiffi

2
p λdð0.82T þ 0.93Cþ 1.61AÞ sinϕþ λsð1.28CÞ cosϕþ ffiffiffi

2
p

λpðPp þ PEpÞ sinϕ
KþK̄0 λdð0.85AÞ þ λsð1.28TÞ þ λpðPp þ PEpÞ

Dþ
s πþK0 λdð1.00TÞ þ λsð0.84AÞ þ λpðPp þ PEpÞ

π0Kþ 1ffiffi
2

p ½−λdð0.81CÞ þ λsð0.84AÞ þ λpðPp þ PEpÞ�
Kþη 1ffiffi

2
p λp½0.92Cδpd þ 1.14Aδps þ Pp þ PEp� cosϕ − λp½ð1.31T þ 1.27Cþ 1.14AÞδps þ Pp þ PEp� sinϕ

Kþη0 1ffiffi
2

p λp½0.92Cδpd þ 1.14Aδps þ Pp þ PEp� sinϕþ λp½ð1.31T þ 1.27Cþ 1.14AÞδps þ Pp þ PEp� cosϕ

3Throughout this paper, predictions are made by sampling 104

points in the parameter space, assuming that each of the
parameters has a Gaussian distribution with the corresponding
central value and symmetrized standard deviation. Then the
predicted values are the mean and standard deviation of data
computed using the 104 points.
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where

Op
1 ¼ ðp̄cÞV−AðūpÞV−A; Op

2 ¼ ðp̄αcβÞV−AðūβpαÞV−A;
O3ð5Þ ¼ ðūcÞV−A

X
q

ðq̄qÞV∓A;

O4ð6Þ ¼ ðūαcβÞV−A
X
q

ðq̄βqαÞV∓A;

O8g ¼ −
gs
8π2

mcūσμνð1þ γ5ÞGμνc; ð18Þ

with O3–O6 being the QCD penguin operators and
ðq̄1q2ÞV∓A ≡ q̄1γμð1� γ5Þq2. We shall work in the QCD
factorization (QCDF) approach [54,55] to evaluate the
hadronic matrix elements, but keep in mind that we employ
this approach simply for a crude estimate of the penguin
amplitudes because the charm quark mass is not heavy
enough and 1=mc power corrections are so large that a
sensible heavy quark expansion is not allowed.
Let us first consider the penguin amplitudes in

D → P1P2 decays:

Pp
P1P2

¼ GFffiffiffi
2

p ½ap4 ðP1P2Þ þ rP2
χ ap6 ðP1P2Þ�fP2

ðm2
D −m2

P1
Þ

× FDP1

0 ðm2
P2
Þ;

PEp
P1P2

¼ GFffiffiffi
2

p ðfDfP1
fP2

Þ½bp3 �P1P2
;

PAp
P1P2

¼ GFffiffiffi
2

p ðfDfP1
fP2

Þ½bp4 �P1P2
; ð19Þ

where p ¼ d, s and

rPχ ðμÞ ¼
2m2

P

mcðμÞðm2 þm1ÞðμÞ
ð20Þ

is a chiral factor. Here we have followed the conventional
Bauer-Stech-Wirbel definition for the form factor FDP

0 [56].
The explicit expressions of the flavor operators ap4 and ap6
will be given in Eq. (41) below. The annihilation operators
bp3;4 are given by

bp3 ¼ CF

N2
c
½c3Ai

1 þ c5ðAi
3 þ Af

3Þ þ Ncc6A
f
3 �;

bp4 ¼ CF

N2
c
½c4Ai

1 þ c6Ai
2�; ð21Þ

where the annihilation amplitudes Ai;f
1;2;3 are defined

in Ref. [55].
In practical calculations of QCDF, the superscript “p”

can be omitted for a3, a5, b3 and b4. Hence, we have
PEs ¼ PEd, for instance. For ap4 and a

p
6 , the terms dictating

the p dependence are GM2
ðspÞ and ĜM2

ðspÞ, respectively,
defined in Eq. (43) below.

III. DIRECT CP VIOLATION IN D → PP DECAYS

In Ref. [37], we have discussed direct CP violation in
D → PP decays. Here we will update and improve the
results. For example, we will discuss the issue of end-point
divergences with the penguin-exchange and penguin-
annihilation amplitudes. We will also consider the uncer-
tainties connected with long-distance contribution to the
penguin-exchange amplitude. We shall keep some necessary
formula presented in [37] for ensuing discussions.

A. Tree-level CP violation

Direct CP asymmetry in hadronic charm decays
defined by

adirCPðfÞ ¼
ΓðD → fÞ − ΓðD̄ → f̄Þ
ΓðD → fÞ þ ΓðD̄ → f̄Þ ð22Þ

can occur even at the tree level [57]. As stressed in [36,37],

the estimate of the tree-level CP violation aðtreeÞdir should be
trustworthy since the magnitude and the relative strong
phase of each individual topological tree amplitude in

TABLE II. Branching fractions (in units of 10−3) of singly
Cabibbo-suppressed D → PP decays. The column denoted by
BSUð3Þ shows the predictions based on our best-fitted results in
Eq. (6) with exact flavor SU(3) symmetry, while SU(3) symmetry
breaking effects are taken into account in the column denoted by
BSUð3Þ−breaking. The first (second) entry in D0 → ηη, ηη0, KþK−

and K0K̄0 modes is for Solution I (II) of Ed and Es in Eq. (16).
Experimental results of branching fractions are taken from
PDG [46].

Decay Mode BSUð3Þ BSUð3Þ−breaking Bexpt

D0 → πþπ− 2.28� 0.02 1.47� 0.02 1.455� 0.024
D0 → π0π0 1.50� 0.03 0.82� 0.02 0.826� 0.025
D0 → π0η 0.83� 0.02 0.92� 0.02 0.63� 0.06
D0 → π0η0 0.75� 0.02 1.36� 0.03 0.92� 0.10
D0 → ηη 1.52� 0.03 1.82� 0.04 2.11� 0.19

1.52� 0.03 2.11� 0.04
D0 → ηη0 1.28� 0.05 0.69� 0.03 1.01� 0.19

1.28� 0.05 1.63� 0.08
D0 → KþK− 1.91� 0.02 4.03� 0.03 4.08� 0.06

1.91� 0.02 4.05� 0.05
D0 → KSKS 0 0.141� 0.007 0.141� 0.005

0 0.141� 0.007
Dþ → πþπ0 0.89� 0.02 0.93� 0.02 1.247� 0.033
Dþ → πþη 1.90� 0.16 4.08� 0.16 3.77� 0.09
Dþ → πþη0 4.21� 0.12 4.69� 0.08 4.97� 0.19
Dþ → KþKS 2.29� 0.09 4.25� 0.10 3.04� 0.09
Dþ

s → πþKS 1.20� 0.04 1.27� 0.04 1.22� 0.06
Dþ

s → π0Kþ 0.86� 0.04 0.56� 0.02 0.63� 0.21
Dþ

s → Kþη 0.91� 0.03 0.86� 0.03 1.77� 0.35
Dþ

s → Kþη0 1.23� 0.06 1.49� 0.08 1.8� 0.6
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charm decays can be extracted from the data. The predicted
tree-level CP asymmetries for SCS modes are shown in
Table III. We see that larger CP asymmetries can be
achieved in those decay modes with interference between

T and C or C and E. For example, aðtreeÞdir is of order 0.78 ×
10−3 for D0 → π0η and −0.75 × 10−3 for Dþ

s → Kþη.
Direct CP violation in D0 → KSKS is given by

aðtreeÞdir ðD0→KSKSÞ¼
2Imðλdλ�sÞ

jλdj2
ImðE�

dEsÞ
jEd−Esj2

¼1.3×10−3
jEdEsj

jEd−Esj2
sinδds; ð23Þ

where δds is the strong phase of Es relative to Ed. From the
two solutions of Ed and Es given in Eq. (16), we find4

aðtreeÞdir ðD0→KSKSÞ¼
�
−1.05×10−3 SolutionI;

−1.99×10−3 SolutionII:
ð24Þ

For comparison, various predictions available in the liter-

ature are discussed here. aðtreeÞdir ðKSKSÞ ¼ 1.11 × 10−3 was
predicted in [39]. It ranges in ð0.38–0.43Þ × 10−3 according

to [53] (see also the last column of Table III). Both
predictions are of the opposite sign from ours. As explained

in [37], the positive sign of aðtreeÞdir ðKSKSÞ given in [39] can
be traced back to the phase of the W-exchange amplitude.
In our case, the W-exchange amplitude is always in the
second quadrant, while it lies in the third quadrant in [39]
due to a sign flip. As noticed in passing, all the strong
phases extracted from a fit to branching fractions are
equivalent to those with a simultaneous sign flip. This
explains why the strong phases of C and E in [39] are
simultaneously opposite to ours in sign, and the sign

difference between this work and [39] for aðtreeÞdir ðKSKSÞ.
A measurement of adirCPðD0 → KSKSÞ will resolve the
discrete phase ambiguity. If it is measured to be negative
as predicted by us, then the W-exchange amplitude should
be in the second quadrant.
In [23], the direct CP violation in D0 → KSKS was

connected to that of D0 → KþK− via the relation

adirCPðD0 → KSKSÞ
adirCPðD0 → KþK−Þ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 → KþK−Þ
2BðD0 → KSKSÞ

s
: ð25Þ

Taking adirCPðD0 → KþK−Þ to be ð−0.48� 0.09Þ × 10−3

from Table III and the measured branching fractions,
the obtained result adirCPðD0 → KSKSÞ ≈ −1.8 × 10−3 is in

TABLE III. Direct CP asymmetries (in units of 10−3) of D → PP decays, where aðtreeÞdir denotes CP asymmetry
arising from purely tree amplitudes. The superscript (tþ p) denotes tree plus QCD-penguin amplitudes, (tþ pa) for
tree plus weak penguin-annihilation (PE and PA) amplitudes and “tot” for the total amplitude. The first (second)
entry in D0 → ηη, ηη0, KþK− and KSKS is for Solution I (II) of Ed and Es [Eq. (16)]. For QCD-penguin exchange
PE, we assume that it is similar to the topological E amplitude [see Eq. (33)]. For comparison, The predicted results

of aðtotÞdir in [53] for both the negative (former) and positive (latter) solutions for the phase δi are also presented.

Decay mode aðtreeÞdir aðtþpÞ
dir aðtþpaÞ

dir aðtotÞdir (this work) aðtotÞdir [53]

D0 → πþπ− 0 0.03� 0.01 0.78� 0.22 0.80� 0.22 1.17� 0.20=1.18� 0.20
D0 → π0π0 0 0.27� 0.01 0.55� 0.30 0.82� 0.30 0.04� 0.09=0.79� 0.10
D0 → π0η 0.78� 0.01 0.48� 0.01 0.24� 0.28 −0.05� 0.28
D0 → π0η0 −0.43� 0.01 −0.56� 0.01 −0.01� 0.17 −0.15� 0.17
D0 → ηη −0.28� 0.01 −0.28� 0.01 −0.51� 0.07 −0.52� 0.07

−0.37� 0.01 −0.44� 0.01 −0.58� 0.07 −0.65� 0.07
D0 → ηη0 0.51� 0.00 0.09� 0.00 0.72� 0.22 0.29� 0.21

0.46� 0.01 0.16� 0.00 0.52� 0.15 0.22� 0.15
D0 → KþK− 0 0.08� 0.00 −0.41� 0.14 −0.33� 0.14 −0.47� 0.08= − 0.46� 0.08

0 −0.01� 0.00 −0.43� 0.12 −0.44� 0.12
D0 → KSKS −1.05 −1.05 −1.05 −1.05 0.43� 0.07=0.38� 0.07

−1.99 −1.99 −1.99 −1.99
Dþ → πþπ0 0 0 0 0
Dþ → πþη 0.37� 0.02 0.07� 0.01 −0.34� 0.22 −0.63� 0.23
Dþ → πþη0 −0.26� 0.02 −0.45� 0.03 0.30� 0.18 0.11� 0.18
Dþ → KþKS −0.07� 0.02 0.10� 0.02 −0.46� 0.18 −0.30� 0.18 −0.40� 0.07= − 0.26� 0.05
Dþ

s → πþKS 0.09� 0.03 −0.08� 0.03 0.61� 0.24 0.42� 0.24 −0.40� 0.07= − 0.36� 0.07
Dþ

s → π0Kþ −0.04� 0.06 −0.02� 0.04 0.89� 0.27 0.91� 0.27 0.48� 0.06= − 0.03� 0.04
Dþ

s → Kþη −0.75� 0.01 −0.92� 0.02 −0.64� 0.08 −0.81� 0.08
Dþ

s → Kþη0 0.34� 0.02 0.63� 0.03 −0.22� 0.24 0.07� 0.25

4In our previous work [37], we obtained aðtreeÞdir ðD0 →
KSKSÞ ¼ −0.7 × 10−3 for Solution I and −1.7 × 10−3 for
Solution II.
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agreement in magnitude and sign with ours. adirCPðD0 →
KSKSÞ was estimated to be 0.6% in [21], while an upper
bound jadirðD0 → KSKSÞj ≤ 1.1% was set in [58].
The current experimental measurements are

adirCPðKSKSÞ ¼
8<
:

ð−2.9� 5.2� 2.2Þ% LHCb ½59�;
ð4.3� 3.4� 1.0Þ% LHCb ½60�;
ð−0.02� 1.53� 0.17Þ% Belle ½61�.

ð26Þ

Since LHCb has measured ΔACP to the accuracy of 10−3, it
is conceivable that an observation of CP violation in the
decay D0 → KSKS will be feasible in the near future.

B. Penguin-induced CP violation

Direct CP violation does not occur at the tree level in
D0 → KþK− andD0 → πþπ−. In these two decays, the CP
asymmetry arises from the interference between tree and
penguin amplitudes. From Eq. (10), we obtain

adirCPðπþπ−Þ ¼
4Im½ðλd − λsÞλ�b�

jλd − λsj2
Im½ðT� þ E� þ ΔP�ÞðT þ Eþ ΔPþ ΣP − ΔPÞ�ππ

jT þ Eþ ΔPj2ππ
≈ 1.30 × 10−3

����Ps þ PEs þ PAs

T þ Eþ ΔP

����
ππ

sin δππ; ð27Þ

where δππ is the strong phase of ðPs þ PEs þ PAsÞππ relative to ðT þ Eþ ΔPÞππ and likewise for adirCPðKþK−Þ. Hence,

ΔadirCP ¼ −1.30 × 10−3
�����Pd þ PEd þ PAd

T þ E − ΔP

����
KK

sin δKK þ
����Ps þ PEs þ PAs

T þ Eþ ΔP

����
ππ

sin δππ

�
; ð28Þ

with δKK being the strong phase of ðPd þ PEd þ PAdÞKK relative to ðT þ E − ΔPÞKK .
Using the input parameters for the light-cone distribution amplitudes of light mesons, quark masses and

decay constants from Refs. [62,63] and form factors from Refs. [48,64], we find to the leading order in ΛQCD=mb in
QCDF that �

Pd

T

�
ππ

¼ 0.226e−i150°;

�
Ps

T

�
ππ

¼ 0.231e−i152°;

�
ΔP
T

�
ππ

¼ 0.010e−i35°;�
Pd

T

�
KK

¼ 0.220e−i150°;

�
Ps

T

�
KK

¼ 0.227e−i152°;

�
ΔP
T

�
KK

¼ 0.010e−i35°: ð29Þ

It is obvious that ΔP ¼ Pd − Ps arising from the difference in the d- and s-loop penguin contractions [see Eq. (41)] is very
small compared to the tree amplitude. It is straightforward to show

�
Ps

T þ Eþ ΔP

�
ππ

¼ 0.32ei176°;

�
Pd

T þ E − ΔP

�
KK

¼
�
0.23e−i164°

0.23ei178°
; ð30Þ

for Solutions I and II of W-exchange amplitudes Ed and Es [see Eq. (16)]. It follows from Eq. (28) that
adirCPðπþπ−Þ ¼ 0.029 × 10−3, and

adirCPðKþK−Þ ¼
�
0.082 × 10−3

−0.010 × 10−3
; ΔadirCP ≈

�
0.05 × 10−3 Solution I;

−0.02 × 10−3 Solution II:
ð31Þ

Evidently, CP asymmetries inD0 → πþπ−, KþK− induced
by QCD penguins are very small mainly due to the strong
phases δππ and δKK being not far from 180°.
So far we have only discussed leading-order QCDF

calculations except for the chiral enhanced penguin con-
tributions, namely, the a6 terms in Eq. (19). For QCD-
penguin power corrections, we shall consider weak
penguin annihilation, namely, QCD-penguin exchange

PE and QCD-penguin annihilation PA which are for-
mally of order 1=mc. However, it is well known that
the weak penguin annihilation amplitudes in QCDF
derived from Eq. (19) involve troublesome end-point
divergences [54,55]. Hence, subleading power corrections
generally can be studied only in a phenomenological way.
For example, the end-point divergence is parametrized
as [54,55]
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XA ≡
Z

1

0

dx
1 − x

¼ ln

�
mD

Λh

�
ð1þ ρAeiϕAÞ; ð32Þ

with Λh being a typical hadronic scale of order
500 MeV, and ρA, ϕA being unknown real parameters.
In hadronic B decays, the values of ρA and ϕA can be
obtained from a fit to B → PP; VP and VV decays [65].
However, this is not available in charmed meson decays
since penguin effects manifest mainly in CP violation.
Therefore, we will not evaluate PE and PA in this
way in the charm sector. Nevertheless, if we borrow
typical values of ρA and ϕA from the B system, we
find weak penguin annihilation contributions smaller
than QCD penguin; for instance, ðPE=TÞππ ∼ 0.04 and
ðPA=TÞππ ∼ −0.02. Therefore, it is safe to neglect short-
distance contributions to weak penguin annihilation
amplitudes.
As pointed out in [36], long-distance contributions to

SCS decays, for example, D0 → πþπ−, can proceed
through the weak decay D0 → KþK− followed by a
resonantlike final-state rescattering as depicted in
Fig. 2 of [36]. It has the same topology as the QCD-
penguin exchange topological graph PE. Since weak
penguin annihilation and FSIs are both of order 1=mc in
the heavy quark limit, this means FSIs could play an
essential role in charm decays. Hence, it is plausible to
assume that PE is of the same order of magnitude as E. In
[36], we took ðPEÞLD ¼ 1.60ei115° (in units of 10−6 GeV).
In this work we will assign by choice the same magnitude
and phase as E with 20% and 30° uncertainties, respec-
tively, so that

ðPEÞLD ≈ ð1.48� 0.30Þeið120.9�30.0Þ∘ : ð33Þ

For simplicity, we shall assume its flavor independence,
that is, ðPEÞLDd ¼ ðPEÞLDs .
Including the long-distance contribution to penguin

exchange PE, we get

�
Ps þ PELD

s

T þ Eþ ΔP

�
ππ

¼ 0.77ei114°;

�
Pd þ PELD

d

T þ E − ΔP

�
KK

¼
�
0.45ei137°

0.45ei120°
: ð34Þ

As shown in Table III, we see that the predicted CP

violation denoted by aðtotÞdir or aðtreeÞdir is at most of order 10−3

in the SM. Specifically, we have5

adirCPðπþπ−Þ ¼ ð0.80� 0.22Þ × 10−3; ð35Þ

adirCPðKþK−Þ ¼
� ð−0.33� 0.14Þ × 10−3 Solution I;

ð−0.44� 0.12Þ × 10−3 Solution II:

ð36Þ
Theoretical uncertainties are dominated by that of ðPEÞLD.
Hence, the CP asymmetry difference between D0 →
KþK− and D0 → πþπ− is given by

ΔadirCP ¼
� ð−1.14� 0.26Þ × 10−3 Solution I;

ð−1.25� 0.25Þ × 10−3 Solution II:
ð37Þ

Although our new results of ΔadirCP are slightly smaller
than the previous ones in [37], they have more realistic
estimates of uncertainties and are consistent with the
LHCb’s new measurement in Eq. (4) within 1σ. Here we
note in passing that the CP asymmetry predictions are
very sensitive to ðPEÞLD. Had we chosen to use the
value of 1.60 × 10−6ei121° GeV, as done in [36], ΔadirCP
would become ð−1.24� 0.26Þ × 10−3 for Solution I and
ð−1.34� 0.25Þ × 10−3 for Solution II.

C. Comparison with Li et al. [39]

Based on the so-called factorization-assisted topological-
amplitude approach, an estimate of ΔaCP ¼ −1.00 × 10−3

in the SM was made in [39]. In this work, the topological
amplitudes in units of 10−6 GeV are given by6

ðT; E; P; PE;PAÞππ ¼ ð2.73; 0.82e−i142°; 0.87ei134°; 0.81ei111°; 0.25e−i43°Þ;
ðT; E; P; PE; PAÞKK ¼ ð3.65; 1.20e−i85°; 1.21ei135°; 0.87ei111°; 0.45e−i5°Þ: ð38Þ

As a result, �
Pþ PEþ PA

T þ E

�
ππ

¼ 0.66ei134°;

�
Pþ PEþ PA

T þ E

�
KK

¼ 0.45ei131°: ð39Þ

This leads to the aforementioned value of ΔaCP. For comparison, in our case we have

5Since Eqs. (34) and (27) lead to adirCPðπþπ−Þ ¼ 0.91 × 10−3 and adirCPðKþK−Þ ¼ −0.40 × 10−3 for Solution I and −0.51 × 10−3 for
Solution II, the reader may wonder why they are slightly larger in magnitude than the final results presented in Table III. Such a
difference is related to the fact that the predictions are made, as alluded to in footnote 3, statistically and the fact that CP asymmetries are
not linear in the parameters.

6In terms of the notation of [39], P;PE; PA correspond to PC, PE and PA, respectively.
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ðT; E; P; PEÞππ ¼ ð3.00; 1.64ei136°; 0.69e−i152°; 1.48ei121°Þ;

ðT; E; P; PEÞKK ¼
� ð3.96; 0.93ei101°; 0.88e−i150°; 1.48ei121°Þ Solution I;

ð3.96; 2.10ei107°; 0.88e−i150°; 1.48ei121°Þ Solution II:
ð40Þ

There are three crucial differences between this work and
[39]: (i) the phase of E amplitudes is in the second quadrant
in the former while in the third or fourth quadrant in the
latter, (ii) the phase of the penguin amplitude P is in the
third quadrant in our work while in the second quadrant in
[39], and (iii) our PE amplitude comes from long-distance
final-state rescattering as we have neglected short-distance
contributions to weak penguin annihilation amplitudes PE
and PA. As discussed in passing, there is a discrete phase
ambiguity for the phases of C, E and A topological
amplitudes in our analysis. Presumably, a measurement

of adirCPðD0 → KSKSÞ will resolve the discrete phase ambi-
guity for the E amplitude. However, the phase of the
penguin amplitude is calculated in theory. Let us examine
this issue as follows.
Consider the penguin amplitude Pp

P1P2
given in Eq. (19).

Within the framework of QCDF, the flavor operators ap4;6
are basically the Wilson coefficients in conjunction with
short-distance nonfactorizable corrections such as vertex
corrections Vi, penguin contractions Pi and hard spectator
interactions Hi:

ap4 ðP1P2Þ ¼
�
c4 þ

c3
Nc

�
þ c3
Nc

CFαs
4π

�
V4ðP2Þ þ

4π2

Nc
H4ðP1P2Þ

�
þ Pp

4 ðP2Þ;

ap6 ðP1P2Þ ¼
�
c6 þ

c5
Nc

�
þ c5
Nc

CFαs
4π

�
V6ðP2Þ þ

4π2

Nc
H6ðP1P2Þ

�
þ Pp

6 ðP2Þ; ð41Þ

where the explicit expressions of Vi and Hi can be found in [55]. The order αs corrections from penguin contraction
read [55]

Pp
4 ¼ CFαs

4πNc

�
c1

�
4

3
ln
mc

μ
þ 2

3
−GM2

ðspÞ
�
þ c3

�
8

3
ln
mc

μ
þ 4

3
− GM2

ðsuÞ −GM2
ð1Þ

�

þ ðc4 þ c6Þ
�
16

3
ln
mc

μ
−GM2

ðsuÞ − GM2
ðsdÞ −GM2

ðssÞ −GM2
ð1Þ

�
− 2ceff8g

Z
1

0

dx
1 − x

ΦM2
ðxÞ

	
;

Pp
6 ¼ CFαs

4πNc

�
c1

�
4

3
ln
mc

μ
þ 2

3
− ĜM2

ðspÞ
�
þ c3

�
8

3
ln
mc

μ
þ 4

3
− ĜM2

ðsuÞ − ĜM2
ð1Þ

�

þ ðc4 þ c6Þ
�
16

3
ln
mc

μ
− ĜM2

ðsuÞ − ĜM2
ðsdÞ − ĜM2

ðssÞ − ĜM2
ð1Þ

�
− 2ceff8g

	
; ð42Þ

where ceff8g ¼ c8g þ c5, si ¼ m2
i =m

2
c,

GM2
ðsÞ ¼

Z
1

0

dxGðs; 1 − xÞΦM2
ðxÞ; ĜM2

ðsÞ ¼
Z

1

0

dxGðs; 1 − xÞΦm2
ðxÞ; ð43Þ

and Gðs; xÞ ¼ −4
R
1
0 duuð1 − uÞ ln½s − uð1 − uÞx�. Here ΦM2

(Φm2
) is the twist-2 (-3) light-cone distribution amplitude for

the meson M2.
In [39], the flavor operators a4;6 and a1;2 are taken to be

a1ðμÞ ¼ c1ðμÞ þ
c2ðμÞ
Nc

; a2ðμÞ ¼ c2ðμÞ þ c1ðμÞ
�
1

Nc
þ χnfeiϕ

�
;

a4;6ðμÞ ¼ c4;6ðμÞ þ c3;5ðμÞ
�
1

Nc
þ χnfeiϕ

�
; ð44Þ
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Comparing Eq. (44) with Eq. (41), we see that the source of
the QCD penguin’s strong phase is assumed to be the same
as that of a2 in [39], while it arises from nonfactorizable
contributions in QCDF. In other words, while we consider
the effects of vertex corrections, penguin contractions and
hard spectator interactions for the QCD penguin amplitude,
these effects are parametrized in [39] in terms of χnf and ϕ,
which are determined from a global fit to the measured
branching fractions. Since the color-suppressed C ampli-
tude in [39] is in the second quadrant, so is the penguin
amplitude. This explains the difference between our work
and [39] for the QCD penguin amplitudes.

D. Comparison with Chala et al. [31]

Based on the light-cone sum rule calculations of���� P
T þ E

����
ππ

¼ 0.093� 0.011;���� P
T þ E

����
KK

¼ 0.075� 0.015; ð45Þ

Khodjamirian and Petrov [35] argued an upper bound in the
SM, jΔaSMCP j ≤ ð2.0� 0.3Þ × 10−4. Including higher-twist
effects in the operator product expansion for the underlying
correlation functions which are expected to be���� P

T þ E

����
ππ

¼ 0.093� 0.030;���� P
T þ E

����
KK

¼ 0.075� 0.035; ð46Þ

Chala et al. [31] claimed a modification of the SM
bound, jΔaSMCP j ≤ ð2.0� 1.0Þ × 10−4.
This conclusion seems to be very naive. First, as stated in

[35], Khodjamirian and Petrov have neglected the contri-
butions from the penguin operators Oi¼3;…;6;8g due to their
small Wilson coefficients. This means they only considered
the penguin contraction from the tree operators O1;2.
Consequently,

ap4 ¼ ap6 ≈
CFαs
4πNc

c1

�
4

3
ln
mc

μ
þ 2

3
− GM2

ðspÞ
�
: ð47Þ

Second, penguin-exchange and penguin-annihilation con-
tributions have not been considered, not mentioning the
possible final-state resattering effect on PE. They play an
essential role in understanding the LHCb measurement of
ΔaCP. Otherwise, it is premature to claim the necessity of
new physics in this regard.

IV. D → VP DECAYS

In the treatment of D → VP decays, we continue to use
the same topological diagram notation as in the PP decays,

except that a subscript of V or P is attached to the flavor
amplitudes and the associated strong phases to denote
whether the spectator quark in the charmed meson ends up
in the vector or pseudoscalar meson in the final state. The
V-type and P-type parameters are completely independent
a priori, though certain relations can be established under
the factorization assumption.

A. Topological amplitudes

The partial decay widths of the D meson into a vector
and pseudoscalar mesons are usually expressed in two
different ways:

ΓðD → VPÞ ¼ p3
c

8πm2
D
jM̃j2; ð48Þ

and

ΓðD → VPÞ ¼ p3
c

8πm2
V
jMj2: ð49Þ

Even though both formulas have the same cubic power
dependence on pc (as required for a P-wave configuration),
a main difference resides in the fact that the latter has
incorporated an additional SU(3)-breaking factor for the
phase space, resulting from the sum of possible polar-
izations of the vector meson in the final state.
By performing a χ2 fit to the CF D → VP decays, we

extract the magnitudes and strong phases of the topological
amplitudes TV , CV , EV , AV and TP, CP, EP, AP from the
measured partial widths through Eq. (48) or (49) and find
many possible solutions with local χ2 minima. Here we take
the convention that all strong phases are defined relative to
the TV amplitude. In 2016 we have performed a detailed
analysis and obtained some best χ2 fit solutions (A) and (S)
through Eqs. (48) and (49), respectively [41]. It turns
out that solutions (S) give a better description for SCS
decays such as D0 → πþρ−, π0ρ0 and Dþ → πþρ0, pos-
sibly because the additional SU(3)-breaking factor in
phase space has been taken care of, as mentioned above.
Hence, we will confine ourselves to using Eq. (49) and thus
solutions (S) in this work.
The six best χ2-fit solutions (S1)–(S6), with χ2min < 10,

are listed in Table IV, where we have chosen the convention
such that the central values of strong phases fall between 0
and 360 degrees, while noting again that a simultaneous
sign flip of all strong phases is equally viable. The flavor
amplitudes of all these solutions respect the hierarchy
pattern, jTPj> jTV j≳ jCPj> jCV j≳ jEPj> jEV j≳ jAP;V j.
As stressed in [41], the decay Dþ

s → ρ0πþ plays an
essential role in the determination of the annihilation
amplitudes AV;P. Its large error in the branching fraction
reflects in the large uncertainties in the magnitudes and
strong phases of AV;P, which will be improved once we
have a better measurement of Dþ

s → ρ0πþ.
While the size of each topological amplitude is similar

across all solutions, the strong phases vary among the
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solutions except for those ofCP andEP.We find (δCP
, δEP

) to
be either (201°, 108°) or (159°, 252°). A close inspection tells
us that Solutions (S1) and (S4) are close to each other in the
sense that the corresponding amplitudes are similar in size,

except for jAV j and jAPj, and the corresponding strong phases
add up to roughly 360°. So are Solutions (S2) and (S5).
Although solutions in set (S) generally fit the

Cabibbo-favored modes well [see Table V for results

TABLE IV. Fit results using Eq. (49) and ϕ ¼ 43:5°. The amplitude sizes are quoted in units of 10−6 and the strong
phases in units of degrees.

(S1) (S2) (S3) (S4) (S5) (S6)

jTV j 2.18þ0.06
−0.07 2.18þ0.06

−0.07 2.17� 0.06 2.19þ0.06
−0.07 2.18þ0.06

−0.07 2.18� 0.06
jTPj 3.41� 0.06 3.36� 0.06 3.51� 0.06 3.48� 0.06 3.50� 0.06 3.39� 0.06
δTP

69� 3 286� 3 40þ3
−4 307þ4

−3 79þ3
−4 12� 3

jCV j 1.76� 0.04 1.76� 0.04 1.74� 0.04 1.75� 0.04 1.74� 0.04 1.76� 0.04
δCV

278� 3 76� 3 195þ4
−3 152þ3

−4 235þ4
−3 221� 3

jCPj 2.10� 0.03 2.07� 0.03 2.04� 0.03 2.14� 0.03 2.07� 0.03 2.07� 0.03
δCP

201� 1 201� 1 201� 1 159� 1 159� 1 201� 1

jEV j 0.27� 0.04 0.26� 0.04 0.40� 0.06 0.33� 0.05 0.38� 0.05 0.26� 0.04
δEV 260þ50

−20 69þ46
−21 245þ8

−9 113þ14
−11 282þ8

−10 224þ22
−40

jEPj 1.66þ0.05
−0.06 1.66þ0.05

−0.06 1.66� 0.05 1.66þ0.05
−0.06 1.66� 0.05 1.66þ0.05

−0.06
δEP

108� 3 108� 3 107� 3 251� 3 252� 3 108� 3

jAV j 0.19� 0.02 0.20� 0.03 0.22� 0.03 0.25� 0.02 0.26� 0.02 0.24� 0.03
δAV 17þ9

−12 349þ10
−8 73� 7 355þ13

−12 27þ8
−9 68� 8

jAPj 0.22� 0.03 0.22� 0.03 0.19� 0.03 0.15� 0.03 0.14þ0.03
−0.02 0.16� 0.03

δAP 342þ12
−9 24þ9

−11 108þ9
−11 20þ12

−27 13þ45
−17 98þ11

−17
χ2min 5.438 5.603 5.604 7.345 7.495 7.956
Fit quality 0.1424 0.1326 0.1096 0.062 0.058 0.047

TABLE V. Flavor amplitude decompositions, experimental branching fractions, and predicted branching fractions for the Cabibbo-
favored D → VP decays. Here sϕ ≡ sinϕ, cϕ ≡ cosϕ and λsd ≡ V�

csVud. The columns of BtheoryðS3Þ and BtheoryðS6Þ are predictions
based on Solutions (S3) and (S6) shown in Table IV, respectively. All branching fractions are quoted in units of %.

Meson Mode Representation Bexp BtheoryðS3Þ BtheoryðS6Þ
D0 K�−πþ λsdðTV þ EPÞ 5.34� 0.41 5.39� 0.40 5.35� 0.40

K−ρþ λsdðTP þ EVÞ 11.3� 0.7 11.4� 0.6 11.7� 0.8
K̄�0π0 1ffiffi

2
p λsdðCP − EPÞ 3.74� 0.27 3.67� 0.21 3.69� 0.21

K̄0ρ0 1ffiffi
2

p λsdðCV − EVÞ 1.26þ0.12
−0.16 1.30� 0.12 1.35� 0.13

K̄�0η λsd
h

1ffiffi
2

p ðCP þ EPÞcϕ − EVsϕ
i

1.02� 0.30 0.92� 0.08 0.86� 0.12

K̄�0η0 −λsd
h

1ffiffi
2

p ðCP þ EPÞsϕ þ EVcϕ
i

<0.10 0.0048� 0.0004 0.0052� 0.0007

K̄0ω − 1ffiffi
2

p λsdðCV þ EVÞ 2.22� 0.12 2.23� 0.16 2.17� 0.16

K̄0ϕ −λsdEP 0.830� 0.061 0.835� 0.054 0.838� 0.054

Dþ K̄�0πþ λsdðTV þ CPÞ 1.57� 0.13 1.59� 0.15 1.58� 0.15
K̄0ρþ λsdðTP þ CVÞ 12.3þ1.2

−0.7 12.5� 1.5 12.3� 1.5

Dþ
s K̄�0Kþ λsdðCP þ AVÞ 3.92� 0.14 3.94� 0.18 3.94� 0.18

K̄0K�þ λsdðCV þ APÞ 5.4� 1.2 3.39� 0.21 3.10� 0.21
ρþπ0 1ffiffi

2
p λsdðAP − AVÞ � � � 0.024� 0.014 0.025� 0.016

ρþη λsd
h

1ffiffi
2

p ðAP þ AVÞcϕ − TPsϕ
i

8.9� 0.8 9.02� 0.37 8.86� 0.38

ρþη0 λsd
h

1ffiffi
2

p ðAP þ AVÞsϕ þ TPcϕ
i

5.8� 1.5 3.25� 0.12 2.92� 0.11

πþρ0 1ffiffi
2

p λsdðAV − APÞ 0.020� 0.012 0.023� 0.014 0.024� 0.016

πþω 1ffiffi
2

p λsdðAV þ APÞ 0.19� 0.03a 0.19� 0.04 0.19� 0.04

πþϕ λsdTV 4.5� 0.4 4.45� 0.24 4.49� 0.25
aNew measurement from BESIII [67] has been taken into account in the world average.
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based on Solutions (S3) and (S6)], there are two exce-
ptions, namely, Dþ

s → K̄0K�þ and ρþη0, where the
predictions are smaller than the experimental results.
The first mode was measured three decades ago with a

relatively large uncertainty [66], and the experi-
mental result was likely to be overestimated. The
second mode has a decay amplitude respecting a sum
rule [41]:

TABLE VI. Same as Table V, but for the singly Cabibbo-suppressed decay modes. All branching fractions are
quoted in units of 10−3.

Mode Representation Bexp Btheo(S3) Btheo(S6)

D0 πþρ− λdðTV þ EPÞ þ λpðPp
V þ PAP þ PEPÞ 5.15� 0.25 4.72� 0.35 4.68� 0.35

π−ρþ λdðTP þ EVÞ þ λpðPp
P þ PAV þ PEVÞ 10.1� 0.4 8.81� 0.46 9.14� 0.60

π0ρ0 1
2
λdð−CP − CV þ EP þ EVÞ
þλpðPp

P þ Pp
V þ PAP þ PAV þ PEP þ PEVÞ

3.86� 0.23 3.18� 0.19 3.92� 0.20

KþK�− λsðTV þ EPÞ þ λpðPp
V þ PEP þ PAPÞ 1.65� 0.11 1.81� 0.14 1.79� 0.13

K−K�þ λsðTP þ EVÞ þ λpðPp
P þ PEV þ PAVÞ 4.56� 0.21 3.35� 0.17 3.44� 0.23

K0K̄�0 λdEV þ λsEP þ λpðPAP þ PAVÞ 0.246� 0.048 1.27� 0.10 1.04� 0.14
K̄0K�0 λdEP þ λsEV þ λpðPAP þ PAVÞ 0.336� 0.063 1.27� 0.10 1.04� 0.14
π0ω 1

2
λdð−CV þ CP − EP − EVÞ þ λpðPp

P þ Pp
V þ PEP þ PEVÞ 0.117� 0.035 0.53� 0.09 0.22� 0.06

π0ϕ 1ffiffi
2

p λsCP 1.20� 0.04a 0.64� 0.02 0.65� 0.02

ηω 1
2
½λdðCV þ CP þ EV þ EPÞ cosϕ − λsCV sinϕ
þλpðPp

P þ Pp
V þ PEP þ PEV þ PAP þ PAVÞ cosϕ�

1.98� 0.18 2.96� 0.13 2.56� 0.14

η0ω 1
2
½λdðCV þ CP þ EV þ EPÞ sinϕþ λsCV cosϕ
þλpðPp

P þ Pp
V þ PEP þ PEV þ PAP þ PAVÞ sinϕ�

� � � 0.03� 0.00 0.05� 0.01

ηϕ λs½ 1ffiffi2p CP cosϕ − ðEV þ EPÞ sinϕ� þ λpðPAP þ PAVÞ sinϕ 0.167� 0.034a 0.24� 0.02 0.29� 0.03

ηρ0 1
2
½λdðCV − CP − EV − EPÞ cosϕ − λs

ffiffiffi
2

p
CV sinϕ

þλpðPp
P þ Pp

V þ PEP þ PEVÞ cosϕ�
� � � 0.31� 0.05 0.84� 0.10

η0ρ0 1
2
½λdðCV − CP − EV − EPÞ sinϕþ λs

ffiffiffi
2

p
CV cosϕ

þλpðPp
P þ Pp

V þ PEP þ PEVÞ sinϕ�
� � � 0.11� 0.01 0.10� 0.01

Dþ πþρ0 1ffiffi
2

p ½λdðTV þ CP − AP þ AVÞ þ λpðPp
V − Pp

P þ PEP − PEVÞ� 0.83� 0.15 0.70� 0.10 0.61� 0.10

π0ρþ 1ffiffi
2

p ½λdðTP þ CV þ AP − AVÞ þ λpðPp
P − Pp

V þ PEV − PEPÞ� � � � 4.43� 0.61 4.53� 0.64

πþω 1ffiffi
2

p ½λdðTV þ CP þ AP þ AVÞ þ λpðPp
P þ Pp

V þ PEP þ PEVÞ� 0.28� 0.06 0.22� 0.06 0.26� 0.07

πþϕ λsCP 5.68� 0.11a 3.27� 0.11 3.35� 0.11
ηρþ 1ffiffi

2
p ½λdðTP þ CV þ AV þ APÞ cosϕ − λs

ffiffiffi
2

p
CV sinϕ

þλpðPp
P þ Pp

V þ PEP þ PEVÞ cosϕ�
� � � 1.53� 0.49 1.02� 0.34

η0ρþ 1ffiffi
2

p ½λdðTP þ CV þ AV þ APÞ sinϕþ λs
ffiffiffi
2

p
CV cosϕ

þλpðPp
P þ Pp

V þ PEP þ PEVÞ sinϕ�
� � � 1.16� 0.11 1.03� 0.11

KþK̄�0 λdAV þ λsTV þ λpðPp
V þ PEPÞ 3.83þ0.14

−0.21 3.87� 0.23 3.82� 0.25
K̄0K�þ λdAP þ λsTP þ λpðPp

P þ PEVÞ 34� 16 10.20� 0.40 9.80� 0.41

Dþ
s πþK�0 λdTV þ λsAV þ λpðPp

V þ PEPÞ 2.13� 0.36 3.69� 0.23 3.65� 0.24
π0K�þ 1ffiffi

2
p ½λdCV − λsAV − λpðPp

V þ PEPÞ� � � � 1.12� 0.07 1.02� 0.07

Kþρ0 1ffiffi
2

p ½λdCP − λsAP − λpðPp
P þ PEVÞ� 2.5� 0.4 2.10� 0.10 2.10� 0.10

K0ρþ λdTP þ λsAP þ λpðPp
P þ PEVÞ � � � 11.80� 0.4711.47� 0.48

ηK�þ 1ffiffi
2

p f½λdCV þ λsAV þ λpðPp
V þ PEPÞ� cosϕ

−½λsðTP þ CV þ APÞ þ λpðPp
P þ PEVÞ� sinϕg

� � � 0.60� 0.21 0.64� 0.20

η0K�þ 1ffiffi
2

p f½λdCV þ λsAV þ λpðPp
V þ PEPÞ� sinϕ

−½λsðTP þ CV þ APÞ þ λpðPp
P þ PEVÞ� cosϕg

� � � 0.38� 0.02 0.33� 0.02

Kþω 1ffiffi
2

p ½λdCP þ λsAP þ λpðPp
P þ PEVÞ� 0.87� 0.25b 2.02� 0.09 2.12� 0.10

Kþϕ λsðTV þ CP þ AVÞ þ λpðPp
V þ PEPÞ 0.182� 0.041 0.13� 0.02 0.12� 0.02

aNew measurements from BESIII [68] have been taken into account in the world average.
bData from BESIII [67].
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MðDþ
s → πþωÞ ¼ cosϕMðDþ

s → ρþηÞ
þ sinϕMðDþ

s → ρþη0Þ: ð50Þ

Assuming this relation, the current data of BðDþ
s → πþωÞ

and BðDþ
s → ρþηÞ give the bounds 1.6% < BðDþ

s →
ρþη0Þ < 3.9% at 1σ level, significantly lower than the cur-
rent central value. A better determination of these branch-
ing fractions will be very helpful in settling the issues.
Various (S) solutions lead to very different predictions

for some of the SCS decays. Especially, the D0 → π0ω and
Dþ → πþω decays are very useful in discriminating among
different solutions. We first consider the π0ρ0, π0ω and ηω
modes. Their topological amplitudes are given by

MðD0 → π0ωÞ ¼ 1

2
λdðCV − CP þ EP þ EVÞ;

MðD0 → π0ρ0Þ ¼ 1

2
λdðCV þ CP − EP − EVÞ;

MðD0 → ηωÞ ¼ 1

2
λdðCV þ CP þ EP þ EVÞ cosϕ

−
1ffiffiffi
2

p λsCV sinϕ: ð51Þ

Since the magnitude of CV is comparable to that of CP, the
smallness of BðD0 → π0ωÞ, the sizable BðD0 → ηωÞ and
the large BðD0 → π0ρ0Þ imply that the strong phases of CV
and CP should be close to each other. An inspection of
Table IV indicates that the phase difference betweenCV and
CP is large for Solutions (S1), (S2) and (S5). It turns out
that (S2) and (S5) are definitely ruled out as they predict too
large BðD0 → π0ωÞ, with the central values of 4.65 and
3.91 (in units of 10−3), respectively, while the measured
value is 0.117� 0.035 (see Table VI). Solution (S1) gives a
relatively better prediction of BðD0 → π0ωÞ ¼ 0.62� 0.13
among the three solutions.
We next turn to the πþρ0 and πþωmodes. Neglecting the

penguin contributions, their topological amplitudes read
(see Table VI)

MðDþ → πþρ0Þ ¼ 1ffiffiffi
2

p λdðTV þ CP − AP þ AVÞ;

MðDþ → πþωÞ ¼ 1ffiffiffi
2

p λdðTV þ CP þ AP þ AVÞ: ð52Þ

It is well known that the CF decays Dþ
s → πþρ0 and πþω

can only proceed through the W-annihilation topology

MðDþ
s → πþρ0Þ ¼ 1ffiffiffi

2
p V�

csVudðAV − APÞ;

MðDþ
s → πþωÞ ¼ 1ffiffiffi

2
p V�

csVudðAV þ APÞ: ð53Þ

The extremely small branching fraction of Dþ
s → πþρ0

compared to Dþ
s → πþω (see Table V) implies that AV and

AP should be comparable in magnitude and roughly
parallel to each other with a phase difference not more
than 30°. At a first glance, it is tempting to argue from
Eq. (52) that Dþ → πþω should have a rate larger
than Dþ → πþρ0. Experimentally, it is the other way
around [46]:

BðDþ → πþρ0Þ ¼ ð0.83� 0.15Þ × 10−3;

BðDþ → πþωÞ ¼ ð0.28� 0.06Þ × 10−3: ð54Þ

Since CP is comparable to TV in magnitude, there is a large
cancellation between TV and CP. As a consequence, the
rates of πþρ0 and πþω become sensitive to the strong
phases of the small annihilation amplitudes AV and AP.
It turns out that AV should be in the fourth quadrant while
AP in the third quadrant in order to satisfy the experimental
constraints from Eq. (54). We find only Solutions (S3) and
(S6) in line with this requirement (see Table IV) and
yielding predictions in agreement with experiment for πþρ0
and πþω (see Table VI). For Solutions (S1), (S2), (S4) and
(S5), the branching fractions of Dþ → πþρ0 and Dþ →
πþω (in units of 10−3) are found to have the central values
(0.45, 1.06), (0.87, 0.98), (0.67, 1.05), (0.96, 1.76),
respectively. All these solutions imply that the latter is
larger than the former in rates, in contradiction with
experiment.
Finally, we comment on two of the Dþ

s decay modes:
Kþρ0 and Kþω. From Table VI, we see that

MðDþ
s → Kþρ0Þ ¼ 1ffiffiffi

2
p ðλdCP − λsAPÞ;

MðDþ
s → KþωÞ ¼ 1ffiffiffi

2
p ðλdCP þ λsAPÞ: ð55Þ

Since jCPj ≫ jAPj, it is expected that the two modes have
similar branching fractions of order 2 × 10−3. However,
the recent BESIII experiment yields BðDþ

s → KþωÞ ¼
ð0.87� 0.25Þ × 10−3 [67]. The ρ − ω mixing effect to
be mentioned below in Eq. (63) in principle can push up
(down) the rate of Kþρ0 (Kþω). For the mixing angle
ϵ ¼ −0.12 [see Eq. (63) and note a sign difference from
[69] ], we find BðDþ

s → Kþρ0Þ ¼ ð2.63� 0.11Þ × 10−3

and BðDþ
s → KþωÞ ¼ ð1.65� 0.09Þ × 10−3. The former

is now in better agreement with experiment, but the latter is
still too large compared to the data. The ω − ϕ mixing also
does not help much. Moreover, in our framework we do not
need ρ − ω mixing to explain the smallness of D0 → π0ω
and Dþ → πþω. Therefore, the issue with Dþ

s → Kþω
remains to be resolved.

B. Flavor SU(3) symmetry breaking

As noted in passing, a most noticeable example of SU(3)
breaking in the PP sector lies in the decays D0 → KþK−
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and D0 → πþπ−. Experimentally, the rate of the former is
larger than that of the latter by a factor of 2.8. More
precisely, jT þ EjKK=jT þ Ejππ ≈ 1.80, implying a large
SU(3) breaking effect in the amplitude of T þ E.
However, it is the other way around for the counterparts
in the VP sector where we have ΓðKþK�−Þ < Γðπþρ−Þ and
ΓðK−K�þÞ < Γðπ−ρþÞ. Since the available phase space is
proportional to p3

c=m2
V in the convention of Eq. (49), this

explains why ΓðD0 → KK�Þ < ΓðD0 → πρÞ owing to the
fact that pcðπρÞ ¼ 764 MeV and pcðKK�Þ ¼ 608 MeV.
From the measured branching fractions, we find by ignor-
ing the penguin amplitudes that

jTV þ EPjπþρ−
jTV þ EPjKþK�−

¼ 1.08;
jTP þ EV jπ−ρþ
jTV þ EPjK−K�þ

¼ 0.91: ð56Þ

This implies that SU(3) breaking in the amplitudes of
TV þ EP and TP þ EV is small, contrary to the PP case.
In Table VI, we show the calculated branching frac-

tions of SCS D → VP decays using Solutions (S3) and
(S6). It is clear that Solution (S6) is slightly better, though
the predicted K0K̄�0 and K̄0K�0 branching fractions are
too large compared to the data in both solutions. SU(3)
breaking effects in the color-allowed and color-suppressed
amplitudes can be estimated provided they are factorizable:

TV ¼ GFffiffiffi
2

p a1ðK̄�πÞ2fπmK�ADK�
0 ðm2

πÞ;

CP ¼ GFffiffiffi
2

p a2ðK̄�πÞ2fK�mK�FDπ
1 ðm2

K� Þ;

TP ¼ GFffiffiffi
2

p a1ðK̄ρÞ2fρmρFDK
1 ðm2

ρÞ;

CV ¼ GFffiffiffi
2

p a2ðK̄ρÞ2fKmρA
Dρ
0 ðm2

KÞ: ð57Þ

Hence,

Tπρ
V

TV
¼ a1ðρπÞ

a1ðK̄�πÞ
mρ

mK�

ADρ
0 ðm2

πÞ
ADK�
0 ðm2

πÞ
;

Tπρ
P

TP
¼ a1ðρπÞ

a1ðK̄ρÞ
FDπ
1 ðm2

ρÞ
FDK
1 ðm2

ρÞ
: ð58Þ

Assuming that a1ðρπÞ is similar to a1ðK̄�πÞ and a1ðK̄ρÞ,
we find TVðπþρ−Þ ≃ 0.82TV , TPðπ−ρþÞ ≃ 0.92TP,
TVðKþK�−Þ≃1.29TV and TPðK−K�−Þ ≃ 1.28TP. Similar
relations can be derived for the CV and CP amplitudes
as well. These lead to two difficulties: (i) The sizable
SU(3) breaking in the ratios jTV jπþρ−=jTV jKþK�− ≃ 0.64 and
jTPjπ−ρþ=jTV jK−K�þ ≃ 0.72 are not consistent with Eq. (56),
and (ii) the branching fractions of D0 → πþρ− and D0 →
π−ρþ will become smaller, while BðD0 → KþK�−Þ and
BðD0 → K−K�þÞ become larger. Hence, the discrepancy
becomes even worse. In other words, the consideration of
SU(3) breaking in the tree amplitudes TV;P and CV;P alone
will render even larger deviations from the data in both
Solutions (S3) and (S6).
A way out is to consider SU(3) breaking in the

W-exchange amplitudes. Indeed, the too large rates pre-
dicted for K0K̄�0 and K̄0K�0 modes call for SU(3) breaking
in the W-exchange amplitudes as both modes proceed
through EP and EV . In the PP sector, we need SU(3)
breaking in W-exchange in order to induce D0 → KSKS.
Here we need SU(3) breaking again for a different reason,
otherwise, the calculated D0 → K0K̄�0 and K̄0K�0 will be
too large in rates. Since jEPj ≫ jEV j, it is natural to expect
that jEPj (jEV j) has to be reduced (increased) after SU(3)
breaking in order to accommodate the data. Writing

MðD0 → πþρ−Þ ¼ λdðTV þ Ed
PÞ; MðD0 → π−ρþÞ ¼ λdðTP þ Ed

VÞ;
MðD0 → KþK�−Þ ¼ λsðTV þ Es

PÞ; MðD0 → K−K�þÞ ¼ λsðTP þ Es
VÞ;

MðD0 → K0K̄�0Þ ¼ λsEs
P þ λdEd

V; MðD0 → K̄0K�0Þ ¼ λsEs
V þ λdEd

P;

and

MðD0 → π0ρ0Þ ¼ 1

2
λdðCP þ CV − Ed

P − Ed
VÞ;

MðD0 → π0ωÞ ¼ 1

2
λdðCV − CP þ Ed

P þ Ed
VÞ; ð59Þ

with

Ed
V ¼ edVe

iδedVEV; Es
V ¼ esVe

iδesVEV;

Ed
P ¼ edPe

iδedPEP; Es
P ¼ esPe

iδesPEP; ð60Þ

we are able to determine the eight unknown parameters
edV; e

d
P; e

s
V; e

s
P and δedV; δe

d
P; δe

s
V; δe

s
P from the branching

fractions of these eight modes. In the SU(3) limit, ed;sV;P ¼ 1

and δed;sV;P ¼ 0. Note that among all the best-fit solutions
(S), only (S3) and (S6) give exact solutions for the
parameters ed;sV;P and the phases δed;sV;P (i.e., χ2 ¼ 0 in a
fit to the eight SCS modes). There are six solutions for
Solution (S6), listed in Table VII. All these schemes are
equally good in explaining the first eight SCS modes in
Table VI, whereas Scheme (iv) yields smallest SU(3)
symmetry violation in ed;sV;P; namely, the deviations of them
from unity are less than 50%.
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Branching fractions of SCS D → VP decays are pre-
dicted in Table VIII using the topological amplitudes given
in Solution (S6). For SU(3) breaking effects inW-exchange
amplitudes EV and EP, we specifically choose solution
(iv) for SU(3) breaking parameters given in Table VII,
though the results are very similar in other schemes. The
decays D0 → π0ϕ and Dþ → πþϕ are special as they
proceed only through the internal W-emission diagram
CP. Its SU(3) breaking can be estimated from Eq. (58) to be

Cπϕ
P

CP
¼ fϕ

fK�

mϕ

mK�

FDπ
1 ðm2

ϕÞ
FDπ
1 ðm2

K�Þ : ð61Þ

For the q2 dependence of the form factor we use

FDπ
1 ðq2Þ ¼ FDπ

1 ð0Þ
½1 − ðq2=m2

D�Þ�½1 − αDπ
1 ðq2=m2

D�Þ� ; ð62Þ

with FDπ
1 ð0Þ ¼ FDπ

0 ð0Þ ¼ 0.666 and αDπ
1 ¼ 0.24, and

find Cπϕ
P ¼ 1.37CP. The resulting BðD0 → π0ϕÞ ¼

ð1.22� 0.04Þ × 10−3 and BðDþ → πþϕÞ ¼ ð6.29�
0.21Þ × 10−3 are consistent with experiment, though the
latter is slightly large in the central value.
Comparison with the work of Qin et al. [69].—In

Table VIII, we have compared our results of SCS D →
VP branching fractions with that in the factorization-
assisted topological approach [69] without and with the
ρ − ω mixing, denoted by FAT and FAT[mix], respectively.
The predicted BðD0 → π0ωÞ ¼ 0.85 (in units of 10−3) in
FAT is far too large compared to the data of 0.117� 0.035.
In order to resolve this discrepancy, Qin et al. considered
the ρ − ω mixing defined by

jρ0i ¼ jρ0I i − ϵjωIi; jωi ¼ ϵjρ0I i þ jωIi; ð63Þ

where jρ0I i and jωIi denote the isospin eigenstates. Using
the mixing angle ϵ ¼ 0.12, the predicted branching fraction
of D0 → π0ω ia reduced to 0.18, while BðD0 → π0ρ0Þ is
increased from 3.55 to 3.83. However, the calculated
BðDþ → πþωÞ ¼ 0.80 after taking into account of ρ − ω
mixing is still too large compared to the experimental value
of 0.28� 0.06. As for the Dþ

s → Kþω mode, it appears

that the predicted branching fraction of 0.6 before ρ − ω
mixing agrees with the data of 0.87� 0.25 [67], while the
predicted value of 0.07 after the mixing effect is far too
small. Therefore, irrespective of ρ − ω mixing, D0 → π0ω
and Dþ

s → Kþω cannot be explained simultaneously in the
FAT or modified FAT approach.

C. Direct CP violation

It has been noticed that weak penguin annihilation will
receive sizable long-distance contributions from final-state
rescattering. We shall assume that the long-distance PEV
and PEP are of the same order of magnitude as EV and EP

TABLE VIII. Branching fractions (in units of 10−3) of D→VP
decays. The predictions made in the (S6) scheme have taken
into account SU(3) breaking effects under solution (iv) (see
Table VII). For QCD-penguin exchanges PEV and PEP, we
assume that they are similar to the topological EV and EP
amplitude, respectively [see Eq. (64)]. The results from [69] in
the factorization-assisted topological approach without and with
the ρ−ω mixing (denoted by FAT and FAT[mix], respectively)
are listed for comparison.

Mode BðThisworkÞ BðFATÞ BðFAT½mix�Þ Bexp

D0 πþρ− 5.12�0.29 4.74 4.66 5.15�0.25
π−ρþ 10.21�0.91 10.2 10.0 10.1�0.4
π0ρ0 3.90�0.26 3.55 3.83 3.86�0.23
KþK�− 1.68�0.11 1.72 1.73 1.65�0.11
K−K�þ 4.43�0.31 4.37 4.37 4.56�0.21
K0K̄�0 0.27�0.06 1.1 1.1 0.246�0.048
K̄0K�0 0.32�0.09 1.1 1.1 0.336�0.063
π0ω 0.12�0.05 0.85 0.18 0.117�0.035
π0ϕ 1.22�0.04 1.11 1.11 1.20�0.04
ηω 2.25�0.14 2.4 2.0 1.98�0.18
η0ω 0.01�0.00 0.04 0.02 � � �
ηϕ 0.16�0.02 0.19 0.18 0.167�0.034
ηρ0 0.59�0.07 0.54 0.45 � � �
η0ρ0 0.06�0.01 0.21 0.27 � � �

Dþ πþρ0 0.61�0.10 0.42 0.58 0.83�0.15
π0ρþ 4.53�0.64 2.7 2.5 � � �
πþω 0.26�0.07 0.95 0.80 0.28�0.06
πþϕ 6.29�0.20 5.65 5.65 5.68�0.11
ηρþ 1.02�0.34 0.7 2.2 � � �
η0ρþ 1.03�0.11 0.7 0.8 � � �
KþK̄�0 3.82�0.25 3.61 3.60 3.83þ0.14

−0.21
K̄0K�þ 9.80�0.41 11 11 34�16

Dþ
s πþK�0 3.65�0.24 2.52 2.35 2.13�0.36
π0K�þ 1.02�0.07 0.8 1.0 � � �
Kþρ0 2.10�0.10 1.9 2.5 2.5�0.4
K0ρþ 11.47�0.48 9.1 9.6 � � �
ηK�þ 0.64�0.20 0.2 0.2 � � �
η0K�þ 0.33�0.02 0.2 0.2 � � �
Kþω 2.12�0.10 0.6 0.07 0.87�0.25
Kþϕ 0.12�0.02 0.166 0.166 0.182�0.041

TABLE VII. Solutions of the parameters ed;sV;P and the phases
δed;sV;P describing SU(3) breaking effects in the W-exchange
amplitudes for Solution (S6).

edV δedV edP δedP esV δesV esP δesP

(i) 1.50 241 0.18 290 3.44 69 0.29 159
(ii) 1.50 241 0.18 290 3.44 69 0.76 358
(iii) 1.12 55 0.51 336 6.67 243 6.35 347
(iv) 1.12 55 0.51 336 1.30 111 0.68 149
(v) 2.09 53 1.03 356 2.90 222 0.19 341
(vi) 2.09 53 1.03 356 2.90 222 0.81 146
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in Solution (S6), respectively. For concreteness, we take (in
units of 10−6)

ðPEVÞLD ≈ ð0.26� 0.05Þeið224�30Þ∘ ;

ðPEPÞLD ≈ ð1.66� 0.33Þe−ið108�30Þ∘ : ð64Þ

The calculated results are shown in Table IX. In compari-
son, the predictions given in [69] in general are substan-
tially smaller than ours in magnitude. We find several
golden modes for the search of CP violation in the VP
sector:

D0 → πþρ−; KþK�−; Dþ → KþK̄�0; ηρþ;

Dþ
s → πþK�0; π0K�þ: ð65Þ

These modes are “golden” in the sense that they have large
branching fractions and sizable CP asymmetries of order

1 × 10−3. It is interesting to notice that the CP asymmetry
difference defined by

ΔAVP
CP ≡ aCPðKþK�−Þ − aCPðπþρ−Þ; ð66Þ

in analogy to ΔAPP
CP defined in Eq. (1), is predicted to

be ð−1.52� 0.43Þ × 10−3, which is very similar to the
recently observed CP violation in D0 → KþK− and
D0 → πþπ−. It is thus desirable to first search for CP
violation in the aforementioned golden modes.

V. DISCUSSIONS AND CONCLUSIONS

In this analysis, we have revisited two-body hadronic
charmed meson decays to PP and VP final states, where P
and V denote light pseudoscalar and vector mesons,
respectively. Taking flavor SU(3) symmetry as our working
assumption for the Cabibbo-favored decays, we extract

TABLE IX. Same as Table VIII except for the direct CP asymmetries of D → VP decays in units of 10−3, where

aðtreeÞdir denotes CP asymmetry arising from purely tree amplitudes. The superscript (tþ p) denotes tree plus QCD-
penguin amplitudes, (tþ pa) for tree plus weak penguin-annihilation (PE and PA) amplitudes and “tot” for the total
amplitude.

Mode aðtreeÞdir aðtþpÞ
dir aðtþpaÞ

dir aðtotÞdir (this work) aðtotÞdir [69]

D0 πþρ− 0 0.01� 0.00 0.76� 0.22 0.77� 0.22 −0.03
π−ρþ 0 −0.09� 0.01 −0.05� 0.04 −0.14� 0.04 −0.01
π0ρ0 0 −0.03� 0.00 0.40� 0.15 0.37� 0.15 −0.03
KþK�− 0 −0.19� 0.01 −0.56� 0.37 −0.75� 0.37 −0.01
K−K�þ 0 0.11� 0.01 0.05� 0.04 0.15� 0.04 0
K0K̄�0 −0.15� 0.21 −0.15� 0.21 −0.15� 0.21 −0.15� 0.21 −0.7
K̄0K�0 −0.34� 0.16 −0.34� 0.16 −0.34� 0.16 −0.34� 0.16 −0.7
π0ω 0 0.18� 0.04 −2.31� 0.96 −2.14� 0.95 0.02
π0ϕ 0 0 0 0 −0.0002
ηω −0.10� 0.01 −0.08� 0.01 −0.40� 0.10 −0.38� 0.10 −0.1
η0ω 2.40� 0.34 1.91� 0.25 1.42� 0.71 0.96� 0.66 2.2
ηϕ 0 0 0 0 0.003
ηρ0 0.39� 0.05 0.59� 0.08 −0.10� 0.29 0.10� 0.30 1.0
η0ρ0 −0.55� 0.07 −0.51� 0.07 0.12� 0.22 0.16� 0.22 −0.1

Dþ πþρ0 0 1.44� 0.11 0.78� 1.30 2.20� 1.38 0.5
π0ρþ 0 −0.40� 0.03 0.90� 0.37 0.49� 0.37 0.2
πþω 0 −0.13� 0.03 0.84� 2.05 0.74� 2.03 −0.05
πþϕ 0 0 0 0 −0.0001
ηρþ 1.55� 0.26 2.12� 0.36 1.22� 0.65 1.78� 0.69 −0.6
η0ρþ −0.25� 0.05 −0.24� 0.04 0.10� 0.12 0.08� 0.11 0.5
KþK̄�0 −0.14� 0.02 −0.27� 0.02 −0.94� 0.30 −1.06� 0.30 0.2
K̄0K�þ −0.06� 0.01 0.06� 0.01 −0.01� 0.04 0.10� 0.04 0.04

Dþ
s πþK�0 0.14� 0.02 0.24� 0.02 0.94� 0.30 1.05� 0.30 −0.1

π0K�þ 0.10� 0.03 0.04� 0.04 1.21� 0.39 1.15� 0.40 −0.2
Kþρ0 0.10� 0.02 −0.02� 0.02 0.03� 0.07 −0.08� 0.07 0.3
K0ρþ 0.06� 0.01 −0.03� 0.01 0.01� 0.04 −0.08� 0.04 0.3
ηK�þ −1.03� 0.17 −0.33� 0.06 −0.61� 0.47 0.10� 0.48 1.1
η0K�þ 0.25� 0.04 0.24� 0.03 −0.11� 0.14 −0.12� 0.13 −0.5
Kþω −0.09� 0.02 −0.03� 0.02 −0.05� 0.07 0.01� 0.08 −2.3
Kþϕ 0 0 0 0 −0.8
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tree-type flavor amplitudes through a global fit to the latest
experimental data. We then discuss whether and how SU(3)
symmetry breaking factors should be taken into account
when moving on to the singly Cabibbo-suppressed
decay modes. We have made predictions for the branching
fractions as well as the CP asymmetries for these
decay modes where we observe that the importance of
penguin-type amplitudes, if present, often significantly
modify the latter.
In the PP sector, several SU(3) breaking effects are

crucial in explaining the measured branching fractions
of singly Cabibbo-suppressed decay modes, as already
noticed in Ref. [37]. The T and C amplitudes should be
scaled by a factor given under the factorization assumption.
We acknowledge that the E amplitude is governed mainly
by long-distance rescattering effects and, therefore, the
associated symmetry breaking factors need to be obtained
via a fit to the four D0 decays. In particular, one has to
distinguish between two types of W-exchange amplitudes:
Ed and Es, depending upon whether it is dd̄ or ss̄ pair
coming out of the exchange diagram. While jEdj is about
10% larger in magnitude than jEj of the Cabibbo-favored
modes, jEsj has two possibilities: either larger or smaller
than jEj by about 40%, as given in Eq. (16). The above-
mentioned SU(3) symmetry breaking effects are most
notably successful in explaining the large disparity between
BðD0 → πþπ−Þ and BðD0 → KþK−Þ.
To test among different theory models, we have pro-

posed to have a better precision in the measurement of
aCPðD0 → KSKSÞ, which is primarily due to interference
between Ed and Es amplitudes. We also revisit the CP
asymmetry difference between D0 → KþK− and D0 →
πþπ− and find two results: ΔadirCP ¼ ð−1.14� 0.26Þ × 10−3

for Solution I and ð−1.25� 0.25Þ × 10−3 for Solution II.
Both of them are consistent with the latest LHCb result [29]
within 1σ. We have also observed that these predictions
are sensitive to the assumed contribution from weak
penguin annihilation diagrams. Comparisons with a few
other works are made to highlight the distinctive features
of our approach.
In contrast to the PP sector, a global fit to the Cabibbo-

favored modes in the VP sector gives many solutions
with similarly small local minima in χ2 (six of them, as
listed in Table IV, when we restrict ourselves to χ2min < 10),
revealing significant degeneracy in the current data. These
solutions can explain the Cabibbo-favored decay branching
fractions well except for the Dþ

s → K̄0K�þ and ρþη0

modes. For the former, we urge the experimental colleagues
to update the figure. For the latter, an amplitude sum rule
confines its branching fraction in the range (1.6,3.9)% at
the 1σ level.
The above-mentioned solution degeneracy is lifted once

we use them to predict for the singly Cabibbo-suppressed
modes. In the end, we find that only Solutions (S3) and (S6)
which have a common feature that CV and CP are close in
phase in order to simultaneously explain the small BðD0 →
π0ωÞ and large BðD0 → π0ρ0Þ. Another common feature is
that AV and AP are comparable in size and similar in phase,
in order to simultaneously explain the small BðDþ → πþωÞ
and large BðDþ → πþρ0Þ. We note that the recent BESIII
result of BðDþ

s → KþωÞ is a factor of 2 to 3 smaller than
our prediction, and remains an issue to be resolved.
Unlike the PP sector, the singly Cabibbo-suppressed

decay data in the VP sector do not call for an introduction
of SU(3) breaking for the TV;P and CV;P amplitudes
dictated by the factorization assumption. Instead, SU(3)
breaking in EV;P is still required and, analogous to the PP
sector, one should consider different long-distance effects
on diagrams with dd̄ and ss̄ emerging from the W
exchange. A fit to eight singly Cabibbo-suppressed D0

decays shows that the symmetry breaking effects are
often large. We have identified the set with the smallest
SU(3) breaking in the E-type amplitudes (<50%) of
Solution (S6) as our best solution and make predictions
for the branching fractions and CP asymmetries of the
singly Cabibbo-suppressed decays. In particular, we point
out that the D0 → πþρ−, KþK�−, Dþ → KþK̄�0, ηρþ,
and Dþ

s → πþK�0, π0K�þ modes have sufficiently large
branching fractions and CP asymmetries at per mille
level. Interestingly, ΔaVPCP ≡ aCPðKþK�−Þ − aCPðπþρ−Þ≃
ð−1.52� 0.43Þ × 10−3, very similar to the recently
observed CP violation in D0 → KþK− and D0 → πþπ−.
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