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The phenomenon of Bose-Einstein condensation is investigated in the context of the color-glass-
condensate description of the initial state of ultrarelativistic heavy-ion collisions. For the first time, in this
paper, we study the influence of particle-number changing 2 ↔ 3 processes on the transient formation of a
Bose-Einstein condensate within an isotropic system of scalar bosons by including 2 ↔ 3 interactions of
massive bosons with constant and isotropic cross sections, following a Boltzmann equation. The one-
particle distribution function is decomposed in a condensate part and a nonzero momentum part of excited
modes, leading to coupled integro-differential equations for the time evolution of the condensate and phase-
space distribution function, which are then solved numerically. Our simulations converge to the expected
equilibrium state, and only for σ23=σ22 ≪ 1, we find that a Bose-Einstein condensate emerges and decays
within a finite lifetime in contrast to the case where only binary scattering processes are taken into account,
and the condensate is stable due to particle-number conservation. Our calculations demonstrate that Bose-
Einstein condensates in the very early stage of heavy-ion collisions are highly unlikely, if inelastic
collisions are significantly participating in the dynamical gluonic evolution.
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I. INTRODUCTION

A deconfined system of quarks and gluons, under
extreme conditions of high temperatures and high densities,
can be produced and explored in experiments of ultra-
relativistic heavy-ion collisions. The experimental observ-
ables like elliptic-flow measurements strongly suggest an
early collective-fluid behavior of a medium close to local
thermal equilibrium. However, the description of the
prethermalization dynamics of the initial off-equilibrium
many-body system produced in heavy-ion collisions is still
an outstanding problem.
The early stage of heavy-ion collisions is well described

within the color-glass-condensate (CGC) effective field
theory [1,2], where the heavy nuclei behave as a very dense
gluon system with high energetic colored partons acting
as sources of soft dynamical gluon fields. In this picture,
during the collision, the hard partons traverse each other
while the highly occupied soft gluon fields interact via

non-Abelian interactions, resulting in the creation of longi-
tudinal chromo-electric and -magnetic fields, which leads to
the so-called Glasma [2–5] state of high gluon density,
which runs through a very short isotropization stage [6,7].
Given the high particle density which is parametrically
larger compared to the thermal-equilibrium value, the
system would possess a strongly interacting nature due to
coherently enhanced scattering, even though the coupling is
weak. Thus, the possible formation of an off-equilibrium
Bose-Einstein condensate (BEC) has drawn stronger
attention in recent years [8,9]. Similar issues about off-
equilibrium BEC formations arise also in the context
of early Universe reheating after inflation [10,11] and in
systems of cold atoms [11,12].
The formation of a BEC is a fundamental consequence of

quantum statistics, where above a certain critical density or
below a certain critical temperature any more added bosons
must occupy the ground state coherently. The condensation
dynamics, especially far from equilibrium, is an interesting
issue but still under debate. Many studies have been
performed to understand the nonequilibrium dynamics of
BECs formation within either a kinetic approach or clas-
sical field theory, if solely elastic processes are incorporated
[8,13–18].
Inelastic scattering may qualitatively change the picture,

allowing only for the formation of a transient BEC. In
Ref. [19], it is found that inelastic collisions will speed up
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the thermalization in the infrared regime and may catalyze a
faster onset of a BEC. The following study [20] suggested a
complete hindrance of BEC formation for massless gluons
at vanishing momentum. Within the description of a
nonequilibrium massive bosonic OðNÞ theory applying
the two-particle irreducible (2PI) formalism of real-time
Schwinger-Keldysh quantum field theory, it has been
recently shown that the formation of a BEC is potentially
prevented by particle-number changing processes [21].
However, a concrete kinetic simulation for a possible
transient BEC has not been included in these studies.
So far, no kinetic description has been elaborated to

describe the expected transient formation and decay of a
BEC, initially possible in an off-equilibrium system, includ-
ing both elastic and inelastic processes. This paper addresses

the dynamics of the condensation and thermalization of
massive bosons. For this, a coupled set of Boltzmann kinetic
equations for a transient BEC and a phase-space distribution
function is formulated and includes 2 → 2 and particle-
number changing 2 ↔ 3 reactions.

II. KINETIC EQUATIONS

In this work, we focus on an isotropic and homogeneous
system. If the evolution is dominated by two- and
three-body interactions, the corresponding Boltzmann
equation for a phase-space distribution function fðp⃗Þ ¼
dgdN=ð2πÞ3d3xd3p, where dg ¼ 16 is the gluon degen-
eracy factor, taking two spin and eight color states into
account, reads [22]
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Thereby, the indices refer to the momentum phase space
of the participating particles (d⃗i ≔ d3p⃗i2ð2πÞ3Ei) with
Ei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

p
. Consequently, fi denotes the correspond-

ing one-particle distribution function fðt; p⃗iÞ. The collision
integrals take into account quantum statistics via Bose
enhancement factors ðfi=dg þ 1Þ, leading to the correct
long-time equilibrium solution for bosons. The matrix
elements jMj2 are taken as isotropic with a constant cross
section, [23,24]

jM2↔2j2 ¼ 32πsσ22;

jM2→3j2 ¼ 192π3σ23;

jM3→2j2 ¼
1

dg
jM2→3j2 ð2Þ

with s¼ðP1þP2Þ2 denoting the center-momentum energy
squared. Here, we point out that the interesting quantity for
the simulations is the ratio of the elastic and inelastic cross
sections, σ23=σ22, determining the dominating processes
leading to full equilibration. Energy and particle densities
are respectively given by

ϵpartðtÞ ¼
Z

d3p⃗
ð2πÞ3 EfðpÞ and npartðtÞ ¼

Z
d3p⃗
ð2πÞ3 fðpÞ:

The general argument for the emergence of a BEC is that,
if in the case of the existence of a conserved number of
bosons the chemical potential converges to the mass, the
distribution in the infinite-volume limit can no longer
accommodate the particles in the IR regime (p ≪ m)
although

lim
μ→m

fB:E:ðp ≪ mÞ ¼ lim
μ→m

dg
expðm−μ

T Þ − 1
¼ ∞: ð3Þ

In this case, a special treatment is necessary for the zero
mode, by decomposing fðjp⃗jÞ in a continuumlike part
fðjp⃗j > 0Þ for the higher modes and a discrete part
ð2πÞ3ncðtÞδð3Þðp⃗Þ for the zero mode [15,16,18,25].
Given any initial nonequilibrium configuration of the

gluon system, one can always determine via the conserva-
tion laws if condensation has to be expected in the
equilibrium limit by solving

ϵinit ¼ ϵeqðT; μÞ and ninit ¼ neqðT; μÞ ð4Þ
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and if one encounters μ > m as a solution of Eqs. (4),

ϵinit ¼ ϵeqðT; μ ¼ mÞ þ ϵc and

ninit ¼ neqðT; μ ¼ mÞ þ nc; ð5Þ

where ϵc and nc are the energy and particle density of the
condensate. Those considerations only apply for number
conserving scattering processes (2 ↔ 2). However, if one
introduces particle-number changing 2 ↔ 3 scattering
processes, this argument breaks down for massive particles
because in thermal equilibrium necessarily μ ¼ 0, implying
that a stable condensate cannot exist.
By inserting the ansatz fðpÞ¼fjp⃗j>0þð2πÞ3ncðtÞδð3Þðp⃗Þ

into Eq. (1), we obtain the following evolution equation for
the nonzero momentum modes,

ð6Þ

and a rate equation for the condensate density,

ð7Þ

Every possible diagrammatic contribution displayed in
Eqs. (6) and (7) is related to a specific collision integral,
with c (condensate) and g (gluon) denoting the participants
of the scattering process. The numerical factors relate to the
combinatorial weight of the diagrams.
For the isotropic case, the scattering angles can be

integrated out analytically, leaving us with one-, two-,
and three-dimensional collision integrals, which can be
solved numerically. The distribution function is discretized,
with the grid becoming finer in the low-momentum region.
For the differential equations, we employ an efficient high-
order adaptive Runge-Kutta method (Cash-Karp) [26],
while the collision integrals are treated with two different
integration methods. For the one- and two-dimensional
integrals, we use the simple Simpson quadrature method,
and for the three-dimensional integrals, we employ the
VEGAS Monte Carlo integration routine from Ref. [27].

III. INITIAL CONDITION

In the context of the CGC framework, the two most
relevant quantities are given by the saturation scale Qs
and the coupling strength αs, which determines the
initial population density ∝ 1=αs of the initial state. As
an initial nonequilibrium isotropic profile for gluons,
formed at timescales of approximately 1=Qs, one usually
considers a step function of the form finitðpÞ ¼
dgf0Θð1 − p=QsÞ, whereby f0 ∼ 1=αs [8,15,16,18].
However, we use a similar function with a smooth tail
around p ≈Qs. FixingQs at 1 GeV, the only free parameter
left is f0, the step height. Various studies have shown that
from this initialization two scenarios can be observed, if
equilibration dynamics are dominated by binary scattering.
The first is the underpopulated case (f0 < fc), where the
chemical potential never reaches the mass, and the second
as the overpopulated case (f0 > fc), where μ ¼ m and
consequently a BEC must emerge. Our investigation is
focused on particles with masses m ¼ 100ð300; 500Þ MeV
and a cross section of σ22 ¼ 1 mb. These values are close to
expected hard-thermal-loop effective pole masses of
approximately gT [28]. The mass acts as an effective IR
regulator for the scattering or “emissions.”
In nature, the initialization of the condensate is due to

spontaneous fluctuations. Because we choose a determin-
istic approach, Eq. (7) implies _nc ∼ nc, i.e., condensation
does not occur, if nc vanishes initially. To overcome this
issue, we extract effective values for the chemical potential
μeff and the temperature Teff by fitting the IR region
[fIRðp < mÞ] of the distribution function to the Bose-
Einstein distribution function. If now μeff approaches m
(let us name this point in time tonset), we manually insert
a finite but negligibly small seed to the zero mode
ncðt ¼ tonsetÞ ¼ 10−6ninit [15,16,18,25].
In the following simulations, f0 ¼ 0.45ð2.0Þ has been

chosen such that the condensation criterion is generally
fulfilled and vary in detail the ratio σ23=σ22. Our simu-
lations start in time at t ¼ 0 for solving Eqs. (6) and (7).

IV. RESULTS

In Figs. 1 and 2, the main results are depicted and
compared to the known case of the evolution under solely
binary scattering processes for several cross section ratios
σ23=σ22. The typical overpopulated evolution for 2 ↔ 2
interactions consists of the particle cascade toward the soft
modes [Fig. 1(a)] followed by its decrease to the equilib-
rium distributions (e), while generating a condensate until
the equilibrium is reached. The introduction of 2 ↔ 3
kinetics will dramatically change this picture. The first
observation is that the influx of particles toward the soft
modes [Fig. 1(b), σ23=σ22 ¼ 0.0049] is decelerated com-
pared to the previous case but still sufficient to hit the onset
condition somewhat later (Fig. 3), consequentially gener-
ating a condensate. But once the Bose-Einstein shape for
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μ ¼ m is recovered [t ≃ 0.9 fm=c, Figs. 1(f) and 2], we
observe that the condensate decays, contrary to the
case considering only particle-number conserving 2 ↔ 2

processes. For gradually larger values of σ23=σ22, the
characteristic particle transport toward the soft modes is
further damped, and μeff never reaches the onset of

FIG. 2. Time evolution of normalized particle (upper panel)
and condensate (lower panel) densities for particles with m ¼
100 MeV and f0 ¼ 0.45. The bluish curves show runs without
the onset of condensation μeff < m. The scattered dots refer to the
time stamps of Fig. 1, and the black lines mark the individual
expected equilibrium values.

FIG. 3. Time evolution of the effective chemical potential, with
m ¼ 100 MeV at f0 ¼ 0.45. Bluish curves (inelastic) represent
runs where condensation was not feasible, contrary to the greenish
(inelastic) curves and red dashed line (elastic). The black line
relates to the equilibrium condition for 2 ↔ 2 processes (μ ¼ m),
and the dashed line relates to inelastic processes (μ ¼ 0 GeV).

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 1. Differential fraction of the isotropic particle density with respect to the momentum and for four different regimes of the cross
section ratio, only binary scattering (aþ e), elastically dominated scattering (bþ f), balanced scattering (cþ g), and inelastically
dominated (dþ h), with m ¼ 100 MeV at f0 ¼ 0.45 at various times. The rows separate two sequential time periods. In (aþ e) and
(bþ f), a condensate is present, but in (f), it decays. The black dashed lines (bottom row) depict the individual expected equilibrium states.
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condensation. If σ23=σ22 ≳ 0.01, then no condensation into
a BEC is observed.
The situation for the chemical potential μeff can be

seen in Fig. 3. While for σ23 ¼ 0 an equilibrium state with
μeff ¼ m ¼ 0.1 GeV is reached, this is only the case for the
two smallest ratios σ23=σ22 ¼ 0.002 and 0.0049, where μeff
reaches m but finally decreases again to reach the equi-
librium state with μeff ¼ 0, as is expected, if particle
number is not conserved.
In Fig. 4, we show the time evolution of the effective

chemical potential, μeff , in dependence of various masses,
m ¼ 100, 300, and 500 MeV. Please note for these calcu-
lations we employ a strongly overpopulated initial condition
with f0 ¼ 2. Inspecting the calculations, only for σ23=σ22 ¼
0.0078 and for massesm ¼ 300 and 500 MeV, the chemical
potential just touches the mass limit μeff ¼ m, although no
condensation will start. The effect of earlier times for the
onset of BEC formation of heavier particles has also been
found in a similar study with only elastic collisions [29].
Still, taking into account inelastic 2 ↔ 3 collisions, either for
smaller or larger masses, no condensation occurs for
the strongly overpopulated initial condition.Only ifσ23=σ22≲
0.005, a momentary and tiny BEC can develop.

V. CONCLUSIONS

In this paper, we have investigated a complete Bose-
Einstein condensation of gluons within kinetic theory,
explicitly including number changing 2 ↔ 3 processes.
An overpopulated nonequilibrium bosonic system akin to
Glasma-type initial conditions has been considered. The
bosons have been taken with a small but finite mass. The
situation is similar to the scenario of Ref. [21]. The cross
sections are not those of perturbative QCD. On the other
hand, binary scatterings in thermal QCD are regulated by
finite Debye-screening masses of order OðgTÞ. Radiative
perturbative QCD emissions are substantial for describing

the observed jet attenuation and also the significant low-
ering of the shear-viscosity over entropy-density ratio
[30,31]. The latter fact can be effectively rephrased by
significant 2 ↔ 3 isotropic collisions [23].
Our simulations have shown that a BEC may be formed

for some limited time if σ23=σ22 ≪ 1. For present physical
parameters of the masses and overpopulation parameter,
f0, typically a BEC can only appear if σ23 is less than 1%
of σ22. The results suggest that, as expected, particle-
number conserving and changing processes are counter-
acting mechanisms for the formation and destruction of a
BEC. We note that the individual collision integrals scale
with the occupation density of the system like approx-
imately f3 (elastic) and f4 (inelastic), which resembles a
sensitive scenario for possible formation but also immedi-
ate decay of a BEC.
Summarizing, our calculations show that Bose-Einstein

condensates in the very early stage of heavy-ion collisions
are highly unlikely if inelastic collisions are significantly
participating in the dynamical gluonic evolution.
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FIG. 4. Time evolution of the effective chemical potential with respect to the masses at strongly overpopulated initial
condition, f0 ¼ 2, for three different masses [100 (left), 300 (middle), and 500 MeV (right)] and for different values of σ23=σ22.
Solid black lines correspond to the equilibrium condition for 2 ↔ 2 processes, and the dashed lines correspond to the inelastic
processes.

KINETIC APPROACH TO A RELATIVISTIC BEC WITH … PHYS. REV. D 100, 091501 (2019)

091501-5



[1] L. McLerran, in Proceedings of the 38th International
Symposium on Multiparticle Dynamics (ISMD08), edited
by J. Bartels, K. Borras, G. Gustafson, H. Jung, K. Kutak,
S. Levonian, and J. Mnich (Verlag Deutsches Elektronen-
Synchrotron, Hamburg, 2009).

[2] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan,
Annu. Rev. Nucl. Part. Sci. 60, 463 (2010).

[3] H. Weigert, Prog. Part. Nucl. Phys. 55, 461 (2005).
[4] T. Lappi and L. McLerran, Nucl. Phys. A772, 200 (2006).
[5] D. Gelfand, A. Ipp, and D. Müller, Phys. Rev. D 94, 014020

(2016).
[6] A. Kurkela and Y. Zhu, Phys. Rev. Lett. 115, 182301 (2015).
[7] T. Epelbaum and F. Gelis, Phys. Rev. Lett. 111, 232301

(2013).
[8] J.-P. Blaizot, F. Gelis, J.-F. Liao, L. McLerran, and R.

Venugopalan, Nucl. Phys. A873, 68 (2012).
[9] J.-P. Blaizot, F. Gelis, J. Liao, L. McLerran, and R.

Venugopalan, Nucl. Phys. A904–A905, 829c (2013).
[10] T. Prokopec and T. G. Roos, Phys. Rev. D 55, 3768 (1997).
[11] P.-A. Pantel, D. Davesne, S. Chiacchiera, and M. Urban,

Phys. Rev. A 86, 023635 (2012).
[12] R. Lacaze, P. Lalleman, Y. P. Pomeau, and S. R. Rica,

Physica (Amsterdam) 152D–153D, 779 (2001).
[13] J. Berges and D. Sexty, Phys. Rev. Lett. 108, 161601 (2012).
[14] J.-P. Blaizot, J. Liao, and L. McLerran, Nucl. Phys. A920,

58 (2013).
[15] Z. Xu, K. Zhou, P. Zhuang, and C. Greiner, Phys. Rev. Lett.

114, 182301 (2015).

[16] A. Meistrenko, H. van Hees, K. Zhou, and C. Greiner, Phys.
Rev. E 93, 032131 (2016).

[17] T. Epelbaum, F. Gelis, S. Jeon, G. Moore, and B. Wu,
J. High Energy Phys. 09 (2015) 117.

[18] K. Zhou, Z. Xu, P. Zhuang, and C. Greiner, Phys. Rev. D 96,
014020 (2017).

[19] X.-G. Huang and J. Liao, Phys. Rev. D 91, 116012 (2015).
[20] J.-P. Blaizot, J. Liao, and Y. Mehtar-Tani, Nucl. Phys.A961,

37 (2017).
[21] S. Tsutsui, J.-P. Blaizot, and Y. Hatta, Phys. Rev. D 96,

036004 (2017).
[22] S. Weinstock, Phys. Rev. D 73, 025005 (2006).
[23] A. El, F. Lauciello, C. Wesp, Z. Xu, and C. Greiner, Nucl.

Phys. A925, 150 (2014).
[24] Z. Xu and C. Greiner, Phys. Rev. C 71, 064901 (2005).
[25] D. V. Semikoz and I. I. Tkachev, Phys. Rev. Lett. 74, 3093

(1995).
[26] J. R. Cash and A. H. Karp, ACM Trans. Math. Softw. 16,

201 (1990).
[27] G. P. Lepage, J. Comput. Phys. 27, 192 (1978).
[28] A. Peshier, B. Kämpfer, O. P. Pavlenko, and G. Soff, Phys.

Rev. D 54, 2399 (1996).
[29] J.-P. Blaizot, Y. Jiang, and J. Liao, Nucl. Phys. A949, 48

(2016).
[30] Z. Xu, C. Greiner, and H. Stöcker, Phys. Rev. Lett. 101,

082302 (2008).
[31] J. Uphoff, F. Senzel, O. Fochler, C. Wesp, Z. Xu, and C.

Greiner, Phys. Rev. Lett. 114, 112301 (2015).

RICHARD LENKIEWICZ et al. PHYS. REV. D 100, 091501 (2019)

091501-6

https://doi.org/10.1146/annurev.nucl.010909.083629
https://doi.org/10.1016/j.ppnp.2005.01.029
https://doi.org/10.1016/j.nuclphysa.2006.04.001
https://doi.org/10.1103/PhysRevD.94.014020
https://doi.org/10.1103/PhysRevD.94.014020
https://doi.org/10.1103/PhysRevLett.115.182301
https://doi.org/10.1103/PhysRevLett.111.232301
https://doi.org/10.1103/PhysRevLett.111.232301
https://doi.org/10.1016/j.nuclphysa.2011.10.005
https://doi.org/10.1016/j.nuclphysa.2013.02.144
https://doi.org/10.1103/PhysRevD.55.3768
https://doi.org/10.1103/PhysRevA.86.023635
https://doi.org/10.1016/S0167-2789(01)00211-1
https://doi.org/10.1103/PhysRevLett.108.161601
https://doi.org/10.1016/j.nuclphysa.2013.10.010
https://doi.org/10.1016/j.nuclphysa.2013.10.010
https://doi.org/10.1103/PhysRevLett.114.182301
https://doi.org/10.1103/PhysRevLett.114.182301
https://doi.org/10.1103/PhysRevE.93.032131
https://doi.org/10.1103/PhysRevE.93.032131
https://doi.org/10.1007/JHEP09(2015)117
https://doi.org/10.1103/PhysRevD.96.014020
https://doi.org/10.1103/PhysRevD.96.014020
https://doi.org/10.1103/PhysRevD.91.116012
https://doi.org/10.1016/j.nuclphysa.2017.02.003
https://doi.org/10.1016/j.nuclphysa.2017.02.003
https://doi.org/10.1103/PhysRevD.96.036004
https://doi.org/10.1103/PhysRevD.96.036004
https://doi.org/10.1103/PhysRevD.73.025005
https://doi.org/10.1016/j.nuclphysa.2014.02.009
https://doi.org/10.1016/j.nuclphysa.2014.02.009
https://doi.org/10.1103/PhysRevC.71.064901
https://doi.org/10.1103/PhysRevLett.74.3093
https://doi.org/10.1103/PhysRevLett.74.3093
https://doi.org/10.1145/79505.79507
https://doi.org/10.1145/79505.79507
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1103/PhysRevD.54.2399
https://doi.org/10.1103/PhysRevD.54.2399
https://doi.org/10.1016/j.nuclphysa.2015.07.021
https://doi.org/10.1016/j.nuclphysa.2015.07.021
https://doi.org/10.1103/PhysRevLett.101.082302
https://doi.org/10.1103/PhysRevLett.101.082302
https://doi.org/10.1103/PhysRevLett.114.112301

