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We study thermodynamic and transport observables of quantum critical states that arise in the infrared
limit of holographic renormalization group flows. Although these observables are expected to exhibit
quantum critical scaling, there are a number of cases in which their frequency and temperature dependences
are in apparent contradiction with scaling theories. We study two different classes of examples and show in
both cases that the apparent breakdown of scaling is a consequence of the dependence of observables on an
irrelevant deformation of the quantum critical state. By assigning scaling dimensions to the near-horizon
observables, we formulate improved scaling theories that are completely consistent with all explicit
holographic results once the dependence on the dangerously irrelevant coupling is properly accounted for.
In addition to governing thermodynamic and transport phenomena in these states, we show that the
dangerously irrelevant coupling also controls late-time equilibration, which occurs at a rate parametrically
slower than the temperature 1=τeq ≪ T. At very late times, transport is diffusion-dominated, with a
diffusivity that can be written simply in terms of τeq and the butterfly velocity, D ∼ v2Bτeq. We conjecture
that in such cases there exists a long-lived, propagating collective mode with velocity vs, and in this case the
relation D ¼ v2sτeq holds exactly in the limit τeqT ≫ 1.

DOI: 10.1103/PhysRevD.100.086020

I. INTRODUCTION

A. Context

Many interesting systems display quantum phase tran-
sitions: zero temperature transitions between an ordered
and disordered phase when an external parameter (mag-
netic field, pressure, etc.) is varied. The zero temperature

quantum critical point (QCP) at which the transition occurs
has a characteristic imprint on the properties of the nonzero
temperature state in the “quantum critical wedge” emanat-
ing from the QCP [1]. For example, the correlation length
depends on the temperature T as ξ ∼ T−1=z within this
wedge, where z is the dynamical critical exponent of the
QCP. Other time-independent observables will typically
exhibit power law dependencies on temperature, with the
powers fixed by the scaling dimensions of the observables.
While computing the scaling dimensions often requires
intricate higher-loop calculations, once they are known a
simple scaling theory can provide a powerful description of
the universal physics near the QCP.
However, in practice, the usefulness of scaling theories is

reduced when observables depend on irrelevant deforma-
tions of the QCP. While irrelevant couplings vanish at
low energies under RG flow, and so should not affect the
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physics near the QCP, there are circumstances in which
they do (see, for instance, Chapter 18 of [1]). This occurs
when the “small” corrections due to the irrelevant coupling
are actually the leading contribution to an observable.
An intuitive example is the resistivity of a clean QCP
without particle-hole symmetry: this vanishes due to trans-
lational symmetry and thus “small” corrections to it due to
an irrelevant, translational symmetry-breaking deformation
of the QCP will strongly depend upon the nature of the
irrelevant deformation; see e.g., [2].
In the presence of such dangerously irrelevant deforma-

tions, extra information besides the scaling dimension is
needed to determine the dependence near the QCP of
a given observable on temperature and the irrelevant
coupling. In cases where the observable depends on an
irrelevant coupling due to its overlap with a slow operator
(as in the resistivity example of the previous paragraph),
memory matrix methods [3] provide a powerful way to
establish its dependence on temperature and the irrelevant
coupling. Outside of these cases, other insights are needed.
Gauge/gravity duality (holography) [4–6] is a framework

that provides an efficient way to study quantum critical
dynamics in a saddle point formulation. By geometrizing
the RG flow of quantum field theories, such that the energy
scale of the field theory is represented by an emergent
spatial direction, quantum critical states arise as higher
dimensional spacetimes with appropriate scaling sym-
metries. It is relatively straightforward to construct holo-
graphic theories in which such scaling spacetimes arise in
the deep interior of spacetimes that are asymptotically AdS,
i.e., to construct theories that are conformal in the UV,
and that flow in the IR to a variety of quantum critical states
[7]. Turning on a small temperature corresponds to intro-
ducing a black hole horizon within the deep interior of the
spacetime. Observables that are sensitive to the scaling
symmetries of the deep interior (or, at nonzero temper-
atures, to the scaling properties inherited by the horizon)
should then exhibit the scaling behavior characteristic of
quantum criticality.
In addition to the dynamical critical exponent z, trans-

lation-invariant holographic quantum critical states are
characterized by two additional exponents θ and Φ corre-
sponding to the anomalous dimensions of the entropy and
charge densities [8–14] (d is the spatial dimensionality of
the field theory)

½s� ¼ d − θ; ½ρ� ¼ d − θ þΦ: ð1Þ

The authors of [15] used (1) as a starting point and derived a
complete scaling theory of transport observables in quan-
tum critical states of this kind. They showed that a variety
of magnetothermoelectric transport observables (but not
thermodynamic observables) experimentally measured
in cuprate high Tc superconductors could be understood
from this phenomenological theory, assuming that these

observables are insensitive to irrelevant deformations. The
inclusion of nonzero anomalous dimensions is an improve-
ment on previous applications of scaling theories to the
cuprates [16] (see [17,18] for more discussion of the role of
quantum criticality in the cuprates).
Although the scaling hypothesis (1) was directly inspired

by holographic quantum critical states without translational
symmetry [11,12], it seemingly fails to describe the proper-
ties of an even simpler set of holographic examples [7]: the
quantum critical states that arise in the IR of translationally
invariant holographic models at nonzero density. To see this,
we consider the “incoherent dc conductivity”—the finite
component of the dc conductivity—whose scaling at low
temperatures is governed by the scaling properties of the IR
QCP [19]. This temperature dependence disagrees with that
predicted by a scaling theory based on Eq. (1) [19], despite
the fact that it does not appear to depend on any irrelevant
couplings.
The incoherent conductivity quantifies the contribution

of diffusive processes (with no momentum drag) to the low
frequency conductivity and is the most important dissipa-
tive property of the state. It is of importance even beyond
translationally invariant states. First, as it does not overlap
with momentum, it should not acquire any dependence on
irrelevant deformations which weakly break translational
symmetry (unlike other conductivities [2,20,21]). Second,
it gives one of the dominant contributions to the dc
conductivity of non-Galilean-invariant, pinned charge den-
sity wave states [22], which have been experimentally
observed both in underdoped and overdoped cuprates and
which may persist in the strange metallic region found at
optimal doping [23]. It has been computed holographically
in various translation invariant states in [19,24–26], and
more recently in states breaking translations in [27–32].

B. Summary of results

In this work, we will ultimately show that not only the
incoherent dc conductivity, but also its associated suscep-
tibility and diffusivity (which obeys an Einstein relation),
are consistent with a scaling theory based on (1), but
different from that presented in [19]. At low temperatures,
all of these quantities are directly determined by the near-
horizon solution, and so we can explicitly determine their
dependence on temperature and on irrelevant couplings.
While the incoherent dc conductivity always scales with
temperature as predicted by the scaling theory, the asso-
ciated susceptibility and diffusivity do not. However, the
temperature scaling of these latter observables is consistent
with the scaling theory once their dependence on a danger-
ously irrelevant coupling is accounted for. We find that
such a dangerously irrelevant deformation is present for IR
QCPs states with z ¼ 1 and θ ≠ 0. We further show that the
low frequency scaling of the ac (time-dependent) incoher-
ent conductivity at zero temperature is also consistent with
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this scaling theory, once its dependence on the irrelevant
coupling is accounted for.
One of the main differences between our scaling theory

and that of [19] is that we assign dimensions directly to the
incoherent (as opposed to the electrical) conductivity and
susceptibility, as these are the near-horizon observables.
Our results are further evidence that IR scaling theories are
a helpful way to understand the properties of near-horizon
observables in holographic theories, but that not all such
observables obey naive temperature scaling. In other
words, some care must be taken when characterizing the
degree to which near-horizon observables are universal.
The dangerously irrelevant deformation also manifests

itself by sourcing a long-lived mode at low temperatures in
the vicinity of the QCP. This mode has a lifetime τeq, which
schematically takes the form

τeq ∼
1

T

�
TΔg

g

�
2

; ð2Þ

where g is the irrelevant coupling and Δg its dimension.
As by definition of an irrelevant deformation Δg < 0,
the timescale τeq ≫ 1=T as T → 0. This implies that
relativistic hydrodynamics has a significantly restricted
range of validity near the QCP, as the dangerously
irrelevant coupling slows down the return to equilibrium.
This affects the low frequency dependence of the incoher-
ent conductivity, which can display a coherent, Drude-like
peak centered at ω ¼ 0,

σincðωÞ ¼
σdcinc

1 − iωτeq
: ð3Þ

A summary of some of our results for translationally
invariant systems and their physical implications are given
in [33].
We also show that there are analogous results for zero

density quantum critical states whose translational sym-
metry is broken by an irrelevant coupling.1 In particular,
these states support a collective excitation with a para-
metrically long lifetime (2) set by the symmetry-breaking
irrelevant coupling. This long-lived excitation is simply a
spatially uniform perturbation of the system’s total momen-
tum, and we confirm the result (2) for the lifetime by an
independent memory matrix computation. Furthermore, we
show that this excitation leads to a coherent peak in the
thermal conductivity [analogously to (3)]

κ̄ðωÞ ¼ κ̄dc
1 − iωτeq

; ð4Þ

and that a consistent scaling theory can account for both the
ω and T dependence of the thermal conductivity, once the

dependence on the dangerously irrelevant coupling is
properly accounted for.
Irrelevant deformations are also known to play an impor-

tant role in the thermal diffusivityDT near the z ¼ 1 quantum
critical points that we study [34]. More precisely, for a
generic holographic quantum critical state DT , written in
units of the Planckian time τP ¼ ℏ=kBT and the butterfly
velocity vB (an IR velocity that quantifies the spread of
quantum chaos [35,36]), is a simple universal constant.
However, for z ¼ 1 critical states, this universal relation
breaks down as DT becomes sensitive to irrelevant defor-
mations of the critical point. We show that both DT and τeq
are in fact controlled by the same dangerously irrelevant
coupling and therefore that τeq (rather than τP) is the
timescale controlling thermal diffusion in these systems,

DT ¼ 2

dþ 1 − θ
v2Bτeq: ð5Þ

This is consistent with the conjectures of [37,38]. Near
translational invariant quantum critical states, we further-
more show that the usual “incoherent” diffusion constant D
of relativistic hydrodynamics is equal to DT and thus D ∼
v2Bτeq in these cases also.

C. Outlook: diffusivities, IR velocities, and timescales

One of the key results of this work is the identification of
the physical timescale τeq which controls the thermal
diffusivity near z ¼ 1 IR QCPs through Eq. (5). As
anticipated in [37,38], this timescale is the equilibration
timescale of the system, which in our case is much longer
than that set by temperature τ ∼ 1=T; see (2). In both cases
we have studied (translation-invariant and momentum-
relaxing QCPs), this timescale corresponds to the lifetime
of the longest-lived nonhydrodynamic excitation near the
QCP. This differs from previous holographic results, where
the timescale appearing in (5) was found to be τeq ∼ 1=T
[36,39–45].
An interesting future direction would be to consider

both types of symmetry breaking deformations near the
QCP, i.e., phases at nonzero density and with explicitly
broken translations, as in [11]. Such cases would include
examples where there are z ≠ 1 fixed points whose proper-
ties are sensitive to dangerously irrelevant deformations.
Furthermore, we expect that in cases where both deforma-
tions are irrelevant near the QCP, the spectrum will display
two long-lived modes, capturing the slow relaxation of
the incoherent current and of momentum. Accordingly, the
frequency dependence of the ac conductivity would be
sensitive two both timescales. The interplay between them
could pave the way to applications to strange metallic
phases, where scenarios with two timescales controlling
distinct transport processes have long been advocated for
[46,47], including in holographic contexts [48].1These states also have z ¼ 1 and θ ≠ 0.
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It is natural to ask whether the velocity in the relation (5)
should also be interpreted not as the butterfly velocity but
as the velocity of a long-lived collective excitation of the
system. Indeed, we note that for z ¼ 1 holographic systems,
the speed of sound v2s ¼ 2v2B=ðdþ 1 − θÞ ¼ 1=ðd − θÞ is
precisely equal to the speed in (5). We anticipate that the
systemswe study here, inwhich the z ¼ 1 spacetime arises at
the IR endpoint of the RG flow, will also support a collective
mode with this speed and that it is the speed of this mode
that sets the diffusivity.
Actually, there is a case where such a mode has already

been studied in detail: that of a neutral fluid with slowly
relaxing momentum [49]. There it was shown that while
transport is diffusive at late times, at earlier times the
diffusive mode undergoes a collision and turns into a pair
of “sound” modes with a long lifetime and speed vs. The
thermal diffusivity is DT ¼ v2sτeq; see Eq. (2.17) of [49].
Similar relations arise in other hydrodynamic theories

where a gapless mode becomes long lived, for instance, in
the hydrodynamic theories of fluctuating superconductivity
[50] and fluctuating, pinned charge density waves [22]. The
velocities are the superfluid sound velocity and the shear
transverse sound velocity, respectively. The same relations
can also be derived in probe brane scenarios [51–53], states
with generalized global symmetries [54], magnetohydro-
dynamics, and Müller-Israel-Stewart theory [55].
In the more generic cases in which irrelevant deforma-

tions are unimportant and therefore τeq is not parametrically
long, the thermal diffusivity near the QCP is [34]

DT ¼ z
4πðz − 1Þ × v2BT

−1: ð6Þ

In light of the previous discussion, it would be interesting to
understand if this relation can also be refined by quanti-
tatively identifying a lifetime τeq ¼ #T−1 and velocity v2s ¼
#v2B of a collective mode in these systems such that
DT ¼ v2sτeq. Such a relation would indicate that it is not
the butterfly velocity vB that fundamentally sets the thermal
diffusivity, but instead the velocity of a collective mode that
transports energy through the system. It would also hint at a
relation between the velocities of collective modes and the
butterfly velocity near quantum critical points.

II. HOLOGRAPHIC QCPS

We begin by describing the properties of the holographic
QCPs of [7–11,56,57] from a perspective that will prove
very useful for understanding the results in the remainder
of the paper. A reader who is very familiar with these QCPs
can safely skip this section.
The holographic QCPs that we study arise at the IR

endpoint of the RG flows generated by relevant deforma-
tions of UV conformal fixed points. Using gauge/gravity
duality, RG flows of this kind can be captured by the
gravitational Einstein-Maxwell-scalar(s) action

SUV ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − ZðϕÞ

4
F2 − VðϕÞ

−
1

2
YðϕÞ

Xd
I¼1

ð∂ψ IÞ2
�
: ð7Þ

The relevant deformations that can be captured by this
action include those that break translational symmetry
and those that generate a nonzero density. The classical
equations of motion of this action can be found in
Appendix. We are interested in solutions that near the
boundary (u → ∞) have an asymptotic metric that is
AdSdþ2 with unit radius

ds2 → u2ð−dt2 þ dx⃗2dÞ þ
du2

u2
; ð8Þ

together with the near-boundary behavior for the potentials

VðϕÞ → −dðdþ 1Þ þm2ϕ2=2; YðϕÞ → 1;

ZðϕÞ → 1: ð9Þ

We will always pick an ansatz for the scalar fields ψ I
such that [58,59]

ψ I ¼ mδIjxj; ð10Þ

where xj are the boundary spatial coordinates. This means
that their equations of motion are automatically satisfied,
assuming (as we will throughout this work) that the other
fields carry only radial dependence in the background black
hole solution. Since ψ I depend on the spatial coordinates
xi, they break translational symmetry. With our choice of
UV behavior YðϕÞ → 1, this breaking is always explicit in
the dual field theory. The action for ψ I is invariant under a
shift symmetry ψ I ↦ ψ I þ cI, which can be combined with
ordinary translations xi → xi þ ai to preserve a diagonal
subgroup [60]. This is the underlying reason why the
spatial dependence of the ψ I’s is consistent with a radial
ansatz for the background fields. In what follows, we will
not distinguish between uppercase and lowercase Latin
indices any longer.
By choosing the scalar couplings VðϕÞ, YðϕÞ, and ZðϕÞ

appropriately, we can find gravitational solutions which
are dual to field theories that are governed by IR quantum
critical points. The metric of these solutions depart from (8)
away from the boundary and in the deep interior become
scale covariant (at zero temperature). Solutions of this kind
arise when the scalar field ϕ has a runaway behavior in the
deep interior “IR region,”where the scalar couplings can be
approximated by exponentials

Yðϕ → ∞Þ → Y0eλϕ; Vðϕ → ∞Þ → V0e−δϕ;

Zðϕ → ∞Þ → Z0eγϕ; ð11Þ
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where λ, δ, γ are real numbers that will be constrained
shortly. Interpreting the radial coordinate as the energy
scale of the dual field theory in the usual way, we expect the
IR properties of the dual quantum field theory to be
governed by this IR region of the spacetime. The effective
action governing the IR region is

SIR ¼
Z

ddþ2x
ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 − V0e−δϕ −

Z0eγϕ

4
F2

−
1

2
Y0eλϕ

Xd
I¼1

ð∂ψ IÞ2
�
: ð12Þ

As is now well understood [10,11,56], the various terms in
the IR effective action are on different footings. The first
three terms proportional to the Ricci curvature, the scalar
kinetic term, and the scalar potential directly support the IR
solution dual to the QCP and their effects cannot be
neglected [7,61] in order to obtain consistent solutions.
The last two terms, proportional to F2 and ð∂ψÞ2, para-
metrize two deformations of the QCP. Depending on the
values of the exponents γ and λ, these deformations will be
either marginal or irrelevant. They capture the effects of
nonzero density (particle-hole symmetry breaking), and of
translation symmetry breaking, near the QCP respectively.
When they are marginal, they directly source the IR
solution. When they are irrelevant, they source corrections
to the IR solution that grow toward the boundary of the IR
region of the spacetime.
We will now describe the IR solutions in greater detail.

The action (12) admits zero temperature scaling solutions
[11,57], which are naturally parametrized by two scaling
exponents: fz; θg [8,9,11]. These solutions (valid deep in
the interior of the bulk) are dual to an IR quantum critical
point and have the form

ds2 ¼
�
r
L

�
2θd
�
−
L2z

r2z
L2
t dt2 þ

L̃2dr2

r2
þ L2

r2
L2
xdx⃗2

�
;

ϕ ¼ κ ln
�
r
L

�
; κ2 ¼ 2

d
ðd − θÞðdz − d − θÞ;

κδ ¼ 2
θ

d
: ð13Þ

The regime of the full geometry where this IR solution is
valid is controlled by the scale L: for θ < d (θ > d), it is
valid for r ≫ L (r ≪ L) assuming that the asymptotically
AdS boundary is at r → 0 (r → ∞). The r coordinate does
not extend all the way to the AdS boundary and so is
distinct from the radial coordinate u that appears in (8).
The values of the scales Lt and Lx will be determined in a
nontrivial way by the flow to the asymptotically AdS
solution (8), and so we keep them as free parameters. Their
dependence on the UV sources depends on the specific
RG flow considered.

Our choice of coordinates makes it manifest that the
zero temperature metric transforms covariantly under the
scaling

t → Λzt; ðr; x⃗Þ → Λðr; x⃗Þ; ð14Þ

and therefore that z is the dynamical critical exponent of
the critical point. The zero temperature metric is only
covariant (rather than invariant) under this transformation
when there is a nonzero hyperscaling violation exponent θ.
Hyperscaling violation is directly related to the IR running
of the scalar ϕ, and to the fact that the scale L has not
decoupled from the IR theory. θ determines the effective
spatial dimensionality d − θ of the IR quantum critical
state. This statement can be made precise by embedding
such solutions in higher- or lower-dimensional spacetimes
[8,62–64].
We have not yet given an expression for the value of the

dynamical exponent z. To do so, we need to consider the
deformations of the QCP due to the gauge fieldF and scalar
field ψ terms in the IR effective action (12). For simplicity,
we will turn on one or the other but not both together. That
is, we consider either translation-invariant, nonzero density
states, or translation-breaking, zero density states.

A. Marginal deformation (z ≠ 1)

The first possibility is that the deformation of interest is
marginal. That is, it does not give rise to terms with
different powers of r in the solution (13). For the nonzero
density cases, this implies

A¼A0

�
r
L

�
θ−d−z

Ltdt; A2
0¼

2ðz−1Þ
Z0ðdþ z−θÞ ;

κγ¼ 2d−2ðd−1Þθ
d
; L̃2¼ðdþ z−θÞðd−1þ z−θÞ

−V0

;

ð15Þ

while for the translation-breaking cases, it implies

κλ ¼ −2; L2
x ¼

ðdz − θÞm2

−2ðz − 1ÞV0

;

L̃2 ¼ ðdz − θÞðdþ z − θÞ
−V0

: ð16Þ

In both cases, the IR metric enjoys nonrelativistic scaling
z ≠ 1. The relations between ðδ; γ; λÞ and ðz; θÞ can be
inverted to express z and θ in terms of parameters in the
effective action. Thus, the scaling exponents of the IR QCP
are completely determined by specifying the gravitational
action.
When a small temperature T is turned on, the solutions

with marginal deformations change: there is a horizon at
r ¼ rh and
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ds2 ¼
�
r
L

�
2θd
�
−
L2zf
r2z

L2
t dt2 þ

L̃2dr2

r2f
þ L2

r2
L2
xdx⃗2

�
;

f ¼ 1 −
�
r
rh

�
dþz−θ

: ð17Þ

These IR solutions are dual to the thermal state of the
quantum critical theory, with T related to rh by (23) below.
Even at nonzero temperature, there is a region L ≪ r ≪

rhwhere themetric looks like the zero temperature form (13).
One simple example of this is the AdS-Reissner-Nordström
solution, which is characterized by an AdS2 × R2 zero
temperature IRgeometry. TheAdS2 can be placed at nonzero
temperature, which describes small departures from the
zero temperature state.
Imposing the null energy condition and positivity of

the low temperature heat capacity results in the following
restrictions on the allowed parameter space of IR solutions

d − θ

z
≥ 0; ðd − θÞðdz − d − θÞ ≥ 0;

ðz − 1Þðdþ z − θÞ ≥ 0: ð18Þ

B. Irrelevant deformation (z= 1)

The second possibility we would like to consider is that
the deformation of interest is irrelevant. For these cases, the
T ¼ 0 IR solution has z ¼ 1 and the deformation sources
power law (in r) corrections to this solution that grow toward
the edge of the IR region. This means that the IR solution is
like a “conformal field theory (CFT)” in d − θ spatial
dimensions, in the presence of an irrelevant deformation
parametrized by a coupling g ¼ fA0; mg. As dilatations are
broken by θ ≠ 0, it is not an actual CFT, but it can be
endowed with a generalized conformal structure in the sense
of [62,63]. The full solution is obtained by solving for the
backreaction of the irrelevant field(s) fA;ψ ig order-by-order
in g. The leading corrections take the form [where the
subscript g ¼ 0 means (13) with z ¼ 1]

ds2 ¼ ds2g¼0

�
1þ #g2

�
r
L

�
2Δg þOðr4ΔgÞ

�
;

ϕ ¼ ϕg¼0 þ #g2
�
r
L

�
2Δg þOðr4ΔgÞ: ð19Þ

The corrections are quadratic in the irrelevant coupling as the
corresponding fields appear quadratically in the scalar and
Einstein equations.
For nonzero density cases, (19) is supplemented by

At¼LtA0

�
r
L

�
θ−d−1−2Δg

�
1þ#A2

0

�
r
L

�
2ΔA0 þOðr4ΔA0 Þ

�
;

2ΔA0
¼2ðd−θÞ−κγþ2

d
θ: ð20Þ

For the translational symmetry breaking cases, (19) is
supplemented by

2Δm ¼ 2þ κλ: ð21Þ
The critical states (13) with z ¼ 1 can also be placed at a

small, nonzero temperature by introducing an event horizon
at r ¼ rh. Close to the horizon, the metric will have the
form (17) with z ¼ 1. The zero temperature form (19) will
be recovered in the range L ≪ r ≪ rh.
Since z ¼ 1, the inequalities (18) enforce that θ < 0.

This in turn implies that the expansions in (19) can only
make sense if Δg < 0 (the IR is located at r → þ∞ in these
coordinates). This is precisely what we expect for the
dimension of an irrelevant coupling. The irrelevant cou-
pling g breaks the z ¼ 1 symmetry of the QCP, in tandem
with breaking either the particle-hole symmetry or the
translational symmetry of the QCP. g also breaks Lorentz
boost symmetry in both cases. The dimension of the
irrelevant coupling is primarily determined by the value
of γ or λ, respectively.

C. More on irrelevant deformations of
holographic QCPs

We will now characterize more precisely the scaling
properties of the z ¼ 1 IR solutions by relating ΔA0

and Δm
(defined above) to the dimensions of irrelevant couplings.
We will begin with the case where the irrelevant deforma-
tion breaks particle-hole symmetry (At ≠ 0). At has two
independent modes: in addition to the A0 mode that scales
as rθ−d−1þ2ΔA0 , there is a constant r0 mode that is allowed
by U(1) gauge invariance. As usual in holographic theories,
we would like to interpret one of these modes as the source
of an operator that is irrelevant near the IR critical point,
and the other as the corresponding expectation value [4–6].
From their radial dependence, we see that the difference
between the IR scaling dimension of the source and the
expectation value is θ − d − 1þ 2ΔA0

. Combining this
with the fact that their dimensions should sum to
dþ 1 − θ, due to the effective dimensionality of the IR
critical point, we are left with two possible values for the
dimensionality of the operator. We choose the positive
value Δirr ¼ dþ 1 − θ − ΔA0

> 0, and so the source has
dimension ΔA0

< 0. Note that since Δirr > dþ 1 − θ, this
is an irrelevant deformation of the IR critical point.
We interpret the mode which grows fastest near the

boundary of the IR solution as the source, and hence A0

is the source for an irrelevant deformation of the IR critical
point with dimension ΔA0

given by (20). This irrelevant
source produces a deformation of the metric which van-
ishes in the deep IR, as expected. This is in contrast to the
constant mode (the expectation value), which would back-
react on themetric in a way that grows in the IR and destroys
the critical point, consistent with the discussion in [65].
For the case where the irrelevant operator breaks transla-

tional symmetry, we can similarly identifymwith the source
of an irrelevant operator in the IR, with the following scaling
dimensions for m and for the corresponding IR operator
(obtained by a similar argument to above)
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Δm ¼ 1þ κλ

2
< 0;

Δirr ¼ dþ 1 − θ − ðΔm − 1Þ > dþ 2 − θ: ð22Þ

There is a shift in the dimension of Δirr (i.e., it does not
obey the naive equality Δm þ Δirr ¼ dþ 1 − θ) due to the
spatial dependence of the source at the IR boundary. This is
analogous to the Harris criterion for randomly disordered
sources [66].
From (15) and (16), we see that for the z ≠ 1 QCPs,

g ¼ fA0; mg is a marginal coupling.

D. IR scaling of thermodynamic observables

Physically, we expect that the scaling dimension of the
irrelevant coupling will control the IR behavior of certain
observables. In this section, we specifically comment on
thermodynamic observables. The remainder of the paper
will in large part be devoted to the study of the impact of
these irrelevant deformations on transport.
The scaling properties of the solutions we have just

described result in many field theory observables exhibiting
scaling behavior at low temperatures and frequencies.
This scaling behavior can be understood in terms of the
anomalous IR scaling dimensions of entropy and charge
density in these solutions [8–12].
Once the values of V0 and Z0 in the IR action have been

fixed, the zero temperature IR solution is characterized by
the parameters Lt, Lx, and L. Changing the values of these
parameters does not induce any RG flow (i.e., any new
radial dependence in the IR solution) and so they are
marginal. There are two important deformations that do
change the radial dependence of the IR solution. The first is
turning on rh, i.e., turning on a nonzero temperature.
The second is turning on the coupling g ¼ fA0; mg, which
for z ¼ 1 solutions is an irrelevant deformation that induces
an RG flow.2

We will now assign IR scaling dimensions by determin-
ing how quantities depend on these two IR scales—the
temperature T and the irrelevant coupling g. This is
straightforward for quantities which can be expressed
explicitly in terms of the near-horizon gravitational sol-
ution, as their T and g dependence is then manifest. The
Hawking temperature is related to the horizon radius by

T ¼ ðdþ z − θÞ
4πL̃

Lt

�
rh
L

�
−z

⇒ ½T� ¼ z; ð23Þ

in our conventions where ½r� ¼ −1. This result is consistent
with interpreting T as an inverse time, where ½t� ¼ −z in
line with the scaling transformation (14). The entropy
density s and charge density ρ (for the nonzero density

states) can be calculated from the area of the horizon and
the electric flux emitted by the horizon, and are given by

s ¼ 4πLd
x

�
rh
L

�
θ−d

; ρ ¼ Ld
x
ðθ − d − z − 2ΔgÞZ0

L̃
A0:

ð24Þ

We can therefore assign them the dimensions

½s� ¼ d − θ; ½ρ� ¼ ΔA0
; ð25Þ

using Eq. (23).
It is also convenient to define an anomalous scaling

dimension Φ for the charge density [12,15] via3

½ρ� ¼ ΔA0
¼ d − θ þΦ: ð26Þ

We observe that even for the marginal case, Φ ¼ θ − d is
nontrivial and implies ½ρ� ¼ 0. We will see later that this
scaling assignment correctly reproduces the explicit low T
or low frequency scaling of transport observables.
We emphasize that these scaling dimensions do not tell

us anything about how ρ and s depend on the sources
which deform the UV CFT, such as the chemical potential
μ. At zero temperature, the UV sources generate an RG
flow to the IR solution, where the values of all of the
parameters in the IR solution A0, Lt, Lx, etc. will depend
nontrivially on the UV sources. Access to the entire RG
flow is needed to reconstruct this dependence. But the
dependence of ρ and s on rh does tell us their T dependence
at low T, as the other parameters in the IR solution A0, Lt,
Lx, etc. are T-independent in the limit T → 0 (otherwise the
zero temperature IR solution would not exist).
For the z ≠ 1 solutions, ½A0� ¼ 0 (i.e., this coupling is

marginal) and so the scaling dimensions of s and ρ indicate
their dependence on the only dimensionful scale T,4

s ∼ Tðd−θÞ=z, and ρ ∼ T0. For z ¼ 1 solutions, the total
scaling dimensions of s and ρ tell us the combined
dependence on T and the dimensionful irrelevant coupling
A0. The information about how they separately depend on
A0 and on T is not captured by the total dimension. More
information—the explicit expressions (24)—is needed to
determine this separate dependence, s ∼ ðA0Þ0Td−θ and
ρ ∼ A0T0.
As we have emphasized, in general the relation between

the UV sources and the IR sources of the theory is not
simple. However, the fact that the charge density ρ (24) is
directly proportional to A0 at zero temperature means that it

2There are additional irrelevant deformations, but since they do
not affect the low temperature and low frequency behavior of the
observables of interest in this work, we will not discuss them.

3Note that here we have assigned a different value to Φ for
z ≠ 1 solutions than in [19].

4In fact, as A0 can be replaced with Z0 by Eq. (15) for these
solutions, it is not very meaningful to ask how IR observables
depend on A0.
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can sometimes be helpful to think of A0 as an “IR charge
density.”

III. TRANSLATION INVARIANT CASE

We expect the IR solutions described above to control
the low energy properties of the field theory states dual to
the complete, asymptotically AdS gravitational solutions.
We are now going to explore a variety of dynamical
response properties of the field theory states and explain
how their dependence on temperature T and frequency ω
(at low T and ω) can be understood in terms of the IR QCPs
we have just described. Wewill focus on the linear response
dynamics of charge density and energy density, which are
responsible for the transport properties of the system.
In this section, we will study cases with translational
symmetry but nonzero density (m ¼ 0, At ≠ 0).

A. Incoherent diffusion in linearized hydrodynamics

We begin by describing the theory of hydrodynamics
that we expect to govern the transport properties of our field
theory over sufficiently long timescales and distances. We
will mainly focus on this theory’s “incoherent” diffusive
mode, which characterizes transport in the absence of
momentum flow. In later subsections, we will show how
the diffusivity of this mode, as well as the corresponding
conductivity and susceptibility, is governed at low T and ω
by the IR QCP. This is in contrast to processes involving
momentum flow, which are sensitive to the UV transla-
tional symmetry.

1. Excitations in linearized hydrodynamics

Linearized hydrodynamics is the theory that describes
the transport of small perturbations of charge and heat over
long distance and timescales in a system which is locally in
thermal equilibrium. We will assume that our system has
both translational and rotational symmetry, but no particu-
lar form of boost symmetry [6].5

The hydrodynamic variables are the long wavelength
perturbations of the entropy density δs, charge density δρ,
and momentum density πi. In the absence of external
sources, the linearized conservation equations are

∂tδsþ ∂ · ðδq=TÞ ¼ 0;

∂tδρþ ∂ · δj ¼ 0;

∂tδπ
i þ ∂jδτ

ji ¼ 0: ð27Þ

The perturbations ðδs; δρ; δπiÞ are sourced by temperature,
chemical potential, and velocity perturbations ðδT; δμ; δviÞ.
The static susceptibility matrix χ relating these quantities
has the form

0
B@

δρ

δs

δπi

1
CA ¼

0
B@

χρρ χρs 0

χρs χss 0

0 0 χππ

1
CA
0
B@

δμ

δT

δvi

1
CA: ð28Þ

In d spatial dimensions, and in the absence of external
sources, the constitutive relations for the charge, heat,
and momentum currents are (neglecting terms of order ∂2

and higher)

δji ¼ ρδvi − σ0∂iδμ − α0∂iδT; ð29Þ

δqi ¼ sTδvi − Tα0∂iδμ − κ̄0∂iδT; ð30Þ

δτij ¼ δijδp − η

�
∂iδvj þ ∂jδvi −

2

d
δijð∂ · δvÞ

�
− ζð∂ · δvÞδij; ð31Þ

where δp ¼ sδT þ ρδμ is the pressure fluctuation, η and ζ
are the shear and bulk viscosities, and σ0, α0, and κ̄0 are
further dissipative transport coefficients related to the
thermoelectric conductivities σ, α, κ̄ by

σðωÞ ¼ ρ2

χππ

i
ω
þ σ0; αðωÞ ¼ sρ

χππ

i
ω
þ α0;

κ̄ðωÞ ¼ Ts2

χππ

i
ω
þ κ̄0: ð32Þ

The divergent low frequency parts of the thermoelectric
conductivities are a consequence of the nonzero static
susceptibilities between the thermoelectric currents and
the conserved momentum [2]

χπj ¼ ρ; χπq ¼ sT: ð33Þ

The longitudinal excitations of this theory consist of a
diffusive excitation with dispersion relation

ωD¼−iDk2; D¼ s2T2σ0þ κ̄0Tρ2−2ρsT2α0
T2ðs2χρρþρ2χss−2sρχρsÞ

; ð34Þ

as well as two sound modes with dispersion relations

ω� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2χss þ s2χρρ − 2sρχsρ

χππðχssχρρ − χ2sρÞ

s
k −

iΓ
2
k2;

Γ ¼ 2ηð1 − 1
dÞ þ ζ

χππ
−Dþ σ0χss − 2α0χρs þ κ̄0

T χρρ
χssχρρ − χ2sρ

: ð35Þ

The sound waves are “coherent” [68] excitations that trans-
port perturbations of both long-lived momentum density
δπi and of pressure δp through the system. The importance
of pressure fluctuations in the transport of momentum
density is obvious from the form of the stress tensor (31).

5A related analysis in a different frame has recently appeared
in [67].
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In contrast to this, the diffusive mode which is the focus
of this paper is an “incoherent” excitation of the system, in
that it does not transport long-lived momentum density.
We can define perturbations of an “incoherent” density
δρinc,

6

δρinc ≡ s2Tδðρ=sÞ ¼ Tðsδρ − ρδsÞ; ð36Þ

which obeys the conservation equation

∂tδρinc þ ∂ · δjinc ¼ 0; δjinc ≡ sTδj − ρδq: ð37Þ

The incoherent perturbations δρinc and δjinc are special
because they do not overlap with fluctuations in the
pressure and momentum density, i.e., their static suscep-
tibilities vanish

χρincp ¼ 0; χjincπ ¼ 0: ð38Þ

The consequence of this is that to leading order in the
hydrodynamic limit7 the retarded Green’s function of δρinc
has the simple diffusive form

GR
ρincρincðω; kÞ ¼

−k2ðT2s2σ0 − 2ρsT2α0 þ ρ2Tκ̄0Þ
−iωþDk2

: ð39Þ

It does not have poles corresponding to the propagation of
the sound waves (35).8 The diffusivity D in Eq. (34) obeys
the Einstein relation

D ¼ σinc
χinc

; ð40Þ

where σinc and χinc are the dc conductivity and static
susceptibility of δρinc,

σinc≡ lim
ω→0

lim
k→0

i
ω
GR

jincjinc
ðω;kÞ¼ lim

ω→0
lim
k→0

i
ω

ω2

k2
GR

ρincρincðω;kÞ
¼T2s2σ0−2ρsT2α0þρ2Tκ̄0;

χinc≡−lim
k→0

lim
ω→0

GR
ρincρincðω;kÞ¼T2ðρ2χss−2sρχρsþ s2χρρÞ:

ð41Þ

Note that in contrast to the dc conductivities of charge
and heat individually, the dc conductivity of δρinc is finite.
This is because δjinc has no overlap with the conserved
momentum [19]. It is this independence from momentum
conservation that makes it possible for σinc to be controlled

by the underlying IR QCP (as we will show in the next
subsection), unlike the electrical conductivity. Also note
that while the values of the incoherent conductivity and
susceptibility depend on the overall normalization of δρinc,
the value of the diffusivity D does not.

2. The incoherent susceptibility

We have identified a particular linear combination of δρ
and δs (that given by δρinc) as the object that diffuses. It is
convenient to change variables from ðδρ; δsÞ to the pair
ðδρinc; δpÞwhich are orthogonal in the sense that χρincp ¼ 0.
The sources for these variables are

δsinc ¼
1

Tðρ2χss þ s2χρρ − 2sρχsρÞ
× ððsχρs − ρχssÞδT þ ðsχρρ − ρχρsÞδμÞ;

δsp ¼ χssχρρ − χ2sρ
ρ2χss þ s2χρρ − 2sρχsρ

ðsδT þ ρδμÞ; ð42Þ

respectively. The source for the incoherent current jinc is
Einc ¼ −∂δsinc. In the ðδρinc; δpÞ basis, the susceptibility
matrix diagonalizes and its second entry reads

χpp ≡ δp
δsp

����
δsinc¼0

¼ ðρ2χss − 2sρχρs þ s2χρρÞ
ðχρρχss − χ2ρsÞ

: ð43Þ

By turning on the sources δT and δμ such that δsp ¼ 0, only
perturbations in the incoherent density δρinc will be sourced.
This allows us to write the incoherent susceptibility as

χinc¼
�
δρinc
δsinc

�
δsp¼0

¼ sT

�
δρinc
δμ

�
δsp¼0

¼−ρT
�
δρinc
δT

�
δsp¼0

:

ð44Þ

Another useful expression for χinc can be found by using
thermodynamic identities on the expression in Eq. (41)

χinc ¼ T2ðρ2χss − 2sρχρs þ s2χρρÞ

¼ T2ρ2
�∂s
∂T

�
μ

þ T2s

�
s

�∂ρ
∂μ

�
T
− 2ρ

�∂s
∂μ

�
T

�

¼ Tρ2cρ þ T2

�∂ρ
∂μ

�
T

�
s − ρ

�∂s
∂ρ

�
T

�
2

; ð45Þ

where cρ ¼ Tð∂s=∂TÞρ is the specific heat at fixed charge
density. This indicates that, in general, we need to know
numerous thermodynamic properties of the system to
determine χinc. However, in certain limits, χinc is dominated
by one of the terms in the expression above. The limit of
interest to us is that of a nonzero density state at low
temperature. We assume that, in this low temperature limit,
the charge susceptibility is finite while the entropy density

6We have adopted a slightly different normalization than in
[19], which proves mode convenient as it removes some depen-
dence on microscopic parameters in our later analysis.

7Explicitly, we let ω → λ2ω, k → λk and expand the Green’s
function at leading order in λ.

8i.e., the full Green’s function does not have sound poles when
expanded in the limit λ → 0 with ω → λω, k → λk.
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is a power law s ∼ Tα with α ≥ 0. These conditions will be
valid in all of the holographic theories we examine later.
For α ≠ 0, the dominant term at low temperatures is then

χincðT → 0Þ → Tρ2cρ; ð46Þ

and so the incoherent susceptibility is simply proportional
to the heat capacity at constant charge density. It is this
identity which will allow us to show that χinc is governed by
the IR QCP in the holographic theories described in the
previous section. The case α ¼ 0 is more subtle, but for the
type of holographic theories we are ultimately concerned
with the results of [40] can be used to show that (46) is valid
even in this case.
We can also evaluate the susceptibility of pressure at low

temperatures to find

χppðT → 0Þ → ρ2

χρρ
: ð47Þ

In holographic theories at nonzero density, the chemical
potential μ of the theory is not a near-horizon property,
but depends on knowledge of the entire spacetime. As a
consequence, the low temperature static charge suscep-
tibility χρρ ¼ ð∂ρ=∂μÞT at low temperature is not an IR
property of these theories.
By diagonalizing the susceptibility matrix in the basis

ðδρinc; δpÞ, we have separated its components into IR- and
UV-dominated pieces.

3. Linearized hydrodynamics in an electric field

The incoherent conductivity also controls the dissipative
dynamics of another set of physical processes in this system.
The hydrodynamic equations (27)–(31) are valid in the

absence of external sources. In the presence of a small
electric field δEi, the momentum conservation equation
should be modified to

∂tδπ
i þ ∂jδτ

ji ¼ ρδEi; ð48Þ

while ∂iδμ should be replaced with ∂iδμ − δEi in the
constitutive relations (29)–(31). The presence of an external
electric field affects the measured conductivities and
diffusivities. One experimentally relevant configuration is
when there is an electric field such that no current flows
(open-circuit boundary conditions). The open circuit dc
thermal conductivity is simply related to the incoherent
conductivity by

κ ≡ −
δjs
∂δT

����
δj¼0

¼ σinc
Tρ2

: ð49Þ

Similarly, under the condition ∂ · δj ¼ 0 (i.e., charge
perturbations are static ∂tδρ ¼ 0), there is a hydrodynamic
diffusion equation

∂t

�
δT þ χππðρα0 − sσ0Þ

ρ2ð∂s=∂TÞρ ∂ · δv

�

¼ DT∂2

�
δT þ χππðρα0 − sσ0Þ

ρ2ð∂s=∂TÞρ ∂ · δv

�
þOð∂3Þ ð50Þ

with a “thermal” diffusivity

DT ≡ κ

cρ
; ð51Þ

which is simply related to σinc by Eq. (49).
In the low temperature limit described above, D there-

fore coincides with DT ,

DT ¼ κ

cρ
¼ σinc

Tρ2cρ
¼ lim

T→0

σinc
χinc

¼ lim
T→0

D; ð52Þ

due to the relation (46).

4. Lorentz and conformally invariant systems

A special case of the previous discussion are systems
with microscopic Lorentz symmetry, which is the case for
all of the holographic theories we will discuss in the next
section. In the Lorentz case (which applies to asymptoti-
cally AdS holographic theories amongst others), this
symmetry results in the relations (e.g., [69])

κ̄0 ¼ −μα0 ¼
μ2

T
σ0 → σinc ¼ ðsT þ μρÞ2σ0: ð53Þ

As Lorentz symmetry relates the electric and heat currents
to the momentum density by

δqi ¼ δπi − μδji; ð54Þ

the incoherent current may be written

δjinc ¼ ðsT þ μρÞδj − ρδπ; ð55Þ

which is proportional to the definition used in [19].
Moreover, the momentum static susceptibility becomes

πi ¼ ðϵþ pÞδvi þ… ⇒ χππ ¼ ϵþ p: ð56Þ

Additional simplifications arise if conformal symmetry
is not explicitly broken in the microscopic theory. In that
case, we can write the pressure as

p ¼ Tdþ1f

�
T
μ

�
; ð57Þ

and therefore
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ϵ ¼ dTdþ1f ¼ dp; ρ ¼ −
Tdþ2

μ2
f0;

s ¼ ðdþ 1ÞTdf þ Tdþ1

μ
f0: ð58Þ

From this, we can derive the static susceptibilities

χϵϵ ¼ dðϵþ pÞ; χϵρ ¼ dρ; ð59Þ

which may be combined to obtain an expression for χinc,

χinc ¼ χρρ −
dρ2

ϵþ p
: ð60Þ

Note that χincðT → 0Þ → 0, consistently with (46), as ϵþ
p ¼ μρ and ρ ¼ ρ0μ

d at T ¼ 0.

B. Incoherent transport in holographic
quantum critical metals

We now move on to analyze the transport properties of
the translationally invariant systems governed by the IR
QCPs of Sec. II. We start by calculating the optical
conductivity at low frequencies ω ≪ T and from this we
extract the timescale τeq beyond which the system is
governed by the hydrodynamic theory we have just
presented. For the cases with a z ¼ 1 IR QCP, this time-
scale is parametrically longer than the inverse temperature
τeq ≫ T−1 and is directly controlled by the dangerously
irrelevant deformation of the critical point that we empha-
sized in Sec. II B.
At suitably late times, the hydrodynamic theory will still

apply and we go on to calculate the values of certain
thermodynamic and transport parameters in this theory
when the system is near the IR QCP. Specifically, we
evaluate the dc conductivity, static susceptibility, and
diffusivity of the “incoherent” charge which does not
source momentum flow, and show that the diffusivity
can be naturally expressed in units of the butterfly velocity
and τeq. We emphasize the difference in temperature scaling
of these quantities depending on whether the QCP has
z ¼ 1 or z ≠ 1, due to the importance of irrelevant
deformations in the former case.
Finally, we discuss the low frequency scaling of the real

part of the optical conductivity at the T ¼ 0 critical point.
Our calculation improves previous results by carefully
working out the dependence of this quantity on the
irrelevant deformation for z ¼ 1 QCPs. This will allow
us to resolve previous difficulties in understanding the
general scaling properties of these QCPs in Sec. V.

1. Optical conductivity at nonzero temperature
and emergent long-lived excitation

The optical conductivity is defined from the usual
holographic dictionary as

σðωÞ≡ −
i
ω
lim
r→0

�
r2−d

a0xðrÞ
axðrÞ

�
; ð61Þ

where axðr; tÞ ¼ axðrÞe−iωt is the perturbation of the gauge
field along the x direction that is ingoing at the horizon.
The near-horizon expansion of our solution is

Dðr → rhÞ ¼ 4πTðrh − rÞ þ…; Bðr → rhÞ
¼ 1=ð4πTðrh − rÞÞ þ…;

Cðr → rhÞ ¼ Ch þ…;ϕðr → rhÞ ¼ ϕh þ…; Aðr → rhÞ
¼ Ahðrh − rÞ þ…: ð62Þ

The charge and entropy densities are given by the
r-independent expressions

ρ ¼ −
ZCd=2A0ffiffiffiffiffiffiffi

BD
p ¼ ZhAhC

d=2
h ð63Þ

and

s ¼ −
1

T

�
ρA −

C1þd=2ðD=CÞ0ffiffiffiffiffiffiffi
BD

p
�

¼ 4πCd=2
h ; ð64Þ

where Zh ≡ ZðϕðrhÞÞ. We are mainly interested in the low
T solutions that reduce to (13) in the IR as T → 0.
It is more convenient to use the rescaled perturbation

ãx ≡ ax
sT þ ρA

; ð65Þ

which obeys the equation of motion

d
dr

� ffiffiffiffi
D
B

r
ZCd=2−1ðsT þ ρAÞ2ã0x

�

þ ω2

ffiffiffiffi
B
D

r
ZCd=2−1ðsT þ ρAÞ2ãx ¼ 0 ð66Þ

in translationally invariant systems. For notational simplic-
ity, we define

FðrÞ≡
ffiffiffiffi
D
B

r
; ð67Þ

which has a zero at the finite temperature horizon r ¼ rh.
To determine the low frequency behavior of the con-

ductivity, we follow the approach of [70,71] to solve the
equation of motion (66) at small ω. Near the horizon, the
equation of motion becomes

d
dr

½FðrÞã0x� þ
ω2

FðrÞ ãx ¼ 0; ð68Þ

where Fðr → rhÞ → 4πTðrh − rÞ þ � � �. The ingoing sol-
ution to this equation is
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ãx ¼ C0

�
rh − r
rh

�
−i ω

4πT þ…; ð69Þ

and we therefore make an ansatz,

ãx ≡
�
rh − r
rh

�
−i ω

4πT

AðrÞ; ð70Þ

for the gauge field perturbation, where AðrÞ is regular as
r → rh. We then want to solve forAðrÞ, which can be done
perturbatively in ω. That is, we expand

AðrÞ ¼ A0ðrÞ þ
�

ω

4πT

�
A1ðrÞ þ

�
ω

4πT

�
2

A2ðrÞ þ…;

ð71Þ

so that at small frequencies

ãxðrÞ ¼ A0ðrÞ þ
�

ω

4πT

��
A1ðrÞ − iA0ðrÞ log

�
rh − r
rh

��
þOðω2Þ: ð72Þ

Near the horizon, where we must be sure that our
solution is ingoing, the log term becomes very large. We
can therefore only trust our solution for suitably small ω.
Quantitatively, for an imaginary ω ¼ −iτ−1eq , this condition
is τ−1eq ≪ T.
Bearing this in mind, we then solve the equation of

motion order-by-order in ω. At leading order,

d
dr

½FZCd=2−1ðsT þ ρAÞ2A0
0� ¼ 0: ð73Þ

The solution of this equation which is regular at the horizon
is a constant A0ðrÞ ¼ c0.
At order ω, the equation of motion is

d
dr

�
FZCd=2−1ðsT þ ρAÞ2

�
A1 − ic0 log

�
rh − r
rh

���
¼ 0;

ð74Þ

which has the general solution

A1ðrÞ ¼ c2 þ ic0 log

�
rh − r
rh

�

þ c3

Z
r
dr

1

FZCd=2−1ðsT þ ρAÞ2 : ð75Þ

To impose regularity at the horizon, it is first convenient to
rewrite the log term as an integral

A1ðrÞ ¼ c2 − ic0 logðrhÞ

þ
Z

r
dr

�
c3

FZCd=2−1ðsT þ ρAÞ2 −
ic0

ðrh − rÞ
�
:

ð76Þ

Imposing regularity at the horizon gives

A1ðrÞ ¼ c2 − ic0 logðrhÞ

− ic0

Z
r
dr

�
−

ð4πTÞZhC
d=2−1
h s2T2

FZCd=2−1ðsT þ ρAÞ2 þ
1

ðrh − rÞ
�
;

ð77Þ
where subscript h means evaluated on the horizon. Finally,
we impose the boundary condition that AiðrhÞ ¼ 0 for i ¼
1; 2;… to obtain

A1ðrÞ ¼ −ic0
Z

r

rh

dr

�
−

ð4πTÞZhC
d=2−1
h s2T2

FZCd=2−1ðsT þ ρAÞ2 þ
1

ðrh − rÞ
�
:

ð78Þ

Combining these results gives an expression for ãx valid
to order ω. Expanding this solution near the boundary, we
find that

ãxðr → 0Þ ¼ c0ð1 − iωτeqÞ; ð79Þ
where

τeq ¼
Z

rh

0

dr

�
ZhC

d=2−1
h s2T2

FZCd=2−1ðsT þ ρAÞ2 −
1

4πTðrh − rÞ
�
:

ð80Þ

Finally, substituting our solution into (61) yields the optical
conductivity of the dual field theory

σðωÞ ¼ ρ2

ðsT þ μρÞ
i
ω
þ s2T2Zh

ðsT þ μρÞ2
�

s
4π

�d−2
d 1

1 − iωτeq
:

ð81Þ

It is the sum of two terms. The first is a pole at ω ¼ 0 due to
momentum conservation, and the second is the contribution
of processes that do not drag momentum.
In the hydrodynamic theory of Sec. III A, the latter term

is ω-independent [Eq. (32)], whereas here it is dominated
by a purely relaxational collective mode with lifetime τeq.
It is therefore manifest that hydrodynamics is a good
description of these systems only over timescales t≳ τeq,
beyond which the effects of nonhydrodynamic modes are
important. While we generically expect the breakdown of
hydrodynamics at short enough times, at this stage the
result (81) is purely formal, as we cannot trust it unless τeq
is parametrically longer than the thermal timescale T−1.
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The final stage of our calculation is to show that near the
z ¼ 1 QCPs (19), τeq is in fact parametrically long and
therefore can reliably be computed. In these cases, we can
quantitatively trust the result (81), and the long lifetime of
the nonhydrodynamic collective mode then gives rise to
a sharp Drude-like peak in the real part of the optical
conductivity.
To show this, it is useful to use the gravitational

equations to rewrite Eq. (80) for the lifetime as

τeq ¼ −
1

4πT

Z
0

rh

dr̃

�
α
Cðr̃Þ
Dðr̃Þ

d
dr̃

�
1

sT þ ρAðr̃Þ
�
−

1

rh − r̃

�
;

ð82Þ

where α ¼ s3T3Zhρ
−2ðs=4πÞ−2=d. While the integral is

sensitive to the form of the spacetime at all values of r,
the important point is that for solutions which flow to z ¼ 1
in the IR, the T → 0 limit of the integral is dominated by a
singular contribution from the IR part of the spacetime.
Explicitly, suppose we have a spacetime that approaches

(19) and (20) in the deep interior when T → 0. Turning on a
very small temperature will result in an event horizon at
r ¼ rh ≫ L [as in (13)], but the spacetime over the range
L ≪ r ≪ rh will still be given by (19) and (20) to leading
order at small T. To capture the contribution of this part of
the spacetime to the integral, we will integrate over a region
rUV < r < rIR where L ≪ rUV and rIR ≪ rh. In this
region, CðrÞ=DðrÞ is a constant and so it is trivial to
determine the contribution to the integral to be

τeqðT→ 0Þ¼−
1

4πT

�
α
L2
x

L2
t

�
1

sTþρAðr̃Þ
�
þ logðrh− r̃Þ

�
rUV

rIR

¼−
1

4πT

�
ρα

L2
x

L2
t

AðrIRÞ−AðrUVÞ
ðsTþρAðrIRÞÞðsTþρAðrUVÞÞ

þ log

�
rh− rUV
rh− rIR

��
: ð83Þ

To proceed further, we define the cutoffs to be rIR ¼ rhεIR
and rUV ¼ Lε−1UV where εIR ≪ 1, εUV ≪ 1 and εIRεUV ≫
ðL=rhÞ ∼ T. We can always go to sufficiently small T such
that the cutoffs will satisfy9

A2
0T

−2ΔA0 ≪ ε
−ðθ−d−1−2ΔA0

Þ
IR ≪ 1;

A−2
0 Tdþ1−θ ≪ ε

−ðθ−d−1−2ΔA0
Þ

UV ≪ 1; ð84Þ

since ΔA0
< 0 and d − θ þ 1 > 0. This ensures that

ρAðrIRÞ ≪ sT ≪ ρAðrUVÞ; ð85Þ

and hence the contribution from this part of the spacetime
as T → 0 is

τeqðT → 0Þ ¼ 1

4πT

�
α
L2
x

L2
t

1

sT
− log ð1þ εIR þ…Þ

�
: ð86Þ

The first term is the important one: it is independent of the
specific choice of cutoffs, and gives a singular contribution
to the integral in the T → 0 limit. Ignoring the subleading
logarithmic term which we cannot trust yields

τeqðT → 0Þ ¼ L2
x

L2
t

α

4πsT2
¼ s2TZhL2

x

4πρ2L2
t

�
s
4π

�
−2=d

: ð87Þ

Evaluating τeq for the z ¼ 1 solutions, this becomes

τeq ¼
L̃ðdþ 1 − θÞ

LtZ0ðθ − d − 1 − 2ΔA0
Þ2 A

−2
0

�
rh
L

�
1−2ΔA0

; ð88Þ

which (recalling that rh ∼ T−1) can schematically be
rewritten

τeq ∼
1

T

�
TΔg

g

�
2

; g ∼ A0: ð89Þ

Since Δg < 0 for an irrelevant deformation, we indeed
always find that there is a collective mode with a para-
metrically large lifetime τeq ≫ T−1 near the z ¼ 1 QCPs.
The T dependence of the lifetime is determined by the
dimension of the dangerously irrelevant deformation of the
critical point sourced by g.
On the other hand, for the z ≠ 1 QCPs, we expect

τeq ∼ T−1. This is apparent by sending Δg → 0 in (89)
(since the irrelevant deformation we have just discussed
becomes marginal in this limit). Evaluating (80) on the IR
z ≠ 1 solutions, we indeed find a contribution τeq ∼ 1=T
consistent with this expectation.

2. Incoherent conductivity, susceptibility,
and diffusivity near the QCP

At suitably late times, systems governed by both types
of IR QCPs (z ¼ 1 and z ≠ 1) are governed by the
hydrodynamics of Sec. III A. We will now show that the
parameters governing the hydrodynamic transport of
the incoherent charge (σinc, χinc, and Dinc) are determined
by the particular IR QCP. The z ¼ 1 and z ≠ 1 cases are
qualitatively different in that the irrelevant deformation
sourced by A0 plays a vital role in determining the
parameters near the z ¼ 1 QCPs.

dc incoherent conductivity.—For static, radially dependent
solutions of the theory (7), the incoherent dc conductivity
σinc can be expressed exactly in terms of the gravitational
solution at the horizon [15,24–26]

9We are suppressing factors of Lx, Lt, L̃, Z0 which are finite in
the T → 0 limit.
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σinc ¼ ðsT þ μρÞ2σo ¼ ðsTÞ2
�

s
4π

�ðd−2Þ=d
ZðϕhÞ: ð90Þ

As a consequence of this horizon formula, for the theories
we described in Sec. II σinc is directly sensitive to the IR
solutions that capture the quantum critical physics.
Evaluating (90) for these IR solutions, we find that

σinc ¼
(
L2
t L3d−2

x L̃−2Z0ðdþ z−θÞ2ðrh=LÞ2−2z−dþθ; z≠ 1;

L2
TL

3d−2
x L̃−2Z0ðdþ1−θÞ2ðrh=LÞθ−d−2ΔA0 ; z¼ 1:

ð91Þ

This leads to a low temperature scaling

σinc ∼ T2þ3d−3θ−2þ2Φ
z ∼ T2þd−2−θþ2ΔA0

z ; ð92Þ

where we are suppressing numerical prefactors and the
dependence on the dimensionless IR parameters Lx, Lt, etc.
Importantly, there is no dependence on the value of the
irrelevant coupling A0.

Incoherent susceptibility.—At low temperatures, the
incoherent susceptibility of the states we are studying
can also be explicitly written in terms of the near-horizon
gravitational solution that captures the quantum critical
physics. This manifests from Eq. (46) derived earlier, that
relates χinc to the heat capacity cρ at low temperatures. At
low temperatures, our solutions have heat capacity cρ ∼
Tðd−θÞ=z and thus

χinc ¼ Tρ2cρ ∼ A2
0T

d−θþz
z ð93Þ

in this limit. The factor of A2
0 comes from the factor of ρ2

in the relation between χinc and cρ. The result (93) is true
for both types of IR solution. For the z ¼ 1 solutions, A0 is
an irrelevant coupling, and χinc then directly depends on
this coupling. More precisely, evaluating the low temper-
ature incoherent susceptibility (46) on the solutions of
Sec. II gives

χinc ¼
(
LTL3d

x L̃−3Z0
z−1
z ðd − θÞðdþ z − θÞ2ðrh=LÞθ−d−z; z ≠ 1;

LTL3d
x L̃−3Z2

0A
2
0ðθ − d − 1 − 2ΔA0

Þ2ðd − θÞðdþ 1 − θÞðrh=LÞθ−d−1; z ¼ 1.
ð94Þ

The temperature scaling for the incoherent susceptibility
in Eq. (93) is not necessarily true for z ¼ ∞ states with a
finite zero temperature entropy density (i.e., for IR sol-
utions with a metric that is AdS2 × Rd), as in these cases cρ
is sensitive to irrelevant deformations. The results in the
following subsection also do not necessarily apply to these
cases, which we will not discuss in generality as they were
studied in detail in [40].

3. Diffusivity near the QCP

By combining our results for the incoherent dc conduc-
tivity and susceptibility, we can now determine the low
temperature limit of the incoherent diffusivity D using the
Einstein relation (40). As explained in Sec. III A 3, this is
the same as the low temperature limit of the thermal
diffusivity DT ¼ κ=cρ. As a consequence of the results
in the preceding subsections, both diffusivities may explic-
itly be written in terms of the gravitational solution near the
horizon.
Combining the results (92) and (93), the dependence of

the diffusivity D on T and A0 near the quantum critical
point is given by

D ¼ σinc
χinc

∼ A−2
0 T1þ2ðΔA0−1Þ

z : ð95Þ

For the IR solutions where A0 is an irrelevant coupling (i.e.,
the z ¼ 1 solutions), the low temperature diffusivity man-
ifestly depends on the irrelevant coupling.
Following [34,36,39,40,42,72], it is instructive to

express the incoherent diffusivity in units of v2BτL, where
vB is the quantum butterfly velocity (that characterizes
the speed at which quantum chaos spreads) and the
“Planckian” or Lyapunov timescale τL ¼ ℏ=ð2πkBTÞ. vB
and τL are near-horizon observables which provide an IR
velocity and timescale that scale near the critical point as
[35,36,73,74]

v2B ∼ T2−2
z; τL ∼ T−1 ð96Þ

and are independent of A0. Expressed in these units, the low
temperature diffusivity scales as

D ∼ A−2
0 T

2ΔA0
z v2BτL: ð97Þ

This expression is valid for both types of IR solution.10

For the first type of IR solution (z ≠ 1), D=v2BτL is
temperature-independent at low T and can therefore be

10It does not apply to the AdS2 × Rd cases, for the reasons
described in the previous section. See [40] for a discussion of
diffusion in such solutions.
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expressed solely in terms of the marginal parameters that
characterize the IR fixed point (Lt, A0, etc.). Computing the
coefficient explicitly, we find that

D ¼ z
2ðz − 1Þ v

2
BτL ð98Þ

for these IR solutions. The coefficient is actually indepen-
dent of all of the marginal parameters characterizing the
fixed point and depends only on the dynamical critical
exponent z. The coefficient is the same as for the low
temperature thermal diffusivity in states where translational
symmetry is broken [34]. In fact, the result (98) can be
understood as a limiting case of the results of [34]. The
simplest way to see this is to note that, in the translationally
invariant limit, the holographic expression for the open
circuit dc thermal conductivity κ (Eq. (2.5) of [34]) is finite
and in agreement with our Eqs. (49) and (90). As the heat
capacity cρ is continuous in this limit, the thermal diffu-
sivity DT ≡ κ=cρ must also be. Finally, in the low temper-
ature limit where we are working, the incoherent diffusivity
D is equal to the thermal diffusivity [Eq. (52)] and from
this (98) follows.
For the second type of IR solution (z ¼ 1), τL does not

appear to be the appropriate timescale that sets the
diffusivity D. In [37,38], it was argued that the appropriate
timescale is in fact τeq. Since τeq ∼ T−1 ∼ τL for z ≠ 1

solutions, the result (98) for the z ≠ 1 cases is consistent
with this. But as we discussed above, τeq is parametrically
larger than T−1 for the z ¼ 1 cases, and using the explicit
expression (88) we find that the diffusivity can be written
at low temperatures as

D ¼ 2

dþ 1 − θ
v2Bτeq ð99Þ

for these cases. While both D and τeq are larger than one
would naively expect due to their dependence on the
dangerously irrelevant coupling A0, D=v2Bτeq is indepen-
dent of T and A0 and is given by a universal number that
depends only on the exponents of the fixed point.

4. ac conductivity

Until now we have considered the quantum critical
dynamics in the range ω ≪ T. For completeness, we
now consider the opposite limit ω ≫ T, i.e., exactly at
the T ¼ 0 critical point. As we have established that the
dynamics of δρinc are sensitive to the nature of the IR QCP,
we will study its zero temperature ac conductivity σincðωÞ.
Defining it via a Kubo formula, it is related to the
thermoelectric conductivities by

σincðωÞ≡ lim
k→0

i
ω
GR

jincjinc
ðω; kÞ ¼ s2T2σðωÞ − 2ρsT2αðωÞ

þ ρ2κ̄ðωÞ: ð100Þ
Implementing a Ward identity between the thermoelectric
conductivities that is required by the UV Lorentz symmetry

of holographic theories [75], we then find that it is related to
the electrical conductivity σ by

ReσincðωÞ ¼ ðsT þ ρμÞ2ReσðωÞ: ð101Þ
Taking the real part is necessary because the electrical
conductivity σðωÞ has an extra imaginary piece which
diverges as ω → 0 due to translational symmetry. Taking
the zero temperature limit, we find that

Reσincðω; T ¼ 0Þ ¼ ρ2μ2Reσðω; T ¼ 0Þ: ð102Þ
At low ω, the ω dependence of the quantity on the right-
hand side depends only on the exponents characterizing the
IR solution [7,8,10]. By performing a more careful match-
ing calculation and keeping track of the overall normali-
zation, we are going to show that in fact the quantity on the
left-hand side is a more natural quantity as we can write
its low frequency limit (including the prefactor) exactly in
terms of the parameters of the IR solution.
To show this, we study the equation of motion for the

spatially uniform perturbation of the U(1) gauge field ax
(in the full spacetime), which is

d
dr

�
ZC

d−2
2

ffiffiffiffi
D
B

r
a0x

�
þ ZC

d−2
2

� ffiffiffiffi
B
D

r
ω2 −

A02Zffiffiffiffiffiffiffi
BD

p
�
ax ¼ 0:

ð103Þ
It is convenient to first change variables to

ā ¼
ffiffiffiffī
Z

p
ax; Z̄ ¼ ZC

d−2
2 ;

dr̄
dr

¼
ffiffiffiffi
B
D

r
; ð104Þ

so that this equation can be written in the Schrödinger form

d2ā
dr̄2

þ ðω2 − VsÞā ¼ 0;

Vs ¼
A02Z
B

þ ð∂ r̄Z̄Þ2
4Z̄2

þ 1

2
ð∂ r̄Þ2 ln Z̄: ð105Þ

In this form, it is easy to prove that there is a radially
conserved quantity

F ≡ iðā⋆∂ r̄ā − ā∂ r̄ā⋆Þ ð106Þ
for real values of ω. Evaluating it near the boundary, we
find that F is related to the electrical conductivity (up to a
constant prefactor) by

ReσðωÞ ¼ F

ωjað0Þx j2
; ð107Þ

where að0Þx is the value of ax at the AdS boundary, which we
can set to 1 by the scaling symmetry of the perturbation
equation.
To determine the conductivity, we will now use a

matching argument [76] to calculate F in the IR region
of the geometry for a solution ax which is ingoing at the
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horizon and whose asymptotic value is 1. In the zero
temperature IR solution that is valid in the deep interior, the
Schrödinger potential is Vs ¼ Vs;0=ð4r̄2Þ, where the value
of Vs;0 depends on the class of IR solution

z ≠ 1∶ Vs;0 ¼
ðd − θ − 2þ 2zÞðd − 2 − θ þ 4zÞ

z2
;

z ¼ 1∶ Vs;0 ¼ ðd − θ − 2Δa0Þðdþ 2 − θ − 2Δa0Þ: ð108Þ

For the z ¼ 1 solutions, we neglected the ∼A02 contribution
to Vs, which is subleading in the IR. Neglecting these
will allow us to do a consistent matching of solutions.
The ingoing solution of the Schrödinger equation (105)
with this potential is

ā ¼ ā0
ffiffiffī
r

p
Hð1Þ

ν ðωr̄Þ;

2ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Vs;0

p ¼
(

d−2þ3z−θ
z z ≠ 1

dþ 1 − θ − 2ΔA0
z ¼ 1

; ð109Þ

where ā0 is a constant and Hð1Þ
ν is the Hankel function of

the first kind. Near the boundary of the IR region of the
spacetime, this solution has the form

axðrÞ ¼ a0r
zþζ−2

2 ðr−zν þ #ω2νrþzν þ…Þ

∼
�
a0ðr−ðdþz−θÞ þ #ω3þd−θ−2

z r2ðz−1Þ þ…Þ z ≠ 1

a0ðr2ΔA0
þθ−d−1 þ #ωdþ1−θ−2ΔA0 r0 þ…Þ z ¼ 1

ð110Þ

where a0 ∼ ωνā0 is a constant and # denote complex
constants that depend on the parameters of the IR solution
but not on the irrelevant coupling A0. Evaluating the
radially conserved quantity F yields the conductivity

Reσðω; T ¼ 0Þ ∼ ja0j2ω2ν−1 ∼
� ja0j2ω2þd−θ−2

z ; z ≠ 1

ja0j2ωd−θ−2ΔA0 z ¼ 1

ð111Þ

The final step of the calculation is to fix the overall
normalization constant a0 such that this solution asymp-
totes to 1 at the boundary of the AdS spacetime. One might
expect this normalization constant to depend on the full RG
flow of the theory, and it does, but exactly in such a way
that σincðωÞ can be written simply in terms of the param-
eters of the IR solution.
The expansion (110) is valid when 1 ≪ r̄ ≪ ω−1 (but the

solution (109) is valid in the wider region 1 ≪ r̄ < ∞).
To fix the constant, we will match it to a solution which is
valid in this region, but is also valid near the AdS boundary.
To find this second solution, we set ω ¼ 0 in the equation
of motion (103) and solve to obtain

axðrÞ ¼
AðrÞ
μ

þ a1AðrÞ
Z

r

bdy
dr

� ffiffiffiffi
B
D

r
C1−d=2

ZA2

�
; ð112Þ

where a1 is a constant and we have normalized the solution

so that the boundary value að0Þx ¼ 1. This solution is valid
for 0 < r ≪ ω−1. We can expand this in the deep interior
(where the integrand diverges) to obtain the following
solution which is valid in the region 1 ≪ r̄ ≪ ω−1,

z ≠ 1∶ axðrÞ ∼
A0

μ
r−ðdþz−θÞ þ a1r2ðz−1Þ;

z ¼ 1∶ axðrÞ ∼
A0

μ
rζ−1 þ a1r0; ð113Þ

where we have suppressed the dependence on the param-
eters of the IR solution except the irrelevant coupling A0.
For each power of r, we keep only the leading term in a
small a1 expansion, as higher order terms turn out to be
suppressed at low frequencies. As both (110) and (113) are
valid over a region 1 ≪ r̄ ≪ ω−1 of the radial coordinate
which is parametrically large at small ω, we can match
them in this region to fix the constants a0 and a1. This
yields a0 ∼ A0=μ and thus the small ω conductivity is

z ≠ 1∶ σðω; T ¼ 0Þ ∼ A2
0

μ2
ω2þd−θ−2

z ;

z ¼ 1∶ σðω; T ¼ 0Þ ∼ A2
0

μ2
ωd−θ−2ΔA0 : ð114Þ

This object is awkward because it depends on the chemical
potential μ, which cannot be expressed in a simple way in
terms of the IR solution. However, using the result (102) for
σincðω; T ¼ 0Þ, we see that the powers of μ cancel and that,
as in the dc limit, σinc can be written simply in terms of the
parameters in the IR solution. Its dependence on ω and the
irrelevant coupling A0 can therefore easily be extracted and
written as

z ≠ 1∶ σincðω; T ¼ 0Þ ∼ ω2þd−2−θ
z ;

z ¼ 1∶ σincðω; T ¼ 0Þ ∼ A4
0ω

d−θ−2ΔA0 : ð115Þ

Finally, we note that the numerical prefactors and depend-
ence of σincðω; T ¼ 0Þ on the other IR parameters (Lt, Lx,
etc.) can be calculated explicitly by the procedure we have
just described. As we are only interested in the overall
scaling behavior, we have omitted these details for clarity.
Note that the scaling with ω in (115) does not match the

temperature scaling of the incoherent conductivity in (92)
when z ¼ 1 andΔA0

≠ 0, due to the factors of the irrelevant
coupling A0. We will return to the failure of naive scaling
theory in Sec. V.

DAVISON, GENTLE, and GOUTÉRAUX PHYS. REV. D 100, 086020 (2019)

086020-16



IV. ZERO DENSITY CASE

We will now address the second class of holographic
systems that we introduced in Sec. II: those at zero density
but where translational symmetry is broken by the massless
scalar fields ψ i. Although these systems are in many ways
different from those we looked at in the previous section,
they share the property that their local equilibration time τeq
can be parametrically longer than the inverse temperature
due to its sensitivity to a dangerously irrelevant deforma-
tion of the quantum critical point. The physical origin of the
long-lived excitation in these systems is clear: the irrelevant
deformation breaks the translational symmetry of the QCP,
leading to the relaxation of the system’s momentum over a
long timescale τeq.

A. dc transport in quantum critical phases
breaking translations

We firstly review the late time transport properties of
the zero density systems without translational symmetry
introduced in Sec. II. Their dc thermal conductivity is given
by [77]

κ̄ ¼ 4πsT
m2Yh

; ð116Þ

where Yh is the value of YðϕÞ at the event horizon. This
expression is nonperturbative in m and so is valid inde-
pendent of whether the translational symmetry breaking
caused by m results in the total momentum of the system
relaxing quickly or slowly. Independently of how quickly
momentum relaxes, over sufficiently long times the
momentum will have relaxed and we expect perturbations
in the energy and heat density to diffuse at the thermal
diffusivity

DT ¼ κ̄

cT
; ð117Þ

where cT ¼ Tds=dT is the heat capacity (see, e.g., [49]).
For cases when the breaking of translational symmetry is

caused by a deformation that is marginal near the QCP
(z ≠ 1), the thermal diffusivity is related in a very simple
way to the butterfly velocity and the thermal timescale
[34,39,40]

DT ¼ z
2ðz − 1Þ

v2B
2πT

: ð118Þ

This relation breaks down in the case z ¼ 1, as the thermal
diffusivity becomes anomalously large due to its sensitivity
to the irrelevant deformation that breaks translational
symmetry [34]. More precisely, when z ¼ 1, we find that

DT ¼ v2B
L2
xðdþ 1 − θÞ
L̃LtY0m2

�
L
rh

�
2Δm−1

; ð119Þ

so that the thermal diffusivity in units of the butterfly
velocity is controlled by the timescale

τ ∼
1

m2

�
L
rh

�
2Δm−1

∼
1

T

�
TΔm

m

�
2

; ð120Þ

which is parametrically longer than T−1 since Δm < 0
always.
In the following subsection, we are going to show that

this timescale is in fact the lifetime of perturbations of the
total momentum of the system. These excitations have a
long lifetime as it is an irrelevant deformation of the IR
theory that breaks translational symmetry [2]. More pre-
cisely, we will show that

DT ¼ 2

ðdþ θ − 1Þ v
2
Bτeq; ð121Þ

where τeq is the lifetime of the Drude-like excitation in the
ac thermal conductivity

τeq ¼
L2
xðdþ 1 − θÞ
L̃LtY0m2

�
L
rh

�
2Δm−1

: ð122Þ

B. ac thermal conductivity and long-lived excitation

The calculation of the ac heat conductivity κ̄ðωÞ, and the
lifetime τeq of its longest-lived pole, is mathematically very
similar to the calculation of the optical conductivity that we
presented in Sec. III B 1 and so we will be brief in some
manipulations. We will make repeated use of the Einstein
equation

d
dr

�
Cd=2þ1ffiffiffiffiffiffiffi

BD
p

�
D
C

�0�
¼ m2

ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y ð123Þ

in these calculations. Integrating (123) from the horizon to
the boundary gives

Cd=2þ1ffiffiffiffiffiffiffi
BD

p
�
D
C

�0
¼ −sT −m2

Z
rh

r
dr

ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y; ð124Þ

where we used the near horizon expansion (62) (setting
the gauge field to zero). To determine the heat conductivity,
we solve the coupled equations of motion for spatially
uniform perturbations of the metric and the massless scalar
field δgxt , δgxr , and δψx.

11 It is convenient to work with the
variable

Πx ≡ −
δgx

t
0 þ iωδgx

r

ðD=CÞ0 ; ð125Þ

11Indices are raised with the background metric.
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which obeys the equation of motion

d
dr

� ffiffiffiffi
D
B

r
1

YCd=2

�
Cd=2þ1ffiffiffiffiffiffiffi

BD
p

�
D
C

�0�2

Π0
x

�

þ ω2

ffiffiffiffi
B
D

r
1

YCd=2

�
Cd=2þ1ffiffiffiffiffiffiffi

BD
p

�
D
C

�0�2

Πx ¼ 0: ð126Þ

Utilizing the background relation (123), this equation can
be written in a more useful form as

d
dr

� ffiffiffiffi
D
B

r
1

YCd=2

�
sT þm2

Z
rh

r
dr

ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y

�
2

Π0
x

�

þ ω2

ffiffiffiffi
B
D

r
1

YCd=2

�
sT þm2

Z
rh

r
dr

ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y

�
2

Πx

¼ 0: ð127Þ

The heat conductivity κ̄ðωÞ is given by

κ̄ðωÞ ¼ −
im2

ωT
1

ðd − 1Þ
Πðd−1Þ

x

Πð0Þ
x

; ð128Þ

where Πx is ingoing at the horizon and ΠðiÞ
x denotes the

coefficient of ri in the near-boundary expansion of Πx.
As in Sec. III B 1, we make an ingoing ansatz for Πx

and then solve the equation of motion (127) perturbatively
at smallω. Up toOðωÞ, Eq. (127) is a total derivative and so
can trivially be integrated to give (for constant c0)

Πx ¼
�
rh − r
rh

�
−i ω

4πT
�
1þ iω

4πT

Z
r

rh

× dr

� 4πs2T3

YhC
d=2
h

YCd=2
ffiffiffi
D
B

q
ðsT þm2

R
rh
r dr

ffiffiffiffiffiffiffi
BD

p
Cd=2−1YÞ2 −

1

rh − r

��
:

ð129Þ

As before, we can trust this solution for frequenciesω ≪ T.
From this, we can extract the κ̄ðωÞ using Eq. (128) to find

κ̄ðωÞ ¼ κ̄dc
1 − iωτeq

; κ̄dc ¼
4πsT
m2Yh

; ð130Þ

where τeq is given by the integral

τeq ¼
Z

rh

0

dr

�
s2T2YCd=2

YhC
d=2
h

ffiffiffi
D
B

q
ðsT þm2

R
rh
r dr

ffiffiffiffiffiffiffi
BD

p
Cd=2−1YÞ2

−
1

4πTðrh − rÞ
�

¼
Z

rh

0

dr

�
4πsT2YCd=2

m2Yh

C
D

d
dr

�
1

ðsT þm2
R
rh
r dr

ffiffiffiffiffiffiffi
BD

p
Cd=2−1YÞ

�
−

1

4πTðrh − rÞ
�
: ð131Þ

The dc value of κ̄ðωÞ matches (116) as expected.
τeq formally gives the lifetime of the longest-lived

nonhydrodynamic excitation of the theory. But we can
only trust our results (130) and (131) for parametrically
large τeq ≫ T−1. Evaluated on the solutions described in
[49,59] returns τeq ¼ 4πT=m2, which matches the result
in [49].
We will now evaluate τeq for solutions that flow in the IR

to the z ¼ 1 geometries (19) and show that in these cases
τeq is parametrically long due to its sensitivity to the
irrelevant deformation that breaks translational symmetry.

As in Sec. III B 1, the important point is again that, in these
cases, the integral is dominated by the contribution of a
region of the spacetime close to the horizon. Since the
mathematical manipulations are very similar to those of
Sec. III B 1, we will be brief.
We consider the contribution to the integral of the region

rUV < r < rIR where L ≪ rUV and rIR ≪ rh. At leading
order at small T, the solution in this region will be given by
(19) and (21) and thus CðrÞ=DðrÞ ¼ L2

x=L2
t is a constant.

It is then trivial to perform the integral over this region to
obtain

τeqðT → 0Þ ¼ 4πsT2L2
x

YhL2
t

R
rIR
rUV

dr
ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y

ðsT þm2
R
rh
rIR

dr
ffiffiffiffiffiffiffi
BD

p
Cd=2−1YÞðsT þm2

R
rh
rUV

dr
ffiffiffiffiffiffiffi
BD

p
Cd=2−1YÞ þ

1

4πT
log

�
rh − rIR
rh − rUV

�
: ð132Þ

We define the cutoffs to be rIR ¼ εIRrh and rUV ¼ ε−1UVL with ε ≪ 1 and εIRεUV ≫ L=rh ∼ T. We can always go to a
sufficiently low T such that the cutoffs satisfy the identities

m2T−2Δm ≪ εdþ1−θ−2Δm
IR ≪ 1; m−2Tdþ1−θ ≪ εdþ1−θ−2Δm

UV ≪ 1; ð133Þ
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since Δm < 0 and dþ 1 − θ > 0. Within this part of the
spacetime,

m2

Z
rh

rIR

dr
ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y≪ sT≪m2

Z
rIR

rUV

dr
ffiffiffiffiffiffiffi
BD

p
YCd=2−1;

ð134Þ

and thus the contribution to τeq from this region is

τeqðT → 0Þ ¼ 4πTL2
x

YhL2
t m2

þ 1

4πT
logð1 − εIRÞ: ð135Þ

The log term is subdominant as T → 0 and so the result in
this limit is

τeq ¼
L2
xðdþ 1 − θÞ
L̃LtY0m2

�
L
rh

�
2Δm−1

∼
1

T

�
TΔm

m

�
2

: ð136Þ

This satisfies τeq ≫ T−1 as advertised, since Δm < 0 for an
irrelevant deformation.

C. Zero temperature conductivity

In the previous section, we computed the low (zero)
frequency dependence of the thermal conductivity at non-
zero temperature. We would now like to take the opposite
order of limits T ≪ ω and compute how the thermal
conductivity depends on the irrelevant deformation.
To this end, we repeat the calculation of Sec. III B 4. The

relevant equation to solve is again Eq. (127) from which we
can extract the heat conductivity via (128). The reader
bothered by the factor of 1=T in the definition of κ̄ could
just consider the limit T ≪ ω rather than strictly T ¼ 0, or
consider the energy conductivity κϵ ¼ Tκ̄ where this factor
is absent and which has a regular T ¼ 0 limit.
We perform the following field redefinition and change

of radial variable:

Π̄x ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

YCd=2
p

�
Cd=2þ1ffiffiffiffiffiffiffi

BD
p

�
D
C

�0�
Πx;

dr̄
dr

¼
ffiffiffiffi
B
D

r
;

ð137Þ

after which the equation for Πx becomes a Schrödinger
equation

d2Π̄x

dr̄2
þ ðω2 − VsÞΠ̄x ¼ 0: ð138Þ

The full expression for the Schrödinger potential Vs can
easily be obtained but is rather lengthy, so we do not report
it. In this form, it is easy to prove that there is a radially
conserved quantity

F ≡ iðΠ̄⋆
x∂ r̄Π̄x − Π̄x∂ r̄Π̄⋆

x Þ ð139Þ

for real values of ω. Evaluating it near the boundary, we
find that F is related to the thermal conductivity (up to a
constant prefactor) by

Reκ̄ðωÞ ¼ m2

T
F

ωjΠð0Þ
x j2

; ð140Þ

where Πð0Þ
x is the value of Πx at the AdS boundary, which

we can set to 1 by the scaling symmetry of the perturbation
equation.
We now use the same matching argument as before. In

the zero temperature IR solution that is valid in the deep
interior, the Schrödinger potential is still Vs ¼ Vs;0=ð4r̄2Þ,
where the value of Vs;o depends on the class of IR solution

z ≠ 1∶ Vs;0 ¼
ðd − θ − 2þ 2zÞðd − 2 − θ þ 4zÞ

z2
;

z ¼ 1∶ Vs;0 ¼ ðd − θ þ 2ΔmÞðdþ 2 − θ − 2ΔmÞ: ð141Þ

Remarkably, these are the same values as in the nonzero
density case, with the same dependence on the scaling
dimension of the irrelevant coupling when z ¼ 1. We recall
that Δm ¼ 1þ κλ=2. The next few steps are the same as
before. The ingoing solution of the Schrödinger equa-
tion (138) with this potential is

Π̄ ¼ Π̄0

ffiffiffī
r

p
Hð1Þ

ν ðωr̄Þ;

2ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Vs;0

p ¼
� d−2þ3z−θ

z z ≠ 1

dþ 1 − θ − 2Δm z ¼ 1
; ð142Þ

where Π̄0 is a constant and Hð1Þ
ν is the Hankel function of

the first kind. Near the boundary of the IR region of the
spacetime, this solution has the form

ΠxðrÞ ∼
�
Π0ðr0 þ #ω3þd−θ−2

z rdþ3z−2−θ þ…Þ z ≠ 1

Π0ðr0 þ #ðωrÞdþ1−θ−2Δm þ…Þ z ¼ 1
;

ð143Þ

where Π0 is a constant and # denote complex constants that
depend on the parameters of the IR solution but not on the
irrelevant coupling m.
This leads to

Reκ̄ðω; T ¼ 0Þ ∼m2

T
jΠ0j2ω2ν−1

∼

(
m2

T jΠ0j2ω2þd−θ−2
z ; z ≠ 1

m2

T jΠ0j2ωd−θ−1−2Δm z ¼ 1
: ð144Þ

The final step of the calculation is to fix the overall
normalization constant Π0 such that this solution asymp-
totes to 1 at the boundary of the AdS spacetime.
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To fix the constant, we will match it to a solution which
is valid in this region, but is also valid near the AdS
boundary. To find this second solution, we set ω ¼ 0 in the
equation of motion for Πx and solve to obtain

ΠxðrÞ ¼ 1þ π1AðrÞ
Z

r

bdy
dr

ffiffiffiffi
B
D

r
YCd=2

ðCd=2þ1ffiffiffiffiffi
BD

p ðDCÞ0Þ2
; ð145Þ

where π1 is a constant and we have normalized the solution

so that the boundary value Πð0Þ
x ¼ 1. Expanding this in the

deep interior (notice that the integrand diverges in the
interior, which justifies evaluating the integral on the IR
solution rather than on the full spacetime) and then
matching to (143) gives Π0 ¼ 1. So the final result for
the thermal conductivity is

Reκ̄ðω; T → 0Þ ∼
(

m2

T ω2þd−θ−2
z ; z ≠ 1

m2

T ωd−θ−2Δm z ¼ 1
: ð146Þ

We can compare this with the dc formula

κ̄ ¼ 4πsT
m2Yh

; ð147Þ

which at low temperatures becomes

z ≠ 1∶ κ̄ðω ¼ 0; T → 0Þ ∼ 1

m2
T1þd−2−θ

z

z ¼ 1∶ κ̄ðω ¼ 0; T → 0Þ ∼ 1

m2
Td−θ−1þ2Δm: ð148Þ

Recalling that ½m� ¼ Δm ¼ 1þ κλ=2 vanishes when z ≠ 1
(and Δm < 0 when z ¼ 1), the ω dependence of (146)
matches the T dependence of (148) for z ≠ 1, but not for
z ¼ 1. Observe that the irrelevant coupling m appears very
differently in the two formulæ as was the case at nonzero
density in Sec. III B 4.

V. INFRARED SCALING THEORIES IN THE
PRESENCE OF IRRELEVANT COUPLINGS

We will now write down a scaling theory for both
translation invariant and momentum relaxing QCPs. This
scaling theory is consistent with the results outlined above
once the dependence on the irrelevant deformation is taken
into account. In the translation invariant case, this is an
improvement of the scaling theory presented in [19].

A. Translation-invariant case

1. Scaling theory

Having assigned anomalous scaling dimensions to s and
ρ in Sec. II D, we can now proceed to use this information
to derive scaling dimensions for the incoherent response

functions of the IR critical point. This constitutes a scaling
theory, and it is independent of holography. While scaling
theories of this type have recently been proposed as a
phenomenological basis for understanding observed prop-
erties of strange metals [15], previous attempts to under-
stand the IR properties of the general class of holographic
models (7) using such scaling theories have run into
problems [19]. We will describe a scaling theory (different
from that in [19]) that is consistent with the holographic
results once the dependence of observables on the danger-
ously irrelevant coupling A0 is carefully taken into account.
In addition to the anomalous dimensions θ andΦ that we

assign to the entropy and charge densities,

½s� ¼ d − θ; ½ρ� ¼ d − θ þΦ; ð149Þ

our scaling theory contains the additional parameter z.
This is the dynamical critical exponent that characterizes
the relative scaling of space and time at the fixed point

½t� ¼ −z; ½x� ¼ −1: ð150Þ

Treating temperature as an inverse timescale, we assign

½T� ¼ z; ð151Þ

and then using the fact that s and T are conjugate variables,
we find that the free energy ½f� ¼ d − θ þ z. This can be
interpreted as an effective spatial dimensionality of d − θ.
From this, we can assign the dimension

½μ� ¼ ½f� − ½ρ� ¼ z −Φ: ð152Þ

We are now going to use these to calculate the dimen-
sions of response functions of the incoherent charge. Using
the definitions (36) and (42) for δρinc and its source δsinc,
we assign them the following dimensions:

½δρinc� ¼ 2dþ z − 2θ þΦ; ½δsinc� ¼ θ − d −Φ:

ð153Þ

Note that these dimensions sum to zþ d − θ, as expected
since they are thermodynamically conjugate variables. Now
using the conservation equations (37) and the spacetime
dimensions (150), the dimensions for the incoherent current
and its source are

½δjinc� ¼ 2d − 1þ 2z − 2θ þΦ;

½δEinc� ¼ ½∂δsinc� ¼ θ − d −Φþ 1: ð154Þ

Finally, utilizing (153) and (154), we find the scaling
dimensions
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½χinc� ¼ 3ðd − θÞ þ zþ 2Φ;

½σinc� ¼ 3ðd − θÞ − 2þ 2zþ 2Φ ð155Þ

for the incoherent susceptibility and conductivity. Using the
Einstein relation (40), the dimension of the diffusivity is
then

½D� ¼ z − 2: ð156Þ

The anomalous dimensions θ,Φ have dropped out from the
dimension of the diffusivity D, as expected from the
dispersion relation ω ¼ −iDk2.
Let us pause to clarify how our scaling theory differs

from that in [19]. We should only expect IR scaling to apply
to quantities for which UV details of the theory are
unimportant. In holographic theories, dependence on UV
details is manifest when quantities cannot be written in a
simple way in terms of the parameters of the IR solution
that is valid in the deep interior of the spacetime. One
example of a UV-sensitive quantity is the electrical con-
ductivity σ in our theories: this is always dominated by a
UV contribution ∼i=ω due to translational symmetry.
Another example is the chemical potential μ, which is
dominated by a T-independent UV contribution in holo-
graphic theories at nonzero density. For this reason, and
unlike in [19], we did not try to construct a scaling theory
which captures the properties of μ and σ, but instead
worked directly with the IR quantities σinc, χinc, etc. to
which scaling should apply.
There is one subtlety: at an intermediate stage, we did

assign the dimension (152) to μ. For the reason we have just
described, this scaling dimension is not consistent with
the holographic results (e.g., in the z ≠ 1 cases where T is
the only scale, μ ∼ T0 not T1−Φ=z), and yet the scaling
dimensions (155) derived from it are consistent. There are
two ways to understand why this is the case. First, although
χinc can be written as a sum of three terms of equal scaling
dimensions [Eq. (45)], it is dominated at low temperatures
by one of them: the IR cρ contribution. That is, μ is
dominated by UV contributions in such a way that its
contributions to the incoherent responses are unimportant at
low temperatures, and so the naive scaling dimensions we
give these responses are correct. Another way to understand
it is that although the incoherent source δsinc depends on
δμ, after setting the orthogonal source δsp ¼ 0 (as we do
when calculating χinc), δsinc ¼ −δT=ðρTÞ is an IR quantity
with the appropriate scaling dimension.

2. Comparison with holographic results

We will now show how this scaling theory is consistent
with the incoherent response functions derived earlier
for both kinds of translation-invariant holographic QCPs:
those with z ≠ 1, Φ ¼ θ − d, and those with z ¼ 1,

Φ ¼ ðζ þ θ − dÞ=2. Recall that the latter have an irrelevant
IR coupling with dimension ½A0� ¼ d − θ þΦ.
From the results (92) and (93) for the incoherent dc

conductivity and the susceptibility, it is straightforward
to find that their scaling dimensions in both kinds of
holographic QPCs are equal to those predicted by the
scaling theory in Eq. (155). For the z ≠ 1 QCPs, the only
dimensionful scale is T and so the scaling dimensions of the
incoherent dc conductivity and susceptibility capture their
T dependence. This is not the case for z ¼ 1 QCPs: while
the T dependence of the incoherent dc conductivity of these
cases is captured by the scaling dimension, the incoherent
susceptibility depends upon the (dimensionful) irrelevant
coupling A0 and so its total scaling dimension is made up
by a combination of powers of T and powers of the
coupling A0. This is an example of the breakdown of
naive T-scaling (though not of the full scaling theory) due
to a dangerously irrelevant coupling.
The dependence of χinc upon the irrelevant coupling is a

consequence of it being proportional to ρ2. In fact, we can
change the dependence of σinc and χinc upon the danger-
ously irrelevant coupling by changing the overall normali-
zation of the incoherent density (36) by powers of ρ. For
this reason, one should not read too much into the fact that
σinc does not depend on the irrelevant coupling but χinc
does.
However, the ratio of these quantities—the diffusivity

D—is insensitive to the overall normalization of the
incoherent density. While in our holographic theories, its
dimension is always equal to that predicted by the scaling
theory, it is only for z ≠ 1 IR solutions that this dimension
corresponds to its T-scaling. For z ¼ 1 solutions, D is
always sensitive to the irrelevant coupling A0. Thus,
although D and v2BτL always have the same dimension
(−1) for z ¼ 1 cases, their T dependences are always
different since D depends on the dangerously irrelevant
coupling A0 whereas v2BτL does not. The same phenomenon
was pointed out in [34] in the context of theories without
translational symmetry. Using the long timescale derived in
Sec. III B 1, we have noted in Sec. III B 3 that it is this
timescale that appears to control the diffusivity D rather
than τL, through the relation (99). It depends on the
irrelevant coupling precisely in the same way as D, and
so D and v2Bτeq [with τeq given in (88)] now have the same
T dependence.
We now move to the ac conductivity σincðω; T ¼ 0Þ at

low ω. This does not depend on T, but does depend on the
dimensionful frequency ½ω� ¼ −½t� ¼ z. Computing the
scaling dimensions of σincðω; T ¼ 0Þ in the holographic
theories from the results (115), we find that they always
agree with that of the scaling theory (155).
When z ≠ 1, the ω dependence is as naively expected

from the scaling dimension, as there are no other
dimensionful scales. In particular, there is ω=T scaling
in these cases i.e., the ω dependence of σincðω; T ¼ 0Þ is
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the same as the T dependence of σincðω ¼ 0; TÞ. We
expect that the IR conductivity σincðω=TÞ is a universal
function that is captured by the dynamics of the near-
horizon geometry.
In contrast to this, for z ¼ 1 theories, the ac conductivity

depends on the dimensionful coupling A0 and there is only
consistency with the scaling theory once this dependence is
carefully taken into account. Unlike for the T dependence
of the dc conductivity, the ω dependence in these cases is
different from that naively expected from the scaling
dimension. It is because of the dependence on the danger-
ously irrelevant coupling that these theories do not display
ω=T scaling (as previously observed in the context of
translation-breaking holographic theories [11,57,78]), and
we do not expect that the IR conductivity is a universal
function in these cases.
In summary, the incoherent transport in both classes of

holographic theories is consistent with our scaling theory.
However, in z ¼ 1 cases, the coupling A0 is dangerously
irrelevant and so the scaling theory alone cannot be used to
determine how the incoherent conductivity and suscep-
tibility depend on ω and T. The power of the scaling theory
is significantly reduced in such cases.

B. Zero density case

The scaling dimension of the thermal conductivity can
also be derived from the same scaling assumptions.
Following [15], we find

½κ̄� ¼ d − θ þ z − 2: ð157Þ

This is obviously consistent with the holographic results
derived in Sec. IV, Eqs. (146) and (148). As for the
translation-invariant case, it is crucial to appropriately
account for the presence of translation-breaking irrelevant
deformations in order to match the scaling prediction (157)
with the holographic results.
In the limit T ≪ ω, we are not aware of an argument

that allows to predict how the irrelevant coupling might
affect the frequency dependence of the thermal conduc-
tivity. In the opposite (dc) limit ω ≪ T, we can invoke
well-known memory matrix arguments [2,3,79] which
predict that

κ̄ ¼ χ2PQ
TχPPΓ

þOðΓ0Þ ¼ χPP
TΓ

þOðΓ0Þ; ð158Þ

where χPQ and χPP are static susceptibilities associated to
the heat and momentum currents, while Γ is the momen-
tum relaxation rate. This approximate formula is valid
when momentum relaxation is slow, Γ ≪ T. In the second
equality, we have further simplified it by noting that
Q ¼ P≡ T0x due to the underlying relativistic symmetry

of the UV CFT. The dependence on the source of the
operator O breaking translations (the irrelevant coupling
in our case) can then be determined by computing Γ
through

Γ ¼ m2

χPP

�
lim
ω→0

1

ω
ImGR

ψψ ðω; k ¼ 0Þ
�

m¼0

: ð159Þ

The leading m dependence sits outside the parentheses,
with the prescription that the spectral weight inside
should be evaluated in the translation invariant theory,
and so does not depend onm. This formula follows from a
straightforward application of the memory matrix for-
malism for the translation-breaking operators discussed
in the present work; see, e.g., [2]. We have worked out
the IR dimension of the operator ψ in (22), Δirr ¼ dþ
2 − θ − Δm. Thus, we see that (remembering to Fourier
transform and setting z ¼ 1)

�
1

ω
ImGR

ψψ ðω; k ¼ 0Þ
�
¼ 2Δirr − 1 − ðdþ 1 − θÞ

¼ d − θ þ 2 − 2Δm ¼ d − θ − κλ; ð160Þ

which implies

½Γ� ¼ 2Δm − ðdþ 1 − θÞ þ
�
1

ω
ImGR

ψψðω; k ¼ 0Þ
�
¼ 1;

ð161Þ

as expected when z ¼ 1. We have also used that ½χPP� ¼
dþ 1 − θ when z ¼ 1. This is obviously true for zero
density, relativistic theories for which χPP ¼ sT, but can
be derived more generally by recalling that ½P� ¼ dþ
1 − θ and the definition of χPP in terms of GR

PP.
The result ½Γ� ¼ 1 would predict Γ ∼ T if T was the only

dimensionful scale. However, we have learned that the
presence of the irrelevant coupling modifies the T depend-
ence of Γ to

Γ ∼ T

�
m
TΔm

�
2

: ð162Þ

This is because the leading m dependence is captured by
the overall m2 factor in (159), while the rest of the
expression only depends on T.
The result (162) depends on m and T in precisely the

same way as 1=τeq that we computed in (136).
In this section, we have seen a concrete case where

scaling and memory matrix arguments can be combined to
determine the temperature dependence both of the thermal
conductivity and momentum relaxation rate, which we
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have checked exactly reproduces the direct holographic
computation.
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APPENDIX: EQUATIONS OF MOTION

The field equations for the model (7) are (repeated I
indices are summed over)

Rμν þ
Z
2
FμρF

ρ
ν −

1

2
∂μϕ∂νϕ −

Y
2
∂μψ I∂νψ I

þ gμν
2

�
1

2
ð∂ϕÞ2 þ V − Rþ Z

4
F2 þ Y

2
ð∂ψ IÞ2

�
¼ 0;

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μϕÞ ¼ 1

4

∂Z
∂ϕF2 þ ∂V

∂ϕ þ 1

2

∂Y
∂ϕ ð∂ψ IÞ2;

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
ZFμνÞ ¼ 0;

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
Y∂μψ IÞ ¼ 0: ðA1Þ

We use the ansatz

ds2 ¼ −DðrÞdt2 þ BðrÞdr2 þ CðrÞdx⃗2; A ¼ AðrÞdt;
ϕ ¼ ϕðrÞ; ψ I ¼ mδIjxj; ðA2Þ

and find the Maxwell

0 ¼
�
ZCd=2A0ffiffiffiffiffiffiffi

BD
p

�0
; ðA3Þ

scalar

0 ¼
�
Cd=2

ffiffiffiffi
D
B

r
ϕ0
�0

þ Z;ϕ
Cd=2ðA0Þ2
2

ffiffiffiffiffiffiffi
BD

p −
ffiffiffiffiffiffiffi
BD

p
Cd=2V;ϕ

−
d
2
m2

ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y;ϕ; ðA4Þ

and Einstein equations

0 ¼
�
Cd=2ffiffiffiffiffiffiffi
BD

p D0
�0

þ 2

d
Cd=2

ffiffiffiffiffiffiffi
BD

p
V −

ðd − 1Þ
d

Cd=2ZðA0Þ2ffiffiffiffiffiffiffi
BD

p ;

ðA5Þ

0 ¼
�

C0ffiffiffiffiffiffiffiffiffiffiffi
BCD

p
�0

þ 1

d

ffiffiffiffiffiffiffi
C
BD

r
ðϕ0Þ2; ðA6Þ

0 ¼ ðϕ0Þ2 − C0

C

�
d
D0

D
þ dðd − 1Þ

2

C0

C

�
−
ZðA0Þ2
D

− 2BV − dm2
B
C
Y: ðA7Þ

The axion equations are trivially satisfied by our ansatz.
By combining these equations, we find the important

identity

d
dr

�
Cd=2þ1ffiffiffiffiffiffiffi

BD
p

�
D
C

�0�
¼Cd=2ZA02ffiffiffiffiffiffiffi

BD
p þm2

ffiffiffiffiffiffiffi
BD

p
Cd=2−1Y; ðA8Þ

relating the metric to the matter sources. The quantity on
the left-hand side shows up repeatedly in the holographic
transport equations we study, and we use this identity to
rewrite these equations to make their dependence on the
matter fields more explicit. It is by doing this that we are
able to cleanly extract how the observables near z ¼ 1
quantum critical states specifically depend on the danger-
ously irrelevant couplings sourced by the matter fields.
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[11] B. Goutéraux, Charge transport in holography with mo-
mentum dissipation, J. High Energy Phys. 04 (2014) 181.

[12] A. Karch, Conductivities for hyperscaling violating geom-
etries, J. High Energy Phys. 06 (2014) 140.

[13] A. Karch, Multiband models for field theories with anoma-
lous current dimension, J. High Energy Phys. 07 (2015)
021.

[14] A. Karch, K. Limtragool, and P. W. Phillips, Unparticles and
anomalous dimensions in the cuprates, J. High Energy Phys.
03 (2016) 175.

[15] S. A. Hartnoll and A. Karch, Scaling theory of the cuprate
strange metals, Phys. Rev. B 91, 155126 (2015).

[16] P. Phillips and C. Chamon, Breakdown of One-Parameter
Scaling in Quantum Critical Scenarios for High-Temperature
Copper-Oxide Superconductors, Phys. Rev. Lett. 95, 107002
(2005).

[17] S. Sachdev and B. Keimer, Quantum criticality, Phys. Today
64, 2, 29 (2011).

[18] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and
J. Zaanen, From quantum matter to high-temperature super-
conductivity in copper oxides, Nature (London) 518, 179
(2015).

[19] R. A. Davison, B. Goutéraux, and S. A. Hartnoll, Incoherent
transport in clean quantum critical metals, J. High Energy
Phys. 10 (2015) 112.

[20] S. A. Hartnoll, R. Mahajan, M. Punk, and S. Sachdev,
Transport near the Ising-nematic quantum critical point of
metals in two dimensions, Phys. Rev. B 89, 155130 (2014).

[21] A. A. Patel and S. Sachdev, DC resistivity at the onset of
spin density wave order in two-dimensional metals, Phys.
Rev. B 90, 165146 (2014).
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Resistivity of Quantum Critical, Charge Density Wave
States from Gauge-Gravity Duality, Phys. Rev. Lett. 120,
171603 (2018).

[29] A. Donos, J. P. Gauntlett, T. Griffin, and V. Ziogas,
Incoherent transport for phases that spontaneously break
translations, J. High Energy Phys. 04 (2018) 053.
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