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Structure constants of heavy operators in ABJM and ABJ theory
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Efficient and powerful approaches to the computation of correlation functions involving determinant,
subdeterminant, and permanent operators, as well as traces, have recently been developed in the setting of
N = 4 super-Yang-Mills theory. In this article, we show that they can be extended to ABJM and ABJ theory.
After making use of a novel identity which follows from character orthogonality, an integral representation
of certain projection operators used to define Schur polynomials is given. This integral representation
provides an effective description of the correlation functions of interest. The resulting effective descriptions

have % as the loop counting parameter, strongly suggesting their relevance for holography.
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I. INTRODUCTION

The discovery of integrability in the planar limit of
N = 4 super-Yang-Mills theory [1] has provided important
lessons in gauge/gravity duality [2—4]. The planar spectrum
can be computed exactly to all orders in /4, and it can be
matched to string theory—a remarkable achievement [5].

By restricting to the planar limit, we are necessarily
restricting attention to operators with a dimension that
obeys AZ < N [6]. This is a tiny part of the theory, and to
properly understand gauge/gravity duality, we will pre-
sumably have to consider operators with a dimension of
order N or even order N2. These have a sensible physical
interpretation as branes [6-9] and new geometries [10],
respectively. The study of these large dimension operators
is challenging. In general, we do not expect any integra-
bility. Further, the usual description of the large N
expansion as a genus expansion for sums of ribbon graphs
is not a valid description, and all the known lore of large N
must be revisited.

In this study, we consider correlation functions involving
operators with a dimension of order N, in a supersymmetric
N =6 Chern-Simons-matter theory with gauge group
U(Ny); x U(N,)_g, where k denotes the Chern-Simons
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level and we assume that N; ~N,. Our notation is
N > N,. There is an AdS,/CFT; duality which relates
this Chern-Simons-matter theory to type IIA string theory
on AdS, x CP? with nonzero background fluxes. Here
AdS4 stands for four dimensional anti-de Sitter spacetime
and CP? for three dimensional complex projective space.
There are N, units of Ramond-Ramond (RR) four-form
flux through AdS,, k units of RR two-form flux through a
CP! c CP?3, and a NS B field B, with nontrivial holonomy

1 N,—N
— B, =———2 (1.1)
27 Joptcep k

For N| = N, the Chern-Simons-matter, theory is known as
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory
[11]. The general case (N; # N,) is denoted Aharony-
Bergman-Jafferis (ABJ) theory [12]. The fields can be
rescaled by powers of % so that all interaction vertices are
suppressed by powers of % Thus, the level k plays the role
of the coupling constant, and large k is weak coupling. The
planar limit is given by

k,N — oo A =— = fixed.

> =

(1.2)

Integrability makes an appearance in this limit [13]. The
theory has two gauge fields, one in the adjoint of U(N)
and one in the adjoint of U(N,); four complex scalars; and
four Majorana fermions. The scalars and fermions are both
in the Ny x N, or Ny x N, of U(N;) x U(N,). We study
determinant, subdeterminant, and permanent operators
constructed using only the four complex scalars.

Published by the American Physical Society
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Our goal is to generalize the recently developed tech-
niques of Refs. [14,15] in the AdS5/CFT}, setting to the
AdS,/CFTj setting. Denote the four complex scalar fields
byA;and B;,i =1,2.Leta =1, ..., N be a gauge group
index for U(N,), and let a« = 1, ..., N, be a gauge group
index for U(N,). Indicating gauge indices, we have (A;)¢
and (B;)4. In this study, we work entirely in the free theory.

The free field theory action is given by

S—k [ 0,00 AD + 0,(B)0 (B (13

a
forms in the adjoint of U(N ). The heavy operators that we
are interested in can be described as Schur polynomials in
the matrix Z = ¢;, or Z' [16-18]. As in N’ = 4 super-
Yang-Mills theory, the Schur polynomials provide a com-
plete basis for local operators constructed from Z, and they
diagonalize the free field theory two-point function [16—18]

Notice that the composite field (¢;;);; = (Ai)“(Bj-)Z trans-

r(¥1)xs(x2)") = OrsSr(N1)fR(N2) <m> n’
(1.4)

where R is a Young diagram with n boxes, i.e., R F n.
fr(N) is a product of factors, one for each box in R, with
the factor for a box in row i and column j given by
N — i+ j. The stringy exclusion principle is implemented
by requiring that R has no more than N, rows. We will also
consider restricted Schur polynomials in the ABJM theory,
constructed using ¢;; and ¢, [19]. Operators constructed
using nq; ¢, fields and ny, ¢, fields are labeled by
three Young diagrams, r F n;;, s n;, and R F n with
n = ny; + ny,. The pair (r,s) labels an irreducible repre-
sentation that can be obtained from the irreducible repre-
sentation R of S, after restricting to the S, XS,
subgroup. The representation (r, s) may appear more than
once after restricting, and consequently we need a multi-
plicity label to distinguish the different copies. The relevant
two-point function is given by

@R»(’-S)aﬁ(xl >)(TT~(t,u)yr(x2)>
hOOkSRfR (N1)2 ( 1 )”

hooks,hooks, \4zk|x; — x|

= 5RS5rt53u5ay6ﬂf
(1.5)

where hooks, stands for the product of hook lengths in
Young diagram ¢ and the indices @, f, y, = are multiplicity
labels. For a careful and elegant treatment of the effects of
the stringy exclusion principle, see Ref. [20].

The string theory duals to these heavy operators are
giant gravitons branes in IIA string theory. Operators
labeled by Young diagrams with O(1) long rows (of
length approximately N; ~ N,) correspond to dual giant

gravitons, given by D2-branes wrapping an S?> C AdS,
[21-24]. Operators labeled by Young diagrams with O(1)
long columns (of length approximately N; ~ N,) corre-
spond to giant gravitons, given by D4-branes wrapping a
four manifold in CP? [25-27].

The paper is organized as follows. In Sec. II, we discuss
correlation functions involving determinants. We start with
adiscussion of maximal giant gravitons in the ABJM theory
and then generalize the discussion to general giant gravitons
in both ABJM and ABJ theory. In Sec. III, the discussion is
generalized to correlation functions of permanents, relevant
for dual giant gravitons. This is followed in Sec. IV with a
discussion of restricted Schur polynomials which are dual to
giant gravitons carrying more than one angular momentum.
Following Refs. [14,15], we explain in Sec. V that the
effective theories that we obtain can be understood in terms
of a graph duality proposed by Ref. [28]. In an attempt to
gain further insight into the p theory, we consider a saddle-
point evaluation of the p integral in Sec. VI, which allows us
to obtain the correct leading contribution to the correlators
in the large N limit. An interesting feature of this analysis,
for the ABJ theory, is the existence of a pair of saddle points
related by parity. Finally, in Sec. VII, we discuss our results
and draw some conclusions.

II. CORRELATORS INVOLVING DETERMINANTS
AND SUBDETERMINANTS

The maximal giant gravitons in the anti-de Sitter
spacetime are dual to determinant operators in the con-
formal field theory (CFT) so that we will refer to the
determinant operators as maximal giant gravitons. We are
interested in computing the correlation function of Q
maximal giant gravitons, located at positions x,, for
A=1,2,...,0. The giant at x4 is given by the Schur
polynomial y;v,)(x,). The Schur polynomial located at x,
is constructed using the field (Z4)%(x4), which is a linear
combination of products of pairs of the complex scalar
fields, each transforming in the adjoint of U(N ). The only
assumption we make is that

((Zr)p(xx)(Zk)g(xk)) =0, (2.1)
which ensures that our composite operator is free of UV
divergences. For simplicity, to start, consider the ABJM
theory. Introduce two sets of fermionic vectors, y“, y, and
w*, y,, and note that

/ [ g™ @ g d™ g w
e l/_/ﬂNl l//aNl)_(blxal .. .)_(le)(aNl
= Z xamy(@)xamy (p)ogpy,

(’,PGSN]

(2.2)
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where

G =G, A= (23)

W By (1) byvy)”
The label (1¥1) stands for a Young diagram with a single
column of N; boxes. We will now argue that the right-hand
side of the above identity is the projection operator that
appears in the definition of maximal giant gravitons in the
ABJM theory. Using the Fundamental Orthogonality
Relation for matrix elements of irreducible representations
[29], it is simple to prove the identity

> xr(@)xs(p)Tr(cA®Y1 pBIEN)

o.p

OpsNq!
= S rely) (ABT)E,

R WESN,

- (AB )y, -

Ay (Ny)

(2.4)

As usual, there is a Schur-Weyl duality that (in the
most general case of ABJ theory) organizes both the
|

representations of U(N;) and U(N,). For the example
we are considering here, the centralizer is Sy, . In general,
we could have n # N, fields, and the same identity would
hold, after replacing N; — n. The centralizer in this more
general case is S,—which swaps As and Bs. Notice that it
is the same S, that is the centralizer for both U(N) and
U(N,) and this is why we get the 5y above. The reader
should also note that it is only the symmetric group that
played a role in the derivation of the above formula, so it is
also applicable in the ABJ theory where N| # N,.

Using the identity above, we will be able to write an
integral representation for the maximal giant graviton cor-
relation functions. To carry out a general discussion,
introduce a set of vectors Mg, which we dot with ¢/ =
(A1, A, By, B,), and a set of vectors ), which we dot with
o't = (A{,A;, BI, BT) For now, keep these vectors general
up to the Q conditions yK Yk = 0, which ensure con-
tractions of fields inside the same giant vanish, consistent
with (2.1). The correlation function of Q giant gravitons
and a single trace operator O can be written as

[
Gramny (en)xamy (x2) - vy (x0) O) —/[dfﬁld(f’”]/H[dN‘)?KdN‘)(KHdN“/_/KdN‘V/K]

ok [ PO 0@ DR ) Fax Vit o i Vi (1) i)

O(¢'.4"). (2:5)

The first step is to perform the Gaussian integral over the adjoint scalars, which leads to

(Z(wl)(xl))((wl (x2) -+

where

1
Sluzi

1

VI 7, a
4ﬂ|x _xl(| (yKWaK)(K)

>
1[]e

SIT B —
Z4H|x X | yK)(aKWK)

0 N0 YV as a .
Ky (x0)O) = / H (@ cd" ] [dN“/_/KdN‘V/K]e‘”‘”ZK#:' k. PaViZar) O(s,81),  (2.6)
K=

(2.7)

We now perform a Hubbard-Stratonovich transformation, introducing a complex matrix p;r and replacing the quartic
dependence on the fermion vectors with a quadratic dependence. It is then possible to integrate over the fermionic vectors to

obtain
N
0{(1’\’1 >(x1))((1,\,l)(x2) .. ')((INI)(XQ)O> = /[dpde]e—4ﬂ71Tr(/ﬁp)+N1Trlog(M1)+N1Trlog(M2)<(’)(S, ST)>}(#/” (28)
where
5)1(':)}1 j)K'yJ + (2.9)
|XKJ|
and the measure is normalized so that
/ [dpdpt]e=77Tiler') = 1, (2.10)
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The integration over the fermionic vectors contracts the fermions appearing in S and ST. The result after the contractions are
performed is denoted by (O(S, S7)) 4 11 (2.8). These contractions are carried out by applying Wick’s theorem as usual with
the following contractions:

(Txaxy) = 84(M7" )k, (rav) = 5(M7") k). (2.11)

Notice that a saddle-point evaluation of (2.8) naturally generates the Nil expansion.

For a test of (2.8), we will consider the two-point function (y ;v (AB" )y v (A"B)) of two giant gravitons in free ABIM
theory. In this case, we have

(0 Z1> M 1 <O Z2> M 1 (0 ZT) (212)
p: 1 = —_—-— 2:—— N . .
z 0 VXl Nz 0 Vixel\z 0

Using polar coordinates for the complex numbers z;, z,, we find

_ . 64N27* 1 4N
(;((INI)(AB1)(xl))((lwl)(AlB)(xz)> :T;W/drl/drze‘Tl(rHr%)r%Nﬁlr§N1+1
12

= (N, 1) <m> " (2.13)

which agrees with (1.4). Now, consider the same computation in the free ABJ theory, and recall that N; > N,. The only
significant difference between the ABJM and ABIJ theories is in the initial integral expression for the correlator. The relevant
integral representation for the ABJ theory is

Q
0((1”2)(x1))((1Nz)(x2) o ')((1Nz)(xQ)O> = /[dflﬁ[d(ﬁl-}-] / H[le)_(KdNIIK] (@ d k]
K=1
e—kfd3x(8,4¢1'9”(¢')f+%2£:] §(X_XK)()?aK(yK'll’Z)gV/{]l(_l/_’aK(j)K'(qsl)t)ZZ‘;('H_(aK)(‘;())O(d,l’ ¢1+)‘ (2.14)

The important difference in the ABJ expression above and the ABJM expression in (2.5) is that there is an extra term jy g x%
appearing in the effective action, needed to “soak up” the extra y, y integrations. It is a simple matter to repeat the analysis
above with this new starting point.

The above results for determinants can be generalized to subdeterminants. This corresponds to studying correlators of
operators dual to giant gravitons that are not necessarily maximal. A useful identity is

/[dN]ZdN])(] [szl/_/szl//])?bIZm .. .)_(b”)(an(f .Z)Nl_nl/_/ﬂll//al e ll_/ﬂnl//an (l/_/ . W>N2_n

= (=DM Ny =) (Ny = )1 xam (@) m (p)ofpys (2.15)
o.pES,

where now

Ay
e

p(n)

_qa a, _qa
6; o 5ﬂzlr(l) o 5ﬂa‘(n) p?) - 5[7/1,(1) ’ (2.16)
The right-hand side of the identity (2.15) is the projection operator needed to define subdeterminant operators. Thus, the

generating function for giant graviton correlators can be written as follows,

N Q
i 2i - _ _
Z ﬁl o 'tQQ <Z(1"1)(x1) o ')((1"Q)<XQ)O> = /[d¢1d¢”] / H[dN‘ZKdN])(K] (@™ g dV oy
iy ig=1 K=1
e—k fd3x{8y¢’(?“¢”'+';2£:1 5(X_XK)U{K')(K'H/_/K"I/K'HK)?KZK'I/K_tK'I_/KZKXK]}O(¢l’ ¢IT)’ (217)

where we have suppressed the gauge indices and
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4
Zp=> Vig! Zj& i, (2.18)
I=1

After integrating over the ¢’ fields, performing a Hubbard-Stratonovich (HS) transformation, and then integrating over the
fermionic vectors, we obtain

N

11 in 2i 4
Z 5" 'tQQ<Z(1’1)(x1>)((1"2)(x2)"'Z(1’Q)(XQ)O>:/[dpdpw

itiy,ig=1

B L Y R T L e (O/(S,5)),,. (2.19)
where
SI a ZtKyKWKaZK (SIT _ Zl‘KyKZKaWK (2 20)
)i Cdmk = |x—xg| )i 4ﬂ'k |x —xg| '

Here, (O'(S',§")),, is again defined by Wick contracting all pairs of y, 7 and y, i fields according to Wick’s theorem,
with the basic contraction given by

Faxxl) = 85(MT") g, (Fax/r) = 5/;(M51)KL (2.21)

[titx Vi - Y titgVg Y
(MI)JK =0k — %ﬂm <M2)KJ = 0ky — %ﬂjm (2-22)

As a test of (2.19), we compute the two-point (;((11,)(AB+) )((1/2>(ATB)>. The exact result for this two-point function is

with

¥ " Nl' Nz' 1 2,
<)((ljl)(AB )(XI)X(IJZ)(A B)(}C2)> = 5./].]2 (Nl _Jl)' (N2 _Jl)‘ 4ﬂk\x1 —X2| . (223)

In this case, )71 -V = 572 - Y, =0 and 571 -V, = 372 - Y, = 1. Parametrize p as

0 z
(07 22
2 0
The matrices M; and M, are then
1 —, [ak 1 —, [l *
leia[2 [ria[*1

— /h _ [hb x
\xlz Zl ! \)‘12|Z2 1

In this case, using (2.19), the computation boils down to computing the integral

/ [dz,dz} dzydz)] e+ (2P Hal) det (M,)V1 (det M) V2. (2.26)

Changing to polar coordinates z; = r;e'% and expanding the integrand as follows,

L+l
(detMl)N' (deth)Nz _ 2(1;]1) <];/2> (_ %) ! Zei(ll—lz)(9|+92)’ (2.27)
1 2 KXy — X2

L.l
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it is simple to find

/ [dpdpt)e=**Tr" (det M, )V (det M, )N

Extracting the coefficient of the (,1,)*’! term, we repro-
duce the exact result.

With the effective theory, we can compute three-point
functions. Consider the correlation function

0((1'<+f>(xl))((lk)(xz)OJ(xs»-

The Schur polynomial at x; is constructed using Z*, the
Schur at x, is constructed using Z, and O, is Tr(Z’).
Here, K is order N; ~ N,, J is order 1, and we recall that
Z = AIB? For generality, work in the ABJ model. Assume
that K 4 J is smaller than both N| and N,. The spacetime
dependence of this correlation function is rather simple,

(2.29)

Orameny (X0 x) (x2) Oy (x3))

Cky
= . , (2.30)
(4xk|x; — x2|)2K(4”k|x1 - X3D2J

where the coefficient Cg ; can be computed in the zero-
dimensional version of the model, in which case it is
given by

Cry = arn(ZNxax (Z2)Tr(Z7)). (2.31)
Using the identity
J-1 ‘
Tr(Z) = ) (=1)%y-i19(2), (2.32)

Il
=}

i

o-(m)” > %

N;! N,! i 2
e 2 ( 12 ) (2.28)
i (Nl - l)' (N2 - l)' 4ﬂk|x1 —XZ|
|
we have
205 Z2)Te(Z7) = (=) yaxen(Z) + -, (2.33)

where - - - above stands for terms with Schur polynomials
that have more than a single column and hence do not
contribute to Cg ;. Consequently, we have

CK,J = <)((1’<“)(ZT))((lK)(Z)Tr(ZJ»
N, ! N,!

=07 (N —K-D)I(N,—K-J)! (2:34)
so that
0((1K+f) (xl))((l’()(XZ)OJ(x3)>
_ (cpy Ny! N,!
B (Ny—=K=J)! (N, —K—1J)!
! (2.35)

" @k, — x| K (Azk[x, — x5 >

Reproducing this result is a convincing check of the
effective theory. We consider a more general case with
O = Tr(¢11¢ﬁl¢lz¢ﬁz e ¢IJ¢T71)_ (2.36)

Recall that after integrating over the ¢’ and ¢’ fields, they
become S’s and S’7’s. Consequently,

_ RV Sl il
Ik Ik, - tK./tKJyKlyl_(ll o .ijykj

KKy K)=1 K, Ky K, =1

ay

7 a) = _ ) - ay = _ ap iy aj = _
VK XK XK a Vg VKo XX R0V, VK a XK XKV R,

e = x ||x = g, [ - v = g [l = xg |

(2.37)

Wick contractions of the fermionic fields in O are given by (2.21). At the leading order in N, we have

Y

(©) = (-1 () Wi

X

>

KKy K;=1K, K,K;=1

(M) gk, Mg e, (MY g g - (M7 g g, (M5 )k k,

0 i -
3yl ! 3yl /
Ik Ik, tKJ[i(JyKllyl_(l] o ylgjyl_gj

e = xg, [[oe = x, [ - e = || = x|

Introducing

(2.38)
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N Yt
®(x) = [ —L)di 71
) <4nk> ‘ag<Lx—-xl||x-xz

we can write

(0) = (=11 Tr(@" () (x) " (x) D" (x) -

For the correlation function we are considering, we have O = Tr((A,B])’) and

Y, =(0,0,1,0) Y, = (1,0,0,0)

and hence

N\ (mt O
dA = ' x1 =23 M7 =
<4ﬂk>< 0 0 !
0 -1
o) M7

The expectation value of O in the large Ny and N, limit is (O) = (-

151
éB] — & ‘xl_x3‘
4k 0

LYs 'Y M7 (2.39)
|x = xg| 1 '
- N\ .. [ uV o n)) 1oV
& (x)= (2 )d LAE 2 \m;! 2.4
)= (g e (20 g a (240)
- @l (x)D (x)). (2.41)
yz: (1’0’0’0> yZZ(O,(),LO), (242)
Nty <(M1_1)11 (Mfl)lz) (2.43)
drk|x; — x3] 0 0 :
N>ty <(M51)11 (Mz_l)n) (2.44)
4rk|x; — x5 0 0 :
1)/ Tr((@ ®B1)7). So, we find
1 2
T ) (M7 (M3, 2.45
4rk|x, —x3|> [(M71)), (M31)y] (2.45)

@t @) = (Vi)'

where M| and M, are given by (2.25). The correlator is given by multiplying (2.45) into the integrand of (2.28), which

yields

Oy (e (x2) O, (x3))

y (Nz—J)
(Ny—J —1)!

This is very close to the exact answer. Recall that we only
summed the leading order contribution at large N when
integrating over y, y, y, and . The corrections to this
answer are of order JNZ To suppress these, we must take
N,; > J and N, > J. In this limit, we have

(N;=J)IN/ =N;! +- (2.47)
where - - - are subleading at large N; so that (2.46) is the
correct large N result for (2.34).

III. CORRELATORS INVOLVING
PERMANENTS

In the previous section, we have considered correla-
tion functions involving determinants, which are dual to
giant gravitons. This section extends the discussion by

! NJNJ 1 21 1 2J
). 172 47Tk|.X] —x2| 4ﬂk|x1 —)C3| ’

JIZtt 2zt21 Nl J)

N, —J =)

(2.46)

|
considering permanents, which correspond to dual giant
gravitons. We will develop the discussion for the ABJ
theory. To obtain the corresponding results for ABJM
theory, we simply set N; = N,.

Introduce two sets of commuting vectors, ¢“, », and
& E . A useful identity is the following,

/[d¢d¢] [dEdg)e= 7054 g Pp, QU ENE, - ENE

Z)( (P Gﬂpb’ (3.1)
o, pES,
where now
aﬂ = 6 ! -‘-6/),:(”) Ph = 6,7/'}“) -~~6b;(”). (3.2)
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The label (n) denotes a Young diagram that is a single row of n boxes. The right-hand side of the identity (3.1) is the
projector needed to define permanent operators. Thus, the generating function for the correlators of interest is given by

© 9]
2iy 2i 2i . _ _
Z f ]tz ’ tQQ i) () (i) (22) -+ 'Z(iQ)(xQ>O> = /[dfﬁdﬁlﬂ / H[dQDKdQDK] [dégdE]
iviyig=1 K=1
e—kfd3x{8ﬂ¢’8“¢”+i Zizl 5(/‘—)‘1()[@K'¢K+EK'§K—fK(ﬁKZK-fK—fKEKZKQUK]}0(451’ ¢1'I‘)’ (33)

where we have defined

~

4
Zx=) Vid! = Vio". (3.4)
I=1

=1

After integrating over the ¢’ fields, performing a Hubbard-Stratonovich transformation, and then integrating over the
bosonic vectors, we obtain

0

i i 2i
Z 05" 1 G ()X ) (%2) -+ X (i) (%) O)

i1y, ip=1

—47KTt(pp') =N, Tr In [5 ot %pk i|—N2Tr1n [5,( + ”’Ki K. fp,,(}
= [lapapi e VI (o1 51 )

0 (3.5)

where

gl tx Vi Exa0y Ia 1k Vi Prals
4= Se = . 3.6
“ 47tkz |x — xg| “ 47rkz |x — xg| (36)

The integration over the bosonic vectors implies that all £ and ¢ fields are contracted, indicated in the notation
(O1(S1(x))) ¢ These contractions are again evaluated using Wick’s theorem with the basic contractions given by

(Paxod) = Mgy (Eaxl) = (M3 ), (3.7)

ltite ViV te Ve Vs s
(M), =6k + %ﬂm (My)g; = ks + %ﬂ}x' (3.8)

To test (3.5), it is instructive to compute the two-point function of dual giant gravitons. Using (1.4), we know that (the
operator y(;y is at x; and y;,) is at x,)

with

. . (Ny+J =D (Ny+J = 1)! 1 27
AB" A'B)) =6 3.9
O((J])( ))((Jz)( )> J1J, (Nl — 1)' (N2 — 1)‘ 47rk|x] —)C2| ( )
For this example, we have 571 -V = 372 - Y, =0 and 521 -V, = 5)2 -V, =1, as well as
1t N x
(0w, [ Ve v |1 Vi (3.10)
r= Ve) 0 b Hi 1 : 1515} 1 ‘ .
|X]2\Zl |x12‘Z2

Using (3.5), the computation of the correlator boils down to evaluating the integral
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/ [dz,dz} dzydz)]e*™ (147 det (M)~ (det M,) ™2, (3.11)

Moving to polar coordinates for the complex variables z;, z, and expanding the integrand

det (M)~ (det M,) N> = Z(Nl +.].1 - 1> (Nz +.j2 - l)ei(jl—jz)(91+92) (M)hﬂz’ (3.12)

Ji-J2 1 2 e
we easily find
—DIWNo+j=DV n Y
AB)y, (ATB) +J 2 , 3.13
O, (AB )y, ( ZJ: (N, —1)! (N, — 1) \drk|x; — x,| (3.13)

which is the correct result. The fact that the powers of 7, and 7, are equal reflects the Kronecker delta &, ;, in (3.9).
Now, consider a three-point function involving two dual giant gravitons and a single trace O; = Tr((AB)”). Arguing as
we did above [see Eq. (2.34) and the argument above it], we find

Ny + T+ K= 1) (Ny +J + K —1)! 1
(N =1)! (N, =1)! (4zk|x; — xo| ) 2K (4rk|x; — x3))*

ks (x)xk (x2)O0y(x3)) = (3.14)

We want to derive the leading behavior at large N, N, of this expression using our effective theory. To evaluate
(O'(8"(x))), . appearing in (3.5), we need to Wick contract the ¢ and ¢ fields using Wick’s theorem with the basic
contractions given by

(Exalh) = S5(MT") g, (Prat) = 05(M5" ) g (3.15)

Since the bosonic fields commute, we do not need to track any signs. We only sum the contractions responsible for the
leading large N contribution. A straightforward computation gives

2

. g 2
Tr(®Y®P1)) = (NN,) 1! <m) (M) (M5 ) (3.16)

To evaluate the correlator of interest, we need to multiply the above result by the integrand relevant for two giant gravitons
and perform the integral over p, p'. The integral is performed exactly as in (3.13), the only difference being the replacement
N; = N; + J. The result is in agreement with (3.14) for large N.

IV. ADDING MORE MATRICES

In this section, we want to consider heavy operators constructed using two matrices, ¢; = AlBi and ¢, = AIB; These
heavy operators are restricted Schur polynomials [19]. Constructing operators using more than a single matrix corresponds
to giving the giant and dual giant gravitons additional angular momentum. The restricted Schur polynomial of interest is
(n=ny +np)

1

mZTf((M),(Nz))( (1002 (0)) Te(op ™ pH™). (4.1)
11 .

c€EeS,

Xy (), 0)) (s i) =

The representation labeled by the Young diagram (1/17/2) is one dimensional, so the restriction needed is trivial (this is also
why we do not need multiplicity labels in the above equation) so that we can write

1 n m
X (12 (1), (172) (¢11,¢12) ﬁE 1(111“2( )Tr(6¢® ! ® 2)- (4.2)

nilan'oeS,,

The two-point function of this restricted Schur polynomial is
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N! 2<11+J2>' 1 Ji+Ja
G0 (@1 Bk (o, 1f1>.<1fz)>(¢”’¢‘2)>_<(N—11—Jz)!) J\J,0 \drk|x, — x| - @)

where y(jsi0) ((141),(12)) (@11, #12) is located at x; and ;((1,1+,2) 1) (142)) (¢h11,¢P12) is located at x,. Simple character
manipulations [29] lead to the following identity:

1

!
nlnyni!

Z(11H2) (1), (172) (¢llv¢12) (1/1“2)(5))((1’1“2)(P)Tr(GA?nP(BD@n”(Bg)(gm'z)- (4.4)

This last line implies the following expression for the maximal giants (we assume that Q is even and that the giants for
K =1,...,0/2 are built from A 1B7; and A1B; and the remaining giants are built from B IAI and BQA]L),

N
Do At Gy vy (1) X 1m0y () O)
ny....np=
[
:/[dAinA [dB;][dB]] /HdN')(KdN')(k |[@"pgd“ygled e O(Z, Z7) (4.5)
K=1

with

Setr = —k/d3x(5',,A,-<9”A}L + 8,,3,0”3?)
- Z(ZaK 1 (k)W = Wak (1x(B))k + (BY) o) xk)

- Z Fak (tx(B1)k + (B2) ) 2w — Wi (A)) 2% ). (4.6)

Kk=1+%

For the nonmaximal giants, we again consider a correlator with the first £ 5 giants built from A, B and A B while the
remaining giants are built from BIAJ{ and BZAT. For this, we will con51der

N
z (tiy)" (i) -+ (tr)'(toz Ve (raineiny (i), 1y (1) -+ “X(ieio) (1) (1)) (X0) O)
ny,..., np=0
Q .
— [lawap) [ 1] @ zed @ prdwless 0@ 4", (4.7)

K=1

where

0
Sett = _k/d3x(aﬂAiaﬂA; +0,B,0"B]) - Z (XiXax + VEWak)

k=1

_Z()(al( )y = War (1xy (B + txz(BY)k)ox)

- Z Fak (txy(B1)k + txz(B2) ) Sw — Wa (A))2%). (4.8)
K=1+¢

As before, we complete the square and integrate over the adjoint scalars to find

086019-10



STRUCTURE CONSTANTS OF HEAVY OPERATORS IN ABIM ... PHYS. REV. D 100, 086019 (2019)

N
Z (tiy)"(t1iz)" -+ (tor)'e(toz) e (raainsiny (i) (¥1) -+ X (rietiey ((rie) (1iey) (X&) O)

0 (tkytyy HKZ1Z)9(Kk<0/2<1) VO(1<0/2<K) -

Q by, a
= / H [le)_(Kle)(K] [dN21/_/KdN21’//K]gﬁ ZK#J:I Tog—xs] WKaW X 1aX
K=1

X e~ Z,Q(:] (/?K')(K‘H/_/K'WK)O(SI’ SIT)’ (49)
where S’ and S’T can be still written as (2.7) if we define
Vi = {5(ksg/2), 0, tky0(k>0/2)> lkz5(k>Q/2)}, (4.10)
Vi = {8x=0/2) 0. tkvO(k<02)» tkz0(k<0/2) }- (4.11)
By performing the HS transformation, we find
N . . . .
Z (ty)"1 (i) - (ty)'@(toz) e Qrnny ).y (K1) -+ X riotioy (1o (1ve)) (k) O)
Ny, =
_ /[dpde}e—4ﬂkTr(pp;)+NTrln[M1]+NTr1n[Mz]<OI(S1(x)’SIT(X))>I’W’ (4'12)
where
(My)gy = 875 — (txytyy + tkztiz)d(k<p/2<s) + 5(J5Q/2<K)ij
Xk
(tkytyy + tztyz)d(k<0/2<) + Ou</2<K) +
(M2) k= bxs - \/ e (4.13)
KJ

For a test of the above result, we will reproduce the two-point function (4.2). This amounts to evaluating the integral

/[dePT]e_4”k(ZTZ‘+ZEZ2) <1 = Vhyhy + lizlz

206

- N\? 11 ,—dak(r+12) 20 .20
:Z J /[dpdp]e TRy
J=0

N
N! 2N 1 2J
= hytay) 1 (tiz122)",
,Z<(N—J>!> s Cantlng) ()t

_ /{dpdp’r}e—hrk(r%#»r%)

0

where J = J; + J5.

By replacing the fermionic vectors y and y that appear in
the above analysis, one could easily consider operators dual
to dual giant gravitons. It is also possible to consider res-
tricted Schur polynomials constructed using more than two
matrices. We will not pursue either of these extensions here.

V. GRAPH DUALITY

In the case of N =4 super-Yang-Mills theory, the
description employing the p field was related to the

N * 4\ N
2122 ey
—> (1 —Vtiyhy + iz 2 2>

|x12] [x12]
ky+k
X132

hyly +flztzz>J
>
12

(4.14)

original description by means of a graph duality [14,15]
first explored in Ref. [28]. In this section, we will again
argue for this conclusion. The p description of giant
gravitons in ABJ(M) is described using the following
“effective action,”

St = 47kTr(pp’) — N\ Trlog(M,) — N,Trlog(M,),
(5.1)

where
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ttg Vg Y
M, =68k — % )
KJ
gk Yy
M, =gy — WP;K' (5:2)

Consider Q = 2 for simplicity, and again consider Schur
polynomials constructed using Z = AIBT and Z' = BIAT,
in which case we have

-(& o)
P 22 0

(5.3)

M, = (5.4)

2 1

[x12

The effective action can be expanded as follows:

Wt
St = 4mk([21 + [222) = N, log ( e zl@)
l

1 /1ty n
= 4rk(|z;|* + |z2*) + N —<—ZZ>
1 2 1;’1 |X12| 142

l‘ltz**”
+NZZ ( |>

|12

Our goal is to use this effective action to reproduce the
following two-point correlator between giant gravitons:

(1 (ABY) (x1)x1 (AB) (x2))

N,! N,! 1 2J
= = D V= 7} <4nk|xu|> - 9

This is an exact result in the free field theory. It is worth
explaining a few rules for how diagrams in the original
ABJM/ABIJ description map into diagrams of the p theory.
First, propagators in the original description are propaga-
tors in the p description. Thus, the power of % tells us how
many p propagators there are. The p propagators are
oriented, so we need an arrow on each propagator.
Second, faces map into vertices. Thus, the power of N,
tells us how many vertices that come from the second term
in (5.5) there are, and the power of N, tells us how many
vertices come from the third term. All the lines on an N,
vertex point outward, and all lines on an N, vertex point

FIG. 1. How to read p vertices from a ribbon graph.

inward. The duality maps each of the original diagrams into
a new diagram; i.e., it works diagram by diagram. Further,
it maps connected diagrams into connected diagrams, and it
preserves the number of disconnected components.

The p theory has an infinite number of different vertices
from which graphs may be composed. To see what vertices
correspond to a given ribbon graph, decompose the ribbon
graph into a set of color loops. The ribbon graph is made
from ribbons of many colors because there are many types
of fields. We will restrict our discussion to the Z field
introduced above. In this case, we need two colors, red for
Ay, AI and blue for By, BI. Each loop is a face of the
original ribbon graph, so it maps into a vertex of the p
graph. Looking at the colors (red or blue) of the edges, we
can read off the structure of the vertex. Orientation of the
edges is assigned so that the loops are correctly glued back
together to form the original ribbon graph. An example to
illustrate this procedure is shown in Fig. 1 below.

For J = 1, the two-point correlation function is

1 2
N{N,| ——— | .
! 2(47fk|3512|>

From the powers of N;, we know that the p graph has one
N, vertex and one N, vertex. From the power of k!, we
know that the p graph has two propagators. There is only
one diagram with a single NV, vertex, a single N, vertex, and
two propagators. The diagram is shown in Fig. 2 below.

(5.7)
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Nl N2

FIG. 2. The p graph for (5.7).

We use a red line for the z; propagator and a blue line for
the z, propagator. There is no nontrivial symmetry factor
because the two lines in the graph are inequivalent.
Evaluating this diagram, we have
N, ﬂ)
|x12]

1 1t 1
- _Nl — | x —
4rk |x1n| ) 4rk
This precisely reproduces the exact result (5.7).

For a more nontrivial example, consider the two-point
correlator for J = 2:

(5.8)

: 4
N{(N; = 1)Ny(N, - 1) <m>

1 4
= (NIN3 = NiN = N3N + NiNo) <W> |
(5.9)

First, consider the signs. From the above answer, there are
four terms, which implies that we need to sum four p
graphs. Each vertex comes with a —1. The N2N? graph has
four vertices and (—1)* = 1, the N?N, and N;N3 graphs
each have three vertices and (—1)? = —1, and the N|N,
graph has two vertices and (—1)? = 1, so the signs are
correct. Each graph has four propagators. The graphs are
shown in Fig. 3 below.

For this example, there are two distinct graphs that
contribute to the leading term. The fact that the leading term
is a sum of two possible diagrams follows because the
leading term comes from the connected (planar) contribu-
tion to (Tr(Z*)Tr(Z'?) as well as from the disconnected
contribution to (Tr(Z)?Tr(Z")2. It follows that we need to
sum the two diagrams, one connected and one discon-
nected, that can be formed using two N vertices, two N,
vertices, and four propagators.

Ny N,

Ny Ny

<

Ny

Ny

Finally, consider the p description of dual giant gravitons
in ABJ(M) theory, which corresponds to the following
effective action,

St = 4nkTr(pp") + N Trlog(M,) + N,Trlog(M,),

(5.10)

where

tite Vi -
(M), =6k + M/’K}a
|x1<1\

ik - V)

. 5.11
|xKJ‘ JK ( )

(M3) gy = 6ks +
Proceeding as above, we find
2 2 1t
Sett = 4nk(|z1|* + [22]7) + Ny log { 1 - T &1 22
ht *>
BREI LY
%12
1t n
— dak(Jai P + [af?) NIZ ( L m>
htz o .)"
-3 ()

|12

+ N2 10g <1

(5.12)

All interaction vertices are positive so that giants and the
dual giants have opposite signs for the interaction vertices.
This makes sense because for the symmetric representation
all characters are positive and thus all terms in the
correlators of dual giants are positive. The two-point
correlator is

(s (AB")(x1)xs(A"B)(x,))
_(N]+J—1)!(N2+J—1)!< 1
(N =) (N, — 1)1 \drk|x,|

>ZJ. (5.13)

For J = 2, we find

NQ NQ Nl N] N2

Ny Ny Ny

FIG. 3. p graphs for (5.9).
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1 4
12

1 4
= (NIN3 + NiN2 + N3N, + NiNy) (W) '
(5.14)

All diagrams come with a positive sign, which is reproduced
by the fact that all vertices in the p theory are positive.

VI. LARGE N;, N, SADDLE POINT

The effective action for the p theory comes with a factor
of N,. This is an interesting observation because it implies

that the loop expansion of the p theory is an expansion in +-,

which is to be contrasted with the description in terms of
the original variables, which has the 't Hooft coupling as
the loop expansion parameter. Recall that the dual holo-
graphic description of the CFT has Ni for the loop counting

parameter. Motivated by this observation, we will deter-
mine the large N; saddle points of the ABJ theory in this
section. The analysis is rather interesting: there are two
saddles, and they are related by parity. To illustrate this, it is
enough to consider the simplest case of Q = 2. Moving to
polarlike coordinates z; = /R;e™, the effective action [see
the first line in (5.5)] becomes

nt .
Sett = 4nk(R, + Ry) — N, log (1 e \/R1R2e’<91+92)>
12

1t .
— N, log <1 12 \/Rlee_’<91+92)>.
X12

Notice that, when N| # N,, the “action” is not Hermitian.
This will be reflected in the saddle-point solutions where we
have to analytically continue the angular part. Of course, the
fact that the action is complex is not really a problem because
this is not really an action; it simply defines the generating
function of a class of correlation functions of the theory.
There are two saddle points, given by

(6.1)

1

" 8k
1

212

R; + <N1+N2i\/(N1—N2)2+4Z%2)

(00, = —— (N =N, % VN =N 42),

(6.2)

where y, = %. Note that, unless N; = N,, the angle

0; + 0, is imaginary. By evaluating the action at the saddle
points, we must recover the leading large N result for
the two-point correlation function of giant gravitons. To
reproduce the leading order at large N, we need only
evaluate the action at the saddle point. Issues like the
normalization of the measure only contribute at subleading
order. After some simplification, we find

e~ Sor — (E_Nl_NlelVlN12V2)(1_2(N1+N2>)e_ (N1=N5)>+4x3,

N{-N,

. VN, =Ny)?+4y3, + (N = N,y)\ 2
V(Ny =Ny + 453, — (N, = Ns)

—So_ _ (,—N;=Ny A7N1 A7N2, —(N1+N3) (N1=N,) 4442
e—s0 _(e 1 le Ng}(]z )e 1—=N> 12

N| N,
X(\/(Nl—N2)2+4)(%2—(N1—N2)> ’ .
V(Ny = Ny)2 + 453, + (N = Ny)

These represent the large N; generating functions. To extract
a specific correlation function, we must read of the coef-
ficient of a given monomial #/#;'. The ¢, dependence is
contained in the y, variable. To carry out the series
expansion, it is useful to define y, = &H|N| — N,|.
Assuming that N > N,, the series expansions yield

NY'ND? 1

oS0 — g=2N;
(N1 = Np)Ni7N2 ()2

1
N, 2
12

N N
L1 MMV =N = 1)
21 (Nl _ N2)N1—(N2—3) ()(12)2[\,2_4

+ €_2N2NIIVIN§]2(N1 _Nz)—N|+N2—l

—Sor — ,=2N; AfN1 ATV N,—=N 1
€70 = e NINY NG (Ny — Noy) V™ —5-

Z12

—2N; A7V ATV N,—N,—1
— e “MIN]'N, (NI_NZ) 1= N2
X12

1
+ 56_2N1N1]VIN12V2 (Nl _ N2)N1—N2—3
1

X(1+N1_N2) 2Nl_4+""
X12

(6.3)

These results reproduce the correct leading N, N, behavior
of the giant graviton two-point function. Indeed, taking the
coefficient of the third order term from the first expansion,
for example, we have

1, NYINY:(Ny =N, = 1)

2! (N} = Ny)Ni=(N2-3)
N a7N.
~ 2N Ni'Ny?
(N1 = (N = 2))Vi=(N==2)31
N, IN,!

~ = (v, -2 (04
where we used Stirling’s approximation in the last approxi-
mation. Notice that the two answers are related by e=50- =
(=1)Ni=Nag=So |\ . . The first series thus represents the
correct large N| > N, expansion, while the second represents
the correct large N, > N; expansion. The swap N < N, is
accomplished by parity. Thus, the two saddles are related by
a parity transformation. This is exactly what we expect from

086019-14



STRUCTURE CONSTANTS OF HEAVY OPERATORS IN ABIM ...

PHYS. REV. D 100, 086019 (2019)

the breaking of the discrete Z, parity symmetry when
N # N,.

VII. DISCUSSION

The basic result of this article is an efficient approach to
the computation of correlation functions involving oper-
ators corresponding to giant gravitons and dual giant
gravitons, as well as traces, in the ABJM and ABJ theories.
This generalizes results developed in the setting of N' = 4
super-Yang-Mills theory [14,15]. The derivation of this
effective description makes use of a novel identity follow-
ing from character orthogonality to obtain an integral
representation of certain projection operators used to define
Schur polynomials. Then, after integrating over the original
matrix variables and performing a Hubbard-Stratonovich
transformation, one obtains a description in terms of a
K x K matrix for a collection of K giant or dual giant
gravitons. The resulting effective descriptions have }\i, as the
loop counting parameter. Since % controls quantum cor-
rections in the dual gravitational description, this strongly
suggests the effective description is relevant for under-
standing the holography of the ABJM and ABIJ theories.

There are a number of immediate directions that warrant
further study. Our analysis has been restricted to the free
field theory. It would be interesting to consider loop
corrections. Loop corrections to restricted Schur polyno-
mials in ABJM theory have been considered in Ref. [30]. In
addition, the analysis of Ref. [14] has suggested that
integrability may be present for correlation functions
involving two determinants and a single trace operator.
A study of loop corrections may establish a similar result in
the ABJM/ABJ theories.

Thanks to the fact that there are many different
composite adjoint matrices that can be constructed from
the ABJM/ABJ fields, there are many different restricted
Schur polynomials one could consider [19]. It would be
interesting to develop effective descriptions for this large
class of operators.
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APPENDIX: FERMION MEASURE
CONVENTIONS

In this Appendix, we spell out our conventions for the
fermion measure. The conventions of this paper agree with
those of our last paper [15]. Namely, we use

/dv‘/N - diy / dy' - dyNpyt gy = (DN,
(A1)

With this convention, the Gaussian integral is given by
/ dVipdNye MY = det(M). (A2)

Another commonly used convention, which differs by a
phase at most, is

/dlllldl/_/l e dyNdpygy! gy =1, (A3)

If we used this convention, the Gaussian integral would
become

/ dVydNige"™V = det(M). (A4)

With this convention, some equations would differ by a
signs. For example, the sign factor in (2.15) disappears,

/ [dydi)[dwdiply a2, x G - 0)N ", 9™

B B N\ No—n
TR ( l-l//il//l>

. . [¢)
2 g (1) o) (0)O) = [ gt [ T]ldexdzlldyxcind
K

e—kfd3x[0,,¢’8”¢""—% Z%Zl 5(X_XK)(V7K'V/K‘H?K'ZK+IK)?KZKV/K_ZKV72KX)]O(¢I’ ¢IT)’

= (N = n)!(Ny —n)! Z )((1")(5))((1")([’)0%5%- (AS)
o.pES,
The generating function (2.17) would become
(A6)

where [T19_, [dwxdig] = [T12_, [T, dw%dirk,. Note the sign change before the delta function. Because of (A4), the
sign difference would disappear in (2.19) after the integration over the fermion fields is performed. This is expected since

our results should be independent of these conventions.
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