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Efficient and powerful approaches to the computation of correlation functions involving determinant,
subdeterminant, and permanent operators, as well as traces, have recently been developed in the setting of
N ¼ 4 super-Yang-Mills theory. In this article, we show that they can be extended to ABJM andABJ theory.
After making use of a novel identity which follows from character orthogonality, an integral representation
of certain projection operators used to define Schur polynomials is given. This integral representation
provides an effective description of the correlation functions of interest. The resulting effective descriptions
have 1

N as the loop counting parameter, strongly suggesting their relevance for holography.
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I. INTRODUCTION

The discovery of integrability in the planar limit of
N ¼ 4 super-Yang-Mills theory [1] has provided important
lessons in gauge/gravity duality [2–4]. The planar spectrum
can be computed exactly to all orders in λ, and it can be
matched to string theory—a remarkable achievement [5].
By restricting to the planar limit, we are necessarily

restricting attention to operators with a dimension that
obeys Δ2 ≪ N [6]. This is a tiny part of the theory, and to
properly understand gauge/gravity duality, we will pre-
sumably have to consider operators with a dimension of
order N or even order N2. These have a sensible physical
interpretation as branes [6–9] and new geometries [10],
respectively. The study of these large dimension operators
is challenging. In general, we do not expect any integra-
bility. Further, the usual description of the large N
expansion as a genus expansion for sums of ribbon graphs
is not a valid description, and all the known lore of large N
must be revisited.
In this study, we consider correlation functions involving

operators with a dimension of orderN1 in a supersymmetric
N ¼ 6 Chern-Simons-matter theory with gauge group
UðN1Þk ×UðN2Þ−k, where k denotes the Chern-Simons

level and we assume that N1 ∼ N2. Our notation is
N1 ≥ N2. There is an AdS4=CFT3 duality which relates
this Chern-Simons-matter theory to type IIA string theory
on AdS4 × CP3 with nonzero background fluxes. Here
AdS4 stands for four dimensional anti-de Sitter spacetime
and CP3 for three dimensional complex projective space.
There are N2 units of Ramond-Ramond (RR) four-form
flux through AdS4, k units of RR two-form flux through a
CP1 ⊂ CP3, and a NS B field B2 with nontrivial holonomy

1

2π

Z
CP1⊂CP3

B2 ¼
N1 − N2

k
: ð1:1Þ

For N1 ¼ N2 the Chern-Simons-matter, theory is known as
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory
[11]. The general case (N1 ≠ N2) is denoted Aharony-
Bergman-Jafferis (ABJ) theory [12]. The fields can be
rescaled by powers of 1

k so that all interaction vertices are
suppressed by powers of 1

k. Thus, the level k plays the role
of the coupling constant, and large k is weak coupling. The
planar limit is given by

k; N → ∞ λ≡ N
k
¼ fixed: ð1:2Þ

Integrability makes an appearance in this limit [13]. The
theory has two gauge fields, one in the adjoint of UðN1Þ
and one in the adjoint of UðN2Þ; four complex scalars; and
four Majorana fermions. The scalars and fermions are both
in the N1 × N̄2 or N̄1 × N2 of UðN1Þ ×UðN2Þ. We study
determinant, subdeterminant, and permanent operators
constructed using only the four complex scalars.
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Our goal is to generalize the recently developed tech-
niques of Refs. [14,15] in the AdS5=CFT4 setting to the
AdS4=CFT3 setting. Denote the four complex scalar fields
by Ai and Bi, i ¼ 1, 2. Let a ¼ 1;…; N1 be a gauge group
index for UðN1Þ, and let α ¼ 1;…; N2 be a gauge group
index for UðN2Þ. Indicating gauge indices, we have ðAiÞaα
and ðBiÞaα. In this study, we work entirely in the free theory.
The free field theory action is given by

S ¼ k
Z

d3xð∂μðAiÞaα∂μðA†
i Þαa þ ∂μðBiÞaα∂μðB†

i ÞαaÞ: ð1:3Þ

Notice that the composite field ðϕijÞab ¼ ðAiÞaαðB†
jÞαb trans-

forms in the adjoint of UðN1Þ. The heavy operators that we
are interested in can be described as Schur polynomials in
the matrix Z ¼ ϕ11 or Z† [16–18]. As in N ¼ 4 super-
Yang-Mills theory, the Schur polynomials provide a com-
plete basis for local operators constructed from Z, and they
diagonalize the free field theory two-point function [16–18]

hχRðx1ÞχSðx2Þ†i ¼ δRSfRðN1ÞfRðN2Þ
�

1

4πkjx1 − x2j
�

n
;

ð1:4Þ
where R is a Young diagram with n boxes, i.e., R ⊢ n.
fRðNÞ is a product of factors, one for each box in R, with
the factor for a box in row i and column j given by
N − iþ j. The stringy exclusion principle is implemented
by requiring that R has no more than N2 rows. We will also
consider restricted Schur polynomials in the ABJM theory,
constructed using ϕ11 and ϕ12 [19]. Operators constructed
using n11 ϕ11 fields and n12 ϕ12 fields are labeled by
three Young diagrams, r ⊢ n11, s ⊢ n12 and R ⊢ n with
n ¼ n11 þ n12. The pair ðr; sÞ labels an irreducible repre-
sentation that can be obtained from the irreducible repre-
sentation R of Sn after restricting to the Sn11 × Sn12
subgroup. The representation ðr; sÞ may appear more than
once after restricting, and consequently we need a multi-
plicity label to distinguish the different copies. The relevant
two-point function is given by

hχR;ðr;sÞαβðx1Þχ†T;ðt;uÞγτðx2Þi

¼ δRSδrtδsuδαγδβτ
hooksRfRðN1Þ2
hooksrhookss

�
1

4πkjx1 − x2j
�

n
;

ð1:5Þ
where hookst stands for the product of hook lengths in
Young diagram t and the indices α, β, γ, τ are multiplicity
labels. For a careful and elegant treatment of the effects of
the stringy exclusion principle, see Ref. [20].
The string theory duals to these heavy operators are

giant gravitons branes in IIA string theory. Operators
labeled by Young diagrams with Oð1Þ long rows (of
length approximately N1 ∼ N2) correspond to dual giant

gravitons, given by D2-branes wrapping an S2 ⊂ AdS4
[21–24]. Operators labeled by Young diagrams with Oð1Þ
long columns (of length approximately N1 ∼ N2) corre-
spond to giant gravitons, given by D4-branes wrapping a
four manifold in CP3 [25–27].
The paper is organized as follows. In Sec. II, we discuss

correlation functions involving determinants. We start with
a discussion of maximal giant gravitons in the ABJM theory
and then generalize the discussion to general giant gravitons
in both ABJM and ABJ theory. In Sec. III, the discussion is
generalized to correlation functions of permanents, relevant
for dual giant gravitons. This is followed in Sec. IV with a
discussion of restricted Schur polynomials which are dual to
giant gravitons carrying more than one angular momentum.
Following Refs. [14,15], we explain in Sec. V that the
effective theories that we obtain can be understood in terms
of a graph duality proposed by Ref. [28]. In an attempt to
gain further insight into the ρ theory, we consider a saddle-
point evaluation of the ρ integral in Sec. VI, which allows us
to obtain the correct leading contribution to the correlators
in the large N limit. An interesting feature of this analysis,
for the ABJ theory, is the existence of a pair of saddle points
related by parity. Finally, in Sec. VII, we discuss our results
and draw some conclusions.

II. CORRELATORS INVOLVING DETERMINANTS
AND SUBDETERMINANTS

The maximal giant gravitons in the anti-de Sitter
spacetime are dual to determinant operators in the con-
formal field theory (CFT) so that we will refer to the
determinant operators as maximal giant gravitons. We are
interested in computing the correlation function of Q
maximal giant gravitons, located at positions xA, for
A ¼ 1; 2;…; Q. The giant at xA is given by the Schur
polynomial χð1N1 ÞðxAÞ. The Schur polynomial located at xA
is constructed using the field ðZAÞabðxAÞ, which is a linear
combination of products of pairs of the complex scalar
fields, each transforming in the adjoint of UðN1Þ. The only
assumption we make is that

hðZKÞabðxKÞðZKÞcdðxKÞi ¼ 0; ð2:1Þ

which ensures that our composite operator is free of UV
divergences. For simplicity, to start, consider the ABJM
theory. Introduce two sets of fermionic vectors, χa, χ̄a and
ψα, ψ̄α, and note that

Z
½dN1 χ̄dN1χ�½dN1 ψ̄dN1ψ �ψ̄β1ψ

α1

� � � ψ̄βN1
ψαN1 χ̄b1χ

a1 � � � χ̄bN1
χaN1

¼
X

σ;ρ∈SN1

χð1N1 ÞðσÞχð1N1 ÞðρÞσαβρab; ð2:2Þ
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where

σαβ ¼ δα1βσð1Þ � � � δ
αN1

βσðN1Þ
ρab ¼ δa1bρð1Þ � � � δ

aN1

bρðN1Þ
: ð2:3Þ

The label ð1N1Þ stands for a Young diagram with a single
column of N1 boxes. We will now argue that the right-hand
side of the above identity is the projection operator that
appears in the definition of maximal giant gravitons in the
ABJM theory. Using the Fundamental Orthogonality
Relation for matrix elements of irreducible representations
[29], it is simple to prove the identity

X
σ;ρ

χRðσÞχSðρÞTrðσA⊗N1ρB†⊗N1Þ

¼ δRSN1!

dR

X
ψ∈SN1

χRðψÞðAB†Þα1αψð1Þ � � � ðAB†ÞαN1
αψðN1Þ : ð2:4Þ

As usual, there is a Schur-Weyl duality that (in the
most general case of ABJ theory) organizes both the

representations of UðN1Þ and UðN2Þ. For the example
we are considering here, the centralizer is SN1

. In general,
we could have n ≠ N1 fields, and the same identity would
hold, after replacing N1 → n. The centralizer in this more
general case is Sn—which swaps As and B†s. Notice that it
is the same Sn that is the centralizer for both UðN1Þ and
UðN2Þ and this is why we get the δRS above. The reader
should also note that it is only the symmetric group that
played a role in the derivation of the above formula, so it is
also applicable in the ABJ theory where N1 ≠ N2.
Using the identity above, we will be able to write an

integral representation for the maximal giant graviton cor-
relation functions. To carry out a general discussion,
introduce a set of vectors YK , which we dot with ϕI ¼
ðA1; A2; B1; B2Þ, and a set of vectors ȲK, which we dot with
ϕI† ¼ ðA†

1; A
†
2; B

†
1; B

†
2Þ. For now, keep these vectors general

up to the Q conditions ȲK · YK ¼ 0, which ensure con-
tractions of fields inside the same giant vanish, consistent
with (2.1). The correlation function of Q giant gravitons
and a single trace operator O can be written as

hχð1N1 Þðx1Þχð1N1 Þðx2Þ � � � χð1N1 ÞðxQÞOi ¼
Z

½dϕIdϕI†�
Z YQ

K¼1

½dN1 χ̄KdN1χK�½dN1 ψ̄KdN1ψK�

e−k
R

d3xð∂μϕI ·∂μðϕIÞ†þ1
k

P
Q
K¼1

δðx−xKÞðχ̄aKðYK ·ϕI Þaαψα
K−ψ̄αKðȲK ·ðϕIÞ†ÞαaχaKÞÞOðϕI;ϕI†Þ: ð2:5Þ

The first step is to perform the Gaussian integral over the adjoint scalars, which leads to

hχð1N1 Þðx1Þχð1N1 Þðx2Þ � � � χð1N1 ÞðxQÞOi ¼
Z YQ

K¼1

½dN1 χ̄KdN1χK�½dN1 ψ̄KdN1ψK�e
1

4kπ

P
Q
K≠J¼1

ȲK ·YJ
xJK

ðψ̄αKψ
α
J χ̄aJχ

a
KÞOðS; S†Þ; ð2:6Þ

where

ðSIÞaα ¼
1

k

XQ
K¼1

1

4πjx − xKj
ðȲI

Kψ̄αKχ
a
KÞ ðSI†Þαa ¼ −

1

k

XQ
K¼1

1

4πjx − xKj
ðYI

K χ̄aKψ
α
KÞ: ð2:7Þ

We now perform a Hubbard-Stratonovich transformation, introducing a complex matrix ρJK and replacing the quartic
dependence on the fermion vectors with a quadratic dependence. It is then possible to integrate over the fermionic vectors to
obtain

hχð1N1 Þðx1Þχð1N1 Þðx2Þ � � � χð1N1 ÞðxQÞOi ¼
Z

½dρdρ†�e−4πN1
λ Trðρ†ρÞþN1Tr logðM1ÞþN1Tr logðM2ÞhOðS; S†Þiχ;ψ ; ð2:8Þ

where

ðM1ÞJK ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȲK · YJ

jxKJj

s
ρKJ ðM2ÞKJ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ȲK · YJ

jxKJj

s
ρ†JK ð2:9Þ

and the measure is normalized so that

Z
½dρdρ†�e−4πN1

λ Trðρρ†Þ ¼ 1: ð2:10Þ
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The integration over the fermionic vectors contracts the fermions appearing in S and S†. The result after the contractions are
performed is denoted by hOðS; S†Þiχ;ψ in (2.8). These contractions are carried out by applyingWick’s theorem as usual with
the following contractions:

hχ̄KaχbJi ¼ δbaðM−1
1 ÞKJ hψ̄Kaψ

b
Ji ¼ δbaðM−1

2 ÞKJ: ð2:11Þ

Notice that a saddle-point evaluation of (2.8) naturally generates the 1
N1

expansion.
For a test of (2.8), we will consider the two-point function hχð1N1 ÞðAB†Þχð1N1 ÞðA†BÞi of two giant gravitons in free ABJM

theory. In this case, we have

ρ ¼
�

0 z1
z2 0

�
M1 ¼ −

1ffiffiffiffiffiffiffiffiffijx12j
p �

0 z2
z1 0

�
M2 ¼ −

1ffiffiffiffiffiffiffiffiffijx12j
p �

0 z�1
z�2 0

�
: ð2:12Þ

Using polar coordinates for the complex numbers z1, z2, we find

hχð1N1 ÞðAB†Þðx1Þχð1N1 ÞðA†BÞðx2Þi ¼
64N2

1π
2

λ2
1

jx12j2N1

Z
dr1

Z
dr2e−

4πN1
λ ðr2

1
þr2

2
Þr2N1þ1

1 r2N1þ1
2

¼ ðN1!Þ2
�

1

4πkjx12j
�

2N1

; ð2:13Þ

which agrees with (1.4). Now, consider the same computation in the free ABJ theory, and recall that N1 ≥ N2. The only
significant difference between the ABJM and ABJ theories is in the initial integral expression for the correlator. The relevant
integral representation for the ABJ theory is

hχð1N2 Þðx1Þχð1N2 Þðx2Þ � � � χð1N2 ÞðxQÞOi ¼
Z

½dϕIdϕI†�
Z YQ

K¼1

½dN1 χ̄KdN1χK�½dN2 ψ̄KdN2ψK�

e−k
R

d3xð∂μϕI ·∂μðϕIÞ†þ1
k

P
Q
K¼1

δðx−xKÞðχ̄aKðYK ·ϕI Þaαψα
K−ψ̄αKðȲK ·ðϕIÞ†ÞαaχaKþχ̄aKχ

a
KÞÞOðϕI;ϕI†Þ: ð2:14Þ

The important difference in the ABJ expression above and the ABJM expression in (2.5) is that there is an extra term χ̄aKχ
a
K

appearing in the effective action, needed to “soak up” the extra χ, χ̄ integrations. It is a simple matter to repeat the analysis
above with this new starting point.
The above results for determinants can be generalized to subdeterminants. This corresponds to studying correlators of

operators dual to giant gravitons that are not necessarily maximal. A useful identity isZ
½dN1 χ̄dN1χ�½dN2 ψ̄dN2ψ �χ̄b1χa1 � � � χ̄bnχanðχ̄ · χÞN1−nψ̄β1ψ

α1 � � � ψ̄βnψ
αnðψ̄ · ψÞN2−n

¼ ð−1ÞN1−N2ðN1 − nÞ!ðN2 − nÞ!
X
σ;ρ∈Sn

χð1nÞðσÞχð1nÞðρÞσαβρab; ð2:15Þ

where now

σαβ ¼ δα1βσð1Þ � � � δ
αn
βσðnÞ ρab ¼ δa1bρð1Þ � � � δ

an
bρðnÞ : ð2:16Þ

The right-hand side of the identity (2.15) is the projection operator needed to define subdeterminant operators. Thus, the
generating function for giant graviton correlators can be written as follows,

XN
i1;i2;���iQ¼1

t2i11 � � � t2iQQ hχð1i1 Þðx1Þ � � � χð1iQ ÞðxQÞOi ¼
Z

½dϕIdϕI†�
Z YQ

K¼1

½dN1 χ̄KdN1χK�½dN2 ψ̄KdN2ψK�

e−k
R

d3xf∂μϕI∂μϕI†þ1
k

P
Q
K¼1

δðx−xKÞ½χ̄K ·χKþψ̄K ·ψKþtK χ̄KZKψK−tK ψ̄KZ̄KχK �gOðϕI;ϕI†Þ; ð2:17Þ

where we have suppressed the gauge indices and
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ZK ≡X4
I¼1

YI
Kϕ

I Z̄K ¼
X4
I¼1

ȲI
Kϕ

I†: ð2:18Þ

After integrating over the ϕI fields, performing a Hubbard-Stratonovich (HS) transformation, and then integrating over the
fermionic vectors, we obtain

XN
i1;i2;���iQ¼1

t2i11 t2i22 � � � t2iQQ hχð1i1 Þðx1Þχð1i2 Þðx2Þ � � � χð1iQ ÞðxQÞOi ¼
Z

½dρdρ†�

e
−4πkTrðρρ†ÞþN1Tr ln

h
δJK−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tJ tK ȲK ·YJ

jxKJ j

q
ρKJ

i
þN2Tr ln

h
δKJ−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tJ tK ȲK ·YJ

jxKJ j

q
ρ†JK

i
hOIðSI; SI†Þiχ;ψ ; ð2:19Þ

where

ðSIÞaα ¼
1

4πk

XQ
K¼1

tKȲI
Kψ̄Kαχ

a
K

jx − xKj
; ðSI†Þαa ¼ −

1

4πk

XQ
K¼1

tKYI
K χ̄Kaψ

α
K

jx − xKj
: ð2:20Þ

Here, hOIðSI; SI†Þiχ;ψ is again defined by Wick contracting all pairs of χ, χ̄ and ψ , ψ̄ fields according to Wick’s theorem,
with the basic contraction given by

hχ̄aKχbLi ¼ δbaðM−1
1 ÞKL hψ̄αKψ

β
Li ¼ δβαðM−1

2 ÞKL ð2:21Þ

with

ðM1ÞJK ¼ δJK −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρKJ ðM2ÞKJ ¼ δKJ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρ†JK: ð2:22Þ

As a test of (2.19), we compute the two-point hχð1J1 ÞðAB†Þχð1J2 ÞðA†BÞi. The exact result for this two-point function is

hχð1J1 ÞðAB†Þðx1Þχð1J2 ÞðA†BÞðx2Þi ¼ δJ1J2
N1!

ðN1 − J1Þ!
N2!

ðN2 − J1Þ!
�

1

4πkjx1 − x2j
�

2J1
: ð2:23Þ

In this case, Ȳ1 · Y1 ¼ Ȳ2 · Y2 ¼ 0 and Ȳ1 · Y2 ¼ Ȳ2 · Y1 ¼ 1. Parametrize ρ as

ρ ¼
�

0 z1
z2 0

�
: ð2:24Þ

The matrices M1 and M2 are then

M1 ¼

0
B@ 1 −

ffiffiffiffiffiffiffi
t1t2
jx12j

q
z2

−
ffiffiffiffiffiffiffi
t1t2
jx12j

q
z1 1

1
CA M2 ¼

0
B@ 1 −

ffiffiffiffiffiffiffi
t1t2
jx12j

q
z�1

−
ffiffiffiffiffiffiffi
t1t2
jx12j

q
z�2 1

1
CA: ð2:25Þ

In this case, using (2.19), the computation boils down to computing the integralZ
½dz1dz†1dz2dz†2�e−4πkðjz1j

2þjz2j2Þ det ðM1ÞN1ðdetM2ÞN2 : ð2:26Þ

Changing to polar coordinates zi ¼ rieiθi and expanding the integrand as follows,

ðdetM1ÞN1ðdetM2ÞN2 ¼
X
l1;l2

�
N1

l1

��
N2

l2

��
−

t1t2
4πkjx1 − x2j

�
l1þl2

eiðl1−l2Þðθ1þθ2Þ; ð2:27Þ
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it is simple to find

Z
½dρdρ†�e−4πkTrρρ†ðdetM1ÞN1ðdetM2ÞN2 ¼

X
l

N1!

ðN1 − lÞ!
N2!

ðN2 − lÞ!
�

t1t2
4πkjx1 − x2j

�
2l
: ð2:28Þ

Extracting the coefficient of the ðt1t2Þ2J1 term, we repro-
duce the exact result.
With the effective theory, we can compute three-point

functions. Consider the correlation function

hχð1KþJÞðx1Þχð1KÞðx2ÞOJðx3Þi: ð2:29Þ

The Schur polynomial at x1 is constructed using Z†, the
Schur at x2 is constructed using Z, and OJ is TrðZJÞ.
Here, K is order N1 ∼ N2, J is order 1, and we recall that
Z ¼ A1B

†
1. For generality, work in the ABJ model. Assume

that K þ J is smaller than both N1 and N2. The spacetime
dependence of this correlation function is rather simple,

hχð1KþJÞðx1Þχð1KÞðx2ÞOJðx3Þi

¼ CK;J

ð4πkjx1 − x2jÞ2Kð4πkjx1 − x3jÞ2J
; ð2:30Þ

where the coefficient CK;J can be computed in the zero-
dimensional version of the model, in which case it is
given by

CK;J ¼ hχð1KþJÞðZ†Þχð1KÞðZÞTrðZJÞi: ð2:31Þ

Using the identity

TrðZJÞ ¼
XJ−1
i¼0

ð−1ÞiχðJ−i;1iÞðZÞ; ð2:32Þ

we have

χð1KÞðZÞTrðZJÞ ¼ ð−1ÞJ−1χð1KþJÞðZÞ þ � � � ; ð2:33Þ

where � � � above stands for terms with Schur polynomials
that have more than a single column and hence do not
contribute to CK;J. Consequently, we have

CK;J ¼ hχð1KþJÞðZ†Þχð1KÞðZÞTrðZJÞi

¼ ð−1ÞJ−1 N1!

ðN1 − K − JÞ!
N2!

ðN2 − K − JÞ! ð2:34Þ

so that

hχð1KþJÞðx1Þχð1KÞðx2ÞOJðx3Þi

¼ ð−1ÞJ−1 N1!

ðN1 − K − JÞ!
N2!

ðN2 − K − JÞ!
×

1

ð4πkjx1 − x2jÞ2Kð4πkjx1 − x3jÞ2J
: ð2:35Þ

Reproducing this result is a convincing check of the
effective theory. We consider a more general case with

O ¼ TrðϕI1ϕ†Ī1ϕI2ϕ†Ī2 � � �ϕIJϕ†ĪJÞ: ð2:36Þ

Recall that after integrating over the ϕI and ϕI† fields, they
become SI’s and SI†’s. Consequently,

O ¼ ð−1ÞJ
�

1

4πk

�
2J XQ

K1;K2���KJ¼1

XQ
K̄1;K̄2���K̄J¼1

tK1
tK̄1

� � � tKJ
tK̄J

ȲI1
K1
Y Ī1

K̄1
� � � ȲIJ

KJ
Y ĪJ

K̄J

×
ψ̄K1αJχ

a1
K1
χ̄K̄1a1ψ

α1
K̄1
ψ̄K2α1χ

a2
K2
χ̄K̄2a2ψ

α2
K̄2

� � � ψ̄KJαJ−1χ
aJ
KJ
χ̄K̄Jajψ

αJ
K̄J

jx − xK1
jjx − xK̄1

j � � � jx − xKJ
jjx − xK̄J

j : ð2:37Þ

Wick contractions of the fermionic fields in O are given by (2.21). At the leading order in N, we have

hOi ¼ ð−1ÞJ−1
�

1

4πk

�
2J
NJ

1N
J
2

XQ
K1;K2���KJ¼1

XQ
K̄1;K̄2���K̄J¼1

tK1
tK̄1

� � � tKJ
tK̄J

ȲI1
K1
Y Ī1

K̄1
� � � ȲIJ

KJ
Y ĪJ

K̄J

×
ðM−1

1 ÞK1K̄1
ðM−1

2 ÞK̄1K2
ðM−1

1 ÞK2K̄2
� � � ðM−1

1 ÞKJK̄J
ðM−1

2 ÞK̄JK1

jx − xK1
jjx − xK̄1

j � � � jx − xKJ
jjx − xK̄J

j : ð2:38Þ

Introducing
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ΦIðxÞ ¼
�
N1

4πk

�
diag

�
t1ȲI

1

jx − x1j
;

t2ȲI
2

jx − x2j
;…;

tQȲI
Q

jx − xQj
�
M−1

1 ð2:39Þ

Φ̄ĪðxÞ ¼
�
N2

4πk

�
diag

�
t1Y Ī

1

jx − x1j
;

t2Y Ī
2

jx − x2j
;…;

tQY Ī
Q

jx − xQj
�
M−1

2 ; ð2:40Þ

we can write

hOi ¼ ð−1ÞJ−1TrðΦI1ðxÞΦ̄Ī1ðxÞΦI2ðxÞΦ̄Ī2ðxÞ � � �ΦIJðxÞΦ̄ĪJðxÞÞ: ð2:41Þ

For the correlation function we are considering, we have O ¼ TrððA1B
†
1ÞJÞ and

Y1 ¼ ð0; 0; 1; 0Þ Ȳ1 ¼ ð1; 0; 0; 0Þ Y2 ¼ ð1; 0; 0; 0Þ Ȳ2 ¼ ð0; 0; 1; 0Þ; ð2:42Þ

and hence

ΦA1 ¼
�
N1

4πk

�� t1
jx1−x3j 0

0 0

�
M−1

1 ¼ N1t1
4πkjx1 − x3j

� ðM−1
1 Þ11 ðM−1

1 Þ12
0 0

�
ð2:43Þ

Φ̄B1 ¼
�
N2

4πk

�� t1
jx1−x3j 0

0 0

�
M−1

2 ¼ N2t1
4πkjx1 − x3j

� ðM−1
2 Þ11 ðM−1

2 Þ12
0 0

�
: ð2:44Þ

The expectation value of O in the large N1 and N2 limit is hOi ¼ ð−1ÞJ−1TrððΦA1Φ̄B1ÞJÞ. So, we find

TrðΦA1Φ̄B1ÞJ ¼ ðN1N2ÞJt2J1
�

1

4πkjx1 − x3j
�

2J
½ðM−1

1 Þ11ðM−1
2 Þ11�J; ð2:45Þ

where M1 and M2 are given by (2.25). The correlator is given by multiplying (2.45) into the integrand of (2.28), which
yields

hχð1KþJÞðx1Þχð1KÞðx2ÞOJðx3Þi ¼ ð−1ÞJ−1
X
l

ðt1t2Þ2lt2J1
ðN1 − JÞ!

ðN1 − J − lÞ!

×
ðN2 − JÞ!

ðN2 − J − lÞ!N
J
1N

J
2

�
1

4πkjx1 − x2j
�

2l
�

1

4πkjx1 − x3j
�

2J
: ð2:46Þ

This is very close to the exact answer. Recall that we only
summed the leading order contribution at large N when
integrating over χ, χ̄, ψ , and ψ̄ . The corrections to this
answer are of order J2

N. To suppress these, we must take
N1 ≫ J and N2 ≫ J. In this limit, we have

ðNi − JÞ!NJ
i ¼ Ni!þ � � � ; ð2:47Þ

where � � � are subleading at large Ni so that (2.46) is the
correct large N result for (2.34).

III. CORRELATORS INVOLVING
PERMANENTS

In the previous section, we have considered correla-
tion functions involving determinants, which are dual to
giant gravitons. This section extends the discussion by

considering permanents, which correspond to dual giant
gravitons. We will develop the discussion for the ABJ
theory. To obtain the corresponding results for ABJM
theory, we simply set N1 ¼ N2.
Introduce two sets of commuting vectors, φa; φ̄a and

ξα, ξ̄α. A useful identity is the following,

Z
½dφ̄dφ�½dξ̄dξ�e−φ̄·φ−ξ̄·ξφα1 φ̄β1 � � �φαn φ̄βnξ

a1 ξ̄b1 � � � ξan ξ̄bn
¼
X
σ;ρ∈Sn

χðnÞðσÞχðnÞðρÞσαβρab; ð3:1Þ

where now

σαβ ¼ δα1βσð1Þ � � � δ
αn
βσðnÞ ρab ¼ δa1bρð1Þ � � � δ

an
bρðnÞ : ð3:2Þ

STRUCTURE CONSTANTS OF HEAVY OPERATORS IN ABJM … PHYS. REV. D 100, 086019 (2019)

086019-7



The label (n) denotes a Young diagram that is a single row of n boxes. The right-hand side of the identity (3.1) is the
projector needed to define permanent operators. Thus, the generating function for the correlators of interest is given by

X∞
i1;i2;���iQ¼1

t2i11 t2i22 � � � t2iQQ hχði1Þðx1Þχði2Þðx2Þ � � � χðiQÞðxQÞOi ¼
Z

½dϕdϕ†�
Z YQ

K¼1

½dφ̄KdφK�½dξ̄KdξK�

e−k
R

d3xf∂μϕ
I∂μϕI†þ1

k

P
Q
K¼1

δðx−xKÞ½φ̄K ·φKþξ̄K ·ξK−tK φ̄KZKξK−tK ξ̄KZ̄KφK �gOðϕI;ϕI†Þ; ð3:3Þ

where we have defined

ZK ≡X4
I¼1

YI
Kϕ

I Z̄K ¼
X4
I¼1

ȲI
Kϕ

I†: ð3:4Þ

After integrating over the ϕI fields, performing a Hubbard-Stratonovich transformation, and then integrating over the
bosonic vectors, we obtain

X∞
i1;i2;���iQ¼1

t2i11 t2i22 � � � t2iQQ hχði1Þðx1Þχði2Þðx2Þ � � � χðiQÞðxQÞOi

¼
Z

½dρdρ†�e−4πkTrðρρ
†Þ−N1Tr ln

h
δJKþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tJ tK ȲK ·YJ

jxKJ j

q
ρKJ

i
−N2Tr ln

h
δKJþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tJ tK ȲK ·YJ

jxKJ j

q
ρ†JK

i
hOIðSIðxÞÞiφ;ξ; ð3:5Þ

where

SIaα ¼
1

4πk

XQ
K¼1

tKȲI
K ξ̄Kαφ

a
K

jx − xKj
SI†αa ¼

1

4πk

XQ
K¼1

tKYI
Kφ̄Kaξ

α
K

jx − xKj
: ð3:6Þ

The integration over the bosonic vectors implies that all ξ and φ fields are contracted, indicated in the notation
hOIðSIðxÞÞiφ;ξ. These contractions are again evaluated using Wick’s theorem with the basic contractions given by

hφ̄aKφ
b
Li ¼ δbaðM−1

1 ÞKL hξ̄αKξβLi ¼ δβαðM−1
2 ÞKL ð3:7Þ

with

ðM1ÞJK ¼ δJK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρKJ ðM2ÞKJ ¼ δKJ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρ†JK: ð3:8Þ

To test (3.5), it is instructive to compute the two-point function of dual giant gravitons. Using (1.4), we know that (the
operator χðJ1Þ is at x1 and χðJ2Þ is at x2)

hχðJ1ÞðAB†ÞχðJ2ÞðA†BÞi ¼ δJ1J2
ðN1 þ J − 1Þ!
ðN1 − 1Þ!

ðN2 þ J − 1Þ!
ðN2 − 1Þ!

�
1

4πkjx1 − x2j
�

2J
: ð3:9Þ

For this example, we have Ȳ1 · Y1 ¼ Ȳ2 · Y2 ¼ 0 and Ȳ1 · Y2 ¼ Ȳ2 · Y1 ¼ 1, as well as

ρ ¼
�

0 z1
z2 0

�
M1 ¼

0
B@ 1

ffiffiffiffiffiffiffi
t1t2
jx12j

q
z2ffiffiffiffiffiffiffi

t1t2
jx12j

q
z1 1

1
CA M2 ¼

0
B@ 1

ffiffiffiffiffiffiffi
t1t2
jx12j

q
z�1ffiffiffiffiffiffiffi

t1t2
jx12j

q
z�2 1

1
CA: ð3:10Þ

Using (3.5), the computation of the correlator boils down to evaluating the integral
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Z
½dz1dz†1dz2dz†2�e−4πkðr

2
1
þr2

2
Þ det ðM1Þ−N1ðdetM2Þ−N2 : ð3:11Þ

Moving to polar coordinates for the complex variables z1, z2 and expanding the integrand

det ðM1Þ−N1ðdetM2Þ−N2 ¼
X
j1;j2

�
N1 þ j1 − 1

j1

��
N2 þ j2 − 1

j2

�
eiðj1−j2Þðθ1þθ2Þ

�
−r1r2t1t2

x12

�
j1þj2

; ð3:12Þ

we easily find

hχJ1ðAB†ÞχJ2ðA†BÞi ¼
X
j

ðN1 þ j − 1Þ!
ðN1 − 1Þ!

ðN2 þ j − 1Þ!
ðN2 − 1Þ!

�
t1t2

4πkjx1 − x2j
�

2j
; ð3:13Þ

which is the correct result. The fact that the powers of t1 and t2 are equal reflects the Kronecker delta δJ1J2 in (3.9).
Now, consider a three-point function involving two dual giant gravitons and a single traceOJ ¼ TrððA†BÞJÞ. Arguing as

we did above [see Eq. (2.34) and the argument above it], we find

hχKþJðx1ÞχKðx2ÞOJðx3Þi ¼
ðN1 þ J þ K − 1Þ!

ðN1 − 1Þ!
ðN2 þ J þ K − 1Þ!

ðN2 − 1Þ!
1

ð4πkjx1 − x2jÞ2Kð4πkjx1 − x3jÞ2J
: ð3:14Þ

We want to derive the leading behavior at large N1, N2 of this expression using our effective theory. To evaluate
hOIðSIðxÞÞiφ;ξ appearing in (3.5), we need to Wick contract the φ and ξ fields using Wick’s theorem with the basic
contractions given by

hξ̄KaξbJi ¼ δbaðM−1
1 ÞKJ hφ̄Kaφ

b
Ji ¼ δbaðM−1

2 ÞKJ: ð3:15Þ

Since the bosonic fields commute, we do not need to track any signs. We only sum the contractions responsible for the
leading large N contribution. A straightforward computation gives

TrðΦA1Φ̄B1ÞJ ¼ ðN1N2ÞJt2J1
�

g2

4πjx1 − x3j
�

2J

½ðM−1
1 Þ11ðM−1

2 Þ11�J: ð3:16Þ

To evaluate the correlator of interest, we need to multiply the above result by the integrand relevant for two giant gravitons
and perform the integral over ρ; ρ†. The integral is performed exactly as in (3.13), the only difference being the replacement
Ni → Ni þ J. The result is in agreement with (3.14) for large N.

IV. ADDING MORE MATRICES

In this section, we want to consider heavy operators constructed using two matrices, ϕ11 ¼ A1B
†
1 and ϕ12 ¼ A1B

†
2. These

heavy operators are restricted Schur polynomials [19]. Constructing operators using more than a single matrix corresponds
to giving the giant and dual giant gravitons additional angular momentum. The restricted Schur polynomial of interest is
(n ¼ n11 þ n12)

χð1J1þJ2 Þ;ðð1J1 Þ;ð1J2 ÞÞðϕ11;ϕ12Þ ¼
1

n!11n12!

X
σ∈Sn

Trðð1J1 Þ;ð1J2 ÞÞðΓð1J1þJ2Þ ðσÞÞTrðσϕ⊗n11
11 ϕ⊗n12

12 Þ: ð4:1Þ

The representation labeled by the Young diagram ð1J1þJ2Þ is one dimensional, so the restriction needed is trivial (this is also
why we do not need multiplicity labels in the above equation) so that we can write

χð1J1þJ2 Þ;ðð1J1 Þ;ð1J2 ÞÞðϕ11;ϕ12Þ ¼
1

n!11n12!

X
σ∈Sn

χð1J1þJ2 ÞðσÞTrðσϕ⊗n11
11 ϕ⊗n12

12 Þ: ð4:2Þ

The two-point function of this restricted Schur polynomial is
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hχð1J1þJ2 Þ;ðð1J1 Þ;ð1J2 ÞÞðϕ11;ϕ12Þχ†ð1J1þJ2 Þ;ðð1J1 Þ;ð1J2 ÞÞðϕ11;ϕ12Þi ¼
�

N!

ðN − J1 − J2Þ!
�

2 ðJ1 þ J2Þ!
J1!J2!

�
1

4πkjx1 − x2j
�

J1þJ2
; ð4:3Þ

where χð1J1þJ2 Þ;ðð1J1 Þ;ð1J2 ÞÞðϕ11;ϕ12Þ is located at x1 and χ†ð1J1þJ2 Þ;ðð1J1 Þ;ð1J2 ÞÞðϕ11;ϕ12Þ is located at x2. Simple character

manipulations [29] lead to the following identity:

χð1J1þJ2 Þ;ðð1J1 Þ;ð1J2 ÞÞðϕ11;ϕ12Þ ¼
1

n!n!11n12!

X
σ∈Sn

χð1J1þJ2 ÞðσÞχð1J1þJ2 ÞðρÞTrðσA⊗n
1 ρðB†

1Þ⊗n11ðB†
2Þ⊗n12Þ: ð4:4Þ

This last line implies the following expression for the maximal giants (we assume that Q is even and that the giants for
K ¼ 1;…; Q=2 are built from A1B

†
1 and A1B

†
2, and the remaining giants are built from B1A

†
1 and B2A

†
1),

XN
n1;…;nQ¼0

tn11 � � � tnQQ hχð1NÞ;ðð1n1 Þ;ð1N−n1 ÞÞðx1Þ � � � χð1NÞ;ðð1nQ Þ;ð1N−nQ ÞÞðxQÞOi

¼
Z

½dAi�½dA†
i �½dBi�½dB†

i �
Z YQ

K¼1

½dN1 χ̄KdN1χK�½dN2 ψ̄KdN2ψK�eSeffOðZ; Z†Þ ð4:5Þ

with

Seff ¼ −k
Z

d3xð∂μAi∂μA†
i þ ∂μBi∂μB†

i Þ

−
XQ

2

K¼1

ðχ̄aKðA1ðxKÞÞaαψα
K − ψ̄αKðtKðB†

1ÞK þ ðB†
2ÞKÞαaχaKÞ

−
XQ

K¼1þQ
2

ðχ̄aKðtKðB1ÞK þ ðB2ÞKÞaαψα
K − ψ̄αKðA†

1ÞαaχaKÞ: ð4:6Þ

For the nonmaximal giants, we again consider a correlator with the first Q
2
giants built from A1B

†
1 and A1B

†
2 while the

remaining giants are built from B1A
†
1 and B2A

†
1. For this, we will consider

XN
n1;…;nQ¼0

ðt1YÞi1ðt1ZÞj1 � � � ðtQYÞiQðtQZÞjQhχð1i1þj1 Þ;ðð1i1 Þ;ð1j1 ÞÞðx1Þ � � � χð1iQþjQ Þ;ðð1iQ Þ;ð1jQ ÞÞðxQÞOi

¼
Z

½dϕIdϕI†�
Z YQ

K¼1

½dN1 χ̄KdN1χK�½dN2 ψ̄KdN2ψK�eSeffOðϕI;ϕI†Þ; ð4:7Þ

where

Seff ¼ −k
Z

d3xð∂μAi∂μA†
i þ ∂μBi∂μB†

i Þ −
XQ
K¼1

ðχ̄aKχaK þ ψ̄α
KψαKÞ

−
XQ

2

K¼1

ðχ̄aKðA1ðxKÞÞaαψα
K − ψ̄αKðtKYðB†

1ÞK þ tKZðB†
2ÞKÞαaχaKÞ

−
XQ

K¼1þQ
2

ðχ̄aKðtKYðB1ÞK þ tKZðB2ÞKÞaαψα
K − ψ̄αKðA†

1ÞαaχaKÞ: ð4:8Þ

As before, we complete the square and integrate over the adjoint scalars to find
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XN
n1;…;nQ¼0

ðt1YÞi1ðt1ZÞj1 � � � ðtQYÞiQðtQZÞjQhχð1i1þj1 Þ;ðð1i1 Þ;ð1j1 ÞÞðx1Þ � � � χð1iQþjQ Þ;ðð1iQ Þ;ð1jQ ÞÞðxKÞOi

¼
Z YQ

K¼1

½dN1 χ̄KdN1χK�½dN2 ψ̄KdN2ψK�e
1

4πk

P
Q
K≠J¼1

ðtKY tJYþtKZtJZÞδðK≤Q=2<JÞþδðJ≤Q=2<KÞ
jxK−xJ j ψ̄Kαψ

α
J χ̄Jaχ

a
K

× e−
P

Q
K¼1

ðχ̄K ·χKþψ̄K ·ψKÞOðSI; SI†Þ; ð4:9Þ

where SI and SI† can be still written as (2.7) if we define

YI
K ¼ fδðK≤Q=2Þ; 0; tKYδðK>Q=2Þ; tKZδðK>Q=2Þg; ð4:10Þ

ȲI
K ¼ fδðK>Q=2Þ; 0; tKYδðK≤Q=2Þ; tKZδðK≤Q=2Þg: ð4:11Þ

By performing the HS transformation, we find

XN
n1;…;nQ¼0

ðt1YÞi1ðt1ZÞj1 � � � ðtQYÞiQðtQZÞjQhχð1i1þj1 Þ;ðð1i1 Þ;ð1j1 ÞÞðx1Þ � � � χð1iQþjQ Þ;ðð1iQ Þ;ð1jQ ÞÞðxKÞOi

¼
Z

½dρdρ†�e−4πkTrðρρ†ÞþNTr ln½M1�þNTr ln½M2�hOIðSIðxÞ; SI†ðxÞÞiχ;ψ ; ð4:12Þ

where

ðM1ÞKJ ¼ δJK −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtKYtJY þ tKZtJZÞδðK≤Q=2<JÞ þ δðJ≤Q=2<KÞ

jxKJj

s
ρKJ

ðM2ÞJK ¼ δKJ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtKYtJY þ tKZtJZÞδðK≤Q=2<JÞ þ δðJ≤Q=2<KÞ

jxKJj

s
ρ†JK: ð4:13Þ

For a test of the above result, we will reproduce the two-point function (4.2). This amounts to evaluating the integralZ
½dρdρ†�e−4πkðz�1z1þz�

2
z2Þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1Yt2Y þ t1Zt2Z

p z1z2
jx12j

�
N
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1Yt2Y þ t1Zt2Z

p z�1z
�
2

jx12j
�

N

¼
Z

½dρdρ†�e−4πkðr21þr2
2
Þ XN
k1;k2¼0

�
N

k1

��
N

k2

��
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1Yt2Y þ t1Zt2Z

p
jx12j

r1r2

�
k1þk2

eiðk1−k2Þðθ1þθ2Þ

¼
XN
J¼0

�
N

J

�
2
Z

½dρdρ†�e−4πkðr21þr2
2
Þr2J1 r2J2

�
t1Yt2Y þ t1Zt2Z

x212

�
J

¼
XN
J¼0

�
N!

ðN − JÞ!
�

2 J!
J1!J2!

�
1

4πkjx12j
�

2J
ðt1Yt2YÞJ1ðt1Zt2ZÞJ2 ; ð4:14Þ

where J ¼ J1 þ J2.
By replacing the fermionic vectors ψ and χ that appear in

the above analysis, one could easily consider operators dual
to dual giant gravitons. It is also possible to consider res-
tricted Schur polynomials constructed using more than two
matrices. We will not pursue either of these extensions here.

V. GRAPH DUALITY

In the case of N ¼ 4 super-Yang-Mills theory, the
description employing the ρ field was related to the

original description by means of a graph duality [14,15]
first explored in Ref. [28]. In this section, we will again
argue for this conclusion. The ρ description of giant
gravitons in ABJ(M) is described using the following
“effective action,”

Seff ¼ 4πkTrðρρ†Þ − N1Tr logðM1Þ − N2Tr logðM2Þ;
ð5:1Þ

where
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M1 ¼ δJK −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρKJ

M2 ¼ δKJ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρ†JK: ð5:2Þ

Consider Q ¼ 2 for simplicity, and again consider Schur
polynomials constructed using Z≡ A1B

†
1 and Z† ≡ B1A

†
1,

in which case we have

ρ ¼
�

0 z1
z2 0

�
ð5:3Þ

M1 ¼

0
B@ 1 −

ffiffiffiffiffiffiffi
t1t2
jx12j

q
z2

−
ffiffiffiffiffiffiffi
t1t2
jx12j

q
z1 1

1
CA

M2 ¼

0
B@ 1 −

ffiffiffiffiffiffiffi
t1t2
jx12j

q
z�1

−
ffiffiffiffiffiffiffi
t1t2
jx12j

q
z�2 1

1
CA: ð5:4Þ

The effective action can be expanded as follows:

Seff ¼ 4πkðjz1j2 þ jz2j2Þ − N1 log

�
1 −

t1t2
jx12j

z1z2

�

− N2 log

�
1 −

t1t2
jx12j

z�1z
�
2

�

¼ 4πkðjz1j2 þ jz2j2Þ þ N1

X∞
n¼1

1

n

�
t1t2
jx12j

z1z2

�
n

þ N2

X∞
n¼1

1

n

�
t1t2
jx12j

z�1z
�
2

�
n
: ð5:5Þ

Our goal is to use this effective action to reproduce the
following two-point correlator between giant gravitons:

hχ1JðAB†Þðx1Þχ1JðA†BÞðx2Þi

¼ N1!

ðN1 − JÞ!
N2!

ðN2 − JÞ!
�

1

4πkjx12j
�

2J
: ð5:6Þ

This is an exact result in the free field theory. It is worth
explaining a few rules for how diagrams in the original
ABJM/ABJ description map into diagrams of the ρ theory.
First, propagators in the original description are propaga-
tors in the ρ description. Thus, the power of 1

k tells us how
many ρ propagators there are. The ρ propagators are
oriented, so we need an arrow on each propagator.
Second, faces map into vertices. Thus, the power of N1

tells us how many vertices that come from the second term
in (5.5) there are, and the power of N2 tells us how many
vertices come from the third term. All the lines on an N1

vertex point outward, and all lines on an N2 vertex point

inward. The duality maps each of the original diagrams into
a new diagram; i.e., it works diagram by diagram. Further,
it maps connected diagrams into connected diagrams, and it
preserves the number of disconnected components.
The ρ theory has an infinite number of different vertices

from which graphs may be composed. To see what vertices
correspond to a given ribbon graph, decompose the ribbon
graph into a set of color loops. The ribbon graph is made
from ribbons of many colors because there are many types
of fields. We will restrict our discussion to the Z field
introduced above. In this case, we need two colors, red for
A1, A

†
1 and blue for B1, B

†
1. Each loop is a face of the

original ribbon graph, so it maps into a vertex of the ρ
graph. Looking at the colors (red or blue) of the edges, we
can read off the structure of the vertex. Orientation of the
edges is assigned so that the loops are correctly glued back
together to form the original ribbon graph. An example to
illustrate this procedure is shown in Fig. 1 below.
For J ¼ 1, the two-point correlation function is

N1N2

�
1

4πkjx12j
�

2

: ð5:7Þ

From the powers of Ni, we know that the ρ graph has one
N1 vertex and one N2 vertex. From the power of k−1, we
know that the ρ graph has two propagators. There is only
one diagram with a singleN1 vertex, a singleN2 vertex, and
two propagators. The diagram is shown in Fig. 2 below.

FIG. 1. How to read ρ vertices from a ribbon graph.
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We use a red line for the z1 propagator and a blue line for
the z2 propagator. There is no nontrivial symmetry factor
because the two lines in the graph are inequivalent.
Evaluating this diagram, we have

1

4πk

�
−N1

t1t2
jx12j

�
×

1

4πk

�
−N2

t1t2
jx12j

�
: ð5:8Þ

This precisely reproduces the exact result (5.7).
For a more nontrivial example, consider the two-point

correlator for J ¼ 2:

N1ðN1 − 1ÞN2ðN2 − 1Þ
�

1

4πkjx12j
�

4

¼ ðN2
1N

2
2 − N2

1N2 − N2
2N1 þ N1N2Þ

�
1

4πkjx12j
�

4

:

ð5:9Þ

First, consider the signs. From the above answer, there are
four terms, which implies that we need to sum four ρ
graphs. Each vertex comes with a −1. The N2

1N
2
2 graph has

four vertices and ð−1Þ4 ¼ 1, the N2
1N2 and N1N2

2 graphs
each have three vertices and ð−1Þ3 ¼ −1, and the N1N2

graph has two vertices and ð−1Þ2 ¼ 1, so the signs are
correct. Each graph has four propagators. The graphs are
shown in Fig. 3 below.
For this example, there are two distinct graphs that

contribute to the leading term. The fact that the leading term
is a sum of two possible diagrams follows because the
leading term comes from the connected (planar) contribu-
tion to hTrðZ2ÞTrðZ†2Þ as well as from the disconnected
contribution to hTrðZÞ2TrðZ†Þ2. It follows that we need to
sum the two diagrams, one connected and one discon-
nected, that can be formed using two N1 vertices, two N2

vertices, and four propagators.

Finally, consider the ρ description of dual giant gravitons
in ABJ(M) theory, which corresponds to the following
effective action,

Seff ¼ 4πkTrðρρ†Þ þ N1Tr logðM1Þ þ N2Tr logðM2Þ;
ð5:10Þ

where

ðM1ÞJK ¼ δJK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρKJ;

ðM2ÞKJ ¼ δKJ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tJtKȲK · YJ

jxKJj

s
ρ†JK: ð5:11Þ

Proceeding as above, we find

Seff ¼ 4πkðjz1j2 þ jz2j2Þ þ N1 log

�
1 −

t1t2
jx12j

z1z2

�

þ N2 log

�
1 −

t1t2
jx12j

z�1z
�
2

�

¼ 4πkðjz1j2 þ jz2j2Þ − N1

X∞
n¼1

1

n

�
t1t2
jx12j

z1z2

�
n

− N2

X∞
n¼1

1

n

�
t1t2
jx12j

z�1z
�
2

�
n
: ð5:12Þ

All interaction vertices are positive so that giants and the
dual giants have opposite signs for the interaction vertices.
This makes sense because for the symmetric representation
all characters are positive and thus all terms in the
correlators of dual giants are positive. The two-point
correlator is

hχJðAB†Þðx1ÞχJðA†BÞðx2Þi

¼ ðN1 þ J − 1Þ!
ðN1 − 1Þ!

ðN2 þ J − 1Þ!
ðN2 − 1Þ!

�
1

4πkjx12j
�

2J
: ð5:13Þ

For J ¼ 2, we find

FIG. 3. ρ graphs for (5.9).

FIG. 2. The ρ graph for (5.7).
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N1ðN1 þ 1ÞN2ðN2 þ 1Þ
�

1

4πkjx12j
�

4

¼ ðN2
1N

2
2 þ N2

1N2 þ N2
2N1 þ N1N2Þ

�
1

4πkjx12j
�

4

:

ð5:14Þ

All diagrams come with a positive sign, which is reproduced
by the fact that all vertices in the ρ theory are positive.

VI. LARGE N1, N2 SADDLE POINT

The effective action for the ρ theory comes with a factor
of Ni. This is an interesting observation because it implies
that the loop expansion of the ρ theory is an expansion in 1

Ni
,

which is to be contrasted with the description in terms of
the original variables, which has the ’t Hooft coupling as
the loop expansion parameter. Recall that the dual holo-
graphic description of the CFT has 1

Ni
for the loop counting

parameter. Motivated by this observation, we will deter-
mine the large Ni saddle points of the ABJ theory in this
section. The analysis is rather interesting: there are two
saddles, and they are related by parity. To illustrate this, it is
enough to consider the simplest case of Q ¼ 2. Moving to
polarlike coordinates zi ¼

ffiffiffiffiffi
Ri

p
eiθi , the effective action [see

the first line in (5.5)] becomes

Seff ¼ 4πkðR1 þ R2Þ − N1 log

�
1 −

t1t2
x12

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
eiðθ1þθ2Þ

�

− N2 log

�
1 −

t1t2
x12

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
e−iðθ1þθ2Þ

�
: ð6:1Þ

Notice that, when N1 ≠ N2, the “action” is not Hermitian.
This will be reflected in the saddle-point solutions where we
have to analytically continue the angular part. Of course, the
fact that the action is complex is not really a problem because
this is not really an action; it simply defines the generating
function of a class of correlation functions of the theory.
There are two saddle points, given by

Ri;� ¼ 1

8kπ

�
N1 þ N2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 − N2Þ2 þ 4χ212

q �
ðeiðθ1þθ2ÞÞ� ¼ 1

2χ12

�
N1 − N2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 − N2Þ2 þ 4χ212

q �
;

ð6:2Þ

where χ12 ¼ 4πkx12
t1t2

. Note that, unless N1 ¼ N2, the angle
θ1 þ θ2 is imaginary. By evaluating the action at the saddle
points, we must recover the leading large N result for
the two-point correlation function of giant gravitons. To
reproduce the leading order at large N, we need only
evaluate the action at the saddle point. Issues like the
normalization of the measure only contribute at subleading
order. After some simplification, we find

e−S0þ ¼ ðe−N1−N2NN1

1 NN2

2 χ−ðN1þN2Þ
12 Þe−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1−N2Þ2þ4χ2

12

p

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 − N2Þ2 þ 4χ212

p
þ ðN1 − N2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN1 − N2Þ2 þ 4χ212
p

− ðN1 − N2Þ

!N1−N2
2

e−S0− ¼ ðe−N1−N2NN1

1 NN2

2 χ−ðN1þN2Þ
12 Þe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1−N2Þ2þ4χ2

12

p

×

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN1 − N2Þ2 þ 4χ212

p
− ðN1 − N2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðN1 − N2Þ2 þ 4χ212
p

þ ðN1 − N2Þ

!N1−N2
2

:

These represent the large Ni generating functions. To extract
a specific correlation function, we must read of the coef-
ficient of a given monomial tn1t

m
2 . The t1t2 dependence is

contained in the χ12 variable. To carry out the series
expansion, it is useful to define χ12 ¼ ξ12jN1 − N2j.
Assuming that N1 > N2, the series expansions yield

e−S0− ¼ e−2N2
NN1

1 NN2

2

ðN1 − N2ÞN1−N2

1

ðχ12Þ2N2

þ e−2N2NN1

1 NN2

2 ðN1 − N2Þ−N1þN2−1
1

χ2N2−2
12

þ 1

2!
e−2N2

NN1

1 NN2

2 ðN1 − N2 − 1Þ
ðN1 − N2ÞN1−ðN2−3Þ

1

ðχ12Þ2N2−4
þ � � �

e−S0þ ¼ e−2N1NN1

1 NN2

2 ðN1 − N2ÞN1−N2
1

χ2N1

12

− e−2N1NN1

1 NN2

2 ðN1 − N2ÞN1−N2−1
1

χ2N1−2
12

þ 1

2!
e−2N1NN1

1 NN2

2 ðN1 − N2ÞN1−N2−3

× ð1þ N1 − N2Þ
1

χ2N1−4
12

þ � � � : ð6:3Þ

These results reproduce the correct leading N1, N2 behavior
of the giant graviton two-point function. Indeed, taking the
coefficient of the third order term from the first expansion,
for example, we have

1

2!
e−2N2

NN1

1 NN2

2 ðN1 − N2 − 1Þ
ðN1 − N2ÞN1−ðN2−3Þ

≈ e−2N2
NN1

1 NN2

2

ðN1 − ðN2 − 2ÞÞN1−ðN2−2Þ2!

≈
N1!N2!

ðN1 − ðN2 − 2ÞÞ!2! ; ð6:4Þ

where we used Stirling’s approximation in the last approxi-
mation. Notice that the two answers are related by e−S0− ¼
ð−1ÞN1−N2e−S0þjN1↔N2

. The first series thus represents the
correct largeN1≥N2 expansion, while the second represents
the correct large N2≥N1 expansion. The swap N1↔N2 is
accomplished by parity. Thus, the two saddles are related by
a parity transformation. This is exactly what we expect from
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the breaking of the discrete Z2 parity symmetry when
N1 ≠ N2.

VII. DISCUSSION

The basic result of this article is an efficient approach to
the computation of correlation functions involving oper-
ators corresponding to giant gravitons and dual giant
gravitons, as well as traces, in the ABJM and ABJ theories.
This generalizes results developed in the setting of N ¼ 4
super-Yang-Mills theory [14,15]. The derivation of this
effective description makes use of a novel identity follow-
ing from character orthogonality to obtain an integral
representation of certain projection operators used to define
Schur polynomials. Then, after integrating over the original
matrix variables and performing a Hubbard-Stratonovich
transformation, one obtains a description in terms of a
K × K matrix for a collection of K giant or dual giant
gravitons. The resulting effective descriptions have 1

N as the
loop counting parameter. Since 1

N controls quantum cor-
rections in the dual gravitational description, this strongly
suggests the effective description is relevant for under-
standing the holography of the ABJM and ABJ theories.
There are a number of immediate directions that warrant

further study. Our analysis has been restricted to the free
field theory. It would be interesting to consider loop
corrections. Loop corrections to restricted Schur polyno-
mials in ABJM theory have been considered in Ref. [30]. In
addition, the analysis of Ref. [14] has suggested that
integrability may be present for correlation functions
involving two determinants and a single trace operator.
A study of loop corrections may establish a similar result in
the ABJM/ABJ theories.
Thanks to the fact that there are many different

composite adjoint matrices that can be constructed from
the ABJM/ABJ fields, there are many different restricted
Schur polynomials one could consider [19]. It would be
interesting to develop effective descriptions for this large
class of operators.
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APPENDIX: FERMION MEASURE
CONVENTIONS

In this Appendix, we spell out our conventions for the
fermion measure. The conventions of this paper agree with
those of our last paper [15]. Namely, we useZ

dψ̄N � � � dψ̄1

Z
dψ1 � � �dψNψ̄1ψ

1 � � � ψ̄Nψ
N ¼ ð−1ÞN:

ðA1Þ

With this convention, the Gaussian integral is given byZ
dNψ̄dNψe−ψ̄Mψ ¼ detðMÞ: ðA2Þ

Another commonly used convention, which differs by a
phase at most, isZ

dψ1dψ̄1 � � � dψNdψ̄Nψ̄1ψ
1 � � � ψ̄Nψ

N ¼ 1: ðA3Þ

If we used this convention, the Gaussian integral would
become Z

dNψdNψ̄eψ̄Mψ ¼ detðMÞ: ðA4Þ

With this convention, some equations would differ by a
signs. For example, the sign factor in (2.15) disappears,Z

½dχdχ̄�½dψdψ̄ �χ̄b1χa � � � χ̄bnχanðχ̄ · χÞN1−nψ̄β1ψ
α1

� � � ψ̄βnψ
αn

�X
i
ψ̄ iψ

i

�
N2−n

¼ ðN1 − nÞ!ðN2 − nÞ!
X
σ;ρ∈Sn

χð1nÞðσÞχð1nÞðρÞσαβσab: ðA5Þ

The generating function (2.17) would become

t2i11 � � � t2iQQ hχð1i1 Þðx1Þ � � � χð1iQ ÞðxQÞOi ¼
Z

dϕIdϕ†I
Z YQ

K

½dχKdχ̄K�½dψKdψ̄K�

e−k
R

d3x½∂μϕI∂μϕ†I−1
k

P
Q
K¼1

δðx−xKÞðψ̄K ·ψKþχ̄K ·χKþtK χ̄KZKψK−tK ψ̄Z̄KχÞ�OðϕI;ϕI†Þ; ðA6Þ

where
R QQ

K¼1½dψKdψ̄K�≡ R QQ
K¼1

Q
N
α¼1 dψ

α
Kdψ̄Kα. Note the sign change before the delta function. Because of (A4), the

sign difference would disappear in (2.19) after the integration over the fermion fields is performed. This is expected since
our results should be independent of these conventions.
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