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In the context of Matrix/light-cone gauge M theory, we develop a new approach for computing quantum
entanglement between a probe gravitating in the vicinity of a source mass and the source mass.
We demonstrate that this entanglement is related to the gravitational potential energy between the two
objects. We then show that the von Neumann entropy is a function of two derivatives of the gravitational
potential. We conjecture a relation between the entropy and the local Riemann tensor sampled by the probe,
establishing a general scheme to relate entropy to local geometric data. This relation connects the rate of
change, rotation, and twist of a small volume element at the probe’s location to the quantum entanglement
of the probe with the source.
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I. INTRODUCTION AND HIGHLIGHTS

Various relations between quantum information and
spacetime geometry seem to hint at the need for a
fundamental rethinking of gravity. In this program, the
general theme appears to be that gravity is an emergent
phenomenon; and that underlying microscopic quantum
degrees of freedom (d.o.f.) weave—through quantum
entanglement—a fabric that we effectively perceive as
space. In this paper, we want to analyze these ideas in
the context of Matrix theory, a nonperturbative formulation
of string theory and quantum gravity [1]. Wewill consider a
simple setup where a massive source pulls gravitationally
on a probe and where it is well known that the effective
quantum potential that arises from Matrix theory matches
exactly with the expected gravitational potential that the
probe experiences in light-cone gauge M theory [2–11].
This effective potential arises from integrating out fast off-
diagonal matrix modes that correspond to strings stretched
between the two objects. In this work, we add the slower
diagonal excitations and derive their quantum effective
potential. We then demonstrate that the quantum vacuum of
these modes is an entangled state in such a way that the
entanglement entropy between source and probe is gen-
erally a function of derivatives of their gravitational
potential. We compute the von Neumann entropy and,
based on the result we obtain, we conjecture a relation
between the entropy and the local Riemann tensor sampled

by the probe. Essentially, this entanglement entropy is
shown to be directly related to local tidal forces. This
connects the entropy to the rate of change, rotation, and
twist of a small volume element at the location of the probe.
The setup is reminiscent of entropy-area relations, except
the statement we obtain is local.
In the first section, we describe the setup and outline the

computation of the entanglement entropy. In the second
section, we present a conjecture relating this entropy to
local geometry. The Conclusion discusses the more general
implications of these results and future directions.

II. QUANTUM ENTANGLEMENT AND GRAVITY

Matrix theory is a 0þ 1-dimensional UðNÞ super Yang-
Mills (SYM) theory that is purported to be dual to light-
cone gauge M theory. The rank of the gauge group N maps
onto light-cone momentum in M theory. Our starting point
is the Matrix theory action in the background field gauge1:

S ¼ 1

g2YM

Z
dtTr

�
DtXiDtXi þ 1

2
½Xi; Xj�2

− ð∂tA0 − i½Xi
bg; X

i�Þ2 þ iΨαDtΨα

− ΨαΓi
αβ½Xi;Ψβ� þ iḠ∂tDtGþ Ḡ½Xi

bg; ½Xi; G��
�
: ð1Þ

All fields are in the adjoint of UðNÞ, and the spinor fields
Ψα are 10-dimensional Majorana-Weyl spinors. The last
term in the first line is a gauge fixing term for the condition

∂tA0 − i½Xi
bg; X

i� ¼ 0; ð2Þ
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1We will try to follow, as much as possible, the notation and
conventions used in [2,12].
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and G is a matrix of Faddeev-Popov ghosts. The Yang-
Mills coupling is given by g2YM ¼ 2R where R is the radius
of the M-theory light-cone circle. We work in string units,
ls ¼ 1.
We will be employing the background field method

to integrate out fluctuations about a background that
represents two widely separated blocks of matrices. This
is a technique that is well studied and developed in the
literature [2,6–12]. The first part of our computations is
based on works such as [2,12]; indeed, we could borrow
results from [2] and modify them for the computation
of entanglement. However, with the goal of presenting a
self-contained exposition, and also pinpointing the non-
trivial parallels in computing the effective potential and
entanglement entropy in Matrix theory, we will review the
process of integrating out perturbations using the back-
ground field method—closely following [2]. We take the
background as

Xi
bg ¼

�
X̄i
1ðtÞ 0

0 X̄i
2ðtÞ

�
ð3Þ

with all other fields vanishing. This is a block diagonal
configuration with X̄i

1 being an N1 × N1 matrix, and X̄i
2

being an N2 × N2 matrix; we have N ¼ N1 þ N2. In
M-theory language, X̄i

1 is to represent an object that carries
N1 units of light-cone momentum, such as a spherical mass
or a graviton, while X̄i

2 represents another object with N2

units of light-cone momentum. We then want to write down
an effective action by perturbing this background by

A0 ¼
�
a1ðtÞ aðtÞ
āðtÞ a2ðtÞ

�
Xi ¼ Xi

bg þ
�

xi1ðtÞ xiðtÞ
xi†ðtÞ xi2ðtÞ

�

Ψα ¼
�
ψ1αðtÞ ψαðtÞ
ψ†

αðtÞ ψ2αðtÞ

�
: ð4Þ

The centers of mass of the two background objects are
given by

x̄i1;2 ≡
TrX̄i

1;2

N1;2
ð5Þ

while the size of each object might naturally be represented
by the second moments:

R2
1;2 ≡

TrðX̄i
1;2Þ2

N1;2
− ðx̄i1;2Þ2: ð6Þ

We assume that the two background objects are widely
separated from each other so that their gravitational
potential energy is small compared to their kinetic energies.
We also assume that their sizes are much smaller than the
distance between them. In this regime, the off-diagonal
perturbations in (4) are heavy or high frequency modes.
One can then integrate them out and discover that, for large
N1;2 and while setting all diagonal perturbations to zero, the
resulting effective potential for the background variables X̄i

1

and X̄i
2 agrees with the Newtonian gravitational potential

between the two objects in light-cone gauge M theory [2].
This is a remarkable result in support of the Matrix
theory–M theory correspondence.
Our task is to add to this computation the lighter, slower

perturbations on the diagonal: the x1;2’s, a1;2’s, and ψ1;2’s.
We then want to write the effective potential for the x1;2
and ψ1;2 after the fast modes are integrated out. We write
the effective potential, after integrating out the heavy off-
diagonal modes, as

Seff ¼ S0 þ SV ð7Þ
where the first term S0 comes from the part of the action
that does not involve the off-diagonal perturbations and
takes the form

S0 ¼
Z

dtTrðð∂txi1Þ2 þ ð∂txi2Þ2 þ ½xi1; xj1�½X̄i
1; X̄

j
1� þ ½xi1; X̄j

1�½xi1; X̄j
1� − ½xi1; X̄j

1�½xj1; X̄i
1� þ ½xi2; xj2�½X̄i

2; X̄
j
2� þ ½xi2; X̄j

2�½xi2; X̄j
2�

− ½xi2; X̄j
2�½xj2; X̄i

2� − ð∂ta1Þ2 − ð∂ta2Þ2 þ 2ið∂ta1Þ½X̄i
1; x

i
1� þ 2ið∂ta2Þ½X̄i

2; x
i
2� þ iψ1α∂tψ1α þ iψ2α∂tψ2α

þ ψ1αΓi
αβ½ψ1β; xi1� þ ψ2αΓi

αβ½ψ2β; xi2�Þ: ð8Þ

An important observation here is that there are no x1-x2
couplings in S0; hence, the coupling between the two
objects, and thus any entanglement between them, can
come only from SV . Furthermore, there are no ψ1-ψ2

coupling terms in S0; nor will there be any in SV : to leading
order in small perturbations, given the action’s quadratic
form in the fermions, there is no entanglement to be
considered between the fermionic diagonal modes.
The second piece of (7), SV , involves the off-diagonal

perturbations that can be integrated out in the regime of

interest. The computation of SV proceeds as in [2] where
the diagonal perturbations were set to zero, except now X̄i

1

and X̄i
2 are shifted by xi1 and xi2; we get from the ground

state energy of the oscillators [2]

SV ¼ −
Z

dt

�
Tr’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0b þM1b

p
−
1

2
Tr’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0f þM1f

p
− 2Tr’

ffiffiffiffiffiffiffi
Mg

p �
; ð9Þ
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where we define the “mass matrices” along [2]: from the
bosonic sector involving x and a, we have

M0b ¼
X
i

Ki2 ⊗ 110×10; M1b ¼
�

0 −2∂tKj

2∂tKi 2½Ki;Kj�

�
;

ð10Þ

from the fermionic sector involving ψ , we have

M0f ¼
X
i

Ki2 ⊗ 116×16;

M1f ¼ i∂tKi ⊗ Γi þ 1

2
½Ki; Kj� ⊗ Γij; ð11Þ

and from the ghost sector, we get

Mg ¼
X
i

Ki2: ð12Þ

In these expressions, we have defined the matrix

Ki ¼ ðX̄i
1 þ xi1Þ ⊗ 1N2×N2

− 1N1×N1
⊗ ðX̄iT

2 þ xiT2 Þ: ð13Þ

In (9), Tr’ corresponds to tracing over both group and
Lorentz spaces. Throughout, we are assuming, as in [2],
that the background satisfies the equations of motion, and
hence all terms linear in the perturbations should be
dropped. Hence, it is implicit in (9) that we drop linear
terms in xi1 and xi2 once the expression is expanded further.
Given the similarities between (9) and the result in [2], with
the only modification coming from the shifts by xi1 and xi2
in (13), the computations proceed along similar steps: we
write the square root of the matrices using a Dyson
perturbation series in M1b and M1f, where M1b and M1f

are smaller than M0b and M0f. The zeroth order corre-
sponds to zero point energy and cancels by supersymmetry
once we include the contribution from the ghosts (Mg only
contributes to zeroth order); the cancellations carry over to
linear, quadratic, and third order in M1. The first nonzero
contribution arises at fourth order and we get

SV ¼ 1

2
ffiffiffi
π

p Tr
Z

dt

�Z
∞

0

Z
∞

0

Z
∞

0

Z
∞

0

Z
∞

0

dτ1dτ2dτ3dτ4dτ5
ðτ1 þ τ2 þ τ3 þ τ4 þ τ5Þ3=2

× e−ðτ1þτ2þτ3þτ4þτ5ÞM0bTrL½M1bðτ2 þ τ3 þ τ4 þ τ5ÞM1bðτ3 þ τ4 þ τ5ÞM1bðτ4 þ τ5ÞM1bðτ5Þ�

−
1

2
e−ðτ1þτ2þτ3þτ4þτ5ÞM0fTrL½M1fðτ2 þ τ3 þ τ4 þ τ5ÞM1fðτ3 þ τ4 þ τ5ÞM1fðτ4 þ τ5ÞM1fðτ5Þ�

�
ð14Þ

where we defined

M1ðτÞ≡ eτM0M1e−τM0 : ð15Þ

TrL involves tracing over Lorentz space, while Tr refers to
tracing over group space as usual. Let us then write

Ki ¼ K̄i þ ΔKi ð16Þ

where we define

K̄i ≡ X̄i
1 ⊗ 1N2×N2

− 1N1×N1
⊗ X̄iT ð17Þ

so that all diagonal perturbations are in the ΔKi matrix. To
proceed further, we will focus on a subsector of diagonal
perturbations that perturb the location of the centers of
masses of the two objects. We write

xi1 ¼ εi11N1×N1
; xi2 ¼ εi21N2×N2

; ð18Þ

where εi1 and εi2 are now the small perturbations associated
with blocks 1 and 2 respectively. Beyond being a physically
natural choice, these perturbations also decouple from
other perturbations as they drop out of the commutators

appearing in (1). This means that truncating to this sector of
perturbations is mathematically consistent. The first part of
the action given by S0 in (8) then becomes

S0 ¼
Z

dtðN1ð∂tε
i
1Þ2 þ N2ð∂tε

i
2Þ2 þ Tr½−ð∂ta1Þ2

− ð∂ta2Þ2 þ iψ1α∂tψ1α þ iψ2α∂tψ2α�Þ: ð19Þ

We also have

ΔKi ¼ ðεi1 − εi2Þ1N1×N1
⊗ 1N2×N2

: ð20Þ

We then get

Ki2 ¼ ðK̄i þ ΔKiÞ2
¼ K̄i2 þ 2ðεi1 − εi2ÞK̄i þ ðεi1 − εi2Þ21N1×N1

⊗ 1N2×N2
:

ð21Þ

Assuming that the size of each object R1 and R2 is much
smaller than the separation distance between them, the
eigenvalues of K̄i2 scale as r2 where we define the relative
position vector between the centers of mass of the two
objects as
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ri ¼ x̄i1 − x̄i2: ð22Þ

More generally, we expect that

K̄i ¼ ri1N1×N1
⊗ 1N2×N2

þ κi ð23Þ

where κi is a matrix whose entries scale at most as R2
1 and

R2
2, the characteristic sizes of the two objects—independent

of the distance r separating them. As long as R1;2 ≪ r, we
can then approximately write

Ki2 ≃ r2 þ 2ðεi1 − εi2Þri þ r2 ¼ ðri þ εi1 − εi2Þ2 ð24Þ

which is large, scaling as r2 with large r. Looking back at
(14), we focus first on the exponential factor in the
integrand. Whether for bosons or fermions, we have a
structure of the form

e−ðτ1þτ2þτ3þτ4þτ5ÞKi2
: ð25Þ

For large r, this implies that the predominant contribution
to the integral in (14) comes from the region where the τ’s
are zero. As a result, we can approximately write, as in [2],

M1ðτÞ ¼ eτM0M1e−τM0 ≃M1: ð26Þ

This leads to a very similar expression to the effective
Newtonian potential computed in [2], now given by

SV ¼
Z

dt
5

128ððx̄i1 − x̄i2 þ εi1 − εi2Þ2Þ7=2
× Tr½8Fμ

νFν
λF

λ
σFσ

μ þ 16FμνFμλFνσFλσ

− 4FμνFμνFλσFλσ − 2FμνFλσFμνFλσ� ð27Þ

where we define

F0i ¼ ∂tKi; Fij ¼ i½Ki; Kj�: ð28Þ

Notice that, given that the center of mass perturbations
commute with all matrices, we have

Fij ¼ i½K̄i; K̄j�: ð29Þ

And we also have

F0i ¼ ∂tK̄i þ ∂tðεi1 − εi2Þ1N1×N1
⊗ 1N2×N2

: ð30Þ

These time derivatives of ε1;2 are subleading to the kinetic
terms of the perturbations arising in (19) as they will be
multiplied by ∼r−7. The terms involving ∂tε1;2 can then be
dropped as long as the distance between the two objects is
large. We then get

Fij ¼ i½K̄i; K̄j� ¼ F̄ij; F0i ≃ ∂tK̄i ¼ F̄0i: ð31Þ

Note next that the F̄ij and F̄0i are independent of ri, the
separation vector between the two objects. To see this, we
have from (23)

F̄ij ¼ i½κi; κj� ð32Þ

where the matrix entries of κi scale as the size of each
object, independent of ri. As for F̄0i, we have from (23)

F̄0i ¼ ∂tri1N1×N1
⊗ 1N2×N2

þ ∂tκ
i ð33Þ

demonstrating that F̄0i is also ri independent—but of
course it depends on ∂tri. Putting things together, we
can then write

SV ≃ −
Z

dt
1

2
εiaε

j
b

∂2V

∂x̄ia∂x̄jb
ð34Þ

where a and b sum over 1 and 2, and where V is the
potential from [2]

V ¼ −
5

128r7
W ð35Þ

with

W ¼ Tr½8F̄μ
νF̄ν

λF̄
λ
σF̄σ

μ þ 16F̄μνF̄μλF̄νσF̄λσ

− 4F̄μνF̄μνF̄λσF̄λσ − 2F̄μνF̄λσF̄μνF̄λσ�: ð36Þ

Note that, as promised, we dropped terms linear in ε.
In [2], it was shown that V matches precisely (including
numerical coefficient) with the expected Newtonian gravi-
tational potential averaged over the light-cone direction
between the two objects as long as N1;2 are large:

V ¼ −
15

4

R4

N1N2r7

�
ðp1 · p2Þ2 −

1

9
p2
1p

2
2

�
ð37Þ

where p1 and p2 are the 11-dimensional momenta of the
two objects.
Combining this result with the rest of the action from

(19), we then have the effective action for ε1 and ε2 that
represent diagonal perturbations of the two objects:

Z
dt

�
N1ð∂tε

i
1Þ2 þ N2ð∂tε

i
2Þ2

−
�
1

2
εi1ε

j
1 þ

1

2
εi2ε

j
2 − εi1ε

j
2

� ∂2V
∂ri∂rj

�
ð38Þ

where we used the fact that, in the regime of large dis-
tance r between the objects, the potential V depends only
on ri ¼ xi1 − xi2.
To proceed further, we need to set up a particular

scenario where one of the two objects is treated as the
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heavy source and the other is a light probe. This sets the
stage to interpreting the soon-to-be-computed quantum
entanglement as a measure of the local curved geometry
experienced by the probe due to the source. Let us take
object 1 to be the massive “star”whose geometry object 2 is
probing; for example, we might write

X̄i
1 ¼ x̄i11N1×N1

þ 2r1
N1

Ji ð39Þ

where the Ji are the angular momentummatrices, satisfying
the SUð2Þ algebra and the Casimir relation

½Ji; Jj� ¼ iϵijkJk; TrJ2i ≃
N3

1

4
; ð40Þ

where we assumed that N1 ≫ 1. Similarly, we can take
object 2 to be a spherical “planet” with N2 units of light-
cone momentum that is much lighter and smaller. Each
object has a nonzero size R1;2 which is, at the least, the
radius of the corresponding black hole. However, spatially
localized configurations like the one given by (39) do not
solve the equations of motion without an additional infrared
cutoff—i.e., we may not assume that the background is
on shell as we have done so. If object 1 were to be a black
hole, we expect that the chaotic nature of Matrix theory
would admit a metastable spherical configuration that is
long lived as it evaporates away slowly via Hawking
radiation [13]. It has been shown that this stochastic short
timescale dynamics can be effectively modeled by adding
by hand a quadratic mass term to the action. Alternatively,
one can imagine a background flux that stabilizes the
configuration like in the case of the giant gravitons of the
Berenstein-Maldacena-Nastase (BMN) Matrix model [14].
In either scenario, object 1 maintains a finite size due to
some additional terms in the action, either due to effective
stochastic physics or due to a nonflat background that
essentially puts the system in a box. Here, we account for
this by adding by hand a generic stabilizing term, the
simplest of which would be

S → S −
Z

dtα1

�
TrXi

1X
i
1 −

TrXi
1TrX

i
1

N1

�

−
Z

dtα2

�
TrXi

2X
i
2 −

TrXi
2TrX

i
2

N2

�
ð41Þ

where α1;2 are positive constants that are tuned to assure
given stable sizes R1;2 for objects 1 and 2.2 The important
general observation is that α1 and α2 must be positive
to assure stability, and they are larger for larger objects.
To see this, for the configuration given by (39), we can
check that the size of object 1 is R1 ¼ r1, and its mass

scales as M ∼ r21 ∼ α1N2
1 (the area of the spherical mem-

brane). For fixed light-cone momentum N1, large α1
corresponds to larger energy. Treating object 2 as the light
probe, we henceforth assume that α2 ≪ α1. In fact, as
we shall see, it does not matter which one of the two objects
is the lighter probe–the entanglement entropy of either
one is the same as the other’s, as expected from the fact
that the combined system of diagonal perturbations is in a
pure state.
The result of this is that one ends up adding additional

terms to the effective action (38) of the form −N1α1ðεi1Þ2
and −N2α2ðεi2Þ2 which dominate the corresponding ðεi1Þ2
and ðεi2Þ2 terms in (38). We then have the modified effective
actionZ

dt

�
N1ð∂tε

i
1Þ2 þ N2ð∂tε

i
2Þ2 − N1α1ðεi1Þ2

− N2α2ðεi2Þ2 þ εi1ε
j
2

∂2V
∂ri∂rj

�
: ð42Þ

We rescale the perturbations so as to canonically normalize
the kinetic terms

z1;2 ≡
ffiffiffiffiffiffiffiffiffi
N1;2

p
rε1;2: ð43Þ

We end up with the final effective action for the
perturbations3:

Seff ¼
Z

dt

�
ð∂tz1Þ2 þ ð∂tz2Þ2

− α1z21 − α2z22 þ
zi1z

j
2ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2

p ∂i∂jV

�
: ð44Þ

We write ∂i ¼ ∂=∂zi2, derivatives with respect to the
probe’s location. This is the effective action that describes
the diagonal perturbations, to leading order R1=r and R2=r,
between blocks 1 and 2 of the matrices—in a regime
where object 2 is a light probe under the influence of a
massive object 1 that curves the spacetime around it. We
next compute the quantum entanglement in the vacuum of
the z1-z2 system arising from the z1z2 coupling term in this
effective action.
We have a system with two d.o.f. with a Hamiltonian

H ¼ ð∂tz1Þ2 þ ð∂tz2Þ2 þ α1z21 þ α2z22 −
1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p zi1z
j
2∂i∂jV

≡ ð∂tzaÞ2 þ ziaWðaiÞðbjÞz
j
b; ð45Þ

where a, b sum over 1,2. Following [15], we define the
matrix ω as

2For example, it is easy to check that, for a spherical confi-
guration of radius R1 given by (39), one needs α1 ¼ 8R2

1=N
2
1.

3One can also consider the probe to be a graviton. As a result,
α2 → 0 and we must keep the ε22 term from (38). The subsequent
computation is then slightly modified and the general pattern
persists as long as the probe is much lighter than the source.
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ω ¼ W1=2 where

W ¼
 

α1δkl − 1
2
ffiffiffiffiffiffiffiffi
N1N2

p ∂i∂kV

− 1
2
ffiffiffiffiffiffiffiffi
N1N2

p ∂l∂jV α2δij

!
; ð46Þ

in 2 × 2 block diagonal form. The density matrix for the
vacuum state takes the form

ρðz; z0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
detω
π

r
e−

1
2
zTωze−

1
2
z0Tωz0 : ð47Þ

In our case, we get

ω ¼
 ffiffiffiffiffi

α1
p − 1

2
ffiffiffiffi
α1

p ffiffiffiffiffiffiffiffi
N1N2

p ∂i∂kV

− 1
2
ffiffiffiffi
α1

p ffiffiffiffiffiffiffiffi
N1N2

p ∂l∂jV
ffiffiffiffiffi
α2

p
!
; ð48Þ

where we have evaluated the square root of the matrix in
the regime where (a) the off-diagonal entries ofW are much
smaller than the diagonal ones and where (b) we have
α2 ≪ α1 since object 2 is the probe.
We are interested in computing the entanglement entropy

of object 2 with object 1 by tracing over the Hilbert space of
object 1 and computing the von Neumann entropy of the
resulting reduced density matrix. Following [15], we then
define

Λ≡ ω−1=2
22 · ω21 · ω−1

11 · ω12 · ω
−1=2
22 ð49Þ

where ω11 is the sub-block of the matrix on the diagonal
referring to object 1, ω12 is the sub-block between objects
1 and 2, etc… Λ is then a 9 × 9 matrix in the tangent space
of the probe’s location—parametrized by zi2. For our case,
we have

Λij ¼
1

4α1N1N2

ð∂i∂kVÞð∂k∂jVÞffiffiffiffiffiffiffiffiffiffi
α1α2

p ≡ γ2ð∂i∂kVÞð∂k∂jVÞ:

ð50Þ
We have defined γ to absorb all constants that refer to
information about the individual objects, such as their sizes,
masses, and equations of state. Note also that the eigen-
values of Λ are much smaller than one in the regime we
have been working in.
The von Neumann entropy of interest is then given

by [15]

SentðΛÞ ¼ Tr

�
ln
1−Λ=2þ ffiffiffiffiffiffiffiffiffiffiffi

1−Λ
p

1−Λþ ffiffiffiffiffiffiffiffiffiffiffi
1−Λ

p −
Λ
2

ln Λ
2−Λþ2

ffiffiffiffiffiffiffi
1−Λ

p

1−Λþ ffiffiffiffiffiffiffiffiffiffiffi
1−Λ

p
�

≃−Tr
�
Λ
4
ln
Λ
4

�
þTr

Λ
4
; ð51Þ

where the simpler form on the second line is valid when the
eigenvalues of Λ are much smaller than 1, as is the case for
us. Note than allUðNÞmatrix structure has disappeared and
the relevant object lives in the tangent space of the probe’s

position—the vector space over which the expression
traces. We have hence computed the entanglement entropy
of the two objects in the quantum vacuum of perturbations
of their centers of mass, and we have shown how this
entropy is a function of the gravitational potential that the
probe experiences due to the presence of the source.

III. A NEW ENTROPY-GEOMETRY RELATION

The gravitational potential V encodes information about
the curvature of the spacetime at the probe’s location. This
means that we must be able to relate the entanglement
entropy of the probe to local spacetime geometry. We start
on the general relativity side with the light-cone gauge M
theory probe evolving along a timelike geodesic with
tangent denoted by uμ, where μ ¼ 0; 1;…; 10. Indices
1;…; 9 are the transverse directions to the light cone,
mapping onto the Matrix theory target space indices, while
the theory is boosted in light-cone direction x10. Let zμi be
nine spacelike vectors tangent to uμ, so we have
i; j ¼ 1;…; 9. One can project onto this subspace using

hμν ¼ δμν þ uμuν: ð52Þ
We can then relate the Newtonian gravitational potential
V of the probe to the local Riemann tensor that it samples
by [16]

zμi z
ν
jV ;μν ≃ zμi z

ν
jRμρνσuρuσ: ð53Þ

Looking back at (50), we see that the entropy is expressed
as a function of the double derivatives of the potential,
instead of covariant derivatives. This is natural in the
context of Matrix theory as the Matrix theory formulation
is background dependent, built up on top of a flat
Minkowski background. This suggests that the probe
coordinates on the Matrix theory side of the correspon-
dence cannot map onto general coordinates that the dual M-
theory geometry might be written in. We then conjecture
that one is required to interpret the Matrix theory coor-
dinates as locally flat coordinates at the location of the
probe on the M-theory side.4 Matrix theory would then
build up geometry locally through probe tidal acceleration
that the Matrix effective potential can naturally determine.
In locally flat coordinates at the location of the probe, the
Christoffel symbols vanish and we have

4Note that (53) does not map onto the desired form involving
simple derivatives at asymptotic infinity where curvatures are
weak and where our computation is designed to hold. Hence, there
is no alternative to locally flat coordinates, where the Christoffel
symbols vanish. Note also that this is a more general coordinate
system than Riemann normal or Fermi normal coordinates, and
there is still infinite freedom globally in fixing locally flat
coordinates. At the location of the probe, the freedom consists
of local rotations SOð9Þ, a subgroup of the gauge group of 11-
dimensional gravity given the restriction to light-cone gauge. As
required, this is also the symmetry group on theMatrix theory side.
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zμi z
ν
jV;μν ¼ zμi z

ν
j∂μ∂νV ¼ zμi z

ν
jRμρνσuρuσ: ð54Þ

We also have at the location of the probe ημνz
μ
i u

ν ¼ 0 for
i ¼ 1;…; 9. It is easy to check that we can write

zμi ¼ δμi −
ui
u−

δμ−; ð55Þ

where we use the light-cone metric such that −2uþu−þ
ðuiÞ2¼−1. Note that the light-cone momentum pþ¼N2=R,
and the light-cone energy is p− ¼ ðm2 þ ðpiÞ2Þ=ð2pþÞ. We
also have ∂−V ¼ 0 from the fact that V is averaged over x−

since no longitudinal momentum is exchanged between
source and probe. We then can write

∂i∂jV ¼
�
δμi −

ui
u−

δμ−

��
δνj −

uj
u−

δν−

�
Rμρνσuρuσ ≡Rij;

ð56Þ
defining the new quantityRij built out of the local Riemann
tensor, or equivalently tidal forces.
Putting things together, we write

Sent ≃ −γ2Tr
�
R2

4
ln
R2

4

�
: ð57Þ

This is a local relation between the curvature sampled by
the probe and the quantum entanglement between the
center of mass d.o.f. of the source and probe. Note that
this entropy is finite, not surprisingly given that we are
working in a UV complete theory of quantum gravity. In
the limit where the curvature vanishes, so does this
expression for entropy. Next, we consider the expression

θμν ¼ hμαhνβuðα;βÞ ð58Þ
which is a measure of deformations of the shape and
orientation of a small sphere at the probe along its
trajectory. We then have a version of Raychaudhuri’s
equation

d
dτ

θμν ≃ −Rμρνσuρuσ ð59Þ

where we have dropped higher order terms that are smaller
than the leading contribution at weak curvatures. Using
locally flat coordinates, and projecting onto the nine-
dimension subspace using the zμi ’s, we have

d
dτ

θij ≃ −zμi zνjRμρνσuρuσ ¼ −Rij: ð60Þ

In particular dθ=dτ, where θ is the trace of θij using the
metric hij, is the rate of change of a volume element along
the probe’s geodesic. Hence, Eq. (57) establishes a relation
between the source-probe entanglement entropy and the
rate at which a small volume of space shrinks, rotates, and
twists along the geodesic of the probe. If we were to choose

the probe to be massless, one can easily show that one
obtains a similar relation but now involving an area
transverse to a congruence of null geodesics associated
with the probe. All this is somewhat reminiscent of the
entropy-area relations we encounter in other settings
[17–19] with one significant difference being that our
relation is a local statement.
It is useful to reflect on the implications of all this.

We have demonstrated that the computation of a certain
von Neumann entanglement entropy closely parallels the
computation of the effective potential in Matrix theory.
At leading order, the information in both quantities is the
same. This is sensible as entanglement generally arises
because of interactions in any quantum system. Demon-
strating the similarities in computing a certain entangle-
ment entropy and effective potential in Matrix theory, and
the details of the relation between the effective potential
and entropy—in particular the explicit form (57), are
nontrivial and new. However, we emphasize that this is a
first step involving one example, and to be able to make a
general conjecture about entropy and geometry in Matrix
theory, more case studies are needed to confirm and/or
extend relation (57). Despite this, the following is signifi-
cant: we essentially were able to feed the computation of an
effective potential into the computation of a quantum
entanglement in Matrix theory in a rather general scheme.
The resulting entropy-geometry relation arising from
Matrix theory then has quite general overtones.

IV. CONCLUSION

We have demonstrated that von Neumann entanglement
entropy between two blocks of matrices in Matrix theory—
that represent a probe gravitating near a source—can quite
generically be written as a function of derivatives of their
mutual gravitational potential. We also presented argu-
ments and a conjecture for expressing this relation as a map
between entanglement entropy and local spacetime geom-
etry as sampled by the probe in the background of the
source.
It is useful to summarize the key ingredients that allow

the mapping of the computation of von Neumann entropy
onto that of the effective gravitational potential or geom-
etry. The essence lies in realizing that the entanglement of
perturbations on the diagonal of the matrices arises from the
mass matrix of these perturbations, and the latter in turn
comes from the dependence of the effective potential for
off-diagonal modes on the distance between the diagonal
matrix blocks. Roughly speaking, the effective Matrix
potential generically looks like

V ∼
r-independent terms

r7
ð61Þ

where r is the distance between the two lumps of energy
(dependence of the numerator on dr=dt is inconsequential
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to the analysis). And we have shown that the mass matrix of
diagonal perturbations in the Uð1Þ would generally receive
contributions only from r-dependent terms of this effective
action. These two conclusions then necessarily result in a
relation between the second derivative of the potential and
entanglement entropy.
We considered a particular scenario and worked consis-

tently only to leading order in weak gravitational potential
energy. Yet, the analysis introduces a new general way to
develop maps between quantum information and spacetime
geometry inMatrix theory. This involves looking at diagonal
matrix fluctuations and focusing on the ground state density
matrix of these d.o.f. As a result, when one focuses on a sub-
block of a matrix, the resulting reduced density matrix and
quantum entanglement will be related to the effectiveMatrix
potential between the two matrix sub-blocks arising from
integrating out fast off-diagonal modes. This mechanism
appears general and might hint as to why, at least to leading
order in weak gravity, one expects a relation between
entanglement entropy and spacetime geometry.

Entanglement entropy by nature is multifaceted. It
depends on how one slices parts of a larger system and
on what quantum state the entire system lives in. These
freedoms are very much reflected in the analysis, where
we made a series of choices to set a computationally
accessible setup. There are many more settings to explore,
and a catalog of case studies can help develop intuition on
the general pattern of expected relations between entropy
and local geometry. We end by pointing out a couple of
particularly interesting cases: the case involving massless
probes, where one has the promise to connect with ideas
from holography and the entropy of light-sheets developed
from different perspectives [20–22], and the case where the
approach is used in BMN theory that admits stable giant
gravitons and hence the need to add stabilizing terms to the
action is avoided [23].
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