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We report on the end state of nonaxisymmetric instabilities of singly spinning asymptotically flat
Myers-Perry black holes. Starting from a singly spinning black hole in D ¼ 5, 6, 7 dimensions, we
introduce perturbations with angular dependence described by m ¼ 2, m ¼ 3, or m ¼ 4 azimuthal mode
numbers about the axis of rotation. In D ¼ 5, we find that all singly spinning Myers-Perry black holes are
stable, in agreement with the results from perturbation theory. In D ¼ 6 and 7, we find that these black
holes are nonlinearly stable only for sufficiently low spins. For intermediate spins, although the m ¼ 2 bar
mode becomes unstable and leads to large deformations, the black hole settles back down to another
member of the Myers-Perry family via gravitational wave emission; surprisingly, we find that all such
unstable black holes settle to what appear to be the samemember of the Myers-Perry family. The amount of
energy radiated into gravitational waves can be very large, in some cases more than 30% of the initial total
mass of the system. For high enough spins, them ¼ 4mode becomes the dominant unstable mode, leading
to deformed black holes that develop local Gregory-Laflamme instabilities, thus forming a naked
singularity in finite time, which is further evidence for the violation of the weak cosmic censorship
conjecture in asymptotically flat higher-dimensional spacetimes.
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I. INTRODUCTION

Black holes play a central role in general relativity (GR),
the currently accepted classical theory of gravity. The
recent direct detections of gravitational waves from black
hole binary mergers [1], together with the image of the
shadow of the black hole at the center of the M87 galaxy
by the Event Horizon Telescope [2], have changed the
perception of these objects from the purely mathematical to
the “tangible”. All these observations are compatible with
an equilibrium (or quasiequilibrium) state that is described
by the Kerr black hole [3]. However, the astrophysical
relevance of the Kerr black hole hinges on whether it is
nonlinearly stable or not. All the evidence indicates that it is
indeed stable, but a rigorous proof of the nonlinear stability
of the Kerr black hole is not yet available.
Following the discovery of the Gregory-Laflamme (GL)

instability [4] of black strings and black branes in dimen-
sions 5 and higher, black holes have become useful as

laboratories to study dynamical instabilities, particularly
due to their simplicity and their fundamental role in GR.
The study of the evolution of black hole instabilities in the
fully nonlinear regime has been a fruitful area of research;
indeed, the pioneering work of Lehner and Pretorius [5],
with numerical simulations of the evolution of the GL
instability of black strings in five dimensions, provided
evidence that the weak cosmic censorship conjecture is
false in asymptotically Kaluza-Klein spaces.
In higher-dimensional asymptotically flat spaces, the

situation is qualitatively similar. Black rings [6,7] are
asymptotically flat rotating black holes with horizon top-
ology S1 × Sn. In the limit of large angular momentum
along the S1, black rings resemble thin (boosted) black
strings, and hence they ought to be unstable under a GL
type of instability. This was confirmed in Ref. [8].
Reference [9] used numerical general relativity to simulate
the nonlinear evolution of black ring instabilities and
showed that thin enough black rings evolve into naked
singularities in finite time, thus potentially violating the
weak cosmic censorship in higher-dimensional asymptoti-
cally flat spaces.1 This situation is not unique to black
rings. In fact, a general picture of the stability/instability
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1There are several issues that still need to be addressed, in
particular, the structure of null infinity. In these dynamical
spacetimes that develop naked singularities, it is not clear whether
null infinity is incomplete.
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properties of higher-dimensional black holes has emerged.
Emparan and Myers [10] noticed that rapidly rotating black
holes in higher dimensions, i.e., Myers-Perry (MP) black
holes (BHs), resemble black membranes and hence should
also be GL unstable. Higher-dimensional black holes
generically admit a regime of large angular momentum
with highly deformed horizons described by largely sep-
arated length scales, captured by the so-called black folds
[11], which are expected to be dynamically unstable. To
complete this general picture, it is thus important to
determine the end point of these black hole instabilities
in the rapidly spinning regime.
The instability of MP BHs was confirmed in Ref. [12]

for linearized axisymmetric perturbations on top of a MP
BH background.2 A fully nonlinear evolution of this
axisymmetric instability of MP BHs revealed a sequence
of concentric rings connected by black brane segments that
became progressively thinner, eventually leading to a naked
singularity in finite asymptotic time [14]. In the MP case,
the dynamics of the horizon is not self-similar, unlike
what was seen in the black string. The study of non-
axisymmetric instabilities was initiated by Shibata and
Yoshino in Refs. [15,16]. For a MP BH in D dimensions
with mass parameter μ and spin parameter a, these non-
axisymmetric instabilities set in at smaller dimensionless
spin a=μ1=ðD−3Þ than the axisymmetric instabilities.
Rotating black holes become dynamically unstable for

values of a=μ1=ðD−3Þ ∼Oð1Þ. Indeed, from thermodynamic
considerations of the case in which a MP BH fragments and
expels two nonspinning BHs, Emparan and Myers [10]
estimated that nonaxisymmetric instabilities should set in
at around a=μ1=ðD−3Þ ≈ 1. References [15,16] found that
MP BHs with a=μ1=ðD−3Þ ≲ 0.7 are stable in D ¼ 5, 6, 7,
but for higher spins, the MP BHs are linearly unstable to a
deformation of which the azimuthal angle dependence is
eimϕ for m ¼ 2, i.e., a bar-mode deformation. In six and
seven dimensions [16], they found that, due to gravitational
wave emission, this bar-mode instability saturates and
eventually damps, and the black hole settles down to a
MP BHwith a lower spin. A study of quasinormal modes of
MP BHs [17] corroborates these results, except in the five-
dimensional (5D) case; while Ref. [15] found an instability,
Ref. [17] did not find an exponentially growing mode in
the linear regime. These two results could be compatible
with each other if in five dimensions the instability were
nonlinear. In this article, we resolve the apparent tension
between these linear and the nonlinear results. Analogous
to the GL instability of black strings, for which higher
harmonics become unstable for sufficiently thin strings, one

would expect that for sufficiently large a=μ1=ðD−3Þ modes
with m > 2 become the dominant unstable modes. This is
indeed the case for black rings [9], and we show here that
the same happens for MP BHs.
In this paper, we investigate the nonlinear evolution of

MP BHs in D ¼ 5, 6, 7 dimensions with dimensionless
spins of 0.7 ≤ a=μ1=ðD−3Þ ≤ 1.5 and perturbed by non-
axisymmetric deformations described by the m ¼ 2,
m ¼ 3, and m ¼ 4 azimuthal mode numbers. We use the
cartoon method [16,18,19] to impose an SOðD − 3Þ sym-
metry that still captures the nonaxisymmetric instability
while allowing us to restrict to 3þ 1 dynamics in D
dimensions. We believe that this symmetry assumption
should still be enough to capture the essential physics of the
nonaxisymmetric instabilities and their end points.
The rest of this article is organized as follows. in Sec. II,

we provide an overview of the numerical methods that we
used in our simulations. Section III constitutes the bulk of
the article, and there we present our results for the nonlinear
evolution of unstable MP BHs in various spacetime
dimensions and for different values of the dimensionless
spin parameter. We summarize our results and conclude in
Sec. IV. Technical results are collected in the Appendixes.
In Appendix A, we review the notion of asymptotic flatness
in higher dimensions introduced in Ref. [20] and how the
matrix of Weyl scalars captures gravitational radiation.
In Appendix B, we collect several properties of tensor
spherical harmonics. Appendixes C and D contain the
tensor harmonics on the S3 and the S4, respectively, that we
have used in our extractions. In Appendix E, we review the
transformation properties of the multipoles of the Weyl
tensor under changes of basis. In Appendix F, we compare
the contours of χ with the apparent horizon; in Appendix G,
we display contours of χ from the evolution of six dimen-
sions with an m ¼ 3 perturbation; and Appendix H con-
tains some convergence tests.

II. NUMERICAL METHODS

In this section, we summarize the numerical methods
that we have employed in our simulations. In Sec. II A, we
describe our evolution scheme together with the our choice
of initial data and gauge evolution equations. In Sec. II B,
we provide some details about our approach to extracting
gravitational waves in higher dimensions.

A. Evolution scheme

The results presented here are obtained by solving the
Einstein field equations in the conformal and covariant Z4
(CCZ4) formulation [21,22]. We use Cartesian coordinates
to solve for the evolution of asymptotically flat black hole
solutions in D ¼ 5, 6, 7 dimensions while imposing an
SOðD − 3Þ symmetry using the modified cartoon method
[16,18,19]. We redefine the constraint damping parameter
κ1 → κ1=α as in Ref. [23], in which α is the lapse function,
and we typically use constraint damping values κ1 ¼ 0.4,

2MP BHs with equal spins on all rotation planes are also known
to be unstable [13]. For these black holes, unlike the singly
spinning ones, the total angular momentum is bounded, and hence
the end points of their instabilities can potentially be quite different.
We will not consider MP BHs with equal spins in this article.
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κ2 ¼ 0. As in Ref. [14], we use initial data for a singly
spinning MP BH,

ds2 ¼ −dt2 þ μ

rD−5Σ
ðdt − asin2θdϕÞ2 þ Σ

Δ
dr2

þ Σdθ2 þ ðr2 þ a2Þsin2θdϕ2 þ r2cos2θdΩ2
ðD−4Þ;

ð1Þ
where Σ ¼ r2 þ a2cos2θ, Δ ¼ r2 þ a2 − μr5−D, and μ and
a are the mass and spin parameters of the MP BH. In
analogy with the transformation from Schwarzschild coor-
dinates to isotropic coordinates inD dimensions, we define
a new radial coordinate ρ,

r ¼ ρ

�
1þ 1

4

�
rh
ρ

�
D−3
� 2

D−3
; ð2Þ

where rh is the largest real root of ΔðrhÞ ¼ 0. Then, the
Cartesian coordinates are given by

x ¼ ρ sin θ cosϕ;

y ¼ ρ sin θ sinϕ;

z ¼ ρ cos θ cosφ1;

w1 ¼ ρ cos θ sinφ1 cosφ2;

…

wD−4 ¼ ρ cos θ sinφ1… sinφD−3: ð3Þ

Imposing the SOðD − 3Þ symmetry corresponds to work-
ing on the slice w1¼���¼wD−4¼0; see Refs. [16,18,19].
For values of a=μ1=3 ∼ 1.5, numerical noise is enough to

trigger the instability in them ¼ 4 sector. Note that, although
the initial (rapid) gauge adjustment induces a small burst of
radiation that in practice contains modes with different m,
this initial burst is induced by truncation error and hence is
under control and small. For smaller values of the dimen-
sionless spin, we trigger the instability by hand through an
m ¼ 2 or m ¼ 4 deformation of the conformal factor χ,

χ ¼ χ0

�
1þ Afmðx; yÞ

× exp

�
−
�
atanhðχ0Þ
atanhðχHÞ

−
atanhðχHÞ
atanhðχ0Þ

�
2
��

; ð4Þ

where χ0 is the conformal factor computed from the analytic
initial data (1), χH is some value of the conformal factor
close to the apparent horizon, A is the amplitude of the
perturbation, and fmðx; yÞ is the function that induces the
desired deformation:

m ¼ 2∶ f2ðx; yÞ ¼ x2 − y2;

m ¼ 3∶ f2ðx; yÞ ¼ x3 − 3xy2;

m ¼ 4∶ f4ðx; yÞ ¼ x4 − 6x2y2 þ y4: ð5Þ

Introducing an m ¼ 2 perturbation immediately at
t=μ

1
D−3 ¼ 0 results in a dumbbell configuration that even-

tually settles down to a MP BH. Unless specifically stated,
simulations described here feature perturbations introduced
at t=μ

1
D−3 ¼ 0. For some simulations, we also introduce

this deformation in χ after the gauge adjustment period at
around t=μ

1
D−3 ∼ 10. For higher spins, this amounts to

choosing a different branch of the dynamical evolution.
Perturbing after the gauge adjustment period at around
t=μ

1
D−3 ∼ 10 results in an elongated configuration that even-

tually develops sharp edges at the ends. This last case is
discussed in detail near the end of Sec. III B 3.
This method of perturbing the black hole violates the

constraints, so even though the CCZ4 formulation quickly3

takes us back to the constraint surface, we do not have
control over where on the constraint surface we land.
Therefore, to make sure that the mass and angular
momentum of the perturbed data are not too far from
those of the original MP BH, we keep A small (a typical
value that we use is A ¼ 0.02).
We evolve the lapse with the standard 1þ log slicing

condition [21],

ð∂t − βi∂iÞα ¼ cααðK − 2ΘÞ; ð6Þ

where cα is a freely adjustable coefficient. In our runs,
we found that cα ¼ 1.5 worked well for D ¼ 5, 6, 7.4

To evolve the shift, we used the modified Gamma-driver
condition introduced in Ref. [9],

ð∂t − βj∂jÞβi ¼ cβðΓ̂i − fðt; ρÞΓ̄iÞ − ηβi; ð7Þ

where Γ̂i is the usual CCZ4 evolution variable, Γ̄i is the
contracted Christoffel symbol computed from the (con-
formally rescaled) initial data (1), and

fðt; ρÞ ¼ exp

�
−
�

t

μ1=ðD−3Þ

�
2
�
δ1

�
ρh
ρ

�
2

þ δ2

��
; ð8Þ

with ρh ¼ rh=ð4 1
D−3Þ and where δ1;2 are two adjustable

parameters that control the decay of the initial gamma
function near the horizon. Since the initial data have Γ̃i ≠ 0,
the role of the extra term in (7) is to drive the gauge towards
Γ̃i ¼ 0 while making sure that the right-hand side of the
equation remains relatively small throughout the evolution.
Typical values of these parameters in our runs are δ1 ¼ 0.2
and δ2 ¼ 0.075. We can freely adjust the coefficient cβ in
(8); cβ ¼ 0.6 works well for us (note that the typical value
in four-dimensional simulations is cβ ¼ 0.75). Following

3In practice, this timescale is exponential and much faster than
the physical timescale of the instabilities.

4The preferred choice in the typical four-dimensional astro-
physical setting is cα ¼ 2.
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Ref. [9], we introduce diffusion terms (well inside the
apparent horizon) on the right-hand side of the equations of
motion for those variables that appear with second spatial
derivatives. This improves the stability of our code,
especially in the rapidly spinning regime. See Ref. [9]
for more details. We use Kreiss-Oliger dissipation [24] to
damp unphysical high-frequency modes that can arise at
grid boundaries or during regridding, with typical dissipa-
tion values of σ ¼ 0.4. We numerically solve the CCZ4
equations using the GRChombo libraries [25,26], using up to
nine levels of refinement, with a 2∶1 refinement ratio, and
typically 1403 points on the coarsest grid. We consider a
cubic computational domain, with side length L ¼ 200.
The x and y are standard Cartesian coordinates, with
infinite range, which we cut off at some finite values;
we typically impose periodic boundary conditions (BCs)
for simplicity, but we have also experimented with
Sommerfeld BCs, and the results are essentially the same.
Needless to say, our choice of BCs limits the duration of
our simulations. The z coordinate has range 0 ≤ z ≤ L; at
z ¼ 0, we impose regularity as derived from the cartoon
method, and at z ¼ L, we impose either periodic or
Sommerfeld BCs. We discretize the equations using
fourth-order finite differences and integrate in time using
the 4th-order Runge–Kutta method (RK4). We obtain
approximately third-order convergence; see Appendix H
for convergence tests.
We also track the apparent horizon (AH) during several

stages of the evolution (see Ref. [9]); our apparent horizon
finder assumes that the AH is a star-shaped surface. While
this is sufficient to describe the AH for the low-spin runs,
this assumption breaks down when the deformations are
too large. In this case, one would need to use a more general
parametrization of the AH along the lines of Ref. [14] or
more recently Ref. [27]. We leave this for future work.
However, as in Ref. [9], we verify that in our working
gauge certain contours of χ track the AH to within a few
percent. Thus, we can use χ to get a good approximation of
the location and shape of the AH. In Appendix F, we verify
this claim with cases in which the AH satisfies our star-
shaped assumption and can thus be calculated and com-
pared to contours of χ.

B. Gravitational wave extraction

One of the aims of this article is to provide a general
picture of higher-dimensional black hole instabilities
and their end points. To this end, the gravitational waves
that are emitted during the evolution of these instabilities
are a valuable source of insight. We are able to do this in
two ways. The first is to extract the hþ and h× components
of the metric perturbations at a certain radius along the
z axis [15,16],

hþ ¼ γ̃xx − γ̃yy
2

�
z

μ1=ðD−3Þ

�D−2
2

; ð9Þ

h× ¼ γ̃xy

�
z

μ1=ðD−3Þ

�D−2
2

: ð10Þ

As noted in these references, hþ and h× basically contain
the same information. This method has the advantage that it
is very easy to implement and it accurately captures the
m ¼ 2 modes, allowing us to compare our results with the
existing results in the literature [16,17]. However, this
approach misses the higher m modes and in particular the
m ¼ 4mode that becomes the dominant one at larger spins.
Note that the perturbative calculations of Ref. [17] only
consider modes with m ¼ 2. Therefore, for this work, we
have implemented a completely general approach to
gravitational wave extraction in higher dimensions based
on the higher-dimensional analogues of the Newman-
Penrose scalars introduced in Ref. [20]. We follow the
implementation of Ref. [28] to calculate the nonvanishing
components of the Weyl tensor along the outgoing null
rays, Ω0

ðAÞðBÞ. For the class of spacetimes that we consider,
the nonvanishing components of Ω0

ðAÞðBÞ are [28]

Ω0
ð{̂Þð|̂Þ ¼

1

2
½R0k0lmk

ð{̂Þm
l
ð|̂Þ − Rmk0lmm

ð1̂Þm
k
ð{̂Þm

l
ð|̂Þ

− R0kmlmk
ð{̂Þm

m
ð1̂Þm

l
ð|̂Þ þ Rmknlmm

ð1̂Þm
k
ðîÞm

n
ð1̂Þm

l
ð|̂Þ�;
ð11Þ

Ω0
ðâÞðb̂Þ ¼ δðâÞðb̂Þ

1

2γww

× ½Rw0w0 − 2Rw0wkmk
ð1̂Þ − Rwkwlmk

ð1̂Þm
l
ð1̂Þ�; ð12Þ

where the indices {; | ¼ 2, 3 run along the spatial angular
dimensions of the computational domain and the indices
â; b̂;… run along the transverse sphere. Here, R0klm, etc.;
denote the components of the spacetime Riemann tensor,
mi

ð1̂Þ is the unit radial vector; and mk
ð{̂Þ are the angular unit

vectors. To construct an orthonormal basis of vectors, we
start from

mð1Þ ¼ x∂x þ y∂y þ z∂z;

mð2Þ ¼ −ðy2 − z2Þ∂x þ xy∂y þ xz∂z;

mð3Þ ¼ −z∂y þ y∂z ð13Þ
and use the standard Gram-Schmidt orthornormalization
procedure. Changing to spherical coordinates as in (B2),
one can show that as r → ∞ the basis orthonormalized
vectors approach

mð1̂Þ ¼
1

r
∂r;

mð2̂Þ ¼
1

r
∂θn ;

mð3̂Þ ¼
1

r sin θn
∂θn−1 : ð14Þ
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The unit vectors along the transverse sphere directions are
simply given by

mðâÞ ¼
1ffiffiffiffiffiffiffi
γww

p ∂wa
: ð15Þ

We extract the individual modes in the gravitational
wave signal by projecting Ω0

ðAÞðBÞ onto a basis of tensor

harmonics on the sphere at infinity,

Ω0
l… ¼ lim

r→∞
r
D−2
2

Z
dΩðnÞY

ðAÞðBÞ�
l… Ω0

ðAÞBÞ; ð16Þ

where l… denotes the set of quantum numbers that
identify each of the harmonics and dΩðnÞ is the volume
element on the round unit sphere Sn. In this article, we
focus on the n ¼ 3, 4 cases, but the procedure is completely
general. In practice, we carry out the extraction at several
radii to verify that we are in the wave zone. While a basis
for tensor harmonics on S3 is known, see, e.g., Ref. [29], to
the best of our knowledge, our results for tensor harmonics
on S4 are new. See Appendix D. Needless to say, for the
m ¼ 2 modes, both methods give the same frequencies and
growth/decay rates within our numerical errors.5

1. Energy flux

Following Ref. [28] (and references therein), the energy
emitted in form of gravitational waves is given by

_MðuÞ ¼ − lim
r→∞

rD−2

8π

Z
dΩðnÞIðAÞðBÞIðAÞðBÞ ð17Þ

with

IðαÞðβÞ ¼
Z

u

−∞
Ω0

ðAÞðBÞdũ: ð18Þ

In the expressions above, u is the retarded time coordinate
associated to the line element expressed in the Bondi-Sachs
form (see Appendix A).
Taking into account the decomposition in the tensor

spherical harmonics (16), Eq. (17) is expressed as

_MðuÞ ¼ −
1

8π

X
l…

�Z
u

−∞
Ω0

l…ðũ; rÞdũ
�

2

: ð19Þ

In practice, we neglect the gravitational waves before the
start of the simulation, and we perform the time integral in
terms of the “computational” time t, starting at t ¼ 0. Total
energy radiated, Erad, can be computed by performing a
final time integration.

III. RESULTS

We now present results for the nonlinear evolution of
nonaxisymmetric perturbations of singly spinning black
holes in five and six dimensions The dynamics of MP black
holes in seven dimensions is qualitatively similar to the six-
dimensional (6D) case.We start by discussing the 5D case
in Sec. III A, in which we resolve the existing tension in the
literature regarding the stability/instability of MP BHs with
a sufficiently large spin. We move on in Sec. III B to study
the nonlinear stability properties of 6D MP BHs of various
spins: in Sec. III B 1, we study the gravitational waveforms
and extract the quasinormal modes (QNMs), in Sec. III B 2,
we study the physics of the AH, and in Sec. III B 3, we
discuss the end point of the instabilities for large angular
momentum.
In the following, we will use several geometric measures

of the AH to estimate the mass and spin of the black hole
throughout the evolution, even though the relations
between the geometry of the horizon and the physical
quantities of the black hole are only valid for equilibrium
configurations. The following relations between the MP
parameters and the horizon are valid in the stationary
configuration

rh ¼
�
A
C

2π

ΩD−2

� 1
D−3

; μh ¼
C
2π

rD−4
h ; ah ¼ rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μh
rD−3
h

− 1

r
ð20Þ

with A the horizon’s area and C its equatorial circum-
ference. In the dynamical regime, Eq. (20) defines rh, μh,
and ah. Note that our results scale with the chosen length
scale μ, related to the black hole mass of the initial
configuration. As the evolution proceeds, we dynamically
rescale the physical quantities according to the length μh.
For instance, nonlinear dynamics that settles to a final MP
BH in six dimensions results in a final, dimensionless spin
of ða=μ1=3Þfinal ¼ ah=μ

1=3
h .

Before we proceed, we remind the reader of some well-
known properties of singly spinning MP BHs in D ≥ 5
spacetime dimensions. See Ref. [30] and references therein
for more details. For fixed total mass, in five dimensions,
the angular momentum of a MP BH is bounded from above
by an extremal bound; configurations saturating this bound
have a naked ring singularity. This situation should be
contrasted with the Kerr family of solutions, for which the

5To calculate the QNMs, we first extract the exponential
growth/decay rates by fitting a straight line over the envelope
of local extrema in the log-linear plot of the given data. The errors
associated with this step are mainly due to the particular time
interval chosen. The early and late data are contaminated by junk
radiation and accumulated numerical error, respectively, whereas
the signal shows a transition from growing to decaying regimes
for intermediary times. Next, we use the information of the
growth/decay rates to obtain a purely sinusoidal signal, from
which we read the oscillatory frequency via a Fourier trans-
formation. Here, the accuracy is restricted to the wavelengths
available in the signal.
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solution saturating the Kerr bound corresponds to an
extremal black hole with a degenerate horizon. On the
other hand, for D ≥ 6, the angular momentum is
unbounded from above, and for any finite angular momen-
tum, the black hole horizon is nondegenerate and has
finite area.

A. Case D= 5

In Ref. [15], the nonlinear dynamics of rapidly spinning
MP BHs in five spacetime dimensions were studied for the
first time, under perturbations that break the axial sym-
metry along the rotation plane while preserving the trans-
verse U(1). They found that for values of a=μ1=2 ∼ 0.87
there exists an exponentially growing mode that induces a
bar-shaped deformation on the AH, i.e., an unstable m ¼ 2
mode. The authors found that the growth of the instability
appeared to be stronger for larger values of a=μ1=2.
However, the nonlinear evolution of the instability was
not followed, so determining the end point of the instability
remained an open problem. On the other hand, Ref. [17]
studied perturbations of singly spinning MP BHs in D ≥ 5
with m ≥ 2. In the D ¼ 5 case, the results of Ref. [17]
indicate that all linear modes decay exponentially, which
would lead one to conclude that MP BHs are linearly stable
in five dimensions, at least for the values of the spin
parameters that were studied numerically. The results of
Refs. [15] and [17] would be compatible if the instability
were nonlinear.
Here, we revisit the results from Ref. [15] by carrying out

analogous fully nonlinear simulations of perturbed MP
BHs with various values of the spin parameter, and in
particular for values of a=μ1=2 for which Ref. [15] observed
an instability. When comparing our results to those in
Ref. [15], one should note that, although our gauge choice
is different, our method of perturbing the black hole is
essentially the same as the one used in this reference.
Contrary to the results in Ref. [15], we find that all

rapidly spinning black holes in five dimensions that we are
able to simulate are nonlinearly stable. For a perturbed
black hole with a=μ1=2 ¼ 0.89, for instance, Fig. 1 shows
the gravitational waveform extracted on the z axis [15] at
z0=μ1=2 ¼ 21.5. The plot below shows the ðl3; mÞ ¼ ð2; 2Þ
scalar multipole of the gravitational waveform extracted
fromΩ0

ðAÞðBÞ. From the damped oscillatory decay, we obtain

a dominant QNM with frequency ωμ1=2 ¼ 1.283 − 0.032i,
which agrees with the results from perturbation theory of
[17], i.e., ωrþ ¼ 0.585 − 0.015i. For a further check, we
computed the frequency and decay rate of the leading
QNM from both hþ and Ω0

ðAÞðBÞ, and they agree within the

truncation error.
In five dimensions, we find that gravitational waveform

is essentially in the ðl3; mÞ ¼ ð2; 2Þ scalar-derived sector;
see Fig. 1. The projection onto the other tensor harmonics,
i.e., vector-derived and transverse traceless tensors, gives

waveforms with amplitudes that are smaller than those in
the l4 ¼ 2 scalar sector by 1 order of magnitude or more.
Higher multipoles again give much smaller waveforms.
Our results together with the results of Ref. [17] suggest

that 5D MP BHs are both perturbatively and nonperturba-
tively stable under perturbations that break the axial sym-
metry on the rotation plane. In this article,we do not study the
stability properties of MPBHs with values of a=μ1=2 that are
arbitrarily close to extremality. As pointed out in Ref. [31],
the dynamics of the Kerr black holes near extremality can
exhibit turbulence, so it is conceivable that similar dynamics
will arise for MP BHs in the limit a=μ1=2 → 1.

B. Case D= 6

In this subsection, we consider the nonlinear evolution
of perturbed 6D MP BHs of different values of the spin

FIG. 1. Top: gravitational waveform extracted from hþ mea-
sured at a finite radius along the z axis. The red line is the actual
data, while the dashed line is our best fit, corresponding to the
values of the frequency and decay rate shown in the inset. Bottom:
ðl3; mÞ ¼ ð2; 0Þ and the real part of the ðl3; mÞ ¼ ð2; 2Þ scalar-
derived multipoles of Ω0

ðAÞðBÞ extracted at a finite radius. Clearly,

most of the signal is in the m ¼ 2 mode.
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parameter a=μ1=3. The results in seven dimensions are
qualitatively similar, and we will not show them here.
Recall that in D ≥ 6 the dimensionless spin parameter

a=μ1=3 of singly spinning MP BHs can be arbitrarily large.
Reference [10] noted that the thermodynamics of spinning
black holes exhibits a qualitative change in behavior as the
angular momentum increases beyond a certain (dimension-
dependent) critical value of acrit=μ1=ðD−3Þ; for values of
a=μ1=ðD−3Þ smaller than this critical value, MP BHs behave
similarly to the Kerr black hole, and for values of a=μ1=ðD−3Þ
greater than this critical value, they behave like black
membranes. In six dimensions, one finds acrit=μ1=3 ≃ 1.29,
and the ultraspinning instability kicks in at a=μ1=3 ≃ 1.57
[32]. The end points of certain ultraspinning instability were
worked out in Ref. [14]. On the other hand, the nonaxisym-
metric instabilities of 6D MP BHs kick in at a=μ1=3 ≃ 0.74
[16,17]. In this article, we study the end point of
nonaxisymmetric instabilities for MP BHs with 0.7 ≤
a=μ1=3 ≤ 1.5. The results presented here, taken in conjunc-
tion with those in Ref. [14], constitute a complete picture of
the dynamics of singly spinning MP BHs.

1. Gravitational waves

In Table I, we summarize the QNM frequencies in the
m ¼ 2 sector that we have extracted from our fully non-
linear simulations. To obtain the results displayed on this
table, we considered sufficiently small perturbations, with
amplitudes A ¼ 0.02. Although our simulations are fully
nonlinear, thus making it difficult to obtain accurate results
for linear waves, our results agree within the truncation
error with the perturbative calculations of Ref. [17]. In the
left column of Table I, we display the normalized frequen-
cies of the leading mode obtained from perturbing the
initial black hole with an m ¼ 2 mode. This shows that
black holes with a=μ1=3 ¼ 0.7 are stable, while for
a=μ1=3 ≥ 0.8, the sign of the imaginary part of the
frequency indicates a linear instability. In the right column,
we display the normalized frequencies of the leading QNM
in the ring-down phase for those runs that settle back onto
another MP BH. We measured the AH area and the length
of the circumference of the AH on the equatorial plane of
the final state to estimate the angular momentum parameter
of the final MP black hole using (20). These results indicate
that all runs settle down to what appear to be the same black
hole (within the numerical error), independent of the initial
value of a=μ1=3 that we have considered.
In Fig. 2, we display the gravitational waveforms corre-

sponding to black holes with initial spin a=μ1=3 ¼ 1.3 (top)
and a=μ1=3 ¼ 1.5 (bottom), extracted using the metric
perturbations. Together with the waveforms, we also display
snapshots of the AH at different stages of the evolution as an
inset above the figure. From these AH snapshots, it is clear
that the dynamics is governed by an m ¼ 2 mode, which
deforms the AH into a bar shape. The black hole radiates

mass and angular momentum until it spins down and settles
down to an equilibrium MP BH, with lower mass and
angular momentum. As we increase the spin parameter, the
systems stays for a longer period in the transient regime
between the initial dynamics described by perturbation
theory and the final ring-down phase.
Figure 3 shows the gravitational waveforms extracted

from the Weyl scalars for both l4 ¼ 2 (top) and l4 ¼ 4
(bottom) modes in the scalar-derived sector of tensor
harmonics for a=μ1=3 ¼ 1.5. Most of the signal is in the
ðl4; mÞ ¼ ð2; 2Þ mode, but the l4 ¼ 4 also displays a
sizeable signal. However, for MP BHs with a=μ1=3 ¼ 1.3,
the ðl4; mÞ ¼ ð2; 2Þ mode governs the nonlinear evolution,
with qualitatively similar results for a=μ1=3 ¼ 1.5. Table II
displays the quasinormal frequencies in the l4 ¼ 4 sector for
a=μ1=3 ¼ 1.3 and a=μ1=3 ¼ 1.5.
The end point of the evolution of these instabilities

depends, in a nontrivial way, on the amplitude of the initial
perturbation and the value of a=μ1=3 for the initial black
hole. For small enough perturbations and a small enough
initial value of a=μ1=3, the end state of the nonaxisymmetric
instabilities is another MP BH. Surprisingly, the perturbed
black holes of this type that we have been able to simulate
all appear to settle down to the same MP BH, the one with
ða=μ1=3Þfinal ¼ 0.63. We are not aware of the physical

TABLE I. Real and Imaginary parts of the leading quasinormal
modes in the ðl4; mÞ ¼ ð2; 2Þ sector of gravitational perturba-
tions. Left: from perturbing the initial black hole. For
a=μ1=3 ¼ 0.7, black holes are stable, while for a=μ1=3 ≥ 0.8,
black holes are unstable. Right: leading QNM in the ring-down
phase. For all initial values of a=μ1=3 that end up settling back to a
MP BH, we find that the end state appears to be the same black
hole. For a=μ1=3 ¼ 1.5, the end point of the instability is a naked
singularity. We estimate an error of �0.02 in the real and
imaginary parts of the frequencies (see footnote 5). For the
ah=μ

1=3
h ¼ 0.8 case, which is the lowest-spin case we consider in

which the spinning black hole is unstable, the timescale of the
growing mode is the longest. In practice, we find that the decay to
the final state does not become evident until around t=μ1=3 ∼ 200,
by which time the signal is already spoiled by accumulated
numerical error at the typical resolutions with which we run. We
found extracting the leading QNM for this case to be prohibi-
tively expensive and have left its values as “xxx”.

Initial state Final state Spin loss

ah=μ
1=3
h ω22μ

1=3
h ah=μ

1=3
h ω22μ

1=3
h Δðah=μ1=3h Þ

0.7 1.07 − 0.03i 0.7 1.07 − 0.03i � � �
0.8 1.03þ 0.03i xxx xxx xxx
0.9 1.03þ 0.07i 0.66 1.04 − 0.03i 26.6%
1.0 1.00þ 0.12i 0.64 1.08 − 0.05i 36.0%
1.1 0.95þ 0.17i 0.64 1.06 − 0.05i 41.8%
1.2 0.91þ 0.21i 0.63 1.05 − 0.05i 47.5%
1.3 0.88þ 0.24i 0.63 1.05 − 0.05i 51.5%
1.4 0.82þ 0.26i 0.63 1.05 − 0.05i 55.0%
1.5 0.74þ 0.28i 0.62 1.03 − 0.05i 58.6%
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reason that singles out this particular member of the MP
family, but our simulations suggest that it behaves as an
attractor. It would be worth investigating this point further.

2. Apparent horizon

In Fig. 4, we display the evolution of the estimated
black hole spin parameter from the geometry of the AH (20).

This estimate only corresponds to the spin parameter of a
black hole in equilibrium, and therefore it is exact only at the
initial and final stages of the evolution. However, it indicates
that highly spinning unstable black holes can radiate an
enormous amount of angular momentum due to the large
deformation of the horizon during the highly nonlinear
stages of the evolution. For instance, black holes with an
initial a=μ1=3 ¼ 1.5 can radiate up to 58% of the initial spin.

FIG. 2. Gravitational wave (m ¼ 2 mode) at z0=μ1=3 ¼ 21.5,
together with snapshots of the apparent horizon for initial spin
parameter a=μ1=3 ¼ 1.3 (top) and a=μ1=3 ¼ 1.5 (bottom). The
dashed and dotted lines provide the fit for the QNMs in the
growing and decaying phases. Table I displays the frequencies
normalized with respect to the initial/final horizon scales. For
larger spins, the system stays longer in the transient regime
between the initially growing phase and the final ring down.

FIG. 3. Gravitational waveforms for initial spin parameter
a=μ1=3 ¼ 1.3 obtained from the higher-dimensional Weyl scalars
projected on a sphere at finite radius: ðl4; mÞ ¼ ð2; 0Þ and the
real part of the ðl4; mÞ ¼ ð2; 2Þmodes (top) and ðl4; mÞ ¼ ð4; 0Þ
and real parts of the ðl4; mÞ ¼ ð4; 2Þ; ð4; 4Þ modes (bottom).
Most of the signal lies on the ðl4; mÞ ¼ ð2; 2Þ mode, but higher
harmonics are also excited due to the nonlinearities.

TABLE II. Real and imaginary parts of the subleading ðl4; mÞ ¼ ð4; 2Þ and ðl4; mÞ ¼ ð4; 4Þ quasinormal mode
for m ¼ 2 perturbation of a MP BH with the initial configuration a=μ1=3 ¼ 1.3 and a=μ1=3 ¼ 1.5. We estimate an
error of �0.04 in the real and imaginary parts of the frequencies (see footnote 5).

Initial state Final state

ah=μ
1=3
h ω42μ

1=3
h ω44μ

1=3
h ah=μ

1=3
h ω42μ

1=3
h ω44μ

1=3
h

1.3 1.70þ 0.36i 1.61þ 0.40i 0.63 1.68 − 0.12i 1.83 − 0.13i
1.5 1.45þ 0.40i 1.57þ 0.45i 0.62 1.66 − 0.13i 1.87 − 0.17i
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In Fig. 5, we display four snapshots of the AH during the
evolution of a perturbed MP with initial a=μ1=3 ¼ 1.3. As
can be seen from these snapshots, the AH develops a strong
bar-shaped type of deformation, which leads to a very strong
emission of gravitational radiation. As the plots in Fig. 4
show, the amount of angular momentum radiated increases
with the initial value of a=μ1=3, so it is conceivable that one

can achieve even higher emission percentages for larger
initial values a=μ1=3. However, as we will discuss next, there
may be a (dimension-dependent) dynamical upper bound
due to the fact that the generic end point of the evolution of
the instability of MP BHwith a sufficiently large initial value
of a=μ1=3 or a sufficiently large initial deformation is no
longer another MP BH but is a naked singularity.

3. Large initial spin

Given the large deformations observed at moderate spins
and small perturbations, e.g., see Fig. 5, one may wonder
what happens when the spin of the unperturbed black hole
or the size of the deformation is increased. In this article, we
are interested in the end points of perturbative instabilities
of black holes, so we will always keep the initial deforma-
tion small enough to remain in the perturbative regime
initially and vary the spin of the MP BH. As we now show,
the inevitable end point of the instabilities for sufficiently
rapidly spinning black holes is a naked singularity. Before
we proceed, note that as the deformations of the AH beyond
spherical symmetry become increasing large during the
highly nonlinear stages of the evolution the AH ceases to
be a star-shaped surface, which is an assumed property
underlying the AH finder we use. The same situation was
shown to occur in unstable black rings [9] or in the
ultraspinning instability of MP black holes [14]. The latter
reference managed to find non–star shaped AH using an
intrinsic parametrization of the surface, while Ref. [27]
proposed the use of a reference surface. We will leave the
interesting problem of implementing one of these methods
to the present situation for future work. However, as in
Refs. [9,14], we have verified that certain contours of the
conformal factor χ provide a very accurate description of
the AH, within less than a few percent. See Appendix F for
quantitative comparison between the contours of χ and the
actual AH for various runs where the latter can be found.
Therefore, we will use contours of χ as approximations of
AH for situations in which the latter is not a star-shaped
surface and hence get intuition of the physics of the
instabilities and their end points.6

For MP BH’s with an initial a=μ1=3 ¼ 1.5, we find that
numerical noise is enough to excite the m ¼ 4 mode,
which is the one that dominates the subsequent nonlinear
evolution.7

Modes with m ¼ 2 that are present in the noise also get
excited but have much smaller amplitude. See Fig. 6.
Comparing the waveforms of the m ¼ 4 instability for

FIG. 4. Dynamical evolution of the normalized spin parameter
ah=μh1=3 for initial MP BHs with a=μ1=3 ¼ 0.9 (dotted black), μh
for a=μ1=3 ¼ 1.1 (dashed blue), a=μ1=3 ¼ 1.3 (dashed-dotted
red), and a=μ1=3 ¼ 1.5 (continuous green). MP BHs radiate
enormous amount angular momentum. The vertical line indicates
the time around which the initial gauge dynamics settles down.

FIG. 5. Snapshots of AH during the evolution of an unstable
MP BH with initial a=μ1=3 ¼ 1.3 and perturbation amplitude
A ¼ 0.02. The sequence of images should be read horizontally,
from left to right, and from top to bottom. There is a strong bar-
shaped deformation during the highly nonlinear stages of the
evolution. Gravitational waves eventually radiate away the non-
axisymmetric deformations, and the black hole settles to another
member of the MP family, with lower angular momentum.

6Note that, since contours of χ provide accurate approxima-
tions of the AH, in principle one could use them as suitable
reference surfaces to find the AH using the method of Ref. [27].

7The same happens for black rings: moderately thin rings are
unstable under a GL mode with m ¼ 2, while for sufficiently thin
rings, the fastest growing instability is in the m ¼ 4 sector.
Presumably, for even thinner rings, higher m modes are more
unstable, just as in the GL instability of black strings.
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a=μ1=3 ¼ 1.5 in Fig. 6 with their counterpart waveforms for
the m ¼ 2 instability for a=μ1=3 ¼ 1.3 in Fig. 2, notice that
the amplitude for the m ¼ 2 case is much larger, even
though the AH deformation is quite extreme in both cases.
This suggests that the efficiency of the gravitational wave
emission during the evolution of the instabilities decreases
as a=μ1=3 increases, hence giving more time for these
instabilities to grow and eventually form a naked singu-
larity. The simple physical reason for this is that the
structures that form at large values of a=μ1=3, as deformed
as they may be, contain only a small amount of the total
mass.

In Fig. 7, we show representative snapshots of χ ¼ 0.5
contours from the evolution of the MP BH with
a=μ1=3 ¼ 1.5. The initial deformation of the black hole
horizon into a square shape is characteristic of the m ¼ 4
mode. Subsequently, as the instability develops, the corners
of the square grow into four arms. These arms become
longer and thinner as time goes by, until at some point a
local GL instability kicks in along the arms, signaled by the
appearance of a bulge in the central part of each of the arms.
These bulges travel outward towards the tip of the arms due
to centrifugal force, which leads to a further thinning of
arms, and mass accumulates at the tips, forming nearly
spherical bulges. It becomes very difficult to continue
the simulation beyond this point since resolving the new
generations of bulges that form due to the local GL
instability becomes computationally very expensive.8

However, the local evolution of the instability along each
of the arms appears to be analogous to the ultraspinning
case of Ref. [14]. In this case, it was observed that the
interaction between the centrifugal force and mass accre-
tion by the big bulges accelerates the formation of a naked
singularity compared to the GL instability of black strings
[5], and the process is no longer self-similar. Note that the
central bulge becomes more spherical as the evolution
proceeds and in fact contains most of the mass of the
system. This explains why the gravitational wave emission
is less efficient at this stage of the evolution, at sufficiently

FIG. 6. Gravitational waveforms obtained during the evolution
of an unstable MP BH with initial a=μ1=3 ¼ 1.5, with the
instability triggered by numerical noise. Top: ðl4; mÞ ¼ ð2; 0Þ
and the real part of the ðl4; mÞ ¼ ð2; 2Þ modes. Bottom:
ðl4; mÞ ¼ ð4; 0Þ and the real part of the ðl4; mÞ ¼ ð4; 2Þ; ð4; 4Þ
modes. Most of the signal is in the m ¼ 4 mode, but the m ¼ 2
modes are also present. Note the difference in amplitude between
this run and the a=μ1=3 ¼ 1.3 one, Fig. 2. This suggests that at
higher spins gravitational wave emission becomes less efficient
and instabilities have time to develop and eventually form a naked
singularity. This run crashes close to the singularity, but we
artificially froze the evolution around the black hole to extract the
gravitational waves. Therefore, the part of the waveform after
ðt − r0Þ=μ1=2 ∼ 23 is unphysical.

FIG. 7. Snapshots of the χ ¼ 0.5 contour during the evolution
of an unstable MP BH with initial a=μ1=3 ¼ 1.5 and no initial
perturbation. This contour tracks the AH very closely; see
Appendix F. The evolution is dominated by an m ¼ 4 present
in the numerical noise. During the evolution, the black hole
develops a square shape, and the tips of the square eventually
grow into long arms. The latter eventually become GL unstable.
The last snapshot shows the second generation bulge propagating
along the arm, a characteristic feature of GL dynamics.

8Recall that the partial differential equations (PDE) that we are
solving are effectively (3þ 1) dimensional, while in Ref. [5] or
[14], the system is (2þ 1) dimensional, thus allowing one to get
much closer to the singularity.

BANTILAN, FIGUERAS, KUNESCH, and MACEDO PHYS. REV. D 100, 086014 (2019)

086014-10



large values of a=μ1=3. We believe that this is a generic
aspect of the dynamics of unstable black holes at large
angular momentum. The most likely end point of this
instability is that quantum gravity effects will govern the
breakup of the arms, and the resulting four black holes will
either fly off to infinity or be recaptured by the central black
hole. We also performed simulation with m ¼ 3 perturba-
tions, in which we observe essentially the same qualitative
dynamics, but with the black hole developing three arms
instead of four—see Appendix G.
If we start with a black hole with initial a=μ1=3 ¼ 1.5 and

perturb it with an m ¼ 2 mode, we can in principle explore
the nonlinear evolution of this sector of perturbations at
large angular momentum. Doing so by perturbing at
t=μ1=3 ¼ 0 only results in a dumbbell9 configuration that
eventually settles back down to a MP BH, as shown in the
top panel of Fig. 8 for an initial m ¼ 2 perturbation with

amplitude of A ¼ 0.02. However, by perturbing after the
gauge adjustment period at around t=μ1=3 ¼ 10, the per-
turbation turns out to be in a sector where unstable modes
dominate the nonlinear regime. In this case, we find that
during the highly nonlinear regime of the subsequent
evolution the AH becomes more elongated and develops
very sharp features at the edges; see the bottom panel in
Fig. 8. The appearance of these sharp features is not a
numerical artifact, and it makes the numerical simulation of
the system very difficult. While we were unable to continue
this particular simulation beyond this point due to the cost
of the computation, one is tempted to conjecture that the
end point of the evolution may well be a naked singularity.
Indeed, the spacetime curvature at these sharp tips grows
large, as spatial gradients diverge and the timescales
become very fast. In fact, in them ¼ 4 case, the appearance
of the sharp tips precedes the formation of long and thin
arms, which eventually become GL unstable. We suspect
that the same will happen in the present m ¼ 2 case: it is
quite possible that the evolution will continue by forming
two long arms, joined at a central region that is nearly
spherical and contains most of the mass. These long arms
will become thinner over time due to the centrifugal force
and eventually will develop local GL instabilities.
Therefore, the end point of the evolution is likely the
formation of a naked singularity in finite asymptotic time.

4. Energy flux

We end this section by calculating the energy emitted in
the form of gravitational waves according to Eq. (19). As
discussed in the previous sections (see also Appendix D),
the main contribution to wave signal comes from the
l4 ¼ 2 and l4 ¼ 4 projections of the Weyl tensor into
the scalar-derived tensor harmonics. The top panel of
Fig. 9 compares the normalized energy flux for the m ¼ 2

perturbation of MP BH’s with initial spin a=μ1=3 ¼ 1.3
and a=μ1=3 ¼ 1.5. The peak of emission occurs around
ðt − r0Þ=μ1=3 ¼ 15–20, which corresponds exactly to the
period dominated by the growing QNM phase. Then, the
emission rate stays relatively constant during the transient
period, before dropping to zero in the final ring-down phase.
These three phases of the emission are evident in the
gravitational wave signal depicted in Fig. 2.
The orders of magnitude in the energy flux are essen-

tially the same for both systems. However, as noticed in
Sec. III B 1, the larger the initial spin, the longer the
transient period. Hence, the system emits energy for a
longer time, before settling down to the final BH. Indeed,
the bottom panel of Fig. 9 shows the normalized radiated
energy, and we observe and emission of approximately
23.54% and 31.15% of the BH’s mass with initial spin
a=μ1=3 ¼ 1.3 and a=μ1=3 ¼ 1.5, respectively. This should
be contrasted with the head-on collisions or the merger of
binary black holes in higher dimensions, for which less
than 1% of the total mass is radiated [34–36] [inD ¼ 6, the

FIG. 8. Unstable MP BH with initial a=μ1=3 ¼ 1.5 and an
m ¼ 2 perturbation with amplitude A ¼ 0.02. Top: AH snapshots
for the evolution with perturbation introduced at t=μ

1
D−3 ¼ 0.

Gravitational waves radiate away the nonaxisymmetric deforma-
tions, and the black hole settles to another member of the MP
family. Bottom: Snapshots of the χ ¼ 0.5 contour for evolution
resulting from perturbation introduced after the gauge adjustment
period at around t=μ

1
D−3 ∼ 10. The bar shape gets longer over time

and, eventually, pointy at the tip. In analogy with the m ¼ 4 case,
the appearance of pointy tips precedes the formation of long and
thin arms, which eventually become GL unstable. We suspect that
this is the most likely fate of this evolution.

9We thank Roberto Emparan for telling us about the existence
of two sectors of instabilities for the m ¼ 2 perturbations [33].
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fraction of mass radiated is ð8.19� 0.05Þ × 10−4 in the
head-on collisions and ð1.99� 0.05Þ × 10−1 in the binary
merger], or in the first black hole binary merger recorded by
LIGO [1], which radiated roughly 4.6% of the initial mass
into gravitational waves.
It is instructive to compare the energy emitted by the

gravitational waves against the total available energy
given by

Eavail ¼ 1 −
Mirr

M
; ð21Þ

with Mirr the irreducible mass,

Mirr

M
¼ rd−3þ

μ

�
1þ

�
a
rþ

�
2
�d−3

d−2
; ð22Þ

where rþ is the horizon location of the MP BH in the Boyer-
Lindquist type of coordinates (1). The energy carried out
by gravitational waves corresponds to Erad=Eavail ∼ 0.60

and Erad=Eavail ∼ 0.64 for a=μ1=3 ¼ 1.3 and a=μ1=3 ¼ 1.5,
respectively.
Finally, we compare the energy emission for the MP BH

with spin a=μ1=3 ¼ 1.5 perturbed with m ¼ 2 and m ¼ 4
deformations. Figure 10 confirms that the efficiency of the
emission is lower by 2 orders of magnitudes in the m ¼ 4
dynamics, which gives more time for the instabilities to
grow, as discussed in the previous section. In particular, the
m ¼ 4 perturbation depicted in Fig. 7 evolves towards a
configuration with a large central bulge that contains most
of the black hole’s mass and becomes progressively more
spherical as the evolution proceeds. This mostly spherical
configuration is thus expected to be less efficient at emitting
gravitational waves than the configuration that results from
the m ¼ 2 perturbation depicted in the top panel of Fig. 8.

IV. CONCLUSION

In this article, we describe the evolution and end points
of nonaxisymmetric perturbations of singly spinning MP
BHs in five and six dimensions. In the 5D case, we find that
all black holes that we have considered are nonlinearly
stable, thus resolving the tension between the numerical

FIG. 10. Initial spin a=μ1=3 ¼ 1.5 perturbed with m ¼ 2 (con-
tinuous red) and m ¼ 4 (dotted blue) deformation. The emission
rate top and total radiated energy bottom for the m ¼ 4 dynamics
is less efficient than the m ¼ 2 evolution by at least 2 orders of
magnitude.

FIG. 9. Top: energy flux for initial spins a=μ1=3 ¼ 1.3 (con-
tinuous red) and a=μ1=3 ¼ 1.5 (dotted blue). The emission
reaches its peak during the initial growing phase, followed by
a rather constant emission during the transient period and finally
dropping to zero during the ring down—cf. Fig. 2. Bottom: total
radiated energy, corresponding to approximately 23.54%
(a=μ1=3 ¼ 1.3) and 31.15% (a=μ1=3 ¼ 1.5) of the BH’s mass.
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simulations of Ref. [15] and the perturbation theory results
of Ref. [17]. In the 6D case, we found that slowly spinning
black holes are stable. As the initial spin increases, at
around a=μ1=3 ≈ 0.8, MP BHs become unstable under
perturbations with an m ¼ 2 azimuthal mode number
(i.e., bar mode), as Ref. [16] had previously observed
and Ref. [17] confirmed. We have been able to evolve MP
BHs with significantly larger initial spins than previous
works, and the picture that has emerged is the following: in
the nonlinear regime, unstable black holes develop a bar
shape, which leads to a strong emission of gravitational
waves, through which the black hole eventually settles back
down to another member of the MP family with a lower
angular momentum. See Fig. 5. As the initial spin of the
black hole grows, the amount of mass and angular
momentum emitted by the gravitational waves during the
evolution also grows, reaching a staggering 31.15% of
radiated mass for a black hole with initial spin a=μ1=3 ¼
1.5. This is much larger than previously observed in head-
on collisions and merger of black holes in higher dimen-
sions. It would be interesting to explore whether these high
emission rates have implications for scenarios with large
extra dimensions. Another surprising fact uncovered in this
work is that all unstable MP BHs that settle back down
to another member of the MP family in fact seem to settle
onto the same black hole, the MP BH with a=μ1=3 ¼ 0.63.
Therefore, this particular member of the MP family seems
to be an attractor, at least for the evolution of unstable BHs
under a bar-mode type of deformation. We do not have a
physical explanation for this behavior since the a=μ1=3 ¼
0.63 black hole does not to have any particular physical
properties that single it out among nearby solutions. It would
be very interesting to understand why this particular solution
seems to be special.
For initial spins of a=μ1=3 ≈ 1.5, it is the m ¼ 4 mode

that has the fastest growth rate and will generically
dominate the subsequent evolution, even though lower m
modes are still present. The same situation was observed in
the case of the black ring in five dimensions [9]. The
evolution of these instabilities is different than those at
lower spins; the m ¼ 4 mode results in a square-type
deformation, which then evolves into four arms (see
Fig. 7). These arms grow longer and thinner over time,
until they eventually develop a local GL instability. In this
article, we have been able to follow the evolution of this
local instability beyond the formation of the first generation
of bulges. After this point, the simulation becomes too
computationally expensive. However, at this point, the fate
of these black holes is sealed: the development of the GL
instability is at least exponential in time, while the emission
of gravitational waves only follows a power law. Therefore,
once the local GL instability kicks in, a naked singularity
will inevitably form in finite asymptotic time before the
unlucky black hole has had time to radiate away enough
mass and angular momentum. Since this mechanism is

generic, one may interpret this as further evidence that the
weak cosmic censorship conjecture is false in higher-
dimensional asymptotically flat spacetimes. Note that it
is not clear whether the type of singularity that forms is
visible to external faraway observers and hence whether it
constitutes an honest violation of the conjecture. To settle
this issue, one would need to analyze the (in)completeness
of null infinity, which remains an open question for this
class of spacetimes. However, arbitrarily large curvatures
near the horizon do become visible. Since the mass
contained in these regions of increasingly large curvature
becomes negligible over time, the potential violation of the
weak cosmic censorship conjecture would be of the mildest
possible type in the language of Ref. [37]. For these rapidly
spinning black holes, one can also trigger an instability in
them ¼ 2 sector of perturbations. Even though wewere not
able to follow the evolution to the point of seeing the
appearance of local GL instabilities and hence naked
singularities, it seems that this is the most likely end point.
The instabilities discussed in this article are of the

“elastic” type [9], as opposed to the GL type, of insta-
bilities. Intuitively, elastic instabilities deform the black
hole horizon without introducing substantial thickness
variations. GL instabilities in singly spinning MP BHs
kick in at slightly larger spins, a=μ1=3 ¼ 1.572 in D ¼ 6
[32]; the evolution and end points of the latter were studied
in Ref. [14]. Whether the elastic type of instabilities or the
GL ones dominate the evolution of a given black hole is a
question of suitably preparing the initial conditions. We do
not see any obstruction in being able to construct open
sets of initial conditions for which either the elastic or GL
instability dominates the subsequent evolution by exciting
the desired mode with a sufficiently large initial amplitude.
Therefore, this article, together with Ref. [14], provides a
complete picture of the dynamics of some of the most
notable instabilities that afflict MP black holes and their
respective end points.10

One important result in higher-dimensional black hole
physics that emerges from our work is that sufficiently
rapidly rotating black holes in higher dimensions are
unstable and evolve into a naked singularity in finite time
as a result of local GL dynamics, regardless of the nature of
the original instability. Both the elastic and GL instabilities
are quite generic in the sense that they should afflict other
types of higher-dimensional black holes apart from MP
BHs and black rings. This leads us to the following
conjecture. The GL instability is the only mechanism that
higher-dimensional vacuum GR has to change the topology
of a black hole horizon in dynamical spacetimes. If true,
this conjecture would make the detailed understanding of
the GL instability an even more pressing issue. The fact that
the GL instability in black strings appears to be self-similar

10The superradiant instability is another important instability
that affects these black holes, but we have not considered it here.
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and perhaps controlled by an attractor offers hope that some
analytic progress is possible in this case.
The dynamics of singly spinning MP BHs in seven

dimensions is qualitatively and quantitatively very similar
to the 6D ones. Namely, BHs are nonlinear stable for
sufficiently small angular momentum. At larger spins, they
first become unstable under a bar-mode type of deforma-
tion. The evolution of this instability again ends on another
member of the MP family, with lower mass and spin. For
larger angular momentum, the m ¼ 4 mode becomes the
fastest-growing unstable mode, and the end point is a naked
singularity, which forms in finite asymptotic time. The only
difference between six and seven dimensions is that naked
singularities appear to form at lower values of the angular
momentum. For instance, in seven dimensions, the a=μ1=4 ¼
1.3 MP BH is unstable under an m ¼ 4 mode, and the end
point of the instability is a naked singularity. As a rule of
thumb, it seems that forming naked singularities is “easier”
as D increases.
One may object that unstable BHs should not be

regarded as “generic” and consequently the potential
violations of the weak cosmic censorship conjecture in
this and previous works should not be considered generic.
First, the question of whether it is possible or not to
construct open sets of initial conditions sufficiently close to
the unstable black holes considered in these works remains
open. Second, in this article, we have shown that black
holes with sufficiently large angular momentum develop
local GL instabilities, which inevitably end up forming
naked singularities. Last but not least, using the large D
limit of GR, Ref. [37] provided compelling evidence that it
should be possible to generically form single black holes
with large angular momentum by colliding black holes with
a nonzero impact parameter. Moreover, this reference also
suggested that these black holes should evolve into naked
singularities via local GL instabilities. In this article, we
have shown that these local GL instabilities do indeed kick
in when one expects them to do so. It now remains to show
that indeed the scenario put forward in Ref. [37] is realized
in finite dimensions. D ¼ 6 should suffice.
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APPENDIX A: ASYMPTOTIC FLATNESS AND
GRAVITATIONAL WAVES

We assume the spacetime to be asymptotically flat in the
sense of Ref. [20]. Thus, in the wave zone, the line element
is expressed in the Bondi-Sachs form [38,39]

ds2¼−AeBdu2−2eBdudrþ r2hαβðdϕαþCαÞðdϕβþCβÞ;
ðA1Þ

with u a retarded time andA,B, Cα, and hαβ functions on the
Bondi coordinate ðu; r;ϕαÞ. Moreover, dethαβ ¼ detωαβ,
whereωαβ is the unitmetric on the unitn-sphere Sn. Here,we
are interested in the asymptotic expansion [40]

hαβðu; r;ϕγÞ ¼ ωαβðϕγÞ þ
X
s≥1

hðsÞαβ ðu;ϕγÞ
rD=2þs−2 ; ðA2Þ

with hð1Þαβ the Bondi news function.
We consider the higher-dimensional generalization of the

Geroch-Held-Penrose formalism [41] and introduce a tetrad
basis ðl; k; mAÞ satisfying lμkμ ¼ 1, mμ

ðAÞmðBÞμ ¼ δðAÞðBÞ,
and with vanishing further contractions. Asymptotically,
one particular choice for the tetrad is

l ¼ −∂r; k ¼ ∂u −
1

2
∂r

mð1Þ ¼ r−1∂θ mð2Þ ¼ ðr sin θÞ−1∂φ

mðaÞ ¼
 
r cos θ

Ya−1
b¼4

sinðϕbÞ
!−1

∂ϕa a ¼ 4 � � �D − 1:

ðA3Þ
Gravitational waves are extracted from the projection of

theWeyl tensorCμνρσ onto the tetrad basis (A3). Specifically,
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the news function hð1Þαβ is given by the leading contribution of
Ref. [20],

Ω0
AB ¼ CμνρσkμmðAÞνkρmðBÞσ ðA4Þ

¼ −
mðAÞμmðBÞνḧ

ð1Þ
μν

2rD=2−1 þOðr−D=2Þ: ðA5Þ

From the symmetries of Cμνρσ, one verifies that Ω0
AB is

symmetric and traceless.

APPENDIX B: SPHERICAL HARMONICS
ON AN n-SPHERE

In this Appendix, we collect somewell-known properties
of spherical harmonics on an Sn. In Appendixes C and D,
we specialize to the cases of interest for us, namely, S3

and S4.
We start by setting up our notation and conventions.11

Following Ref. [28], we consider spherical coordinates
YA ¼ ðt; r; θaÞ which relate to a Cartesian coordinate
system Xa ¼ ðt; wiÞ via

w1 ¼ r cosðθnÞ;
w2 ¼ r sinðθnÞ cosðθn−1Þ;
w3 ¼ r sinðθnÞ sinðθn−1Þ cosðθn−2Þ;

..

.

wD−2 ¼ r sinðθnÞ � � � sinðθ2Þ cosðθ1Þ;
wD−1 ¼ r sinðθnÞ � � � sinðθ2Þ sinðθ1Þ: ðB1Þ

Here, θ1 ∈ ½0; 2π� and θa ∈ ½0; π�∀ a ¼ 2…; n. In the
three-dimensional computational domain, we parametrize
the numerical Cartesian coordinates ðx; y; zÞ by new
spherical coordinates ðr; θ;φÞ via

x ¼ r cosðθnÞ;
y ¼ r sinðθnÞ cosðθn−1Þ;
z ¼ r sinðθnÞ sinðθn−1Þ; ðB2Þ

with θn, θn−1 ∈ ½0; π�.
Now, we are in position to collect some properties of

scalar harmonics and higher rank tensor harmonics on an
arbitrary n-sphere Sn, with n > 2. Ultimately, we are
interested in tensor harmonics on the S3 and the S4.
While the former are well known, see, e.g., Ref. [29]

and references therein, our results for the tensor harmonics
on the S4 are, to the best of our knowledge, new.
We write down the metric ds2n on the unit round Sn as

ds21 ¼ dθ21;

ds2i ¼ dθ2i þ sin2θids2i−1; i ¼ 2;…; n; ðB3Þ

with 0 ≤ θ1 ≤ 2π and 0 ≤ θi ≤ π, ∀ i ¼ 2;…; n. We refer
to this particular form of the metric on the Sn as the
“standard” form and the corresponding basis of unit vectors
as the standard basis.
Recall that spherical harmonics on the unit Sn are defined

as eigenfunctions of the Laplace operator on the Sn,12

∇a∇aSln;…;l1 ¼ −lnðln þ n − 1ÞSln;…;l1 ; ðB4Þ

where the integers li satisfy ln ≥ ln−1 ≥ … ≥ l2 ≥ jl1j.
The scalar harmonics are normalized so that

δlnl0n…l1l0
1
¼
Z
Sn
Sln;…;l1Sl0n;…;l0

1 ; ðB5Þ

where the volume element of Sn is omitted to avoid clutter.
From the scalar harmonics, on can construct scalar-derived
vector harmonics on the Sn. These are given by

Sln;…;l1
a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðln þ n − 1Þp ∇aSln;…;l1 ; ðB6Þ

and they satisfy

∇b∇bS
ln;…;l1
a ¼ ½−lnðlnþn−1Þþn−1�Sln;…;l1

a ; ðB7Þ

∇aSln;…;l1
a ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðln þ n − 1Þ

p
Sln;…;l1 ; ðB8Þ

tδlnl0n…l1l01
¼
Z
Sn
gabSln;…;l1

a S
l0n;…;l0

1

b ; ðB9Þ

where g is the metric on the round unit Sn. On the other
hand, divergence-free vector harmonics Vln;…;l1

a on the Sn

satisfy

∇b∇bV
ln;…;l1
a ¼ ½−lnðln þ n − 1Þ þ 1�Vln;…;l1

a ; ðB10Þ

∇aVln;…;l1
a ¼ 0; ðB11Þ

δlnl0
n…l1l01

¼
Z
Sn
gabVln;…;l1

a V
l0n;…;l0

1

b ðB12Þ

One can show that there are n − 1 linearly independent,
orthogonal, and divergence-free vector harmonics on the

11Uppercase latin indices A; B;… run from 0 to D − 1.
Lowercase latin letters i; j;… are spatial indices running from
1 to D − 1, and greek letters denote angular indices from 2 to
D − 1. The sphere has dimension K ¼ D − 2, and the compu-
tation domain has d ¼ 3 spatial dimensions.

12Here, we work on the unit Sn. One can easily reinstate the
radius in our formulas.
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Sn, which, together with the scalar-derived vector harmon-
ics (B6), form a complete basis of vectors on the Sn; see
Refs. [42–44].
From the scalar harmonics (B4), one can obtain two

types of symmetric tensor harmonics:

Sln;…;l1
ð1Þab ¼ 1ffiffiffi

n
p gabSln;…;l1 ; ðB13Þ

Sln;…;l1
ð2Þab ¼

ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn−1Þðln−1Þðlnþn−1Þp
×

�
∇aS

ln;…;l1
b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðlnþn−1Þp

n
gabSln;…;l1

�
:

ðB14Þ

These satisfy

∇c∇cS
ln;…;l1
ð1Þab ¼ −lnðln þ n − 1ÞSln;…;l1

ð1Þab ðB15Þ

∇aSln;…;l1
ð1Þab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðln þ n − 1Þp

ffiffiffi
n

p Sln;…;l1
b ; ðB16Þ

gabSln;…;l1
ð1Þab ¼ ffiffiffi

n
p

Sln;…;l1
ð1Þ ; ðB17Þ

δlnl0
n…l1l01

¼
Z
Sn
gacgbdSln;…;l1

ð1Þab S
l0n;…;l0

1

ð1Þcd : ðB18Þ

On the other hand, we have

∇c∇cS
ln;…;l1
ð2Þab ¼ ½−lnðln þ n − 1Þ þ 2n�Sln;…;l1

ð2Þab ðB19Þ

∇aSln;…;l1
ð2Þab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðn − 1Þðln − 1Þðln þ nÞp
ffiffiffi
n

p Sln;…;l1
b ;

ðB20Þ

gabSln;…;l1
ð2Þab ¼ 0; ðB21Þ

δlnl0n…l1l01
¼
Z
Sn
gacgbdSln;…;l1

ð2Þab S
l0n;…;l0

1

ð2Þcd : ðB22Þ

Recall that the matrix of Weyl scalars, Ω0
AB, encoding the

gravitational radiation is symmetric and traceless.
Therefore, the family Sð1Þab of scalar-derived tensor har-
monics cannot contribute to the multipolar expansion of the
Weyl scalars. Hence, from now on, we will only consider
the second family, Sð2Þab, of scalar-derived tensor harmon-
ics, and we shall drop the subscript ð2Þ.
From each family of vector harmonics, one can similarly

construct the corresponding family of vector-derived tensor
harmonics:

Vln;…;l1

ab ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðln−1ÞðlnþnÞp ð∇aV

ln;…;l1
b þ∇bV

ln;…;l1
a Þ:

ðB23Þ

These satisfy

∇c∇cV
ln;…;l1
ab ¼ ½−lnðln þ n − 1Þ þ nþ 2�Vln;…;l1

ab ;

ðB24Þ

∇aVln;…;l1
ab ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðln − 1Þðln þ nÞp
ffiffiffi
2

p Vln;…;l1
b ; ðB25Þ

gabVln;…;l1
ab ¼ 0; ðB26Þ

δlnl0n…l1l0
1
¼
Z
Sn
gacgbdVln;…;l1

ab V
l0n;…;l0

1

cd : ðB27Þ

Finally, transverse traceless symmetric tensor harmonics
are defined by

∇c∇cT
ln;…;l1
ab ¼ ½−lnðln þ n − 1Þ þ 2�Tln;…;l1

ab ; ðB28Þ

∇aTln;…;l1
ab ¼ 0; ðB29Þ

gabTln;…;l1
ab ¼ 0; ðB30Þ

δlnl0n…l1l01
¼
Z
Sn
gacgbdTln;…;l1

ab T
l0n;…;l0

1

cd : ðB31Þ

Needless to say, the different families of tensor harmonics
are orthogonal to each other and together form a complete
basis of tensor harmonics on the Sn.
The class of dynamical spacetimes that we consider

possesses a transverse round Sn−2. Therefore, to extract the
gravitational waveforms form the components of the Weyl
scalars, we can restrict ourselves to tensor harmonics on
the Sn that preserve an internal SOðn − 1Þ symmetry.
This amounts to assuming that ln−2 ¼ � � � ¼ l1 ¼ 0 for
the quantum numbers labeling the harmonics. We shall
restrict to this class of harmonics from now on.

APPENDIX C: TENSOR HARMONICS ON THE S3

In this Appendix, we collect some results on tensor
harmonics on the S3.

1. Standard basis

We write the round metric on the unit S3 as

ds2 ¼ dθ23 þ sin2θ3ðdθ22 þ sin2θ2dθ21Þ; ðC1Þ

with θ3, θ2 ∈ ½0; π� and θ1 ∈ ½0; 2π�. We choose the
following basis of unit vectors on the S3:
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mð1Þ ¼
∂
∂θ3 ; mð2Þ ¼

1

sin θ3

∂
∂θ2 ;

mð3Þ ¼
1

sin θ3 sin θ2

∂
∂θ1 : ðC2Þ

In this basis, the projected components of the harmonics
with l1 ¼ 0 are13

a. Scalar-derived tensor harmonics

(i) ðl3;l2Þ ¼ ð2; 0Þ:

Sð2;0Þ
11 ¼ −

2

π

ffiffiffiffiffi
2

15

r
sin2ðθ3Þ;

Sð2;0Þ
22 ¼ 1

π

ffiffiffiffiffi
2

15

r
sin2ðθ3Þ;

Sð2;0Þ
33 ¼ 1

π

ffiffiffiffiffi
2

15

r
sin2ðθ3Þ: ðC3Þ

(ii) ðl3;l2Þ ¼ ð2; 1Þ:

Sð2;1Þ
11 ¼ −

1ffiffiffi
5

p
π
sinð2θ3Þ cosðθ2Þ;

Sð2;1Þ
12 ¼ 3

2
ffiffiffi
5

p
π
sinðθ3Þ sinðθ2Þ;

Sð2;1Þ
22 ¼ 1

2
ffiffiffi
5

p
π
sinð2θ3Þ cosðθ2Þ;

Sð2;1Þ
33 ¼ 1

2
ffiffiffi
5

p
π
sinð2θ3Þ cosðθ2Þ: ðC4Þ

(iii) ðl3;l2Þ ¼ ð2; 2Þ:

Sð2;2Þ
11 ¼ −

1

4
ffiffiffiffiffi
15

p
π
ðcosð2θ3Þ þ 2Þð3 cosð2θ2Þ þ 1Þ;

Sð2;2Þ
12 ¼ 3

4π

ffiffiffi
3

5

r
cosðθ3Þ sinð2θ2Þ;

Sð2;2Þ
22 ¼ 1

8
ffiffiffiffiffi
15

p
π
½3 cosð2θ2Þðcosð2θ3Þ þ 5Þ

þ cosð2θ3Þ − 7�;

Sð2;2Þ
33 ¼ 1

2
ffiffiffiffiffi
15

p
π
½ð4 − 3cos2ðθ2ÞÞsin2ðθ3Þ

þ 3cos2ðθ3Þ�: ðC5Þ

b. Vector-derived tensor harmonics

There are two families of vector-derived tensor harmon-
ics on the S3, but given the class of spacetimes that we
consider in this article, only one of them has a nonzero

overlap with the Weyl scalars. The relevant vector har-
monics for us are given by the following:

(i) ðl3;l2Þ ¼ ð2; 1Þ:

V ð2;1Þ
11 ¼ 4ffiffiffiffiffi

15
p

π
sinðθ3Þ cosðθ2Þ;

V ð2;1Þ
12 ¼ −

1

2π

ffiffiffi
3

5

r
sinð2θ3Þ sinðθ2Þ;

V ð2;1Þ
22 ¼ −

2ffiffiffiffiffi
15

p
π
sinðθ3Þ cosðθ2Þ;

V ð2;1Þ
33 ¼ −

2ffiffiffiffiffi
15

p
π
sinðθ3Þ cosðθ2Þ: ðC6Þ

(ii) ðl3;l2Þ ¼ ð2; 2Þ:

V ð2;2Þ
11 ¼ 1ffiffiffiffiffi

15
p

π
½3 cosð2θ2Þ þ 1� cosðθ3Þ;

V ð2;2Þ
12 ¼ −

1

4π

ffiffiffi
3

5

r
sinð2θ2Þ½3þ cosð2θ3Þ�;

V ð2;2Þ
22 ¼ −

1ffiffiffiffiffi
15

p
π
½3 cosð2θ2Þ − 1� cosðθ3Þ;

V ð2;2Þ
33 ¼ −

2ffiffiffiffiffi
15

p
π
cosðθ3Þ: ðC7Þ

c. Transverse traceless tensor harmonics

There are two families of transverse traceless tensor
harmonics on the S3, but, as with the vectors, only one of
them has a nonzero overlap with the Weyl tensor. This is
given by the following:

(i) ðl3;l2Þ ¼ ð2; 2Þ:

T ð2;2Þ
11 ¼−

1

2
ffiffiffi
6

p
π
½3cosð2θ2Þþ1�;

T ð2;2Þ
12 ¼ 1

2π

ffiffiffi
3

2

r
sinð2θ2Þcosðθ3Þ;

T ð2;2Þ
22 ¼ 1ffiffiffi

6
p

π

�
cos2ðθ2Þ−

1

2
sin2ðθ2Þð3cosð2θ3Þþ1Þ

�
;

T ð2;2Þ
33 ¼ 1

4
ffiffiffi
6

p
π
½6sin2ðθ2Þcosð2θ3Þþ3cosð2θ2Þþ1�:

ðC8Þ

2. Adapted basis

Given the symmetries of the spacetimes that we consider,
it seems more natural to write the metric on the S3 as

ds2 ¼ dχ2 þ sin2χdϕ2 þ cos2χdψ2; ðC9Þ
with χ ∈ ½0; π=2� and ϕ;ψ ∈ ½0; 2π�. Indeed, in this form,
the rotation axis in the spacetime coincides with the ϕ
direction in (C9). Written in these coordinates, scalar
harmonics on the S3 are given by

13Since tensor harmonics are symmetric Y l…
21 ¼ Y l…

12 , we do
not need to list all components.
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Yl3;m;m̄ ¼ Cmþ;m−
l3

eiðmϕþm̄ψÞ

× ð1 − cos 2χÞjmj
2 ð1þ cos 2χÞjm̄j

2

× Pðm;m̄Þ
l3
2
−mþ

ðcos 2χÞ; ðC10Þ

where m ¼ mþ þm−, m̄ ¼ mþ −m−, Pða;bÞ
n ðxÞ is the

Jacobi polynomial, and

Cmþ;m−
l3

¼ 1

2mþπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l3 þ 1

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl3=2þmþÞ!ðl3 −mþÞ!
ðl3=2þm−Þ!ðl3 −m−Þ!

s

ðC11Þ
with jm�j ≤ l3

2
and l3

2
−m� ∈ N.

Given the symmetries of spacetimes that we are con-
sidering, we are interested in harmonics with m̄ ¼ 0. We
consider the obvious basis of vectors on the S3 given the
form of the metric in (C9),

mð1Þ ¼
∂
∂χ ; mð2Þ ¼

1

sin χ
∂
∂ϕ ; mð3Þ ¼

1

cos χ
∂
∂ψ :

ðC12Þ
In this basis, the scalar-derived tensor harmonics on the S3

with l3 ¼ 2 are given by the following:
(i) ðl3; mÞ ¼ ð2; 0Þ:

Sð2;0Þ
11 ¼ −

1ffiffiffiffiffi
10

p
π
cosð2χÞ;

Sð2;0Þ
22 ¼ 1

2
ffiffiffiffiffi
10

p
π
½cosð2χÞ − 3�;

Sð2;0Þ
33 ¼ 1

2
ffiffiffiffiffi
10

p
π
½cosð2χÞ þ 3�: ðC13Þ

(ii) ðl3; mÞ ¼ ð2; 2Þ:

Sð2;2Þ
11 ¼ 1

2
ffiffiffiffiffi
10

p
π
e2iϕ½cosð2χÞ þ 2�;

Sð2;2Þ
12 ¼ 3i

2
ffiffiffiffiffi
10

p
π
e2iϕ cosðχÞ;

Sð2;2Þ
22 ¼ −

1

4
ffiffiffiffiffi
10

p
π
e2iϕ½cosð2χÞ þ 5�;

Sð2;2Þ
33 ¼ 1

2
ffiffiffiffiffi
10

p
π
e2iϕsin2ðχÞ: ðC14Þ

The ðl3; mÞ ¼ ð2;−2Þ harmonics are given by the complex
conjugate of the ðl3; mÞ ¼ ð2; 2Þ harmonics.
As discussed, for example, in Ref. [45], for a fixed ln,

one can relate the tensor harmonics on given basis to those
on a different basis by a simple linear transformation.14

For the case at hand, we can relate the scalar-derived tensor

harmonics in the basis (C12) to the harmonics in the other
basis (C2) as

Sðl3;mÞ
ab ðχ;ϕÞ ¼ Rc

aRd
b

Xl3
l2¼0

Am
l2
Sðl3;l2Þ
cd ðθ3; θ2Þ; ðC15Þ

where in this expression ðχ;ϕÞ should be understood as
functions of ðθ3; θ2Þ and Rb

a is a rotation matrix given by

R ¼

0
BB@

− sinðθ2Þ cosðθ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ2Þ sin2ðθ3Þ

p − cosðθ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ2Þ sin2ðθ3Þ

p 0

cosðθ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ2Þ sin2ðθ3Þ

p − sinðθ2Þ cosðθ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ2Þ sin2ðθ3Þ

p 0

0 0 1

1
CCA:

ðC16Þ
For the l3 ¼ 2 scalar-derived tensor harmonics, we find

that the transformation matrix Am
l2

is given by

A ¼

0
BBB@

1ffiffi
3

p 0
ffiffi
2
3

q
− 1ffiffi

3
p iffiffi

2
p 1ffiffi

6
p

− 1ffiffi
3

p − iffiffi
2

p 1ffiffi
6

p

1
CCCA; ðC17Þ

where the rows correspond to the values of m ¼ 0; 2;−2,
respectively, and similarly the columns correspond to the
values ofl2 ¼ 0, 1, 2. Furthermore, as shown inRef. [45] and
reviewed in Appendix E, the inverse of this matrix (C17)
determines the transformation of the coefficients in the
multipolar expansion of the Weyl scalars in different bases.

APPENDIX D: TENSOR HARMONICS ON THE S4

In this Appendix, we collect some properties of tensor
harmonics in S4. Furthermore, we list the harmonics that
we have used to produce the waveforms in the main text.

1. Standard basis

We first write the metric on the S4 in the standard form

ds2 ¼ dθ24 þ sin2θ4ds2S3 ; ðD1Þ
where ds2S3 is the metric on the S3 written as in (C1) and
θ4 ∈ ½0; π�. Furthermore, we choose the obvious basis of
unit vectors on the S4:

mð1Þ ¼
∂
∂θ4 ; mð2Þ ¼

1

sin θ4

∂
∂θ3 ;

mð3Þ ¼
1

sin θ4 sin θ3

∂
∂θ2 ;

mð4Þ ¼
1

sin θ4 sin θ3 sin θ2

∂
∂θ1 : ðD2Þ

The advantage of using this form of the metric on the S4

is that we can easily construct tensor harmonics of any rank
following the algorithm of Ref. [44]. To do so, we start
from scalar harmonics on the S4. Since we are interested in

14From representation theory, it follows that harmonics with
different ln do not mix. Likewise, scalar-derived tensor harmon-
ics in one basis will only mix with the scalar-derived tensor
harmonics in the other basis.
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spacetimes that possess an SO(3) in six dimensions, we can
restrict ourselves to scalar harmonics that are constant on
the S2 sitting inside the S3, that in turn sits inside the S4

(D1). These (normalized) scalar harmonics are given by

Y ðl4;l3Þ ¼ 1ffiffiffiffiffiffi
4π

p cl4;l3P−ðl3þ1Þ
l4þ1 ðcos θ4ÞP−1=2

l3þ1=2ðcos θ3Þ;

ðD3Þ
where Pm

l ðxÞ are the associated Legendre polynomials,

cl4;l3 ¼ðl3þ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l4þ3

2

ðl4þl3þ2Þ!
ðl4−l3Þ!

s
ðD4Þ

is the normalization constant, and l4 ≥ l3 ≥ 0. In this
basis, the projected components of the tensor harmonics
with l2 ¼ l1 ¼ 0 are as follows15:

a. Scalar-derived tensor harmonics

(i) ðl4;l3Þ ¼ ð2; 0Þ:

Sð2;0Þ
11 ¼

ffiffiffiffiffiffiffiffi
105

p

16π
sin2ðθ4Þ;

Sð2;0Þ
22 ¼ −

1

16π

ffiffiffiffiffi
35

3

r
sin2ðθ4Þ;

Sð2;0Þ
33 ¼ −

1

16π

ffiffiffiffiffi
35

3

r
sin2ðθ4Þ: ðD5Þ

(ii) ðl4;l3Þ ¼ ð2; 1Þ:

Sð2;1Þ
11 ¼ −

1

8π

ffiffiffiffiffi
21

2

r
cosðθ3Þ sinð2θ4Þ;

Sð2;1Þ
12 ¼ 1

2π

ffiffiffi
7

6

r
sinðθ3Þ sinðθ4Þ;

Sð2;1Þ
22 ¼ 1

8π

ffiffiffi
7

6

r
cosðθ3Þ sinð2θ4Þ;

Sð2;1Þ
33 ¼ 1

8π

ffiffiffi
7

6

r
cosðθ3Þ sinð2θ4Þ: ðD6Þ

(iii) ðl4;l3Þ ¼ ð2; 2Þ:

Sð2;2Þ
11 ¼

ffiffiffi
7

p

96π
½2cosð2θ3Þþ1�½3cosð2θ4Þþ5�;

Sð2;2Þ
12 ¼−

ffiffiffi
7

p

6π
sinð2θ3Þcosðθ4Þ;

Sð2;2Þ
22 ¼−

ffiffiffi
7

p

96π
½2cosð2θ3Þðcosð2θ4Þþ7Þ

þ cosð2θ4Þ−9�;

Sð2;2Þ
33 ¼−

ffiffiffi
7

p

96π
½−4cosð2θ3Þsin2ðθ4Þþ cosð2θ4Þþ7�:

ðD7Þ
(iv) ðl4;l3Þ ¼ ð4; 0Þ:

Sð4;0Þ
11 ¼

ffiffiffiffiffiffiffiffiffiffi
1155

p

128π
sin2ðθ4Þ½9 cosð2θ4Þ þ 7�;

Sð4;0Þ
12 ¼ −

1

128π

ffiffiffiffiffiffiffiffi
385

3

r
sin2ðθ4Þ½9 cosð2θ4Þ þ 7�;

Sð4;0Þ
22 ¼ −

1

128π

ffiffiffiffiffiffiffiffi
385

3

r
sin2ðθ4Þ½9 cosð2θ4Þ þ 7�;

Sð4;0Þ
33 ¼ −

1

128π

ffiffiffiffiffiffiffiffi
385

3

r
sin2ðθ4Þ½9 cosð2θ4Þ þ 7�:

ðD8Þ
(v) ðl4;l3Þ ¼ ð4; 1Þ:

Sð4;1Þ
11 ¼

ffiffiffiffiffiffiffiffi
165

p

128π
cosðθ3Þ½2 sinð2θ4Þ − 9 sinð4θ4Þ�;

Sð4;1Þ
12 ¼ 1

32π

ffiffiffiffiffi
55

3

r
sinðθ3Þ sinðθ4Þ½9 cosð2θ4Þ þ 7�;

Sð4;1Þ
22 ¼ 1

64π

ffiffiffiffiffi
55

3

r
cosðθ3Þ sinðθ4Þ½7 cosðθ4Þ

þ 9 cosð3θ4Þ�;

Sð4;1Þ
33 ¼ 1

64π

ffiffiffiffiffi
55

3

r
cosðθ3Þ sinðθ4Þ½7 cosðθ4Þ

þ 9 cosð3θ4Þ�: ðD9Þ

(vi) ðl4;l3Þ ¼ ð4; 2Þ:

Sð4;2Þ
11 ¼ 1

1536π

ffiffiffiffiffi
55

2

r
½2 cosð2θ3Þ þ 1� × ½12 cosð2θ4Þ þ 81 cosð4θ4Þ þ 35�;

Sð4;2Þ
12 ¼ −

1

192π

ffiffiffiffiffi
55

2

r
sinð2θ3Þ½5 cosðθ4Þ þ 27 cosð3θ4Þ�;

Sð4;2Þ
22 ¼ 1

1536π

ffiffiffiffiffi
55

2

r
f92 cosð2θ4Þ − 27 cosð4θ4Þ þ 63 − 2 cosð2θ3Þ½52 cosð2θ4Þ þ 27 cosð4θ4Þ þ 49�g;

Sð4;2Þ
33 ¼ −

ffiffiffiffi
55
2

q
1536π

f52 cosð2θ4Þ þ 27 cosð4θ4Þ þ 49 − 8 cosð2θ3Þsin2ðθ4Þ½27 cosð2θ4Þ þ 17�g: ðD10Þ
15Note that for this particular class of harmonics Y ðl4;l3Þ

44 ¼ Y ðl4;l3Þ
33 , where here Y denotes any tensor harmonic.
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(vii) ðl4;l3Þ ¼ ð4; 3Þ:

Sð4;3Þ
11 ¼ 3

ffiffiffiffiffi
55

p

256π
½cosðθ3Þ þ cosð3θ3Þ�½2 sinð2θ4Þ þ 3 sinð4θ4Þ�;

Sð4;3Þ
12 ¼ −

ffiffiffiffiffi
55

p

64π
½sinðθ3Þ þ 3 sinð3θ3Þ� sinðθ4Þ½3 cosð2θ4Þ þ 1�;

Sð4;3Þ
22 ¼

ffiffiffiffiffi
55

p

64π
cosðθ3Þ sinð2θ4Þf8 − 3 cosð2θ3Þ½cosð2θ4Þ þ 3�g;

Sð4;3Þ
33 ¼

ffiffiffiffiffi
55

p

32π
cosðθ3Þ sinð2θ4Þ½3 cosð2θ3Þsin2ðθ4Þ − 2�: ðD11Þ

(viii) ðl4;l3Þ ¼ ð4; 4Þ:

Sð4;4Þ
11 ¼ 3

128π

ffiffiffiffiffi
11

2

r
sin2ðθ4Þ½3 cosð2θ4Þ þ 5�½2 cosð2θ3Þ þ 2 cosð4θ3Þ þ 1�;

Sð4;4Þ
12 ¼ −

3
ffiffiffiffi
11
2

q
16π

sin2ðθ4Þ cosðθ4Þ½sinð2θ3Þ þ 2 sinð4θ3Þ�;

Sð4;4Þ
22 ¼ 1

64π

ffiffiffiffiffi
11

2

r
sin2ðθ4Þf−3 cosð4θ3Þ½cosð2θ4Þ þ 7� þ ½6 cosð2θ3Þ þ 7�sin2ðθ4Þ þ 4cos2ðθ4Þg;

Sð4;4Þ
33 ¼ −

1

128π

ffiffiffiffiffi
11

2

r
sin2ðθ4Þf6 cosð2θ3Þ½cosð2θ4Þ þ 3� − 12 cosð4θ3Þsin2ðθ4Þ þ 3 cosð2θ4Þ þ 13g: ðD12Þ

b. Vector-derived tensor harmonics

There are three families of vector-derived tensor harmonics on the S4, but with our symmetry assumptions, only one of them
has a nonzero overlap with the Weyl scalars. The relevant vector harmonics for us are given by the following:

(i) ðl4;l3Þ ¼ ð2; 1Þ:

V ð2;1Þ
11 ¼ −

1

8π

ffiffiffiffiffi
35

2

r
sinð2θ4Þ;

V ð2;1Þ
12 ¼ 1

12π

ffiffiffiffiffi
35

2

r
sinðθ3Þ sinð2θ4Þ;

V ð2;1Þ
22 ¼ 1

24π

ffiffiffiffiffi
35

2

r
sinð2θ4Þ;

V ð2;1Þ
33 ¼ 1

24π

ffiffiffiffiffi
35

2

r
sinð2θ4Þ: ðD13Þ

(ii) ðl4;l3Þ ¼ ð2; 2Þ:

V ð2;2Þ
11 ¼ 1

12π

ffiffiffiffiffi
35

2

r
½2 cosð2θ3Þ þ 1� cosðθ4Þ;

V ð2;2Þ
12 ¼ −

1

24π

ffiffiffiffiffi
35

2

r
sinð2θ3Þ½cosð2θ4Þ þ 3�;

V ð2;2Þ
22 ¼ 1

12π

ffiffiffiffiffi
35

2

r
½1 − 2 cosð2θ3Þ� cosðθ4Þ;

V ð2;2Þ
33 ¼ −

1

12π

ffiffiffiffiffi
35

2

r
cosðθ4Þ: ðD14Þ
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(iii) ðl4;l3Þ ¼ ð4; 1Þ:

V ð4;1Þ
11 ¼ −

ffiffiffiffiffi
77

p

32π
cosðθ3Þ sinðθ4Þ½9 cosð2θ4Þ þ 7�;

V ð4;1Þ
12 ¼

ffiffiffiffiffi
77

p

192π
sinðθ3Þ sinðθ4Þ½37 cosðθ4Þ þ 27 cosð3θ4Þ�;

V ð4;1Þ
22 ¼

ffiffiffiffiffi
77

p

96π
cosðθ3Þ sinðθ4Þ½9 cosð2θ4Þ þ 7�;

V ð4;1Þ
33 ¼

ffiffiffiffiffi
77

p

96π
cosðθ3Þ sinðθ4Þ½9 cosð2θ4Þ þ 7�: ðD15Þ

(iv) ðl4;l3Þ ¼ ð4; 2Þ:

V ð4;2Þ
11 ¼

ffiffiffiffiffi
77

p

384π
½2 cosð2θ3Þ þ 1�½5 cosðθ4Þ þ 27 cosð3θ4Þ�;

V ð4;2Þ
12 ¼ −

ffiffiffiffiffi
77

p

1536π
sinð2θ3Þ½100 cosð2θ4Þ þ 81 cosð4θ4Þ þ 75�;

V ð4;2Þ
22 ¼

ffiffiffiffiffi
77

p

384π
f½23 − 28 cosð2θ3Þ� cosðθ4Þ þ 9½1 − 4 cosð2θ3Þ� cosð3θ4Þg;

V ð4;2Þ
33 ¼

ffiffiffiffiffi
77

p

192π
fcosðθ4Þ½18 cosð2θ3Þsin2ðθ4Þ − 7� − 9 cosð3θ4Þg: ðD16Þ

(v) ðl4;l3Þ ¼ ð4; 3Þ:

V ð4;3Þ
11 ¼

ffiffiffiffiffiffiffiffiffiffi
1155

p

64π
½cosðθ3Þ þ cosð3θ3Þ� sinðθ4Þ½3 cosð2θ4Þ þ 1�;

V ð4;3Þ
12 ¼ −

1

64π

ffiffiffiffiffi
77

15

r
sinðθ3Þ½3 cosð2θ3Þ þ 2� sinðθ4Þ½31 cosðθ4Þ þ 9 cosð3θ4Þ�;

V ð4;3Þ
22 ¼ 1

128π

ffiffiffiffiffi
77

15

r
fcosðθ3Þ½13 sinðθ4Þ þ 9 sinð3θ4Þ� − 3 cosð3θ3Þ½sinðθ4Þ þ 13 sinð3θ4Þ�g;

V ð4;3Þ
33 ¼ 1

64π

ffiffiffiffiffi
77

15

r
cosðθ3Þf½9 cosð2θ3Þ − 4� sinðθ4Þ − 3½cosð2θ3Þ þ 4� sinð3θ4Þg: ðD17Þ

(vi) ðl4;l3Þ ¼ ð4; 4Þ:

V ð4;4Þ
11 ¼ 3

32π

ffiffiffiffiffiffiffiffi
231

5

r
sin2ðθ4Þ cosðθ4Þ½2 cosð2θ3Þ þ 2 cosð4θ3Þ þ 1�;

V ð4;4Þ
12 ¼ −

3

64π

ffiffiffiffiffiffiffiffi
231

5

r
sinðθ3Þsin2ðθ4Þ½cosð2θ4Þ þ 3�½3 cosðθ3Þ þ 2 cosð3θ3Þ�;

V ð4;4Þ
22 ¼ 1

32π

ffiffiffiffiffiffiffiffi
231

5

r
½1 − 6 cosð4θ3Þ�sin2ðθ4Þ cosðθ4Þ;

V ð4;4Þ
33 ¼ −

1

32π

ffiffiffiffiffiffiffiffi
231

5

r
½3 cosð2θ3Þ þ 2�sin2ðθ4Þ cosðθ4Þ: ðD18Þ

c. Transverse traceless tensor harmonics

Given the symmetries of the spacetimes that we are considering, there is only one family of transverse traceless tensor
harmonics on the S4 that can contribute to the multipolar expansion of the Weyl scalars. The relevant tensor harmonics are
given by the following:
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(i) ðl4;l3Þ ¼ ð2; 2Þ:

T ð2;2Þ
11 ¼ 1

12π

ffiffiffiffiffi
35

2

r
½2 cosð2θ3Þ þ 1�;

T ð2;2Þ
12 ¼ −

1

6π

ffiffiffiffiffi
35

2

r
sinð2θ3Þ cosðθ4Þ;

T ð2;2Þ
22 ¼ 1

12π

ffiffiffiffiffi
35

2

r
½4sin2ðθ3Þcos2ðθ4Þ − 1�;

T ð2;2Þ
33 ¼ −

1

12π

ffiffiffiffiffi
35

2

r
½sin2ðθ3Þ cosð2θ4Þ þ cos2ðθ3Þ�: ðD19Þ

(ii) ðl4;l3Þ ¼ ð4; 2Þ:

T ð4;2Þ
11 ¼ 1

96π

ffiffiffiffiffi
55

2

r
½2 cosð2θ3Þ þ 1�½9 cosð2θ4Þ þ 7�;

T ð4;2Þ
12 ¼ −

1

96π

ffiffiffiffiffi
55

2

r
sinð2θ3Þ cosðθ4Þ½27 cosð2θ4Þ þ 5�;

T ð4;2Þ
22 ¼ 1

384π

ffiffiffiffiffi
11

10

r
f4½26 − 71 cosð2θ3Þ� cosð2θ4Þ þ 378sin2ðθ3Þ cosð4θ4Þ − 167 cosð2θ3Þ þ 27gÞ;

T ð4;2Þ
33 ¼ −

1

768π

ffiffiffiffiffi
11

10

r
fcosð2θ3Þ½76 cosð2θ4Þ þ 113� þ 378sin2ðθ3Þ cosð4θ4Þ þ 284 cosð2θ4Þ þ 167g: ðD20Þ

(iii) ðl4;l3Þ ¼ ð4; 3Þ:

T ð4;3Þ
11 ¼ 3

16π

ffiffiffiffiffi
55

2

r
½cosðθ3Þ þ cosð3θ3Þ� sinð2θ4Þ;

T ð4;3Þ
12 ¼ −

1

4π

ffiffiffiffiffi
11

10

r
sinðθ3Þ sinðθ4Þ½3 cosð2θ3Þ þ 2�½3 cosð2θ4Þ þ 2�;

T ð4;3Þ
22 ¼ 1

16π

ffiffiffiffiffi
11

10

r
cosðθ3Þf21sin2ðθ3Þ sinð4θ4Þ − ½9 cosð2θ3Þ þ 1� sinð2θ4Þg;

T ð4;3Þ
33 ¼ 1

32π

ffiffiffiffiffi
11

10

r
cosðθ3Þf½1 − 21 cosð2θ3Þ� sinð2θ4Þ − 21sin2ðθ3Þ sinð4θ4Þg: ðD21Þ

(iv) ðl4;l3Þ ¼ ð4; 4Þ:

T ð4;4Þ
11 ¼ 3

16π

ffiffiffiffiffi
77

10

r
sin2ðθ4Þ½2 cosð2θ3Þ þ 2 cosð4θ3Þ þ 1�;

T ð4;4Þ
12 ¼ −

3

8π

ffiffiffiffiffi
77

10

r
sinðθ3Þsin2ðθ4Þ cosðθ4Þ½3 cosðθ3Þ þ 2 cosð3θ3Þ�;

T ð4;4Þ
22 ¼ −

1

16π

ffiffiffiffiffi
77

10

r
sin2ðθ4Þf−3cos2ðθ3Þ½9 cosð2θ4Þ þ 7� þ 48cos4ðθ3Þcos2ðθ4Þ þ 3 cosð2θ4Þ þ 2g;

T ð4;4Þ
33 ¼ 1

256π

ffiffiffiffiffi
77

10

r
f4½3 cosð2θ3Þ þ 6 cosð4θ3Þ þ 1� cosð2θ4Þ þ 6sin2ðθ3Þ½4 cosð2θ3Þ þ 3� cosð4θ4Þ

− 15 cosð2θ3Þ − 18 cosð4θ3Þ − 7g: ðD22Þ
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2. Multipolar expansion of the Weyl scalars in
the standard basis

The main advantage of using the standard form of the
metric on the S4 (D1) and the associated basis of vectors to
obtain the multipolar expansion of the Weyl tensor is that
one can systematically construct the required tensor har-
monics of any rank. In this way, we can identify the sector
of tensor harmonics that captures most of the signal.
In Fig. 11, we display the ðl4;l3Þ ¼ ð2; 2Þ multipole of

the Weyl scalars in the scalar-derived, vector-derived, and
transverse traceless tensor harmonics sectors for the same
a=μ1=3 ¼ 1.3 simulation reported in the main text, Fig. 2.
As this figure illustrates, most of the signal is in the scalar-
derived sector. We have checked that this is the case in all
our simulations, and this is why in the main text we only
report on the multipoles from the scalar-derived tensor
harmonics. Perhaps, it should not be surprising that, given
the symmetries of the spacetimes that we are considering,
most of the waveforms are captured by the scalar-derived
tensor harmonics.
The drawback of using the basis (D1) is that it is not

aligned with the axis of rotation of the black hole space-
times that we have considered. This has the consequence
that the various harmonics with the same l4 but different l3

mix and one cannot accurately extract the frequencies and
growth/decay rates of the various modes.16 This mixing of
modes with the same l3 and different l2’s can be seen in
Fig. 12. In this plot, we display the ðl4;l3Þ ¼ ð2; 0Þ, (2,1),
and (2,2) multipoles of the Weyl scalars for the same
a=μ1=3 ¼ 1.3 run as in the main text. As this plot suggests,
the various modes appear to have similar frequencies and
decay rates. To disentangle the various modes, one would
have to rotate the basis or consider an adapted basis. We
chose the latter option.

3. Adapted basis

As in the 5D case, it turns out to be convenient to write
the metric on the S4 in a form that makes the symmetries
and the rotation plane of spacetimes that we consider
manifest,

ds2 ¼ dχ2 þ sin2χdϕ2 þ cos2χðdθ2 þ sin2θdψ2Þ; ðD23Þ

with χ ∈ ½0; π=2�, θ ∈ ½0; π�, and ϕ;ψ ∈ ½0; 2π�. In these
coordinates, the angle ϕ on the extraction S4 coincides with
the angle on the rotation plane of the full spacetime. We
choose the obvious basis of angular vectors on the S4

written as in (D23):

mð1Þ ¼
∂
∂χ ; mð2Þ ¼

1

sin χ
∂
∂ϕ ; mð3Þ ¼

1

cos χ
∂
∂θ ;

mð4Þ ¼
1

cos χ sin θ
∂
∂ψ : ðD24Þ

In the previous subsection, Appendix D 2, we have
shown that the leading waveforms are in the sector of
scalar-derived tensor harmonics. Therefore, to accurately
extract the leading modes that govern the dynamics of the
black holes that we are interested in, we only need to
concentrate on this sector of tensor harmonics. Scalar

FIG. 11. Scalar-derived, vector-derived, and transverse trace-
less tensor projections with ðl4;l3Þ ¼ ð2; 2Þ of the Weyl scalars
for the same a=μ1=3 ¼ 1.3 run as in the main text. This figure
illustrates that most of the signal is in the scalar-derived sector.
The same happens in any of the other simulations that we have
performed.

FIG. 12. Scalar-derived tensor multipoles with ðl4;l3Þ ¼
ð2; 0Þ, (2,1), and (2,2) of the Weyl scalars for the same a=μ1=3 ¼
1.3 run as in the main text. This figure shows the mixing of
modes with the same l4 and different l3 due to the misalignment
between the chosen basis of angular vectors on the S4 and the
rotation axis of the black hole.

16This phenomenon was observed in Ref. [45] in four
dimensions, for instance, when extracting gravitational waves
from head-on collisions of black holes and considering an
extraction frame that is not suitably aligned with the collision
axis. We would like to thank Ulrich Sperhake for pointing this out
to us.
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harmonics on the S4 in the coordinates (D23) can written
as [46]

Y l4;m;l2;m̄ ¼ Nðsin χÞjmjðcos χÞl2eimϕY m̄
l2
ðθ;ψÞ

× 2F1

�
l2 þ jmj − k; kþ 3

2
;l2 þ

3

2
; cos2χ

�
;

ðD25Þ
where N is a normalization constant, Y m̄

l2
ðθ;ψÞ are the

standard spherical harmonics on the S2, 2F1 is the ordinary
hypergeometric function, and k is a positive integer related
to the eigenvalue l4 by

l4 ¼ 2k − ðl2 þ jmjÞ: ðD26Þ
Since we are considering spacetimes with a manifest SO(3)
symmetry, we only need to consider harmonics with l2 ¼ 0
(and consequently m̄ ¼ 0), and hence we will drop the
corresponding labels from now on.
Writing the S4 as in (D23) and in the basis (D24), the

projected scalar-derived tensor harmonics obtained from
(D25) are as follows:

(i) ðl4; mÞ ¼ ð2; 0Þ:

Sð2;0Þ
11 ¼ 1

48π

ffiffiffiffiffi
35

2

r
½3 cosð2χÞ þ 1�;

Sð2;0Þ
22 ¼ −

1

48π

ffiffiffiffiffi
35

2

r
½cosð2χÞ − 5�;

Sð2;0Þ
33 ¼ −

1

48π

ffiffiffiffiffi
35

2

r
½cosð2χÞ þ 3�: ðD27Þ

(ii) ðl4; mÞ ¼ ð2; 2Þ:

Sð2;2Þ
11 ¼ 1

32π

ffiffiffi
7

3

r
e2iϕ½3 cosð2χÞ þ 5�;

Sð2;2Þ
21 ¼ i

4π

ffiffiffi
7

3

r
e2iϕ cosðχÞ;

Sð2;2Þ
22 ¼ −

1

32π

ffiffiffi
7

3

r
e2iϕ½cosð2χÞ þ 7�;

Sð2;2Þ
33 ¼ 1

16π

ffiffiffi
7

3

r
e2iϕsin2ðχÞ; ðD28Þ

(iii) ðl4; mÞ ¼ ð4; 0Þ:

Sð4;0Þ
11 ¼ −

ffiffiffiffiffi
77

p

1536π
½12 cosð2χÞ þ 81 cosð4χÞ − 29�;

Sð4;0Þ
22 ¼

ffiffiffiffiffi
77

p

1536π
½−92 cosð2χÞ þ 27 cosð4χÞ þ 1�;

Sð4;0Þ
33 ¼

ffiffiffiffiffi
77

p

1536π
½52 cosð2χÞ þ 27 cosð4χÞ − 15�:

ðD29Þ

(iv) ðl4; mÞ ¼ ð4; 2Þ:

Sð4;2Þ
11 ¼−

1

256π

ffiffiffiffiffi
55

6

r
e2iϕ½12cosð2χÞþ27cosð4χÞ−7�;

Sð4;2Þ
21 ¼ i

64π

ffiffiffiffiffi
55

6

r
e2iϕ½cosðχÞ−9cosð3χÞ�;

Sð4;2Þ
22 ¼ 1

256π

ffiffiffiffiffi
55

6

r
e2iϕ½4cosð2χÞþ9cosð4χÞþ19�;

Sð4;2Þ
33 ¼−

1

64π

ffiffiffiffiffi
55

6

r
e2iϕsin2ðχÞ½9cosð2χÞþ11�;

ðD30Þ

(v) ðl4; mÞ ¼ ð4; 4Þ:

Sð4;4Þ
11 ¼ 3

128π

ffiffiffiffiffi
55

2

r
e4iϕsin2ðχÞ½3 cosð2χÞ þ 5�;

Sð4;4Þ
21 ¼ 3i

16π

ffiffiffiffiffi
55

2

r
e4iϕsin2ðχÞ cosðχÞ;

Sð4;4Þ
22 ¼ −

3

128π

ffiffiffiffiffi
55

2

r
e4iϕsin2ðχÞ½cosð2χÞ þ 7�;

Sð4;4Þ
33 ¼ 3

64π

ffiffiffiffiffi
55

2

r
e4iϕsin4ðχÞ: ðD31Þ

The ðl4; mÞ ¼ ð2;−2Þ, ð4;−2Þ, ð4;−4Þ harmonics are
given by the complex conjugate of (2,2), (4,2), (4,4),
respectively.
As we have already seen in Appendix C 2, for a fixed l4,

we can relate the harmonics in this basis (D24) to those in
the standard basis (D2) by a linear transformation,

Sðl4;mÞ
ab ðχ;ϕÞ ¼ Ra

cRb
d
Xl4
l3¼0

Am
l3
Sðl4;l3Þ
cd ðθ4; θ3Þ; ðD32Þ

where in the lhs of this expression ðχ;ϕÞ should be
understood as functions of ðθ4; θ3Þ and Rb

a is a rotation
matrix given by

R ¼

0
BBBBBB@

− sinðθ3Þ cosðθ4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ3Þsin2ðθ4Þ

p − cosðθ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ3Þsin2ðθ4Þ

p 0 0

cosðθ3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ3Þsin2ðθ4Þ

p − sinðθ3Þ cosðθ4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−sin2ðθ3Þsin2ðθ4Þ

p 0 0

0 0 1 0

0 0 0 1

1
CCCCCCA
:

ðD33Þ

For the l4 ¼ 2 scalar-derived tensor harmonics, the
transformation matrix is given by
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Am
l3 ¼

0
BBB@

ffiffi
3

p
2
ffiffi
2

p 0
ffiffi
5

p
2
ffiffi
2

pffiffi
5

p
4

iffiffi
2

p −
ffiffi
3

p
4ffiffi

5
p
4

− iffiffi
2

p −
ffiffi
3

p
4

1
CCCA; ðD34Þ

where the rows correspond to m ¼ 0; 2;−2 and the
columns correspond to l3 ¼ 0, 1, 2. Similarly, for the
l4 ¼ 4 harmonics, we find

Am
l3 ¼

0
BBBBBBBBBBBB@

ffiffiffiffi
15

p
8

0
ffiffiffiffi
35

p
8
ffiffi
2

p 0 3
8

ffiffi
7
2

q
ffiffi
7

p
4
ffiffi
2

p i
2
ffiffi
2

p
ffiffi
3

p
8

i
2

ffiffi
3
2

q
−
ffiffiffiffi
15

p
8ffiffi

7
p
4
ffiffi
2

p − i
2
ffiffi
2

p
ffiffi
3

p
8

− i
2

ffiffi
3
2

q
−
ffiffiffiffi
15

p
8ffiffiffiffi

21
p
8
ffiffi
2

p i
2

ffiffi
3
2

q
− 9

16
− i

2
ffiffi
2

p
ffiffi
5

p
16ffiffiffiffi

21
p
8
ffiffi
2

p − i
2

ffiffi
3
2

q
− 9

16
i

2
ffiffi
2

p
ffiffi
5

p
16

1
CCCCCCCCCCCCA
; ðD35Þ

where the rows correspond to m ¼ 0; 2;−2; 4;−4 and the
columns correspond to l3 ¼ 0, 1, 2, 3, 4 respectively.

APPENDIX E: TRANSFORMATION OF
THE WEYL MULTIPOLES UNDER

CHANGES OF BASIS

In this Appendix, we review the transformations of the
Weyl multipoles under rotations of the basis vectors and
relate them to the transformation properties of the tensor
harmonics. This is a straightforward generalization of the
results in Ref. [45] to the higher dimensions.
The expansion of theWeyl scalars inmultipoles is givenby

Ω0
ABðθÞ ¼

X
l

ψlY l
ABðθÞ; ðE1Þ

where l is a collective label that specifies each of the tensor
harmonics on the Sn at infinity, θ denotes the collection of
angles on such a sphere, and ψ l are the corresponding
multipoles. Under a rotation, Ω0

ABðθÞ transforms as

Ω0
ABðθ0Þ ¼ RA

CRB
DΩ0

CDðθðθ0ÞÞ; ðE2Þ
where the RA

B are rotation matrices. Given the transforma-
tion of the harmonics under rotations,

Y l0
ABðθ0Þ ¼ RA

CRB
D
X
l

Al0
lY l

CDðθÞ; ðE3Þ

it follows that

ψl0 ¼
X
l

ψlðA−1Þll0 : ðE4Þ

This transformation rule allows us to compute the Weyl
multipoles in the (D24) from the multipoles computed in the
standard basis (D2).

APPENDIX F: APPARENT HORIZON
AND CONTOURS OF χ

In cases in which the AH is a star-shaped surface, we find
that contours of the conformal factor χ closely track the AH
obtained by our apparent horizon finder. Figure 13 dem-
onstrates this for a 6D MP black hole of dimensionless spin
a=μ1=3 ¼ 1.3 an initial m ¼ 2 deformation in χ described
by (4) and (5). For this simulation, the AH can be tracked by
our apparent horizon finder for the entire evolution. The AH
at early times is roughly followed by the χ ∼ 0.4 contour,
and as the gauge evolution proceeds, the AH at late times is
most closely followed by the χ ∼ 0.6 contour. In particular,
at time t=μ1=3 ∼ 30when the AH is most elongated, the AH
remains well described by the χ ∼ 0.6 contour.
Following χ contours is particularly useful when the AH

ceases to be star shaped and can no longer be tracked by our
apparent horizon finder (though, see Refs. [14,27] for
different apparent horizon finder implementations that
get around the star-shaped requirement). Figures 14 and
15 show the χ contours for two such cases of 6D MP black
holes of dimensionless spin a=μ1=ðD−3Þ ¼ 1.5 with initial
m ¼ 2 and m ¼ 4 deformations in χ, respectively, along
with their AH shapes for as long as they can be tracked.
Figure 14 corresponds to an initial m ¼ 2 deformation,

and Fig. 15 corresponds to an initial m ¼ 4 deformation.
In both cases, the AH at early times is roughly followed by
the χ ∼ 0.4 contour, and the gauge appears to evolve in
such a way that the AH at late times is described well by
the χ ∼ 0.5 contour. Thus, we continue to use the χ ∼ 0.5
contour as a proxy for the AH shape even at late times when
the AH can no longer be found. With this proxy, the MP
BH with an initial m ¼ 2 deformation develops a thin bar
shape (see the last panel of Fig. 14), and the MP BHwith an

FIG. 13. Several χ contours for a 6DMP BH with a=μ1=3 ¼ 1.3
and an initial m ¼ 2 deformation. The AH can be tracked
throughout the evolution and is described well by the χ ∼ 0.4
contour at early times and by the χ ∼ 0.6 contour at late times.
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initial m ¼ 4 deformation develops four thin arms (see the
last panel of Fig. 15).

APPENDIX G: m= 3 PERTURBATION

We display here for completeness the evolution of the
6D MP BH with initial spin a=μ1=3 ¼ 1.3 perturbed with a
m ¼ 3 deformation; see Eq. (5). Figure 16 shows the
evolution of the χ ¼ 0.5 contour, which has qualitatively
the same features as the m ¼ 4 perturbation discussed in

Sec. III B 3. The initial deformation of the black hole horizon
into a triangle shape is characteristic of the m ¼ 3 mode.
The corners of the triangle grow into three arms, which
become elongated and develop sharp features at the edges.
As in the m ¼ 4 case, the appearance of these sharp features
precedes the formationof longand thin arms,whicheventually
become GL unstable.

APPENDIX H: CONVERGENCE TEST

Here, we present a numerical test taken from a simulation
of a 6D MP BH perturbed at t=μ1=3 ¼ 10 by an m ¼ 2
deformation in χ described by Eqs. (4) and (5). Figure 17
shows the resulting gravitational wavesform via the hþ
component of the metric perturbation given by (10),
extracted on the z axis at z=μ1=3 ¼ 29. This is done at three
different resolutions, for which each linear dimension is
covered by 80, 120, and 160 points, respectively. The
pointwise difference in the waveform between subsequent
resolutions yields a convergence factor of approximately 3,
which indicates a rate convergence that is between second
and third order.

FIG. 14. Several χ contours for a 6DMP BH with a=μ1=3 ¼ 1.5
and an initial m ¼ 2 deformation. The AH is described well by
the χ ∼ 0.4 contour at early times (see first two panels) and by
χ ∼ 0.5 at the last time slice when the apparent horizon finder can
still track the AH location (see the third panel).

FIG. 15. Several χ contours for a 6DMP BH with a=μ1=3 ¼ 1.5
and an initial m ¼ 4 deformation. The AH is described well by
the χ ∼ 0.4 contour at early times (see the first panel) and by
χ ∼ 0.5 at the last time slice when the apparent horizon finder can
still track the AH location (see the second panel).

FIG. 16. Snapshots of the χ ¼ 0.5 contour during the evolution
of an unstable MP BH with initial a=μ1=3 ¼ 1.3 and a m ¼ 3
perturbation. During the evolution, the black hole develops a
triangle shape, and its tips eventually grow into long arms. The
latter eventually become GL unstable, as discussed in Sec. III B 3.
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FIG. 17. Convergence test of the gravitational wave data from a
6D MP BH Here, we have zoomed in on the time interval in
which the wave is most prominent. The coarsest grid of the low-,
medium-, and high-resolution simulations covers each linear
dimension by 80, 120, and 160 points, respectively.
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