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We investigate analytically as well as numerically the effects of nonlinear Born-Infeld electrodynamics
on the properties of (1 + 1)-dimensional holographic p-wave superconductors in the context of gauge-
gravity duality. We consider the case in which the gauge and vector fields backreact on the background
geometry. We apply the Sturm-Liouville eigenvalue problem for the analytical approach as well as the
shooting method for the numerical calculations. In both methods, we find the relation between critical
temperature 7', and chemical potential ;2 and show that both approaches are in good agreement with each
other. We find that if one strengthens the effect of backreaction as well as nonlinearity, the critical
temperature decreases, which means that the condensation is harder to form. We also explore the
conductivity of the one-dimensional holographic p-wave superconductor for different values of b and
T/T.. We find that the real and imaginary parts of the conductivity have different behaviors in higher
dimensions. The effects of different values of temperature are more apparent for larger values of the
nonlinearity parameter. In addition, for the fixed value of 7/T ., by increasing the effect of nonlinearity, we
observe larger values for a Drude-like peak in the real part of conductivity and a deeper minimum for the

imaginary part.
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I. INTRODUCTION

The idea of a holographic superconductor was proposed
by Hartnoll et al. [1] by building a holographic s-wave
superconductor in the background of four-dimensional
Schwarzschild anti-de Sitter (AdS) black holes. The
motivation was to shed light on the problem of high
temperature superconductors. The most well-known theory
of superconductors was proposed by Bardeen, Cooper, and
Schrieffer (BCS); it can successfully explain the mecha-
nism of low temperature superconductors. According
to BCS theory, the condensation of pairs of electrons with
antiparallel spins (Cooper pairs) interacts through the
exchange of phonons into a bosonlike state [2]. To build
the holographic superconductor, the correspondence
between AdS spaces and conformal field theory (CFT)
plays a crucial role [1,3]. According to the AdS/CFT
dictionary, a strong coupling d-dimensional conformal
field theory living on the boundary is equivalent to the
weak coupling gravity theory in (d + 1)-dimensional AdS
bulk, and each quantity in the bulk has a dual on the
boundary [4-8]. In order to describe a superconductor at
the boundary in a holographic scenario, we need a hairy

“asheykhi @shirazu.ac.ir

2470-0010/2019,/100(8)/086012(12)

086012-1

black hole in the bulk. More precisely, we need a hairy
black hole (superconducting phase) for temperatures below
the critical value and a black hole with no hair (normal
phase or conductor phase) for upper values. During this
process, the system undergoes the spontaneous U(1)
symmetry breaking. The condensation of a charged oper-
ator at the boundary corresponds to the emergence of the
hair for black holes in the bulk. The quantum description
of the hair for black holes is the gas of charged particles
that have the same sign charge as the black hole. These are
repelled away by the black hole and forbidden to escape to
infinity due to the presence of the negative cosmological
constant in the AdS bulk [9]. The holographic super-
conductor theory has received much attention in the past
decade (see e.g., [10-32]). Moreover, holographic super-
conductors have also been widely explored in the regime
of nonlinear electrodynamics (see e.g., [25-34]). There
are several types of nonlinear electrodynamics such as the
Born-Infeld (BI) [35], exponential [36], logarithmic [37],
and power-Maxwell [27], the most famous being BI
nonlinear electrodynamics which was first proposed for
solving the divergency in the electrical field of the point
particles [35,38—41]. Studies on the holographic super-
conductors have also generalized to other types such as
p-wave superconductors. The p-wave superconductivity
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is a phase of matter which occurs when the electrons
are bounded with parallel spins by the exchange of
electronic excitations with angular momentum ¢ = 1
and condense in a triplet state. The terms odd-parity
superconductivity, p-wave superconductivity, and triplet
superconductivity are all equivalent [42]. Various models
of holographic p-wave superconductors have been inves-
tigated. Holographic p-wave superconductors can be
studied by condensation of a charged vector field in the
bulk, which corresponds to the vector order parameter in
the boundary [43,44]. This implies that the spin-1 order
parameter can correspond to the condensation of a 2-form
field on the gravity side [45]. In [46], this type of
holographic superconductor is characterized by introduc-
ing a SU(2) Yang-Mills gauge field in the bulk, in which
one of the gauge degrees of freedom corresponds to the
vector order parameter at the boundary. In addition, an
alternative method to describe this kind of holographic
superconductor emerges by adopting a complex vector
field charged under a U(1) gauge field, which is equiv-
alent to a strongly coupled system involving a charged
vector operator with a global U(1) symmetry at the
boundary [47]. For this type of holographic superconduc-
tor, by decreasing temperature below the critical value, the
normal phase becomes unstable, and we observe the
formation of vector hair, which corresponds to the super-
conducting phase. Other investigations on the holo-
graphic p-wave superconductors have been carried out
in e.g., [47-53].

Furthermore, the (1 + 1)-dimensional holographic super-
conductors have been developed in the background of
the BTZ black hole [8]. The BTZ black hole is the well-
known solution of general relativity in (2 + 1)-dimensional
spacetime which plays a crucial role in understanding

the gravitational interaction in low dimensional space-
times. In order to study the one-dimensional holographic
superconductor, one may apply AdS;/CFT, correspon-
dence [54-58]. One-dimensional holographic s-wave and
p-wave superconductors were analyzed both analytically
and numerically from different points of view in e.g.,
[33,34,59-69]. It is worth noting that most investigations
on the (1 + 1)-dimensional holographic p-wave super-
conductors are done in the framework of linear Maxwell
electrodynamics. Therefore, it is fascinating to study the
effects of nonlinearity in such a holographic superconduc-
tor. In the present work, we would like to extend the
investigation on the one-dimensional holographic super-
conductor by considering the BI nonlinear electrodynamics
when gauge and vector fields backreact on background
geometry. It is worth noting that the (1 + 1)-dimensional
holographic p-wave superconductor is located on the
boundary of (2 + 1)-dimensional spacetime, while the
gauge and the vector fields are defined in the (2 + 1)-
dimensional BTZ black hole. It is well known that the
electric field of a point charge in (2 4 1) dimensions has

the form E(r) = ¢/r. Thus, there is still a divergency in the
electric field at the location of the point charge (r = 0).
However, taking the BI electrodynamics into account can
remove this divergency as well. This is the main motivation
for investigating the (14 1)-dimensional holographic
p-wave superconductor in the presence of nonlinear BI
electrodynamics.

We employ both analytical and numerical approaches.
Our analytical study is based on the Sturm-Liouville
eigenvalue problem, while the shooting method is used
for the numerical calculations. Our aim is to find a
relation between the critical temperature 7. and the
chemical potential yx for different values of backreaction
and nonlinear parameters. We also investigate the effects
of nonlinearity on the real and imaginary parts of
conductivity.

This article is organized as follows. In Sec. II we
introduce the one-dimensional holographic p-wave super-
conductor. In Sec. III, we study condensation of the vector
field both analytically and numerically. In Sec. IV, we
calculate the critical exponent of this type of holographic
superconductor analytically as well as numerically. In
Sec. V, we explore the holographic conductivity for this
model. Finally, in Sec. VI, we present a summary of our
results and a discussion.

II. THE HOLOGRAPHIC P-WAVE MODEL

In a three-dimensional spacetime, the action of
Einstein gravity in the presence of nonlinear BI electro-
dynamics and a negative cosmological constant can be
written as

1
S =52 d*x\/—gLg +/d3x\/—g£m,
K

2
1 . ~;< v
Ly = LIF) =5 pwp™ = mpiup" + iqrp,pi P (1)

In the Lagrangian of the matter field, £,,, the constants m
and g are the mass and charge of the vector field p,,
respectively. Here, x> = 87G; where G is the three-
dimensional Newtonian gravitation constant in the bulk.
In addition, the metric determinant, Ricci scalar, and AdS
radius are characterized by g, R, and [, respectively. Also,
F, =V,A, —V,A, is the strength of the Maxwell field,
with A, as the vector potential. Considering D, =V, —
igA, we can define p,, = D,p, — D,p,. The last term in
the matter Lagrangian, which represents a nonlinear inter-
action between p,, and A, with y the magnetic moment, can
be ignored in the present work because we consider the case
without an external magnetic field. The Lagrangian density
of the BI nonlinear electrodynamics is given by £(F) and
can be defined as
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c(f):%<1—,/1+g>, 2)

where b is the nonlinear parameter and 7 = F,,F**. When
b — 0, L(F) reduces to the standard Maxwell Lagrangian.

Varying the action (1) with respect to the metric g,,, the
gauge field A, and the vector field p, yields the equations
of motion for the gravitational and the bulk matter fields as

1 R 1
22 |Bw =9 5T 2

1 1
= _ZF/MFbllﬁ]: + Eﬁmgﬂy + 5 [pTﬂﬂpﬁ + mZPTﬂpy

— iyqFi(pup’; — pTups) + 1 < v, (3)

V¥ (-4L;F,,)
=iq(p*p’ s — P puu) + iayV (pup' = PTpy).  (4)

Dypuu - m2p;4 + iqyp”FW =0, (5)

where Ly = JL/OF. In order to study the backreacted
(1 + 1)-dimensional holographic p-wave superconductor
in the presence of BI nonlinear electrodynamics, we
consider the following ansatz for the metric and bulk fields:

dr?

ds®> = —f(r)e*")dr> +f(r)

+ rdx?, (6)

pudx’ = p.(r)dx, — A,dx" = ¢(r)dt, (7)
where the x component of the vector field p, corresponds to
the expectation value (/) which plays the role of the order
parameter in the boundary theory. The Hawking temper-
ature of the black hole is given by [34]

e_)((r+)/2f/(r+>
4r '

T= (8)

Substituting relations (6) and (7) in the field equations (3)
and (4), we arrive at

! !
by/1=beX g (r)

b
PN g2 (r)  f(r)pi(r) m%an]

2
f’(r)—T;+2K2r

+

+ 2 t—23

rf(r) r r =0, ©)

7o)+ 42 [CAOO8

© | o] =0 o

(r e)((r) 2(r
¥+ )[4 P

2 r r

_2¢°p3(n)(r) ) B2 (P32 —
P~ pegPpR =0, (1)
o)+ [ -2
e/ (r)  m?]
o) T =0 02

Here, the prime denotes the derivative with respect to r.
In the presence of the nonlinear BI electrodynamics,
Egs. (12) and (10) do not change in comparison with
the linear Maxwell case. In the limiting case where b — 0,
the equations of motion of the Maxwell field are repro-
duced [69]. If we consider the probe limit by setting x = 0,
the equations of motion (11) and (12) turn into the
corresponding equations in [70]. There are scaling sym-
metries of the equations of motion (9)—(12) that we can use
to set ¢ and [/ equal to unity.

q_)q/a’ ¢_)a¢7 p.x_)ap.x7

Kk — Kk/a, b— b/a?, (13)
[ = al, r— ar, q— q/a,
b — ba?, m— mja. (14)

In addition, there is another symmetry which leaves the
metric unchanged,

e = a?

e, t — at, ¢ —alep. (15)
Based on Eq. (15), the boundary value of y is constant, so
we can set y = 0. Considering y and p as the chemical
potential and charge density, the asymptotic behavior
(r > o) of the field equations is given by

B ~p+uin(r). )~
K =0, pr)~ D B (16)

Taking the Breitenlohner-Freedman (BF) bound into
account, m*> >0, p, plays the role of the source and
Py, is known as the x component of the expectation value of
the order parameter (/) [71]. Hereafter, we set m?> = 1. In
the next sections, we investigate, analytically as well as
numerically, the properties of one-dimensional backreacted
holographic p-wave superconductors in the presence of BI
nonlinear electrodynamics.
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ITII. CONDENSATION OF VECTOR FIELD

Let us now investigate the relation between the critical
temperature 7. and the chemical potential y for holo-
graphic p-wave superconductors. In particular, we would
like to explore the effects of backreaction as well as the
nonlinearity parameter on the critical temperature.

A. Analytical approach

In order to follow our analytical studies, we apply the
Sturm-Liouville eigenvalue problem and define z = r, /r
as anew variable where 0 < z < 1. Therefore, Egs. (9)—(12)
become

a2 2 O ()pl()
f(Z)+Z—3+7 Py (2) )
_z4f(zr)f§2(Z)+;_jz - 1 ‘ _o.
+ 1— hz4el<‘2)(/)'2(z)
(17)
/ P (2)p,2(2) | 2P 2(2)]
/ (2) 4
P+ H) [l+x(Z)+bz3e” 2’¢2(Z)}
Z 2 ry
_290(2)pi(x) [, bzterDgP(2)]2
[ = o)
p coa 3 a2 | fz)
px(z) +PX(Z) [Z_T + f(Z):|
r2 XA (z) B ra ] B
00l T @

Here, the prime indicates the derivative with respect to z.
In the vicinity of the critical temperature, the expectation
value of (J,) is tiny, so we take it as an expansion
parameter,

e=(J,).

We concentrate on the solutions for small values of the
condensation parameter € because near the critical temper-
ature, we have ¢ < 1. Therefore, we expand the functions
in terms of the ¢ as

frfotrefr+efat -,
XREL eyt

br o+l ethy At
PR Epy, + Ep +Ep +

Moreover, the chemical potential can be expressed as

- 1/2
/t—ﬂ0+€25,uz+-~—>ez<'u5ﬂfo> , o, > 0.

Near the phase transition . = g, so the order parameter
vanishes. In addition, the mean field value for the critical
exponent f = 1/2 is obtained.

At zeroth order of ¢, the equation for the gauge field (19)
becomes

o)+ 28 bz3¢; G _,, (21)
z r

We can find the solution for this equation as follows:

i=2 ()

1
$(z) = Ar log(z) = bAr (2% = 1),
4 Ty

Substituting solution (22) into Eq. (17), we arrive at

2r2  2k2p2 1
! == 1= =0. (23
FE+=5+ 5 e @)

2
L

The solution for f(z), at zeroth order of e, can be
obtained as

r2
flz) = +fz( 28

1 1
9(z) = 1 = 2 + 22 log(z) + g b2 = S b2

(24)

Near the boundary, we can define the function p,(z)
based on the trial function F(z) =1—az” in which
w >2 and satisfies the boundary conditions F(0) = 1
and F'(0) =0,

(/)

— \/irA ZAF(z). (25)

px(2)

Inserting Eqgs. (24) and (25) in Eq. (20), we arrive at
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e

el ]

AJR) 1 A
tFE) { 9 2ol ?}
_ %&’)g(z) [bA%r (22 —1) —2log(z)] = 0. (26)

The Sturm-Liouville form of this equation is

[T()F'(2)]" + P(2)T(2)F(z) + Q()T(2)F(z) = 0.
(27)

where

b
T(z) = 24" [(1 - 2%) <1 + §K2/14z2> + K222 10g(2)] :

(28)
_AfgdR) Ay _ 1
Pz) = z (g(z) * z) 2g(z)’ 29
_ log(z)

0(z) =

B llogta) + 5 r1- 2. 30)

According to the Sturm-Liouville eigenvalue problem, we
should minimize the following expression with respect to a.

e Jd T(F? — PF*)dz

[ TOFdz 31

The definition of the backreaction parameter, based on the
iteration method, is [72]

kK, =nAk, n=0,12,..., Ak =K, 1 —K,, (32)

where we take Ax = 0.05. In addition, we have

@R = 1,2 = k2, ) + O[(An)],

—1

kK, =0, 2, =0, (33)

b2 = b(22|,_) + O(B?). (34)

Using Egs. (8) and (9), the critical temperature, at zeroth
order with respect to e, is given by

Tc _ f/(r+c)
vi¥is

T'ie 0 Lo
— _ ¢ 2_ _
_411[ KA +4bKﬂ:|

1

7 1
- E <E> |:2 - K%(22|Kn—l) + Z bK% (14|K,,_],b:0) * (35)

Considering three different forms of the trial function F(z),
the analytical results of 7. /u affected by different values of
backreaction and nonlinear parameters are listed in
Tables I-1II. Based on these results, the effects of increasing

TABLE 1. Analytical and numerical results of 7./u for different values of the backreaction and nonlinear
parameters with the trial function F(z) = 1 — az’.
b=0 b =0.04 b =10.08

Analytical Numerical Analytical Numerical Analytical Numerical
K2=0 0.0478 0.0503 0.0416 0.0454 0.0343 0.0406
k2 = 0.05 0.0443 0.0410 0.0379 0.0366 0.0303 0.0324
K2 =0.1 0.0424 0.0330 0.0361 0.0290 0.0281 0.0254
k? =0.15 0.0394 0.0260 0.0331 0.0226 0.0248 0.0195
K2 =02 0.0353 0.0201 0.0291 0.0172 0.0205 0.0146
k? =025 0.0302 0.0152 0.0241 0.0127 0.0153 0.0106
TABLE II. Analytical and numerical results of 7./u for different values of the backreaction and nonlinear

parameters with F(z) = 1 — az’.

b=0 b =0.04 b =0.08
Analytical Numerical Analytical Numerical Analytical Numerical
k2=0 0.0466 0.0503 0.0400 0.0454 0.0320 0.0406
k* =0.05 0.0397 0.0410 0.0347 0.0366 0.0243 0.0324
k2 =0.1 0.0375 0.0330 0.0328 0.0290 0.0215 0.0254
k* =0.15 0.0342 0.0260 0.0298 0.0226 0.0178 0.0195
k2 =02 0.0296 0.0201 0.0258 0.0172 0.0132 0.0146
k* =025 0.0238 0.0152 0.0208 0.0127 0.0083 0.0106
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TABLE III.  Analytical and numerical results of 7./u for different values of the backreaction and nonlinear
parameters with F(z) = 1 — az*.
b=0 b=0.04 b =0.08

Analytical Numerical Analytical Numerical Analytical Numerical
K> =0 0.0457 0.0503 0.0387 0.0454 0.0303 0.0406
k* = 0.05 0.0379 0.0410 0.0328 0.0366 0.0205 0.0324
k? = 0.1 0.0356 0.0330 0.0308 0.0290 0.0171 0.0254
k> =0.15 0.0321 0.0260 0.0278 0.0226 0.0131 0.0195
K =02 0.0274 0.0201 0.0236 0.0172 0.0084 0.0146
K* =0.25 0.0214 0.0152 0.0186 0.0127 0.0039 0.0106

the backreaction parameter x for a fixed value of the
nonlinear parameter b are the same as increasing the
nonlinear parameter for a fixed value of . In other words,
in both cases, the value of T,./u decreases by increasing the
backreaction or nonlinear parameters. Thus, the presence of
backreaction and BI nonlinear electrodynamics makes it
harder for the vector hair to form. In addition, for the case
with b = 0, the results of [69] for T',./u are reproduced.

B. Numerical solution

To find the numerical solution for the (1 4+ 1)-
dimensional holographic p-wave superconductor in the
presence of backreaction and BI nonlinear electrodynam-
ics, we employ the shooting method. For this purpose, we
need to know the behavior of the equations of motion (18)
and (19), both at the horizon and the boundary. We use
the fact that ¢(z = 1) = 0; otherwise the norm of the
gauge field A, will be ill defined at the horizon where
f(z=1) =0. By using these conditions, we can expand
the metric functions and vector field, around z = 1, as

fR=H0-2)+f(1-2+--.  (36)

1@ =xo+n(l=2) 0=+ (37)
(@) =¢(1-2) +hr(1-2)>+--.  (38)
pi(2) = pry o (1=2) +p,(1 =2+ (39)

The higher orders will be disregarded because, in the
vicinity of horizon, (1 —z)" is very small and can be
neglected. In this method, we can write all coefficients in
terms of ¢, p,,, and y,. By varying these three parameters
at the horizon, we try to gain the desirable state
P (0) = y(00) = 0. In addition, we can set r, =1 by
virtue of the equations of motion’s symmetry:

r— ar, f = a*f, ¢ — ag.
Consequently, the numerical values of T./u for different
values of backreaction and nonlinearity parameters are
achieved. In order to show that there is a good agreement
between analytical and numerical results, we present the
numerical results in Tables I-III, too. However, we observe
differences in the results in some cases, which originate
from the fact that in order to solve the analytical solution,
we use some simplifications. One may argue that these
disagreements could be solved by considering the poly-
nomial in the form of F(z) = 1 — az®> — fz* — yz*, as the
trial function. However, in this case one faces difficulties to
achieve the solutions for larger values of the BI and
backreaction parameters. Indeed, in this case, besides
finding the parameter a, we have to find the f and y
parameters. Actually, the analytical method in holo-
graphic p-wave superconductors is very difficult. And
for this reason, most studies on the holographic p-wave
superconductors have been carried out numerically. In
addition, the investigation of one-dimensional holographic

v <>

V <Jdx>

k=01 T

= 10 .- 42=0.15
= — ?=0.2
— =025, . . . . ol=ni?x025 . . . .
85 04 05 06 07 08 09 10 03 04 05 06 07 08 09 1.0
T/Te T/Te
() b=0 (b) b=0.04 (c) b=0.08
FIG. 1. The behavior of the condensation parameter as a function of temperature for different values of backreaction.
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FIG. 2. Plot of the condensation as a function of temperature with m? = 1 for different values of the nonlinearity parameter b.

superconductors in the background of three-dimensional
BTZ black holes is a difficult problem due to the loga-
rithmic behavior of the gauge field ¢. Overall, the shooting
method’s results follow the same trend as the results of the
Sturm-Liouville method, namely, by increasing the strength
of backreaction as well as the nonlinearity parameters for
each form of the trial function F(z). Indeed, increasing
the values of the backreaction and nonlinear parameters
makes it much harder to form the condensation. In addition,
for b =0, the numerical values of [69] are regained.
Figures 1 and 2 show, respectively, the behavior of con-
densation as a function of temperature for different values
of backreaction and nonlinear parameters. Based on these
figures, the condensation gap increases for larger values of
the backreaction and nonlinearity parameters, while the
other one is fixed. This implies that it is harder to form a
holographic p-wave superconductor in the presence of
backreaction and BI nonlinear parameters.

IV. CRITICAL EXPONENTS

In this section, we calculate the expectation value of (/)
in the vicinity of the critical temperature 7, for the one-
dimensional holographic p-wave superconductor devel-
oped in a BTZ black hole background, when the gauge
and vector fields backreact on the background geometry in
the presence of BI nonlinear electrodynamics. Again, we
perform our calculations both analytically and numerically.

A. Analytical study

To follow the analytical approach, we consider the
behavior of the gauge field A, near the critical temperature.
Since the condensation in the vicinity of the critical
temperature is nonzero, we expect to have an extra term
in the consequent equation compared to the field equa-
tion (21) in the previous section. Thus, Eq. (19) becomes

N bz3¢; 3(z)

¥+ 1
Z

Substituting Eqgs. (24) and (25) in the above expression,
we get

R e e C=CIT
where
oy ZF2) (369" (2)
=) = 9(2) (1 2r} > N

In order to find the solution of Eq. (41), we note that near
the critical temperature, T ~ T, the value of (J,)2/r% is
small, so we may write the solution in the form

@ = Alog(z) — %bﬁ @ -1+ <Jrf;>2 n(2)- (43)

At the horizon ¢(z=1)=0, we have z(1)=0.
Substituting Eq. (43) in Eq. (41), we arrive at

7@+
Z

_ AZF(2)
(2

+3b22%1 (2)

[Iog(z) - %b/lz(zz -1)- %bﬂzzz log(z)|.
(44)

Multiplying both sides of Eq. (44) by the factor ze2’*'<,
we get

1 31,922 3622
/ d(ze" i (z)) = e i/ (1) = A, (45)
0
where
A= / 1 iFZ(z)e%W {log(z) - lbﬂz(f -1)
0 9(z) 4
- %blzzz log(z)] dz. (46)

Now, we use the coordinate transformation z - Z + 1 in
Eq. (22). Considering the fact that the first term on the rhs
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8.0

75F
70k
65F

6.0F

Logl<dy>/T,%]

55F

50F

- — -1?=02!
B T -é.os 455
Log[1-T/T,] Log[1-T/T¢] Log[1-T/T¢]
() b=0 (b) b= 0.04 (c) b= 0.08
FIG. 3. The behavior of log(J,)/T? as a function of log(1 — T/T..) with a slope of 1/2 for different values of backreaction parameters.

of Eq. (43) is the solution of ¢(z) at the critical point, and
the second term is a correction term, we have

£Jrﬁlog(l +2Z) zilog(l +2Z)
ry Iy Tie
1 3 J.)?
——b<L> [(1+z)2—1]+< j> n(1+2). (47)
4 Fie Fie

Then, by expanding the resulting equation around Z = 0,
we find

Z2
£+ﬁ<z__+...)
rooory 2

:%(z-zqum) —%b<ﬁ>3[(1+z)2—1]

J 2
L
ie

(1) +Zn'(1) + - ). (48)

Comparing the coefficients Z on both sides of Eq. (48) and
using Eq. (45), we find

2
LI (1 B e,

R Tie

(49)

Near the critical point, we have T ~ T, and thus using
relation (35), we can find r, as

4nT

Inserting Egs. (35) and (50) in Eq. (49) and taking the
absolute values of the resulting equation, we arrive at

T
(1) =713 [1 - (51)
where
1 4” 2 3’)}.2
= EL 52
T A (2—;&12 +§bz<2,14> ¢ (52)

According to this equation, the critical exponent f = 1/2 is
in good agreement with the mean field theory. We are faced
with the second order phase transition for all values of the
backreaction and nonlinear parameters because the value of
p is independent of the effect of backreaction and non-
linearity. In addition, Eq. (52) for b — 0 becomes the
equivalent equation in [69].

B. Numerical approach

Using the results of the analytical solution for the
condensation in the vicinity of the critical temperature
[i.e., Eq. (51)], we have

log <<;“:2‘>> =log(y) + %log <1 - ;)

(53)

.= (50) Figures 3 and 4 give information about the behavior of
— 1202 L L2 a4yt . .
(2 —k2% 4 3 bi2) log(%) as a function of log (1 —TlC) in the presence of
7.0 — 8.5
6.5F P ‘;/5 8.0f
& ,’/ - & &
o - id o o 7.5F
S o7 e S o
= 60} T =~ ~
?x T ?x ?* 7.0p
Y. 55F T v, AR
g T T e g g 65
sof.~" -7 ~--b=0.04
e — b=0.08 6.0
450 : 55 :
25 4 -3 -2 -1 25 4 -3 -2 -1
Log[1-T/T,] Log[1-T/T,] Log[1-T/T,]
(a) k2=0 (b) k2 =0.10 (c) k2 =0.20

FIG. 4. The behavior of log(J,)/T? as a function of log(1 — T/T.) with a slope of 1/2 for different values of nonlinearity parameters.
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backreaction and BI nonlinear parameters. The slope of
curves is 1/2, which is in agreement with the analytical
approach. In addition, both methods follow the mean field
theory, and the second order phase transition occurs.

V. CONDUCTIVITY

In this section, we obtain the electrical conductivity as a
function of frequency for the one-dimensional holographic
p-wave superconductors in the presence of backreaction
and BI nonlinear electrodynamics by applying appropriate
electromagnetic perturbations of A, and ¢g,, on the black
hole background. Based on the AdS/CFT correspondence,
these perturbations in the bulk are dual to the boundary
electric current. If we consider o;; and J; as the electric
conductivity and external electric field, according to the
Ohm’s law we have

(54)

In order to calculate the conductivity in the x direction, we
need to add the following perturbational terms in the bulk
gauge potential and metric:

0A, = Ax(r>e_iwt’ 09y = gtx(r)e_iwt' (55)
Using Eq. (55), the linearized form of the x component of
the electromagnetic equation (4) becomes

'(r)_x(r) 1 2bp(r)e"p(r)d/ (1)

w200 + a0 [0 -0 -

Vg )
: \/W - W] +A(r) aj)ie(’fr)

+ O g ) - 20

2(r e)((’) r
20 1= b =0, (50

Also, using (t1), (xx), (tx), (xt), (xr) components of the
Einstein equations and after some simplification, we
arrive at

L |t - 220

2k2 r

A(r)¢'(r)
1 — ber g (r)

=0, (57)

2(r) e ep(r
2 i) + 2 )

- Sy () =0 (38)

Substituting Egs. (57) and (58) in Eq. (56), we obtain the
linearized equation for the gauge field A,,

—~
~
~—
X
—
~
~—
—

2bp2(r) e p(r) ' (7)
- 21 ()

el

) rf@)

[\
X
=19
~—

~
-

o]

2k%e? ) 2 (1)
1= ber"(r)

- ] =0. (59)
f(r)

Let us note that, of course, investigating the effects of
nonlinearity as well as the backreaction parameters on
the conductivity is a worthy task. However, in order to
compute the conductivity in the holographic approach in
the presence of nonlinear and backreaction parameters, we
need to use the component of the gauge field as well as the
metric. This extra component makes the calculations too
difficult, and we are faced with difficulty in numerical
solutions for the cases with nonzero values of backreaction.
Therefore, for simplicity, in what follows, we consider only
the probe limit by setting g,.(r) = 0 = y(r) in the presence
of BI nonlinear electrodynamics. Thus, in the absence of
backreaction, Eq. (56) can be written as

"(r 2(r\p(r)¢ (r
s+ a0 L BAOSOH 0

2(r @*A (r
X \/1 = bg"*(r) — b¢r( )} + f?xr()) =0, (60)

where it admits the asymptotic solution in the following
form:

1
A, =AY + 4V 1og (—) (61)
r

Based on the AdS/CFT dictionary, AY plays the role of the
source in the dual theory, while A,g) gives the expectation

value of the dual current. For the boundary current, we have

o 5Sbulk o 5S0.s o a(\/ _gﬁm)

= A0 = A0 = AT r—oo, (62)

where

So. = / Y dr / LxJ=GL,. (63)
Integrating by parts and using Eq. (60), we get

o[PS
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FIG. 6. The behavior of the imaginary part of the conductivity as a function of w/T for different values of temperature in the case

k2 =0.

Using the asymptotic behavior of ¢(r), f(r), and A (r)
given by Egs. (16) and (61), we can calculate J,. So, the
electrical conductivity based on Eq. (54) is

(1) . Al
J, A izA(2)

_Ux_ — , 65
) =TT oA el @ -] )
where

E, = —0,0A,. (66)

Following the analytical approach to calculate conductivity
seems difficult; thus we apply the numerical method. In
order to do that, we consider the ingoing wave boundary
condition in the vicinity of the horizon for A, (r) as follows:

A(r) = f(#1+a(l—r)+b(1—r)+--]. (67)

In the above equation, 7T is the Hawking temperature, which
in the probe limit 7 = r,/(2x), because in this case
f(r) = r* — 1. Furthermore, a, b, - -- are obtained based
on the Taylor expansion of Eq. (60) around the horizon.
Now, because of Eq. (65) we can numerically explore the
behavior of the conductivity for the (1 + 1)-dimensional
holographic p-wave superconductor in the probe limit in
the presence of BI nonlinear electrodynamics. Figures 5
and 6 give information about the behavior of the real and
imaginary parts of conductivity as a function of w/T for
different values of nonlinearity parameter b in the case
k> =0 for T/T. = 0.2, 0.5, 0.8. The delta function in the
real part of the conductivity is not related to the imaginary

1.0
1.00) 1.2;
0.8} 3\
0.8l 1.0 (\-“
i
t 0.8}
g %° T o6} Eob
) [) o 0.6fF W
T 04f < oab 4 Y
—— b=0 -~ b=0 0.4f —— b=0
0.2} -~ b=0.04 [ —-~b=0.04 -~ b=0.04
— b=0.08 0.2 — b=0.08 0.2f — b=0.08
0.0 . s A 0.0 . A ‘ 0.0 . A
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
w/T w/T w/T
(a) T/T. =0.2 (b) T/T. =0.5 (¢) T/T. =0.8

FIG. 7. The behavior of the real part of the conductivity as a function of w/T for different values of b in the case x> = 0.
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FIG. 8. The behavior of the imaginary part of the conductivity as a function of /T for different values of b in the case x> = 0.

part near /T = 0 by the Kramers-Kronig relation because
the imaginary part tends to zero instead of having a pole in
this region. In addition, Rec(w) tends to zero at high
frequencies, as in [59]. The imaginary and real parts of
conductivity follow a different trend in higher dimensions
because we are faced with the absence of a gap and
divergence behavior in the real and imaginary parts,
respectively. Moreover, the effect of different values of
temperature is more apparent for larger values of the
nonlinearity parameter. Figures 7 and 8 show the effect
of different values of the nonlinearity parameter b for fixed
values of T/T,.. Based on these figures, the difference of
the graphs becomes more obvious by increasing the value
of T/T .. In addition, for a fixed value of T/T ., the effect of
nonlinearity makes the Drude-like peak in the real part
of the conductivity increase and causes deeper minimum
values in the imaginary part.

VI. SUMMARY AND DISCUSSION

We have investigated the one-dimensional holographic
p-wave superconductor model by applying AdS3/CFT2
when the gauge and vector fields backreact on the back-
ground geometry in the presence of BI nonlinear electro-
dynamics. For this purpose, we employ the Sturm-Liouville
eigenvalue problem for analytical investigations and the
shooting method for the numerical calculations. In both
methods, we find the relation between the critical temper-
ature 7', and the chemical potential y for different values of
the nonlinear and backreaction parameters. The results of
analytical and numerical methods are in good agreement
with each other. We found that increasing the values of the

nonlinearity and backreaction parameters decreases the
critical temperature and thus makes it harder to form the
condensation. Furthermore, the critical exponents of this
system were also obtained both analytically and numeri-
cally. We are faced with a second order phase transition
with = 1/2 which follows the mean field theory. This
value is independent of backreaction and nonlinear effects.

In addition, we analyzed the conductivity of this system
for the case of the probe limit and investigated the
properties of the real and imaginary parts of conductivity
for different values of the nonlinear parameter b. The
behavior of both the real and imaginary parts of conduc-
tivity are different from higher dimensions, and they do not
connect to each other based on the Kramers-Kronig
relation. We did not observe divergency near w/T =0
in the imaginary part of the conductivity where a delta
function in the real part appears. By increasing the effect of
nonlinearity, we obtained larger values for a Drude-like
peak in the real part of the conductivity and deeper
minimum values of the imaginary part. It is difficult to
see the effect of different temperatures for small values of
the nonlinearity parameter. However, the effect of temper-
ature becomes apparent by increasing b.
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