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We investigate analytically as well as numerically the effects of nonlinear Born-Infeld electrodynamics
on the properties of (1þ 1)-dimensional holographic p-wave superconductors in the context of gauge-
gravity duality. We consider the case in which the gauge and vector fields backreact on the background
geometry. We apply the Sturm-Liouville eigenvalue problem for the analytical approach as well as the
shooting method for the numerical calculations. In both methods, we find the relation between critical
temperature Tc and chemical potential μ and show that both approaches are in good agreement with each
other. We find that if one strengthens the effect of backreaction as well as nonlinearity, the critical
temperature decreases, which means that the condensation is harder to form. We also explore the
conductivity of the one-dimensional holographic p-wave superconductor for different values of b and
T=Tc. We find that the real and imaginary parts of the conductivity have different behaviors in higher
dimensions. The effects of different values of temperature are more apparent for larger values of the
nonlinearity parameter. In addition, for the fixed value of T=Tc, by increasing the effect of nonlinearity, we
observe larger values for a Drude-like peak in the real part of conductivity and a deeper minimum for the
imaginary part.
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I. INTRODUCTION

The idea of a holographic superconductor was proposed
by Hartnoll et al. [1] by building a holographic s-wave
superconductor in the background of four-dimensional
Schwarzschild anti-de Sitter (AdS) black holes. The
motivation was to shed light on the problem of high
temperature superconductors. The most well-known theory
of superconductors was proposed by Bardeen, Cooper, and
Schrieffer (BCS); it can successfully explain the mecha-
nism of low temperature superconductors. According
to BCS theory, the condensation of pairs of electrons with
antiparallel spins (Cooper pairs) interacts through the
exchange of phonons into a bosonlike state [2]. To build
the holographic superconductor, the correspondence
between AdS spaces and conformal field theory (CFT)
plays a crucial role [1,3]. According to the AdS/CFT
dictionary, a strong coupling d-dimensional conformal
field theory living on the boundary is equivalent to the
weak coupling gravity theory in (dþ 1)-dimensional AdS
bulk, and each quantity in the bulk has a dual on the
boundary [4–8]. In order to describe a superconductor at
the boundary in a holographic scenario, we need a hairy

black hole in the bulk. More precisely, we need a hairy
black hole (superconducting phase) for temperatures below
the critical value and a black hole with no hair (normal
phase or conductor phase) for upper values. During this
process, the system undergoes the spontaneous Uð1Þ
symmetry breaking. The condensation of a charged oper-
ator at the boundary corresponds to the emergence of the
hair for black holes in the bulk. The quantum description
of the hair for black holes is the gas of charged particles
that have the same sign charge as the black hole. These are
repelled away by the black hole and forbidden to escape to
infinity due to the presence of the negative cosmological
constant in the AdS bulk [9]. The holographic super-
conductor theory has received much attention in the past
decade (see e.g., [10–32]). Moreover, holographic super-
conductors have also been widely explored in the regime
of nonlinear electrodynamics (see e.g., [25–34]). There
are several types of nonlinear electrodynamics such as the
Born-Infeld (BI) [35], exponential [36], logarithmic [37],
and power-Maxwell [27], the most famous being BI
nonlinear electrodynamics which was first proposed for
solving the divergency in the electrical field of the point
particles [35,38–41]. Studies on the holographic super-
conductors have also generalized to other types such as
p-wave superconductors. The p-wave superconductivity*asheykhi@shirazu.ac.ir
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is a phase of matter which occurs when the electrons
are bounded with parallel spins by the exchange of
electronic excitations with angular momentum l ¼ 1
and condense in a triplet state. The terms odd-parity
superconductivity, p-wave superconductivity, and triplet
superconductivity are all equivalent [42]. Various models
of holographic p-wave superconductors have been inves-
tigated. Holographic p-wave superconductors can be
studied by condensation of a charged vector field in the
bulk, which corresponds to the vector order parameter in
the boundary [43,44]. This implies that the spin-1 order
parameter can correspond to the condensation of a 2-form
field on the gravity side [45]. In [46], this type of
holographic superconductor is characterized by introduc-
ing a SUð2Þ Yang-Mills gauge field in the bulk, in which
one of the gauge degrees of freedom corresponds to the
vector order parameter at the boundary. In addition, an
alternative method to describe this kind of holographic
superconductor emerges by adopting a complex vector
field charged under a Uð1Þ gauge field, which is equiv-
alent to a strongly coupled system involving a charged
vector operator with a global Uð1Þ symmetry at the
boundary [47]. For this type of holographic superconduc-
tor, by decreasing temperature below the critical value, the
normal phase becomes unstable, and we observe the
formation of vector hair, which corresponds to the super-
conducting phase. Other investigations on the holo-
graphic p-wave superconductors have been carried out
in e.g., [47–53].
Furthermore, the (1þ 1)-dimensional holographic super-

conductors have been developed in the background of
the BTZ black hole [8]. The BTZ black hole is the well-
known solution of general relativity in (2þ 1)-dimensional
spacetime which plays a crucial role in understanding
the gravitational interaction in low dimensional space-
times. In order to study the one-dimensional holographic
superconductor, one may apply AdS3=CFT2 correspon-
dence [54–58]. One-dimensional holographic s-wave and
p-wave superconductors were analyzed both analytically
and numerically from different points of view in e.g.,
[33,34,59–69]. It is worth noting that most investigations
on the (1þ 1)-dimensional holographic p-wave super-
conductors are done in the framework of linear Maxwell
electrodynamics. Therefore, it is fascinating to study the
effects of nonlinearity in such a holographic superconduc-
tor. In the present work, we would like to extend the
investigation on the one-dimensional holographic super-
conductor by considering the BI nonlinear electrodynamics
when gauge and vector fields backreact on background
geometry. It is worth noting that the (1þ 1)-dimensional
holographic p-wave superconductor is located on the
boundary of (2þ 1)-dimensional spacetime, while the
gauge and the vector fields are defined in the (2þ 1)-
dimensional BTZ black hole. It is well known that the
electric field of a point charge in (2þ 1) dimensions has

the form EðrÞ ¼ q=r. Thus, there is still a divergency in the
electric field at the location of the point charge (r ¼ 0).
However, taking the BI electrodynamics into account can
remove this divergency as well. This is the main motivation
for investigating the (1þ 1)-dimensional holographic
p-wave superconductor in the presence of nonlinear BI
electrodynamics.
We employ both analytical and numerical approaches.

Our analytical study is based on the Sturm-Liouville
eigenvalue problem, while the shooting method is used
for the numerical calculations. Our aim is to find a
relation between the critical temperature Tc and the
chemical potential μ for different values of backreaction
and nonlinear parameters. We also investigate the effects
of nonlinearity on the real and imaginary parts of
conductivity.
This article is organized as follows. In Sec. II we

introduce the one-dimensional holographic p-wave super-
conductor. In Sec. III, we study condensation of the vector
field both analytically and numerically. In Sec. IV, we
calculate the critical exponent of this type of holographic
superconductor analytically as well as numerically. In
Sec. V, we explore the holographic conductivity for this
model. Finally, in Sec. VI, we present a summary of our
results and a discussion.

II. THE HOLOGRAPHIC P-WAVE MODEL

In a three-dimensional spacetime, the action of
Einstein gravity in the presence of nonlinear BI electro-
dynamics and a negative cosmological constant can be
written as

S ¼ 1

2κ2

Z
d3x

ffiffiffiffiffiffi
−g

p
LG þ

Z
d3x

ffiffiffiffiffiffi
−g

p
Lm;

LG ¼ Rþ 2

l2
;

Lm ¼ LðF Þ − 1

2
ρ†μνρμν −m2ρ†μρμ þ iqγρμρ

†
νFμν: ð1Þ

In the Lagrangian of the matter field, Lm, the constants m
and q are the mass and charge of the vector field ρμ,
respectively. Here, κ2 ¼ 8πG3 where G3 is the three-
dimensional Newtonian gravitation constant in the bulk.
In addition, the metric determinant, Ricci scalar, and AdS
radius are characterized by g, R, and l, respectively. Also,
Fμν ¼ ∇μAν −∇νAμ is the strength of the Maxwell field,
with Aμ as the vector potential. Considering Dμ ¼ ∇μ −
iqAμ we can define ρμν ¼ Dμρν −Dνρμ. The last term in
the matter Lagrangian, which represents a nonlinear inter-
action between ρμ and Aμ with γ the magnetic moment, can
be ignored in the present work becausewe consider the case
without an external magnetic field. The Lagrangian density
of the BI nonlinear electrodynamics is given by LðF Þ and
can be defined as
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LðF Þ ¼ 1

b

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bF

2

r !
; ð2Þ

where b is the nonlinear parameter and F ¼ FμνFμν. When
b → 0, LðF Þ reduces to the standard Maxwell Lagrangian.
Varying the action (1) with respect to the metric gμν, the

gauge field Aμ, and the vector field ρμ yields the equations
of motion for the gravitational and the bulk matter fields as

1

2κ2

�
Rμν − gμν

�
R
2
þ 1

l2

��

¼ −2FμλFν
λLF þ 1

2
Lmgμν þ

1

2
½ρ†μλρλν þm2ρ†μρν

− iγqFλ
νðρμρ†λ − ρ†μρλÞ þ μ ↔ ν�; ð3Þ

∇νð−4LFFνμÞ
¼ iqðρνρ†νμ − ρν†ρνμÞ þ iqγ∇νðρνρ†μ − ρ†νρμÞ; ð4Þ

Dνρνμ −m2ρμ þ iqγρνFνμ ¼ 0; ð5Þ

where LF ¼ ∂L=∂F . In order to study the backreacted
(1þ 1)-dimensional holographic p-wave superconductor
in the presence of BI nonlinear electrodynamics, we
consider the following ansatz for the metric and bulk fields:

ds2 ¼ −fðrÞe−χðrÞdt2 þ dr2

fðrÞ þ r2dx2; ð6Þ

ρνdxν ¼ ρxðrÞdx; Aνdxν ¼ ϕðrÞdt; ð7Þ

where the x component of the vector field ρx corresponds to
the expectation value hJxi which plays the role of the order
parameter in the boundary theory. The Hawking temper-
ature of the black hole is given by [34]

T ¼ e−χðrþÞ=2f0ðrþÞ
4π

: ð8Þ

Substituting relations (6) and (7) in the field equations (3)
and (4), we arrive at

f0ðrÞ−2r
l2
þ2κ2r

"
1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−beχðrÞϕ02ðrÞ

q −
1

b

þq2ρ2xðrÞeχðrÞϕ2ðrÞ
r2fðrÞ þfðrÞρ0x2ðrÞ

r2
þm2ρ2xðrÞ

r2

#
¼0; ð9Þ

χ0ðrÞ þ 4κ2

r

�
q2ρ2xðrÞeχðrÞϕ2ðrÞ

f2ðrÞ þ ρ0x2ðrÞ
�
¼ 0; ð10Þ

ϕ00ðrÞ þ ϕ0ðrÞ
�
χ0ðrÞ
2

þ 1

r
−
beχðrÞϕ02ðrÞ

r

�

−
2q2ρ2xðrÞϕðrÞ

r2fðrÞ ½1 − beχðrÞϕ02ðrÞ�3=2 ¼ 0; ð11Þ

ρ00xðrÞ þ ρ0xðrÞ
�
f0ðrÞ
fðrÞ −

χ0ðrÞ
2

−
1

r

�

þ ρxðrÞ
�
q2eχðrÞϕ2ðrÞ

f2ðrÞ −
m2

fðrÞ
�
¼ 0: ð12Þ

Here, the prime denotes the derivative with respect to r.
In the presence of the nonlinear BI electrodynamics,
Eqs. (12) and (10) do not change in comparison with
the linear Maxwell case. In the limiting case where b → 0,
the equations of motion of the Maxwell field are repro-
duced [69]. If we consider the probe limit by setting κ ¼ 0,
the equations of motion (11) and (12) turn into the
corresponding equations in [70]. There are scaling sym-
metries of the equations of motion (9)–(12) that we can use
to set q and l equal to unity.

q → q=a; ϕ → aϕ; ρx → aρx;

κ → κ=a; b → b=a2; ð13Þ

l → al; r → ar; q → q=a;

b → ba2; m → m=a: ð14Þ

In addition, there is another symmetry which leaves the
metric unchanged,

eχ → a2eχ ; t → at; ϕ → a−1ϕ: ð15Þ

Based on Eq. (15), the boundary value of χ is constant, so
we can set χ ¼ 0. Considering μ and ρ as the chemical
potential and charge density, the asymptotic behavior
ðr → ∞Þ of the field equations is given by

ϕðrÞ ∼ ρþ μ lnðrÞ; fðrÞ ∼ r2;

χðrÞ → 0; ρxðrÞ ∼
ρx−
r−m

þ ρxþ
rþm : ð16Þ

Taking the Breitenlohner-Freedman (BF) bound into
account, m2 ≥ 0, ρx− plays the role of the source and
ρxþ is known as the x component of the expectation value of
the order parameter hJxi [71]. Hereafter, we set m2 ¼ 1. In
the next sections, we investigate, analytically as well as
numerically, the properties of one-dimensional backreacted
holographic p-wave superconductors in the presence of BI
nonlinear electrodynamics.
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III. CONDENSATION OF VECTOR FIELD

Let us now investigate the relation between the critical
temperature Tc and the chemical potential μ for holo-
graphic p-wave superconductors. In particular, we would
like to explore the effects of backreaction as well as the
nonlinearity parameter on the critical temperature.

A. Analytical approach

In order to follow our analytical studies, we apply the
Sturm-Liouville eigenvalue problem and define z ¼ rþ=r
as a new variable where 0 ≤ z ≤ 1. Therefore, Eqs. (9)–(12)
become

f0ðzÞ þ 2r2þ
z3

þ 2κ2

z

2
64−ρx2ðzÞ − eχðzÞϕ2ðzÞρx2ðzÞ

fðzÞ

−
z4fðzÞρ0x2ðzÞ

r2þ
þ r2þ
bz2

2
641 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − bz4eχðzÞϕ02ðzÞ
r2þ

r
3
75
3
75 ¼ 0;

ð17Þ

χ0ðzÞ − 4κ2
�
eχðzÞϕ2ðzÞρx2ðzÞ

zf2ðzÞ þ z3ρ0x2ðzÞ
r2þ

�
¼ 0; ð18Þ

ϕ00ðzÞ þ ϕ0ðzÞ
�
1

z
þ χ0ðzÞ

2
þ bz3eχðzÞϕ02ðzÞ

r2þ

�

−
2ϕðzÞρ2xðzÞ
z2fðzÞ

�
1 −

bz4eχðzÞϕ02ðzÞ
r2þ

�
3=2

¼ 0; ð19Þ

ρ00xðzÞ þ ρ0xðzÞ
�
3

z
−
χ0ðzÞ
2

þ f0ðzÞ
fðzÞ

�

þ ρxðzÞ
�
r2þeχðzÞϕ2ðzÞ
z4f2ðzÞ −

r2þ
z4fðzÞ

�
¼ 0: ð20Þ

Here, the prime indicates the derivative with respect to z.
In the vicinity of the critical temperature, the expectation
value of hJxi is tiny, so we take it as an expansion
parameter,

ϵ≡ hJxi:

We concentrate on the solutions for small values of the
condensation parameter ϵ because near the critical temper-
ature, we have ϵ ≪ 1. Therefore, we expand the functions
in terms of the ϵ as

f ≈ f0 þ ϵ2f2 þ ϵ4f4 þ � � � ;
χ ≈ ϵ2χ2 þ ϵ4χ4 þ � � � ;
ϕ ≈ ϕ0 þ ϵ2ϕ2 þ ϵ4ϕ4 þ � � � ;
ρx ≈ ϵρx1 þ ϵ3ρx3 þ ϵ5ρx5 þ � � � :

Moreover, the chemical potential can be expressed as

μ ¼ μ0 þ ϵ2δμ2 þ � � � → ϵ ≈
�
μ − μ0
δμ2

�
1=2

; δμ2 > 0:

Near the phase transition μc ¼ μ0, so the order parameter
vanishes. In addition, the mean field value for the critical
exponent β ¼ 1=2 is obtained.
At zeroth order of ϵ, the equation for the gauge field (19)

becomes

ϕ00ðzÞ þ ϕ0ðzÞ
z

þ bz3ϕ03ðzÞ
r2þ

¼ 0: ð21Þ

We can find the solution for this equation as follows:

ϕðzÞ ¼ λrþ logðzÞ − 1

4
bλ3rþðz2 − 1Þ; λ ¼ μ

rþ
: ð22Þ

Substituting solution (22) into Eq. (17), we arrive at

f0ðzÞ þ 2r2þ
z3

þ 2κ2r2þ
bz3

0
B@1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bz4ϕ02ðzÞ

r2þ

q
1
CA ¼ 0: ð23Þ

The solution for fðzÞ, at zeroth order of ϵ, can be
obtained as

fðzÞ ¼ r2þgðzÞ
z2

;

gðzÞ ¼ 1 − z2 þ κ2λ2z2 logðzÞ þ 1

8
bκ2λ4z2 −

1

8
bκ2λ4z4:

ð24Þ

Near the boundary, we can define the function ρxðzÞ
based on the trial function FðzÞ ¼ 1 − αzϖ in which
ϖ ≥ 2 and satisfies the boundary conditions Fð0Þ ¼ 1
and F0ð0Þ ¼ 0,

ρxðzÞ ¼
hJxiffiffiffi
2

p
rΔþ

zΔFðzÞ: ð25Þ

Inserting Eqs. (24) and (25) in Eq. (20), we arrive at

MAHYA MOHAMMADI and AHMAD SHEYKHI PHYS. REV. D 100, 086012 (2019)

086012-4



F00ðzÞ þ F0ðzÞ
�
g0ðzÞ
gðzÞ þ

2Δ
z

þ 1

z

�

þ FðzÞ
�
Δg0ðzÞ
zgðzÞ −

1

z2gðzÞ þ
Δ2

z2

�

−
FðzÞλ2 logðzÞ

2g2ðzÞ ½bλ2rþðz2 − 1Þ − 2 logðzÞ� ¼ 0: ð26Þ

The Sturm-Liouville form of this equation is

½TðzÞF0ðzÞ�0 þ PðzÞTðzÞFðzÞ þ λ2QðzÞTðzÞFðzÞ ¼ 0;

ð27Þ

where

TðzÞ ¼ z2Δþ1

�
ð1 − z2Þ

�
1þ b

8
κ2λ4z2

�
þ κ2λ2z2 logðzÞ

�
;

ð28Þ

PðzÞ ¼ Δ
z

�
g0ðzÞ
gðzÞ þ

Δ
z

�
−

1

z2gðzÞ ; ð29Þ

QðzÞ ¼ logðzÞ
g2ðzÞ

�
logðzÞ þ b

2
λ2rþð1 − z2Þ

�
: ð30Þ

According to the Sturm-Liouville eigenvalue problem, we
should minimize the following expression with respect to α.

λ2 ¼
R
1
0 TðF02 − PF2ÞdzR

1
0 TQF2dz

: ð31Þ

The definition of the backreaction parameter, based on the
iteration method, is [72]

κn ¼ nΔκ; n ¼ 0; 1; 2;…; Δκ ¼ κnþ1 − κn; ð32Þ

where we take Δκ ¼ 0.05. In addition, we have

κ2λ2 ¼ κn
2λ2 ¼ κn

2ðλ2jκn−1Þ þO½ðΔκÞ4�;
κ−1 ¼ 0; λ2jκ−1 ¼ 0; ð33Þ

bλ2 ¼ bðλ2jb¼0Þ þOðb2Þ: ð34Þ

Using Eqs. (8) and (9), the critical temperature, at zeroth
order with respect to ϵ, is given by

Tc ¼
f0ðrþcÞ
4π

¼ rþc

4π

�
2 − κ2λ2 þ 1

4
bκ2λ4

�

¼ 1

4π

�
μ

λ

��
2 − κ2nðλ2jκn−1Þ þ

1

4
bκ2nðλ4jκn−1;b¼0Þ

�
: ð35Þ

Considering three different forms of the trial function FðzÞ,
the analytical results of Tc=μ affected by different values of
backreaction and nonlinear parameters are listed in
Tables I–III. Based on these results, the effects of increasing

TABLE I. Analytical and numerical results of Tc=μ for different values of the backreaction and nonlinear
parameters with the trial function FðzÞ ¼ 1 − αz2.

b ¼ 0 b ¼ 0.04 b ¼ 0.08

Analytical Numerical Analytical Numerical Analytical Numerical

κ2 ¼ 0 0.0478 0.0503 0.0416 0.0454 0.0343 0.0406
κ2 ¼ 0.05 0.0443 0.0410 0.0379 0.0366 0.0303 0.0324
κ2 ¼ 0.1 0.0424 0.0330 0.0361 0.0290 0.0281 0.0254
κ2 ¼ 0.15 0.0394 0.0260 0.0331 0.0226 0.0248 0.0195
κ2 ¼ 0.2 0.0353 0.0201 0.0291 0.0172 0.0205 0.0146
κ2 ¼ 0.25 0.0302 0.0152 0.0241 0.0127 0.0153 0.0106

TABLE II. Analytical and numerical results of Tc=μ for different values of the backreaction and nonlinear
parameters with FðzÞ ¼ 1 − αz3.

b ¼ 0 b ¼ 0.04 b ¼ 0.08

Analytical Numerical Analytical Numerical Analytical Numerical

κ2 ¼ 0 0.0466 0.0503 0.0400 0.0454 0.0320 0.0406
κ2 ¼ 0.05 0.0397 0.0410 0.0347 0.0366 0.0243 0.0324
κ2 ¼ 0.1 0.0375 0.0330 0.0328 0.0290 0.0215 0.0254
κ2 ¼ 0.15 0.0342 0.0260 0.0298 0.0226 0.0178 0.0195
κ2 ¼ 0.2 0.0296 0.0201 0.0258 0.0172 0.0132 0.0146
κ2 ¼ 0.25 0.0238 0.0152 0.0208 0.0127 0.0083 0.0106
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the backreaction parameter κ for a fixed value of the
nonlinear parameter b are the same as increasing the
nonlinear parameter for a fixed value of κ. In other words,
in both cases, the value of Tc=μ decreases by increasing the
backreaction or nonlinear parameters. Thus, the presence of
backreaction and BI nonlinear electrodynamics makes it
harder for the vector hair to form. In addition, for the case
with b ¼ 0, the results of [69] for Tc=μ are reproduced.

B. Numerical solution

To find the numerical solution for the (1þ 1)-
dimensional holographic p-wave superconductor in the
presence of backreaction and BI nonlinear electrodynam-
ics, we employ the shooting method. For this purpose, we
need to know the behavior of the equations of motion (18)
and (19), both at the horizon and the boundary. We use
the fact that ϕðz ¼ 1Þ ¼ 0; otherwise the norm of the
gauge field Aμ will be ill defined at the horizon where
fðz ¼ 1Þ ¼ 0. By using these conditions, we can expand
the metric functions and vector field, around z ¼ 1, as

fðzÞ ¼ f1ð1 − zÞ þ f2ð1 − zÞ2 þ � � � ; ð36Þ

χðzÞ ¼ χ0 þ χ1ð1 − zÞ þ χ2ð1 − zÞ2 þ � � � ; ð37Þ

ϕðzÞ ¼ ϕ1ð1 − zÞ þ ϕ2ð1 − zÞ2 þ � � � ; ð38Þ

ρxðzÞ ¼ ρx0 þ ρx1ð1 − zÞ þ ρx2ð1 − zÞ2 þ � � � : ð39Þ

The higher orders will be disregarded because, in the
vicinity of horizon, ð1 − zÞn is very small and can be
neglected. In this method, we can write all coefficients in
terms of ϕ1, ρx0 , and χ0. By varying these three parameters
at the horizon, we try to gain the desirable state
ρx−ð∞Þ ¼ χð∞Þ ¼ 0. In addition, we can set rþ ¼ 1 by
virtue of the equations of motion’s symmetry:

r → ar; f → a2f; ϕ → aϕ:

Consequently, the numerical values of Tc=μ for different
values of backreaction and nonlinearity parameters are
achieved. In order to show that there is a good agreement
between analytical and numerical results, we present the
numerical results in Tables I–III, too. However, we observe
differences in the results in some cases, which originate
from the fact that in order to solve the analytical solution,
we use some simplifications. One may argue that these
disagreements could be solved by considering the poly-
nomial in the form of FðzÞ ¼ 1 − αz2 − βz3 − γz4, as the
trial function. However, in this case one faces difficulties to
achieve the solutions for larger values of the BI and
backreaction parameters. Indeed, in this case, besides
finding the parameter α, we have to find the β and γ
parameters. Actually, the analytical method in holo-
graphic p-wave superconductors is very difficult. And
for this reason, most studies on the holographic p-wave
superconductors have been carried out numerically. In
addition, the investigation of one-dimensional holographic

TABLE III. Analytical and numerical results of Tc=μ for different values of the backreaction and nonlinear
parameters with FðzÞ ¼ 1 − αz4.

b ¼ 0 b ¼ 0.04 b ¼ 0.08

Analytical Numerical Analytical Numerical Analytical Numerical

κ2 ¼ 0 0.0457 0.0503 0.0387 0.0454 0.0303 0.0406
κ2 ¼ 0.05 0.0379 0.0410 0.0328 0.0366 0.0205 0.0324
κ2 ¼ 0.1 0.0356 0.0330 0.0308 0.0290 0.0171 0.0254
κ2 ¼ 0.15 0.0321 0.0260 0.0278 0.0226 0.0131 0.0195
κ2 ¼ 0.2 0.0274 0.0201 0.0236 0.0172 0.0084 0.0146
κ2 ¼ 0.25 0.0214 0.0152 0.0186 0.0127 0.0039 0.0106

FIG. 1. The behavior of the condensation parameter as a function of temperature for different values of backreaction.
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superconductors in the background of three-dimensional
BTZ black holes is a difficult problem due to the loga-
rithmic behavior of the gauge field ϕ. Overall, the shooting
method’s results follow the same trend as the results of the
Sturm-Liouville method, namely, by increasing the strength
of backreaction as well as the nonlinearity parameters for
each form of the trial function FðzÞ. Indeed, increasing
the values of the backreaction and nonlinear parameters
makes it much harder to form the condensation. In addition,
for b ¼ 0, the numerical values of [69] are regained.
Figures 1 and 2 show, respectively, the behavior of con-
densation as a function of temperature for different values
of backreaction and nonlinear parameters. Based on these
figures, the condensation gap increases for larger values of
the backreaction and nonlinearity parameters, while the
other one is fixed. This implies that it is harder to form a
holographic p-wave superconductor in the presence of
backreaction and BI nonlinear parameters.

IV. CRITICAL EXPONENTS

In this section, we calculate the expectation value of hJxi
in the vicinity of the critical temperature Tc for the one-
dimensional holographic p-wave superconductor devel-
oped in a BTZ black hole background, when the gauge
and vector fields backreact on the background geometry in
the presence of BI nonlinear electrodynamics. Again, we
perform our calculations both analytically and numerically.

A. Analytical study

To follow the analytical approach, we consider the
behavior of the gauge field Aμ near the critical temperature.
Since the condensation in the vicinity of the critical
temperature is nonzero, we expect to have an extra term
in the consequent equation compared to the field equa-
tion (21) in the previous section. Thus, Eq. (19) becomes

ϕ00ðzÞ þ ϕ0ðzÞ
z

þ bz3ϕ03ðzÞ
r2þ

−
2ϕðzÞρx2ðzÞ

z2fðzÞ
�
1 −

bz4

r2þ
ϕ02ðzÞ

�
3=2

¼ 0: ð40Þ

Substituting Eqs. (24) and (25) in the above expression,
we get

ϕ00ðzÞ þ ϕ0ðzÞ
z

þ bz3ϕ03ðzÞ
r2þ

¼ hJxi2
r4þ

ϕðzÞΞðzÞ; ð41Þ

where

ΞðzÞ ¼ z2F2ðzÞ
gðzÞ

�
1 −

3bz4ϕ02ðzÞ
2r2þ

�
: ð42Þ

In order to find the solution of Eq. (41), we note that near
the critical temperature, T ≃ Tc, the value of hJxi2=r4þ is
small, so we may write the solution in the form

ϕðzÞ
rþ

¼ λ logðzÞ − 1

4
bλ3ðz2 − 1Þ þ hJxi2

r4þ
ηðzÞ: ð43Þ

At the horizon ϕðz ¼ 1Þ ¼ 0, we have ηð1Þ ¼ 0.
Substituting Eq. (43) in Eq. (41), we arrive at

η00ðzÞ þ η0ðzÞ
z

þ 3bzλ2η0ðzÞ

¼ λz2F2ðzÞ
gðzÞ

�
logðzÞ − 1

4
bλ2ðz2 − 1Þ − 3

2
bλ2z2 logðzÞ

�
:

ð44Þ

Multiplying both sides of Eq. (44) by the factor ze
3
2
bλ2z2,

we get Z
1

0

dðze3
2
bλ2z2η0ðzÞÞ ¼ e

3bλ2
2 η0ð1Þ ¼ λA; ð45Þ

where

A ¼
Z

1

0

z3

gðzÞF
2ðzÞe3

2
bλ2z2

�
logðzÞ − 1

4
bλ2ðz2 − 1Þ

−
3

2
bλ2z2 logðzÞ

�
dz: ð46Þ

Now, we use the coordinate transformation z → Z þ 1 in
Eq. (22). Considering the fact that the first term on the rhs

FIG. 2. Plot of the condensation as a function of temperature with m2 ¼ 1 for different values of the nonlinearity parameter b.
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of Eq. (43) is the solution of ϕðzÞ at the critical point, and
the second term is a correction term, we have

ρ

rþ
þ μ

rþ
logð1þ ZÞ ¼ μ

rþc
logð1þ ZÞ

−
1

4
b

�
μ

rþc

�
3

½ð1þ ZÞ2 − 1� þ hJxi2
r4þc

ηð1þ ZÞ: ð47Þ

Then, by expanding the resulting equation around Z ¼ 0,
we find

ρ

rþ
þ μ

rþ

�
Z −

Z2

2
þ � � �

�

¼ μ

rþc

�
Z −

Z2

2
þ � � �

�
−
1

4
b

�
μ

rþc

�
3

½ð1þ ZÞ2 − 1�

þ hJxi2
r4þc

ðηð1Þ þ Zη0ð1Þ þ � � �Þ: ð48Þ

Comparing the coefficients Z on both sides of Eq. (48) and
using Eq. (45), we find

μ

rþ
¼ μ

rþc

�
1þ hJxi2

r4þc
Ae−

3
2
bλ2
�
: ð49Þ

Near the critical point, we have T ∼ Tc, and thus using
relation (35), we can find rþ as

rþ ¼ 4πT
ð2 − κ2λ2 þ 1

4
bκ2λ4Þ : ð50Þ

Inserting Eqs. (35) and (50) in Eq. (49) and taking the
absolute values of the resulting equation, we arrive at

hJxi ¼ γT2
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

T
Tc

s
; ð51Þ

where

γ ¼ 1ffiffiffiffiffiffiffijAjp �
4π

2 − κ2λ2 þ 1
4
bκ2λ4

�
2

e
3
4
bλ2 : ð52Þ

According to this equation, the critical exponent β ¼ 1=2 is
in good agreement with the mean field theory. We are faced
with the second order phase transition for all values of the
backreaction and nonlinear parameters because the value of
β is independent of the effect of backreaction and non-
linearity. In addition, Eq. (52) for b → 0 becomes the
equivalent equation in [69].

B. Numerical approach

Using the results of the analytical solution for the
condensation in the vicinity of the critical temperature
[i.e., Eq. (51)], we have

log

�hJxi
T2
c

�
¼ logðγÞ þ 1

2
log

�
1 −

T
Tc

�
: ð53Þ

Figures 3 and 4 give information about the behavior of
logðhJxiT2

c
Þ as a function of log ð1 − T

Tc
Þ in the presence of

FIG. 3. The behavior of loghJxi=T2
c as a function of logð1 − T=TcÞwith a slope of 1=2 for different values of backreaction parameters.

FIG. 4. The behavior of loghJxi=T2
c as a function of logð1 − T=TcÞ with a slope of 1=2 for different values of nonlinearity parameters.
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backreaction and BI nonlinear parameters. The slope of
curves is 1=2, which is in agreement with the analytical
approach. In addition, both methods follow the mean field
theory, and the second order phase transition occurs.

V. CONDUCTIVITY

In this section, we obtain the electrical conductivity as a
function of frequency for the one-dimensional holographic
p-wave superconductors in the presence of backreaction
and BI nonlinear electrodynamics by applying appropriate
electromagnetic perturbations of Ax and gtx on the black
hole background. Based on the AdS/CFT correspondence,
these perturbations in the bulk are dual to the boundary
electric current. If we consider σij and Ji as the electric
conductivity and external electric field, according to the
Ohm’s law we have

σij ¼
Ji
Ej

: ð54Þ

In order to calculate the conductivity in the x direction, we
need to add the following perturbational terms in the bulk
gauge potential and metric:

δAx ¼ AxðrÞe−iωt; δgtx ¼ gtxðrÞe−iωt: ð55Þ

Using Eq. (55), the linearized form of the x component of
the electromagnetic equation (4) becomes

A00
xðrÞ þ A0

xðrÞ
�
f0ðrÞ
fðrÞ −

χ0ðrÞ
2

−
1

r
þ 2bρ2xðrÞeχðrÞϕðrÞϕ0ðrÞ

r2fðrÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − beχðrÞϕ02ðrÞ

q
−
beχðrÞϕ02ðrÞ

r

�
þ AxðrÞ

ω2eχðrÞ

f2ðrÞ

þ eχðrÞϕ0ðrÞ
fðrÞ

�
g0txðrÞ −

2gtxðrÞ
r

�

þ 2ρ2xðrÞeχðrÞϕðrÞ
r2f2ðrÞ gtxðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − beχðrÞϕ02ðrÞ

q
¼ 0: ð56Þ

Also, using ðttÞ; ðxxÞ; ðtxÞ; ðxtÞ; ðxrÞ components of the
Einstein equations and after some simplification, we
arrive at

1

2κ2

�
g0txðrÞ −

2gtxðrÞ
r

�
þ AxðrÞϕ0ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − beχðrÞϕ02ðrÞ
q ¼ 0; ð57Þ

2

r2
AxðrÞρ2xðrÞ þ

2ρ2xðrÞeχðrÞϕðrÞ
r2fðrÞ gtxðrÞ ¼ 0: ð58Þ

Substituting Eqs. (57) and (58) in Eq. (56), we obtain the
linearized equation for the gauge field Ax,

A00
xðrÞ þ A0

xðrÞ
�
f0ðrÞ
fðrÞ −

χ0ðrÞ
2

−
1

r
þ 2bρ2xðrÞeχðrÞϕðrÞϕ0ðrÞ

r2fðrÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − beχðrÞϕ02ðrÞ

q
−
beχðrÞϕ02ðrÞ

r

�

þ AxðrÞ
"
ω2eχðrÞ

f2ðrÞ −
2ρ2xðrÞ
r2fðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − beχðrÞϕ02ðrÞ

q

−
2κ2eχðrÞϕ02ðrÞ

fðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − beχðrÞϕ02ðrÞ

q
#
¼ 0: ð59Þ

Let us note that, of course, investigating the effects of
nonlinearity as well as the backreaction parameters on
the conductivity is a worthy task. However, in order to
compute the conductivity in the holographic approach in
the presence of nonlinear and backreaction parameters, we
need to use the component of the gauge field as well as the
metric. This extra component makes the calculations too
difficult, and we are faced with difficulty in numerical
solutions for the cases with nonzero values of backreaction.
Therefore, for simplicity, in what follows, we consider only
the probe limit by setting gtxðrÞ ¼ 0 ¼ χðrÞ in the presence
of BI nonlinear electrodynamics. Thus, in the absence of
backreaction, Eq. (56) can be written as

A00
xðrÞ þ A0

xðrÞ
�
f0ðrÞ
fðrÞ −

1

r
þ 2bρ2xðrÞϕðrÞϕ0ðrÞ

r2fðrÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − bϕ02ðrÞ

q
−
bϕ02ðrÞ

r

�
þ ω2AxðrÞ

f2ðrÞ ¼ 0; ð60Þ

where it admits the asymptotic solution in the following
form:

Ax ¼ Að0Þ
x þ Að1Þ

x log

�
1

r

�
: ð61Þ

Based on the AdS/CFT dictionary, Að0Þ
x plays the role of the

source in the dual theory, while Að1Þ
x gives the expectation

value of the dual current. For the boundary current, we have

J ¼ δSbulk
δAð0Þ ¼

δSo:s
δAð0Þ ¼

∂ð ffiffiffiffiffiffi−gp
LmÞ

∂A0
x

����r → ∞; ð62Þ

where

So:s: ¼
Z

∞

rþ
dr
Z

d2x
ffiffiffiffiffiffi
−g

p
Lm: ð63Þ

Integrating by parts and using Eq. (60), we get

So:s: ¼
Z

d2x
fðrÞAxðrÞA0

xðrÞ
2rð1 − bϕ02ðrÞÞ : ð64Þ
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Using the asymptotic behavior of ϕðrÞ, fðrÞ, and AxðrÞ
given by Eqs. (16) and (61), we can calculate Jx. So, the
electrical conductivity based on Eq. (54) is

σðωÞ¼ Jx
Ex

¼−
iAð1Þ

x

ωAð0Þ
x

¼−
izA0

xðzÞ
ω½AxðzÞ−zA0

xðzÞ logðzÞ�
; ð65Þ

where

Ex ¼ −∂tδAx: ð66Þ

Following the analytical approach to calculate conductivity
seems difficult; thus we apply the numerical method. In
order to do that, we consider the ingoing wave boundary
condition in the vicinity of the horizon for AxðrÞ as follows:

AxðrÞ ¼ fðrÞ−iω4πT ½1þ að1 − rÞ þ bð1 − rÞ þ � � ��: ð67Þ

In the above equation, T is the Hawking temperature, which
in the probe limit T ¼ rþ=ð2πÞ, because in this case
fðrÞ ¼ r2 − 1. Furthermore, a, b, � � � are obtained based
on the Taylor expansion of Eq. (60) around the horizon.
Now, because of Eq. (65) we can numerically explore the
behavior of the conductivity for the (1þ 1)-dimensional
holographic p-wave superconductor in the probe limit in
the presence of BI nonlinear electrodynamics. Figures 5
and 6 give information about the behavior of the real and
imaginary parts of conductivity as a function of ω=T for
different values of nonlinearity parameter b in the case
κ2 ¼ 0 for T=Tc ¼ 0.2, 0.5, 0.8. The delta function in the
real part of the conductivity is not related to the imaginary

FIG. 5. The behavior of the real part of conductivity as a function of ω=T for different values of temperature in the case κ2 ¼ 0.

FIG. 6. The behavior of the imaginary part of the conductivity as a function of ω=T for different values of temperature in the case
κ2 ¼ 0.

FIG. 7. The behavior of the real part of the conductivity as a function of ω=T for different values of b in the case κ2 ¼ 0.
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part near ω=T ¼ 0 by the Kramers-Kronig relation because
the imaginary part tends to zero instead of having a pole in
this region. In addition, ReσðωÞ tends to zero at high
frequencies, as in [59]. The imaginary and real parts of
conductivity follow a different trend in higher dimensions
because we are faced with the absence of a gap and
divergence behavior in the real and imaginary parts,
respectively. Moreover, the effect of different values of
temperature is more apparent for larger values of the
nonlinearity parameter. Figures 7 and 8 show the effect
of different values of the nonlinearity parameter b for fixed
values of T=Tc. Based on these figures, the difference of
the graphs becomes more obvious by increasing the value
of T=Tc. In addition, for a fixed value of T=Tc, the effect of
nonlinearity makes the Drude-like peak in the real part
of the conductivity increase and causes deeper minimum
values in the imaginary part.

VI. SUMMARY AND DISCUSSION

We have investigated the one-dimensional holographic
p-wave superconductor model by applying AdS3=CFT2
when the gauge and vector fields backreact on the back-
ground geometry in the presence of BI nonlinear electro-
dynamics. For this purpose, we employ the Sturm-Liouville
eigenvalue problem for analytical investigations and the
shooting method for the numerical calculations. In both
methods, we find the relation between the critical temper-
ature Tc and the chemical potential μ for different values of
the nonlinear and backreaction parameters. The results of
analytical and numerical methods are in good agreement
with each other. We found that increasing the values of the

nonlinearity and backreaction parameters decreases the
critical temperature and thus makes it harder to form the
condensation. Furthermore, the critical exponents of this
system were also obtained both analytically and numeri-
cally. We are faced with a second order phase transition
with β ¼ 1=2 which follows the mean field theory. This
value is independent of backreaction and nonlinear effects.
In addition, we analyzed the conductivity of this system

for the case of the probe limit and investigated the
properties of the real and imaginary parts of conductivity
for different values of the nonlinear parameter b. The
behavior of both the real and imaginary parts of conduc-
tivity are different from higher dimensions, and they do not
connect to each other based on the Kramers-Kronig
relation. We did not observe divergency near ω=T ¼ 0
in the imaginary part of the conductivity where a delta
function in the real part appears. By increasing the effect of
nonlinearity, we obtained larger values for a Drude-like
peak in the real part of the conductivity and deeper
minimum values of the imaginary part. It is difficult to
see the effect of different temperatures for small values of
the nonlinearity parameter. However, the effect of temper-
ature becomes apparent by increasing b.
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