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Very special TJ̄ deformations of a conformal field theory are irrelevant deformations that break the
Lorentz symmetry but preserve the twisted Lorentz symmetry. We construct a holographic description of
very special TJ̄ deformations. We give a holographic recipe to study the double trace as well as single trace
deformations. The former is obtained from the change of the boundary condition, while the latter is
obtained from the change of the supergravity background.
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I. INTRODUCTION

Inspired by exactly marginal and integrable JJ̄ defor-
mations (e.g., see [1–5]) and irrelevant but integrable TT̄
deformations of two-dimensional conformal field theories
[6–9], the Lorentz breaking, irrelevant but integrable TJ̄
deformations of conformal field theories, which break
Lorentz symmetry, have been vigorously studied in recent
works [10–22]. A better understanding of ultraviolet
completions of power-counting nonrenormalizable theories
is theoretically important—in particular, with Lorentz
violations because they might give a hint toward
(Lorentz violating) ultraviolet completions of quantum
gravity in higher dimensions (such as Horava-Lifshitz
gravity [23])—and we expect that TJ̄ deformations play
a role in such toy models.
The generic TJ̄ deformations break the global conformal

symmetries of SLð2;RÞ × SLð2;RÞ down to SLð2;RÞ × R
(i.e., left-moving translation, left-moving dilatation, left-
moving special conformal transformation, and right-
moving translation). In the subsequent work [15], we
have proposed the “very special” types of TJ̄ deformations
which preserve the additional (right-moving) twisted
Lorentz transformation while still breaking the right-
moving special conformal transformation. The four-
dimensional analogue of the symmetry structure here is
the so-called very special conformal symmetry (based on
the earlier idea of very special relativity proposed by Cohen
and Glashow [24–28]), and it is considered very special (in
addition to the original meaning of very special relativity)

and peculiar because unitarity or locality is typically
sacrificed for its realization.
The success of field theoretic ultraviolet completions of

TJ̄ deformations has naturally led to holographic studies of
the TJ̄ deformations.1 By construction, the asymptotic
behavior of gravity should be different from that of the
AdS space-time that is dual to the undeformed theory, and
this may lead to novel types of holographic setups. Since
we do not know the very definition of quantum gravity
beyond the asymptotically AdS space-time, the holo-
graphic construction of the TJ̄ deformations may give a
new direction to understand the nature of quantum gravity
in more general settings.
There are two different types of holographic TJ̄ defor-

mations. The first is given by the double trace TJ̄ defor-
mations [11]. This is a natural realization of the original
field theoretic idea of TJ̄ deformations in the sense that we
study the composite operators of T and J̄ as a double trace
operator in the large N setup. The construction is ubiquitous
in every (holographic) conformal field theory with a
conserved (chiral) current and holographically realized by
changing the boundary conditions of asymptotic infinity.
The other type is the so-called single trace TJ̄ deformation
[12,13]. This is given by the operator which has the same
quantum number as the double trace TJ̄ but is a single trace
operator. The existence of such operators is not necessarily
guaranteed in generic holographic conformal field theories
with a conserved current, but in many concrete examples of
the AdS=CFT setups, the Kaluza-Klein towers of metric
play the role of such operators. The crucial difference of the
single trace TJ̄ deformations is that the actual asymptotic
behaviors of the metric (rather than the boundary condi-
tions) are modified.Published by the American Physical Society under the terms of
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1The analogous (holographic) studies of TT̄ deformations can
be found in [29–47].
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In this paper, we propose holographic descriptions of
double trace as well as single trace very special TJ̄
deformations from effective field theory approaches in
bulk gravity. In dual conformal field theories, the very
special TJ̄ deformations are accompanied by the twisted
Lorentz symmetry [15], and we implement a similar
mechanism in holography. The holographic realizations
are, to some extent, phenomenological and based on the
effective bulk theories (rather than the full string embed-
ding) because the realizations of noncompact symmetries in
the bulk that we need are not straightforward in the full
string setup. It will be an interesting future direction to see
if we can embed our constructions in a full string theory
background.
The organization of the paper is as follows. In Sec. II, we

briefly review field theoretic aspects of very special TJ̄
deformations of two-dimensional conformal field theories.
In Sec. III, we first construct holographic dual descriptions
of double trace TJ̄ deformations, and then we construct
holographic dual descriptions of single trace TJ̄ deforma-
tions. In Sec. IV, we conclude the paper with discussions.

II. VERY SPECIAL TJ̄ DEFORMATION
OF CONFORMAL FIELD THEORIES

Let us briefly review the very special TJ̄ deformations of
the two-dimensional conformal field theories proposed in
[15]. We use the light-cone notations, and our convention is

x� ¼ 1ffiffiffi
2

p ðt� xÞ: ð1Þ

We call the fields that are only dependent on x− left moving
and the fields only dependent on xþ as right moving. For
example, a component of the (traceless) energy-momentum
tensor Tþ

− ¼ −T−− satisfying ∂þTþ
− ¼ 0 is left moving. In

the Euclidean setup T−− ¼ −Tþ
− is identified with the

holomorphic (left moving in our convention) energy-
momentum tensor TðzÞ with ∂̄TðzÞ ¼ 0. Similarly, a
component of the chiral conserved current J− satisfying
∂−J− ¼ 0 is identified with the right-moving or antiholo-
morphic current J̄ðz̄Þ with ∂J̄ðz̄Þ ¼ 0.
Suppose there is a conformal field theory with a (chiral)

conserved current J̄ðz̄Þ. The TJ̄ deformation is formally
defined as perturbing the conformal field theory by adding

δS ¼
Z

d2zμTJ̄ ð2Þ

to the action, where TðzÞ is the holomorphic energy-
momentum tensor of the undeformed theory. This added
term has the conformal dimensions of ðh; h̄Þ ¼ ð2; 1Þ, and
it is irrelevant with respect to the conventional dilatation
D ¼ hþ h̄; however, we may study the ultraviolet com-
pletion. Note that the deformation breaks the Lorentz
symmetry, but it preserves the right-moving conformal

(or Virasoro) symmetry together with the left-moving
translation.
The idea of very special TJ̄ deformation is to further

assume that the current J̄ðzÞ is charged under a (non-
compact) symmetry generator K:

i½K; J̄ðzÞ� ¼ J̄ðzÞ: ð3Þ

Note that the charge is “pure imaginary” [similar to the
ghost charge or dilatation charge because we assume J̄ðzÞ is
Hermitian] in contrast to compact Uð1Þ symmetry like the
electric charge. With a nonzero weight for J̄ðz̄Þ underK, we
may define the twisted Lorentz transformation Jtwisted ¼
L0 − L̄0 þ K such that the deformation is invariant under
the twisted Lorentz symmetry. This is the idea of the very
special TJ̄ deformation of conformal field theories.
Under the typical very special TJ̄ deformations, the left-

moving special conformal symmetry is broken while the
right-moving conformal symmetry is intact as can be seen
from the study of the energy-momentum tensor (see [15]
for the detailed study). This is a generic feature of the
twisted conformal field theories with deformations. The
current K̄ðz̄Þ associated with the symmetry generator K
plays the role of the virial current.
One may study correlation functions of very special TJ̄

deformed conformal field theories as studied in the TJ̄
deformed conformal field theories in [18]. The additional
feature is that we have twisted Lorentz symmetry. We just
emphasize here that the existence of twisted Lorentz
symmetry drastically simplifies the computation when
we study the perturbation theory with respect to μ. Since
the K charge is conserved and the perturbed operator is
only positively charged under K, a single term out of
infinite perturbative series gives nonzero results in the
perturbative computation of the correlation functions.

III. HOLOGRAPHIC VERY SPECIAL
TJ̄ DEFORMATION

A. Double trace deformation

In holographic descriptions of large N conformal field
theories, a bulk supergravity field directly corresponds to a
single trace operator of the dual conformal field theories.
The single trace deformation of the conformal field theory
therefore corresponds to a change of the bulk background.
In contrast, in the double trace deformation, we do not
change the bulk background, but we change the boundary
conditions of the supergravity fields [11,48]. In the holo-
graphic description of the double trace deformations
corresponding to the very special TJ̄ deformations, we
therefore change the boundary conditions for the metric and
a bulk vector field so that they break the full isometry of the
AdS space-time but preserve the twisted Lorentz symmetry.
We focus on the effective bulk theory of Einstein

gravity coupled with SLð2;RÞ Chern-Simons theory.
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The ingredients are more or less minimal in the sense that
the resulting theory contains the energy-momentum tensor
and the SLð2;RÞ chiral current algebra, so the very special
TJ̄ deformations based on twisted Lorentz symmetry are
possible. The bulk action is given by

S¼ k
4π

Z
d3x

ffiffiffiffiffi
jgj

p
ðRþ2Þþ k̃

4π

Z
Tr

�
AdAþ2

3
A3

�
: ð4Þ

Here, the Chern-Simons gauge field A takes the value

in generators of SLð2;RÞ (i.e., A ¼ AðiÞ
M TðiÞdxM with

i ¼ þ; 0;−), and the trace is over the SLð2;RÞ algebra.
In the asymptotic AdS space-time with the standard
Dirichlet boundary condition, the bulk action (4) describes
the holographic dual of a conformal field theory with
SLð2;RÞ current algebra. Although the classical equations
of motion do not depend on k and k̃, we implicitly assume
largek and large k̃ limits to suppress the quantumcorrections.
In order to make a holographic interpretation of the bulk

theory, we have to specify the boundary condition. Let us
first consider the dual description of the undeformed
conformal field theory. For the metric we choose the
Fefferman-Graham gauge

ds2 ¼ dz2

z2
þ
�
gð0Þμν

z2
þ gð2Þμν þ � � �

�
dxμdxν ð5Þ

with the fixed boundary metric gð0Þμν which is identified with
the source for the energy-momentum tensor in the dual
conformal field theory.
For the bulk gauge field, we would like to have a

holographic realization of the right-moving SLð2;RÞ
current algebra (in the undeformed theory). For this
purpose, we first put the boundary term

Sboundary ¼ −
k̃

16π

Z
d2x

ffiffiffiffiffi
jγj

p
γμνTrðAμAνÞ ð6Þ

to make the variation principle well defined. Then, we
choose the Dirichlet boundary condition limz→0 A− ¼ a−.
Here, a− will be identified with the source for J− (or J̄ in
the holomorphic coordinate) of the dual conformal field
theory. We use the radial gauge Az ¼ 0, and the remaining
component Aþ, which will be identified with J− of the dual
conformal field theory, is determined from the bulk
equations of motion.
Reference [11] proposed the boundary condition that

corresponds to the TJ̄ deformations. In our case, we take
the Uð1Þ current J̄ as the null current J−ðþÞ out of the three
generators of SLð2;RÞ. Suppose, before the deformation,
we have a recipe to compute the partition function Z½e; a�
with respect to the undeformed source, e.g., two-dimen-
sional vielbein eαa and the two-dimensional background

SLð2;RÞ gauge field aðiÞα .2 Then, in the very special TJ̄
deformed theory, the new boundary condition becomes

eαa ¼ ẽαa þ μaJαðþÞ

aðþÞ
α ¼ ãðþÞ

α þ μaTa
α

að0Þα ¼ ãð0Þα

að−Þα ¼ ãð−Þα ; ð7Þ

with μ− ¼ μ and μþ ¼ 0 corresponding to the TJ̄
deformation.
Here, tilted quantities are sources in the very special TJ̄

deformed theory. On the other hand, JαðiÞ and Ta
α are

expectation values of the current and the energy-
momentum tensor (in the original theory), so once we
somehow know the original partition function Z½e; a�, this
gives a (possibly nonlinear) relation between the expect-

ation values of JαðiÞ and Ta
α and the source ẽαa and ã

ðiÞ
α (or eαa

and aðiÞα ), which can be, at least in principle, solved.
In the holographic background in the large N limit (or

large k limit), we compute Z½e; a� by using the standard
GKP-Witten prescription with the Dirichlet boundary
condition for the metric and the gauge field. Since Ta

α

and JαðiÞ are computed from the holography by deriving the

on-shell action with respect to eαa and aðiÞα , the boundary
condition employed here is essentially the Robin-type
boundary condition in the asymptotically AdS space-time.
In the large μ limit, it effectively becomes the Neumann
boundary condition.
Eventually, we set ẽαa ¼ δαa and ãðiÞα ¼ 0 to describe the

flat background in the very special TJ̄ deformed theory. Let
us see how the boundary condition breaks the Lorentz
symmetry while it preserves the twisted Lorentz symmetry
in this particular background. Under the Lorentz trans-
formation, J−ðþÞ is charged, so the first two conditions in
(7) break the Lorentz symmetry. However, if we define the
twisted Lorentz symmetry as the sum of the original
Lorentz transformation and the Cartan of SLð2;RÞ, i.e.,
Jð0Þ as Jtwisted ¼ L0 − L̄0 þ Jð0Þ, then J−ðþÞ becomes neu-
tral under the twisted deformation. In other words, the new

boundary condition (7) with ẽα ¼ δαa and ãðiÞα ¼ 0 is
invariant under the twisted Lorentz transformation, so
the entire formalism preserves the twisted Lorentz
symmetry.
One may also study the conservation of the holographic

energy-momentum tensor as in [11]. With ẽα ¼ δαa and
ãα ¼ 0, the two most important equations are

2We use the convention that α; β � � � refer to the two-
dimensional space-time indices, while a; b � � � are local Lorentz
indices. In the bulk, we use M;N; � � � and A; B; � � �.
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∂þTþ
− þ ∂−ðμJ−ðþÞTþ

−Þ ¼ 0 ð8Þ

and

∂−J−ð0Þ ¼ μJ−ðþÞTþ
− ; ð9Þ

which enable us to verify the conservation of the twisted
Lorentz current [15]

∂þðx−Tþ
−Þ þ ∂−ðx−T−

− − J−ð0ÞÞ ¼ 0: ð10Þ

The latter equation (9) is a consequence of the Chern-
Simons equations of motion

∂þAð0Þ
− − ∂−A

ð0Þ
þ ¼ AðþÞ

þ Að−Þ
− − AðþÞ

− Að−Þ
þ : ð11Þ

Without the source in the very special TJ̄ deformed con-
formal field theory, limz→0 Að0Þ

− ¼ 0 and limz→0 Að−Þ
− ¼ 0,

but limz→0 AðþÞ
− ¼ μT−

−; thus, we obtain (9) by noting
limz→0 Aþ ¼ Jþ ¼ −J−.
At the end of the previous section, we argued that the

extra twisted Lorentz symmetry drastically simplifies the
perturbative computation of the very special TJ̄ deformed
correlation functions. To see this in our holographic setup
with double trace deformations, we note that the unde-
formed partition function Z½e; a� is invariant under the
spurious symmetry of að�Þ → e�iθað�Þ. In other words,
aðþÞ and að−Þ are always paired up in the partition function.
Particularly, this means that when að−Þ ¼ 0, the insertion of
JðþÞ is trivial because it is computed by the derivative δ

δaðþÞ

which always accompanies að−Þ. According to (7), it then
follows that the correlation functions of Tμν (without any
charged operators) is unaffected by the very special TJ̄
deformations. A similar selection rule applies to all the
correlation functions with nonzero charges.
There is an alternative formulation of the gravity part by

using SLð2;RÞ × SLð2;RÞ Chern-Simons theory instead
of Einstein gravity [49]. While the formulation is com-
pletely equivalent to Einstein gravity with the cosmological
constant at the classical level, the reformulation may be of
theoretical beauty.3 We replace the Einstein-Hilbert action
with the action constructed out of two Chern-Simons terms:

Sgravity ¼
k
4π

Z
Tr
�
AdAþ 2

3
AAA

�

−
k
4π

Z
Tr
�
ĀdĀþ 2

3
Ā Ā Ā

�
−

k
4π

Z
dTrðAĀÞ

ð12Þ

where the Chern-Simons gauge fields are related to the
three-dimensional vielbein and spin connection as

AM ¼ ðwðiÞ
M þ eðiÞM ÞTðiÞ

ĀM ¼ ðwðiÞ
M − eðiÞM ÞTðiÞ; ð13Þ

where we have identified the SLð2;RÞ indices with the
local Lorentz indices. The bulk metric is therefore given by

gMN ¼ 1

2
TrððA − ĀÞMðA − ĀÞNÞ: ð14Þ

In order to construct the holographic dictionary, we need
to specify the boundary conditions. The Chern-Simons
gauge field in the Graham-Fefferman gauge [50,51] cor-
responds to

Az ¼ −z−2b−1∂zb

Aμ ¼ b−1αμðx�Þb
Āz ¼ −z−2b̄−1∂zb̄

Āμ ¼ b̄−1ᾱμðx�Þb̄ ð15Þ

with b ¼ e−ðlog zÞTð0Þ
, b̄ ¼ b−1, where Tð0Þ is the Cartan of

the SLð2;RÞ generator. We also supplement the condition
[52,53]

Tr½ðA − ĀÞμTð0Þ� ¼ 0: ð16Þ

One may directly check that this ansatz leads to the
Graham-Fefferman form of the three-dimensional metric
ansatz. In particular, we may identify the boundary
vielbein as

e−μ ¼ α−μ

eþμ ¼ −ᾱþμ : ð17Þ

The computed Chern-Simons functional Z½α−; ᾱþ� will be
identified with the gravitational partition function Z½e�.
With given boundary values of α−μ and ᾱþμ , we may solve
the sub-leading normalizable terms αþμ and ᾱ−μ by using the
Chern-Simons equations of motion [in the gauge (15)
and (16)]. Then, they will determine the expectation values
of the boundary energy-momentum tensor Ta

α. This pro-
cedure corresponds to solving the Einstein equation in the
Graham-Fefferman gauge.
Now, in order to discuss the holographic description of

the very special TJ̄ deformations in the Chern-Simons
gravity, we first introduce another SLð2;RÞ Chern-Simons
theory in the bulk whose action and the (undeformed)
boundary conditions are specified as before. Then, we
introduce the deformed boundary conditions

3There has been an ongoing discussion about whether or not
the Chern-Simons formulation may make sense at the quantum
level with the holographic interpretation, which we will not
address in this paper.
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eαa ¼ ẽαa þ μaJαðþÞ

aðþÞ
α ¼ ãðþÞ

α þ μaTa
α

að0Þα ¼ ãð0Þα

að−Þα ¼ ãð−Þα ; ð18Þ

with μ− ¼ μ and μþ ¼ 0 corresponding to the very special
TJ̄ deformation. These can be realized in our Chern-
Simons formulation with our Graham-Fefferman gauge
choice (15) and (16) and the identification (17) at the
boundary. In particular, the first two equations in (18) give
the mixed boundary conditions for the three Chern-Simons
gauge fields.
We do not analyze how these boundary conditions lead

to the symmetry that is compatible with the very special TJ̄
deformations because it is classically identical to the
Einstein formulation. Note that although the three
SLð2;RÞ Chern-Simons theories are more or less identical
in the bulk (except for the choice of the level), the boundary
conditions make them behave differently.

B. Single trace deformation

Let us now consider a holographic description of the
single trace very special TJ̄ deformations. As emphasized
in the Introduction, it is not always guaranteed that a given
(holographic) conformal field theory with a SLð2;RÞ
current algebra possesses the single trace operator with
the same quantum number as the double trace TJ̄ operator.4

For this purpose, we need a further assumption that the bulk
theory has a vector field whose scaling dimension is
ðh; h̄Þ ¼ ð2; 1Þ. It is typical that such a vector field is
given by a Kaluza-Klein tower of the graviton and Kalb-
Ramond field, as we will see.
Let us take the background AdS3 and an “internal space”

M with SLð2;RÞ isometry as a starting point before the TJ̄
deformation. For instance, we discuss the case with M ¼
AdS3 orH

þ
3 . The bulk AdS3 may admit a world-sheet string

realization with the NS-NS flux. Then, the AdS space-time
is a classical solution of the Einstein equation and may be
embedded in the full string theory (once the central charge
is properly chosen). More precisely, the world-sheet sigma
model is given by

S ¼
Z

d2w2k

�∂z∂̄z − 2∂xþ∂̄x−
z2

�
; ð19Þ

where the target space metric and the Kalb-Ramond field
are

ds2 ¼ 2k
dz2 − 2dxþdx−

z2

B ¼ −4k
dxþdx−

z2
: ð20Þ

The world-sheet theory is conformal invariant and can be
part of the full string theory background. Here, the level k
determines the size of the AdS space-time.
This bulk geometry has the isometry of SOð2; 3Þ

generated by the translation in xþ and x−, the Lorentz
transformation rotating x�, dilatation ðz; x�Þ → λðz; x�Þ, as
well as the special conformal transformation

δxþ ¼ −z2

δx− ¼ −2ðx−Þ2
δz ¼ −2ðx−Þz ð21Þ

and

δxþ ¼ −2ðxþÞ2
δx− ¼ −z2

δz ¼ −2ðxþÞz: ð22Þ

Correspondingly, the world-sheet theory has the
SLð2;RÞ × SLð2;RÞ current algebra [12,13] whose left-
moving part is

jþ ¼ −k
ffiffiffi
2

p

z2
∂x−

j0 ¼ −k
�
−

2

z2
xþ∂x− þ 1

z
∂z

�

j− ¼ −k
�
2

ffiffiffi
2

p

z2
ðxþÞ2∂x− −

2
ffiffiffi
2

p

z
xþ∂zþ ffiffiffi

2
p ∂xþ

�
ð23Þ

and similarly for the right-moving part. The operator
product expansion is given by

jþðwÞj−ð0Þ ¼ k
w2

þ 2j3ð0Þ
w

j3ðwÞj3ð0Þ ¼ −
k=2
w2

j3ðwÞj�ð0Þ ¼ � j�ð0Þ
w

: ð24Þ

We use lower script to refer to the world-sheet current
algebra (rather than the current algebra of the dual
conformal field theory), and we use w (rather than z) for
the world-sheet coordinate to avoid possible confusion.

4Similar to the case with the single trace TT̄ deformations, the
single trace TJ̄ deformations are not the deformations defined by
the leading operator product expansions of the energy-
momentum tensor and the (antiholomorphic) current. This may
cause the loss of integrability or universal features of such
deformations from the field theory perspective. However, our
focus is on the twisted Lorentz symmetry preserved by the
deformations, which will not be affected by this nonuniversality.
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In order to realize the very special single trace TJ̄
deformations, we need an additional assumption for the
world-sheet theory describing the internal space M. Let us
suppose that the internal space world-sheet conformal field
theory has another right-moving SLð2;RÞ current algebra
k̄i with the OPE

k̄þðw̄Þk̄−ð0Þ ¼ k
w̄2

þ 2k̄3ð0Þ
w̄

k̄3ðw̄Þk̄3ð0Þ ¼ −
k=2
w̄2

k̄3ðw̄Þk̄�ð0Þ ¼ � k̄�ð0Þ
w̄

: ð25Þ

Following the idea of the single trace TJ̄ deformations
realized in string theory [12,13], we propose that the world-
sheet description of the single trace very special TJ̄
deformation is obtained by adding the world-sheet marginal
current-current deformations of

δS ¼ μ

Z
d2wjþk̄: ð26Þ

The deformations break the world-sheet symmetry of
SLð2;RÞ × SLð2;RÞ × SLð2;RÞ down to SLð2;RÞ ×
diagðSLð2;RÞ × SLð2;RÞÞ (in addition to the Virasoro
symmetries that are always preserved). In particular,
although the original target space Lorentz symmetry (rota-
tions of x�) is broken, the twisted target space Lorentz
symmetry is preserved.
Let us study explicit realizations of M. Let us first take

the case with M ¼ AdS3. Then, the wordsheet sigma
model is

S ¼
Z

d2w2k̃

�∂z̃ ∂̄ z̃−2∂x̃þ∂̄x̃−
z̃2

�
; ð27Þ

with

k̄þ ¼ −k̃
1

z̃2
∂̄x̃þ

k̄0 ¼ −k̃
�
1

z̃2
x̃−∂̄x̃þ þ 1

z̃
∂̄ z̃

�

k̄− ¼ −k̃
�
1

z̃2
ðx̃−Þ2∂̄x̃þ þ 2

z̃
x̃−∂̄ z̃−∂̄x̃−

�
; ð28Þ

which generates the world-sheet SLð2;RÞ current algebra.
Now, the world-sheet current-current deformation is
given by

δS ¼ μ

Z
d2x

�∂xþ∂̄x̃þ
z2z̃2

�
: ð29Þ

The space-time interpretation is that the metric is deformed,

ds2 ¼ 2k
dz2 þ dxþdx−

z2
þ 2k̃

dz̃2 þ dx̃þdx̃−

z̃2
þ μ

dxþdx̃þ

z2z̃2
;

ð30Þ

and the Kalb-Ramond field is deformed,

B ¼ 2k
dxþdx−

z2
þ 2k̃

dx̃þdx̃−

z̃2
þ μ

dxþdx̃þ

z2z̃2
: ð31Þ

It is immediate to see that the background breaks the
original Lorentz symmetry but preserves the twisted one
given by ðxþ; x−; x̃þ; x̃−Þ → ðλxþ; λ−1x−; λ−1x̃þ; λx̃−Þ.
In the double trace very special TJ̄ deformations, we

discuss the simple structure of the deformed correlation
functions due to the selection rule. We see a similar
selection rule in the single trace deformation from the
world-sheet conservation of the twisted Lorentz symmetry.
For example, the boundary correlation functions with no
charged operators under the internal boost of x̃� are
unaffected by the very special TJ̄ deformations. More
generally, the selection rule of the world-sheet JJ̄ defor-
mations directly give the selection rule of the single trace
very special TJ̄ deformations.
The case with theHþ

3 is more intricate. Let us begin with
the Hþ

3 sigma model

S ¼
Z

d2x2k̃

�∂z̃ ∂̄ z̃þ∂ξ∂̄ξ̄−
z̃2

�
; ð32Þ

where ξ ¼ x̃1 þ ix̃2 and ξ̄ ¼ x̃1 − ix̃2 are complex conju-
gate. Therefore, the model has the pure imaginary NS-NS
flux

B ¼ i
dx̃1dx̃2

z2
: ð33Þ

One may perform the same current-current deformations as
in the AdS3 case with the complex metric (or more
precisely, nonreal metric), but the more intricate choice
of the deformation

δS ¼ μ

Z
d2x

�∂xþ∂̄wþ ∂w̄ ∂̄ xþ
z2z̄2

�
ð34Þ

might look better because the metric and the Kalb-Ramond
field satisfy the same “reality condition” as the undeformed
theory. This is the combination of two different world-sheet
current-current deformations of jk̄ and kj̄, and it is not
immediately obvious if this gives the exact marginal
deformations. Since the AdS current part is taken to be
the same and null, the first order perturbation is marginal,
so it at least passes the first order check.
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IV. DISCUSSIONS

In this paper, we have proposed holographic descriptions
of very special TJ̄ deformations of conformal field theories.
The very special TJ̄ deformation is peculiar: It preserves
“twisted” Poincaré symmetry as well as dilatation, but it
only has chiral conformal transformation. Typically, unitary
scale invariant relativistic field theories have the full
conformal symmetry [54,55], but this is avoided because
the existence of a noncompact symmetry and use of the
topological twist resulted in nonunitary quantum field
theories.
Our holographic construction is classical, and it is an

interesting question if the gravity side can be quantized,
e.g., in the full string setup. One of our formulations for the
double trace TJ̄ deformations is based on the SLð2;RÞ ×
SLð2;RÞ × SLð2;RÞ Chern-Simons theory, and without
our complicated boundary conditions, the quantization may
be straightforward. However, whether quantum gravity
makes sense, in particular, with our mixed boundary
conditions is a different story, and it deserves a further

study. With this regard, in our discussions, we have
restricted ourselves to the parity preserving case with the
same Chern-Simons levels for the gravity part, but we may
choose three levels of the Chern-Simons theory completely
differently. Such choices may be fine for a trivial back-
ground source, but they may cause anomalies in the general
background.
As for the single trace deformation, the resultant

deformed background is similar to the one studied in the
TJ̄ deformations; however, in our case, the internal space is
also noncompact, so the further Kaluza-Klein reduction to
obtain the warped AdS space-time is not possible. Also,
one of our explicit examples has two “timelike” directions
in the target space, and the physical significance should be
carefully studied beyond the formal analysis done in
this paper.
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