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In this paper we consider the full set of quantum gravitational corrections to a star metric to second order
in curvature. As we use an effective field theoretical approach, these corrections apply to any model of
quantum gravity that is based on general coordinate invariance. We then discuss the black hole limit and
identify an interesting phenomenon which could shed some light on the nature of astrophysical black holes:
while star metrics receive corrections at second order in curvature, vacuum solutions such as black hole
metrics do not. What happens to these corrections when a star collapses?
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I. INTRODUCTION

Since the seminal work of Weinberg in 1979 [1], much
progress has been made in quantum gravity using effective
field theory methods [2–8]. While finding a consistent
theory of quantum gravity valid at all energy scales remains
an elusive goal, effective field theory methods can be
applied at energies below the Planck mass which might be
all that is ever needed as physics is an empirical science.
This approach enables calculations in quantum gravity
which are model independent, see e.g., [9–25]. The model
independence only applies to models that assume that
general coordinate invariance is also the correct symmetry
of quantum gravity. Obviously in fundamental models with
e.g., Lorentz violation, the effective field theory could be
different. One of the important results recently obtained is
that there are no quantum gravitational corrections to
vacuum solutions of general relativity [8] to second order
in curvature. This in particular applies to eternal black hole
metrics which are static vacuum solutions [9]. On the other
hand, real astrophysical black holes are clearly not in
vacuum and they undergo a time evolution as they are
formed out of some time dependent astrophysical process
such as during the collapse of a heavy star.
Understanding the transition from a star to a black hole

state could help to understand the nature of astrophysical
black holes better. The aim of this work is to do a first step
in that direction by calculating quantum gravitational
corrections to the metric of a star in stable equilibrium,
as described by the Tolman-Oppenheimer-Volkoff equa-
tion. In general relativity, the metric outside nonrotating

black holes and stars is given in both cases by the vacuum
Schwarzschild solution. Our aim is to compare the quantum
gravitational corrections to a star metric and black hole
metric as seen by an observer who is far away from both
objects. While it is known that in the black hole case there
are no corrections to the metric at second order in curvature,
we will show that there is a correction at this order in the
case of a star. This phenomenon is intriguing as a distant
observer could in principle differentiate a star that is
collapsing from an eternal black hole (i.e., a vacuum
solution) by measuring the correction at order G2

N to
Newton’s potential. The collapsing star would have a
potential that deviates from 1=r by corrections of order
G2

N while the black hole vacuum solution does not have
such corrections.
We then consider the limit when the mass and the radius

of the star are taken toward respectively the Planck mass
and the Planck length and discuss whether the metric
obtained in that limit could be used to describe the metric of
a quantum black hole, i.e., the lightest black holes that
could have masses of the order of the Planck mass and a
Schwarzschild radius of the order of the Planck length. We
argue that as quantum black holes cannot be described as a
classical vacuum, the quantum corrected star metric should
be a better model for the metric of a quantum black hole
than the Schwarzschild vacuum solution.
This paper is organized as follows. In Sec. II, we

introduce the effective quantum gravitational action and
calculate the leading order corrections to the metric for a
homogeneous isotropic star. In Sec. III, we discuss the
validity of our results close to the surface of the star. In
Sec. IV, we discuss the differences with an eternal
Schwarzschild black hole metric and argue that quantum
black holes might be better described by the star metric.
Finally, we conclude with some outlooks in Sec. V.
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II. QUANTUM CORRECTIONS
TO A STAR METRIC

The aim of this section is to calculate the leading order
quantum gravitational corrections to the metric of a stable
star satisfying the Tolman-Oppenheimer-Volkoff equation.
This investigation was started in [9], but that paper only
considered the contribution of the term R log□R. Here we
consider the full set of corrections at second order in
curvature. We also take this opportunity to fix a calcula-
tional mistake in [9].
We work within the framework of the effective quantum

gravitational action given by [1–8]

Γ½g� ¼ ΓL½g� þ ΓNL½g�; ð2:1Þ
where the local part of the action is given by1

ΓL ¼
Z

d4x
ffiffiffi
g

p �
R

16πGN
þ c1ðμÞR2 þ c2ðμÞRμνRμν

þ c3ðμÞRμναβRμναβ

�
ð2:2Þ

and the nonlocal part of the action by

ΓNL ¼ −
Z

d4x
ffiffiffi
g

p �
αR ln

�
□

μ2

�
Rþ βRμν ln

�
□

μ2

�
Rμν

þ γRμναβ ln

�
□

μ2

�
Rμναβ

�
: ð2:3Þ

This effective action is obtained by integrating out the
fluctuations of the graviton and potentially other massless
matter fields. While the Wilson coefficients of the local part
of the action are not calculable from first principles as we
do not specify the ultraviolet theory of quantum gravity,
those of the nonlocal part are calculable and model

independent quantum gravitational predictions. We repro-
duce these coefficients, which have been derived by many
different authors, see e.g., [2,3,7,10,26–31], in Table I.
The equations of motion obtained from varying the

effective action which respect to the metric are given by

Gμν þ 16πGNðHL
μν þHNL

μν Þ ¼ 0; ð2:4Þ

where

Gμν ¼ Rμν −
1

2
Rgμν ð2:5Þ

is the usual Einstein tensor. The local part of the equation of
motion is given by

HL
μν ¼ c̄1

�
2RRμν −

1

2
gμνR2 þ 2gμν□R − 2∇μ∇νR

�

þ c̄2

�
2Rα

μRνα −
1

2
gμνRαβRαβ þ□Rμν þ

1

2
gμν□R −∇α∇μRα

ν −∇α∇νRα
μ

�
; ð2:6Þ

with c̄1 ¼ c1 − c3 and c̄2 ¼ c2 þ 4c3. Finally, the nonlocal part reads

HNL
μν ¼ −2α

�
Rμν −

1

4
gμνRþ gμν□ −∇μ∇ν

�
ln

�
□

μ2

�
R

− β

�
2δαðμRνÞβ −

1

2
gμνRα

β þ δαμgνβ□þ gμν∇α∇β − δαμ∇β∇ν − δαν∇β∇μ

�
ln

�
□

μ2

�
Rβ

α

− 2γ

�
δαðμR

β
νÞ στ −

1

4
gμνRαβ

στ þ ðδαμgνσ þ δανgμσÞ∇β∇τ

�
ln

�
□

μ2

�
Rαβ

στ: ð2:7Þ

TABLE I. Nonlocal Wilson coefficients for different fields. All
numbers should be divided by 11520π2. Here, ξ denotes the value
of the nonminimal coupling for a scalar theory. All these
coefficients including those for the graviton are gauge invariant.
It is well known that one needs to be careful with the graviton
self-interaction diagrams and that the coefficients α and β can be
gauge dependent, see [31], if the effective action is defined in a
naive way. For example, the numbers α ¼ 430=ð11520π2Þ and
β ¼ −1444=ð11520π2Þ for the graviton quoted in [10] are
obtained using the Feynman gauge. However, there is a well-
established procedure to derive a unique effective action which
leads to gauge independent results [2,3]. Here we are quoting the
values of α and β for the graviton obtained using this formalism as
it guaranties the gauge independence of observables.

α β γ

Scalar 5ð6ξ − 1Þ2 −2 2
Fermion −5 8 7
Vector −50 176 −26
Graviton 250 −244 424

1In this paper we work in the ðþ−−−Þ signature and use the convention where the Riemann tensor is defined by Rρ
σμν ¼ ∂μΓ

ρ
νσ −…

and the Ricci tensor by Rμν ¼ Rλ
μλν.
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Note that the variation of the ln□ term yields terms of
higher order in curvature and can thus safely be ignored at
second order in curvature.
We consider a stationary homogeneous and isotropic star

with density

ρðrÞ ¼ ρ0ΘðRs − rÞ ¼
�
ρ0 if r < Rs

0 if r > Rs;
ð2:8Þ

where ρ0 > 0 is a constant and ΘðxÞ is Heaviside’s step
function. The solution to the Einstein equation inside this
star (for r ≤ Rs) is the well-known interior Schwarzschild
metric [32,33]

ds2 ¼
 
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GNM
Rs

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2GNMr2

R3
s

s !2
dt2

4

−
�
1 −

2GNMr2

R3
s

�−1
dr2 − r2dΩ2

≡ gintμνdxμdxν; ð2:9Þ

where

M ¼ 4π

Z
Rs

0

ρr2dr ¼ 4π

3
R3
sρ0 ð2:10Þ

is the total Misner-Sharp mass of the source. The corre-
sponding pressure is given by

PðrÞ ¼ ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GNM

Rs

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GNMr2

R3
s

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GNMr2

R3
s

q
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2GNM

Rs

q ¼ OðGNÞ;

ð2:11Þ

and is of order GN in agreement with the fact that the
pressure does not gravitate in Newtonian physics. Of
course, the metric outside the star (for r > Rs) is the usual
vacuum Schwarzschild metric [32,33]

ds2 ¼
�
1 −

2GNM
r

�
dt2 −

�
1 −

2GNM
r

�
−1
dr2 − r2dΩ2

≡ gextμν dxμdxν; ð2:12Þ

from which one can see that M is also the Arnowitt-Deser-
Misner (ADM) mass [34] of the system.
We now perturb the above metrics,

g̃μν ¼ gμν þ gqμν; ð2:13Þ

and take the perturbation gqμν to beOðGNÞ. The equations of
motion then become

GL
μν½gq� þ 16πGNðHL

μν½g� þHNL
μν ½g�Þ ¼ 0; ð2:14Þ

where the linearized Einstein tensor is given by

2GL
μν ¼ □gqμν − gμν□gq þ∇μ∇νgq þ 2Rα

μ
β
νg

q
αβ

−∇μ∇βgqνβ −∇ν∇βgqμβ þ gμν∇α∇βgqαβ: ð2:15Þ

We first calculate solutions to Eq. (2.14) due to the
local corrections. Outside the star, where the unperturbed
metric equals the Schwarzschild vacuum solution (2.12)
with R ¼ Rμν ¼ 0, these corrections are trivially 0. Inside
the star this is not the case. However, these corrections
turn out to be OðG3

NÞ, and thus subleading. Therefore the
local part in the equations of motion (2.6) does not
contribute.
In order to calculate corrections due to the nonlocal

corrections of the equation of motion (2.6) we use the fact
that the Ricci scalar, Ricci tensor, and Riemann tensor are
all OðGNÞ. We thus obtain

GL
μν

16πGN
¼ 2αðgμν□ −∇μ∇νÞ ln

�
□

μ2

�
R

þ βðδαμgνβ□þ gμν∇α∇β − δαμ∇β∇ν

− δαν∇β∇μÞ ln
�
□

μ2

�
Rβ

α

þ 2γðδαμgνσ þ δανgμσÞ∇β∇τ ln

�
□

μ2

�
Rαβ

στ

þOðG3
NÞ: ð2:16Þ

We will solve this equation perturbatively in GN. We
use Einstein equations to rewrite the Ricci scalar and
tensor in terms of the energy-momentum tensor of the
source,

R ¼ −8πGNT ð2:17Þ

Rμν ¼ 8πGN

�
Tμν −

1

2
gμνT

�
; ð2:18Þ

where, for a perfect isotropic fluid like our star, we have

T ¼ ρ0 þOðGNÞ ð2:19Þ

Tμν ¼ δ0μδ
0
νρ0 þOðGNÞ; ð2:20Þ

where ρ0 is the energy density.
By applying the results from Appendix to the homo-

geneous distribution (2.8), we find

8πGN ln

�
□

μ2

�
ρ ¼ 6GNM

R3
s

fðrÞ þOðG2
NÞ; ð2:21Þ

with
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fðrÞ¼
�−2½γE−1þ lnðμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − r2

p
Þ� if r<Rs;

2Rs
r − lnðrþRs

r−Rs
Þ if r>Rs:

ð2:22Þ

Note that the function f in Eq. (2.22) is not defined at
r ¼ Rs. In fact, one can verify that the results should be
taken with some care in a small region around Rs, as we
discuss in more detail in Sec. III.
Furthermore, we emphasize that Eq. (2.22) is the main

source of the discrepancy between the results reported here
and those obtained in [9], where the calculation was only
done for r > Rs. In Eq. (31) of [9] a factor of 2 is missing in
front of the term Rs=r and a factor of −1 is missing in front
of the log term.
In order to obtain the contribution proportional to γ in

Eq. (2.16), we first rewrite it in terms of those proportional
to α and β using the nonlocal Gauss-Bonnet theorem
[8,35,36], which holds for the nonlocal part up to second
order in curvature [hence OðG2

NÞ]. We then evaluate
Eq. (2.16) using α0 ¼ α − γ and β0 ¼ β þ 4γ. We thus have
to solve

GL
μν ¼ 192πðα − γÞG

2
NM
R3
s

ð∇μ∇ν − gμν□ÞfðrÞ

þ 96πðβ þ 4γÞG
2
NM
R3
s

ð∇μ∇ν − gμν□þ δ0μgν0□ÞfðrÞ

þOðG3
NÞ; ð2:23Þ

where we used that

ðgμν∇0∇0 − δ0μ∇0∇ν − δ0ν∇0∇μÞfðrÞ ¼ OðGNÞ: ð2:24Þ

We solve this equation, imposing the solution to be
spherically symmetric and time independent. In addition
we fix the gauge freedom by setting gqθθ ¼ 0. Doing so,
we obtain the quantum corrections gqμν ¼ δgextμν to the
Schwarzschild metric (2.12) outside the star. The correc-
tions are given by2

δgexttt ¼ ðαþ β þ 3γÞ 192πG
2
NM

R3
s

�
2
Rs

r
þ ln

�
r − Rs

rþ Rs

��

þ C1

r
þ C2 þOðG3

NÞ

δgextrr ¼ ðα − γÞ 384πG
2
NM

rðr2 − R2
s Þ

þ C1

r
þOðG3

NÞ; ð2:25Þ

whereCi are integration constants whichmust be set to zero,
if we require asymptotic flatness, that is limr→∞ δgμν ¼
limr→∞ rδgμν ¼ 0.3

In a similar way, using the same gauge condition, one
can find the corrections gqμν ¼ δgintμν to the metric (2.9) inside
the star. These are given by

δginttt ¼ ðαþ β þ 3γÞ 192πG
2
NM

R3
s

ln

�
R2
s

R2
s − r2

�

þ C3

r
þ C4 þOðG3

NÞ

δgintrr ¼ ðα − γÞ 384πG
2
NMr2

R3
s ðR2

s − r2Þ þ
C3

r
þOðG3

NÞ; ð2:26Þ

where Ci are integration constants, which we will set to 0
by requiring regularity in the origin r ¼ 0.
In the limit r → Rs we find that the corrections diverge,

but it is easy to explain that these divergences are generated,
because we assumed a model for the star described by a
discontinuous density at r ¼ Rs, which is not realistic for
an astrophysical star. This discontinuity leads to a dis-
continuity in the first derivative of the pressure (2.11), in
the second derivative of the gtt component and in the first
derivative of the grr component. We thus do not expect that
our star model and hence the quantum corrections apply to
a real star in a small region around Rs. We shall discuss this
observation in more details as well as how to cure these
divergences in the next section.
We can now consider our result in different limits. Far

away from the star (for r ≫ Rs), the leading behavior of the
metric corrections (2.25) is given by

δgexttt ¼ −ðαþ β þ 3γÞ 128πG
2
NM

r3
þOðG3

NÞ

δgextrr ¼ ðα − γÞ 384πG
2
NM

r3
þOðG3

NÞ; ð2:27Þ

whereas, to the same order in GN, the corrections (2.26) for
the metric inside the star far away from the star radius (for
r ≪ Rs) vanish,

δginttt ¼ δgintrr ¼ OðG3
NÞ: ð2:28Þ

It is important to realize that the correction to the
components of a metric are gauge dependent. As such
components are not observables, this is not an issue. For
example, one could calculate the metric corrections in
the harmonic gauge. In this case one finds the asymptotic
r ≫ Rs expressions

2Note that we take the metric with signature ðþ−−−Þ. With
signature ð−þþþÞ the corrections obtain an extra minus sign.

3These conditions ensure that we recover the classical weak
field limit with ADM mass M as r → ∞, which is the usual
boundary condition for the classical Schwarzschild black hole.

CALMET, CASADIO, and KUIPERS PHYS. REV. D 100, 086010 (2019)

086010-4



gtt ¼ 1 −
2GNM

r
þ 2G2

NM
2

r2
− ðαþ β þ 3γÞ 128πG

2
NM

r3
þOðG3

NÞ
gti ¼ 0

gij ¼ −δij
�
1þ 2GNM

r
þG2

NM
2

r2
− ð2αþ β þ 2γÞ 128πG

2
NM

r3

�
1

3
þ ln

�
Cr
Rs

���

−
xixj
r2

�
G2

NM
2

r2
− ðα − γÞ 384πG

2
NM

r3
þ ð2αþ β þ 2γÞ 384πG

2
NM

r3
ln

�
Cr
Rs

��
þOðG3

NÞ; ð2:29Þ

where C is a dimensionless integration constant.4 We
derived this result using the expression for the
Schwarzschild metric outside a star in the harmonic gauge,
which can, for example, be found in [37]. Furthermore, we
imposed the solutions to be spherically symmetric and time
independent and imposed the harmonic (De Donder) gauge
condition instead of setting δgθθ ¼ 0.
Taking the graviton values for α, β and γ from [10], one

can set the scale C=Rs ¼ μ expð−173=132Þ, to recover the
quantum correction due to the vacuum polarization diagram
found in [11]. It should be emphasized that the graviton
values for α and β presented in [10] are not gauge invariant
[31] and do not correspond to the values obtained when the
unique effective action formalism [2] is used, which are
presented in Table I. The results in [10,11] are thus
dependent on the gauge in which the effective action is
obtained. The results presented in this paper on the other
hand do not suffer from this gauge dependence. Naturally,
both the results presented in this paper and those in [10,11]
depend on the gauge (that is, the reference frame) in which
the field equations are solved. This gauge dependence
cannot be removed, as the metric components are not gauge
invariant quantities.
Let us emphasize that the results presented in this section

are interesting: we have shown that although the metric
outside an eternal static black hole and of a static star are
given at the classical level by the Schwarzschild solution,
quantum gravity makes a difference between the two
objects due to its nonlocal nature. The star metric receives
a quantum correction at second order in curvature, while
there is no such correction for an eternal black hole [8]. A
distant observer can in principle monitor the gravitational
collapse of a star by studying the quantum gravitational
corrections to Newton’s potential to second order in
curvature. This raises the question whether astrophysical
black holes should really be described by metrics corre-
sponding to vacuum solutions of general relativity. Note
that our argument does not rely on the limit Rs → 0, but
rather on a comparison of the initial state (e.g., collapsing

star or star before it has even started to collapse) and the
final state which is an eternal black hole.

III. DIVERGENCE AT THE SURFACE

The explicit calculation shown in Appendix makes it
clear that the nonlocal function lnð□

μ2
Þ must be treated as a

distribution in order to allow for the various exchanges of
limits and integrations. This in turn implies that the
functions f upon which it can act must belong to a suitable
set of regular test functions. Clearly, the density profile
(2.8) does not satisfy this requirement, the Heaviside
function Θ being a distribution itself. It therefore comes
as no surprise that lnð□

μ2
Þρ is not well defined around

r ¼ Rs, unless the density (2.8) is replaced with a function
that falls to zero smoothly.
It is important to remark that, although the density (2.8)

generating the classical Schwarz-schild interior metric (2.9)
drops to zero within a vanishingly short length, it causes no
issues in general relativity despite the fact that the manifold
is not smooth at the star surface. Instead, it conjures with
the nonlocal terms of the effective action (2.3) to give rise to
divergences. The divergence thus purely arises due to
inclusion of higher order derivatives of the metric, while
the metric is only once continuously differentiable.
However, it is obvious that the density profile of any
realistic matter distribution will go to zero in a finite width
ϵ > 0. For instance, we could replace (2.8) with the
infinitely smooth

ρðrÞ ¼
�
ρ0 exp ðϵ2R2

s
− ϵ2

R2
s−r2

Þ for 0 ≤ r ≤ Rs

0 for Rs < r;
ð3:1Þ

where we can safely assume that ϵ≳ lp. This implies that
our solutions (2.25) and (2.26) should only be considered
outside a layer of thickness ϵ around Rs. On the other hand,
it is important to remark that the size of the corrections does
not depend on ϵ explicitly (only the region of space
excluded in our results does).
In some more details, Eqs. (2.25) and (2.26) contain

divergences for ϵ≡ jr − Rsj → 0þ, namely

4As in previous results, one obtains a couple more integration
constants, which can be set to 0 by requiring that one recovers the
classical weak field limit as r → ∞.
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δginttt ≃ −ðαþ β þ 3γÞ 192πG
2
NM

R3
s

ln

�
2ϵ

Rs

�

δgexttt ≃ ðαþ β þ 3γÞ 192πG
2
NM

R3
s

�
2þ ln

�
ϵ

2Rs

��

δgintrr ≃ ðα − γÞ 192πG
2
NM

R3
s

�
Rs

ϵ
−
3

2

�

δgextrr ≃ ðα − γÞ 192πG
2
NM

R3
s

�
Rs

ϵ
−
1

2

�
; ð3:2Þ

which appear in two forms, namely

d1 ∼
G2

NM
R3
s

ln

�jr − Rsj
rþ Rs

�
; ð3:3Þ

or

d2 ∼
G2

NM
rjr2 − R2

s j
: ð3:4Þ

Since we obtained the corrections in a “weak” field
approximation, such terms should be small compared to
the unperturbed metric coefficients, that is

di ≲ V ∼
GNM
r

: ð3:5Þ

By recalling that GN ¼ l2
p in our units, this means that

d1 ≪ V provided

l2
p

R2
s
ln

�jr − Rsj
Rs

�
≲ 1 ð3:6Þ

and d2 ≪ V if

l2
p

Rsjr − Rsj
≲ 1: ð3:7Þ

The above two conditions are clearly satisfied if
ϵ≡ jr − Rsj≲ lp, since Rs ≫ lp is the radius of a macro-
scopic matter source. To illustrate this, one can derive
numerical estimates on the size of ϵ for various values of
Rs. In particular, we find for a typical neutron star with
radius Rs ≃ 10 km, that ϵ≳ 10−78Rs, while for objects of
the order of the Planck length Rs ≈ 10−35 m, we find
ϵ ≈ Rs. As expected, our approximation fails for sub-
Planckian objects, and we must therefore restrict our
analysis to M ≳ 1=

ffiffiffiffiffiffiffi
GN

p ¼ MP where MP is the Planck
scale. Moreover for Planck sized objects these restrictions
are of major importance, and must be considered in any
further analysis.

IV. MODEL FOR QUANTUM BLACK HOLES?

While it is remarkable to be able to calculate model
independent quantum gravitational corrections to the met-
ric of a star or vacuum solutions of general relativity,
it is clear that these corrections are tiny and probably of
little empirical value from an astrophysical perspective.
However, quantum gravitational corrections could be
important for objects such as Planckian quantum black
holes [18–25], i.e., hypothetical objects with a mass close
to the Planck scale and size of the order of the Planck
length, which could have played an important role during
the big bang. We have seen that quantum gravity makes a
difference between a static star metric and an eternal black
hole solution, the latter being described by a vacuum
solution of Einstein equations. In this section we investigate
which of the two external metrics would be better suited to
model a Planckian quantum black hole. In order to address
this question, we need to extrapolate our star model into the
quantum regime.
In Sec. II we derived quantum corrections to the metric

generated by a homogeneous ball of dust with density (2.8)
and isotropic pressure (2.11). According to general rela-
tivity, this unperturbed classical configuration is stable only
provided the size of the source does not violate the
Buchdahl limit [33,38], so that its radius must satisfy

Rs >
9

8
RM ≡ 9

8
ð2GNMÞ; ð4:1Þ

where RM is the gravitational radius of the ball and would
be the horizon radius of the outer Schwarzschild metric.
While this is the classical limit, it may not hold for quantum
black holes as can be seen by taking Rs ∼ lp ∼

ffiffiffiffiffiffiffi
GN

p
and

M ∼MP ∼ 1=
ffiffiffiffiffiffiffi
GN

p
.5 Quantum black holes are not

expected to be stable objects anyway, but one expects
them to decay very quickly within a time of the order of the
Planck time τP ≃

ffiffiffiffiffiffiffi
GN

p
. We thus do not expect Planckian

black holes to be well described by vacuum solutions. The
inside of Planckian black holes is certainly not in vacuum
as the fluctuations of space-time are expected to be large
and space-time could lose its meaning altogether on such
short distances. A better approximation might thus be to
describe such objects might with a quantum corrected star
metric.
In fact, even if we accept the general relativistic prediction

that the collapsedmatter giving rise to a black hole geometry
must end in a very small region of extremely high density,6 it
is not a priori clear that the size of this region remains
negligible when the black hole mass M approaches the
Planck scale.

5In this section we shall use units with c ¼ 1, GN ¼ lp=MP
and ℏ ¼ lpMP.

6It is worth recalling that deltalike sources in general relativity
are not mathematically consistent [39].
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In particular, the external metric (2.12) receives the
quantum corrections (2.25) in the regime jr − Rsj ≫ lp
(as we explained in Sec. III). For r ≫ Rs, the corrected
metric can therefore be written as

ds2 ¼ gttdt2 þ grrdr2 − r2dΩ2; ð4:2Þ

with

gtt ≃ 1 −
2GNM

r
−
α̂ℏG2

NM
r3

≃ 1 −
2lpM

MPr
−
α̂l3

pM

MPr3
; ð4:3Þ

and

grr ≃ −
�
1 −

2GNM
r

�
−1

þ β̂ℏG2
NM

r3

≃ −
�
1 −

2lpM

MPr

�
−1

þ β̂l3
pM

MPr3
; ð4:4Þ

where α̂ ¼ 128πðαþ β þ 3γÞ and β̂ ¼ 384πðα − γÞ. Note
that α̂ > 0 for scalar and vector particles as well as for
fermions and gravitons, while β̂ < 0 for vectors, fermions
and gravitons, and can be both positive and negative for
scalars depending on the value of the nonminimal coupling
ξ (see Table 1). On considering the particle content of the
Standard Model and minimal coupling ξ ¼ 0, one would
then find β̂ < 0.
The gravitational radius RH of the system is then

determined by the condition grrðRHÞ ¼ 0. For β̂ < 0,
one finds

RH

lp
¼ 2M
3MP

þ
(
−

M
2MP

"
β̂−

16M2

27M2
P
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂

�
β̂−

32M2

27M2
P

�s #)
1=3

þ
(
−
2M
MP

"
β̂−

16M2

27M2
P
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β̂

�
β̂−

32M2

27M2
P

�s #)
1=3

: ð4:5Þ

and it follows that RH > RM for any values of M > 0 (see
Fig. 1). If we push the above description to values of the
massM ≳MP, this implies that, if the matter which sources
the metric is not confined in a singularity, but occupies a
finite volume [40] of size, say Rs ∼ lp, its gravitational
radius is significantly larger than it would be in the vacuum
Schwarzschild geometry. Consequently, the probability of
this system of size Rs to be a black hole would be larger
according to the horizon quantum mechanics [41].
Moreover, this is qualitatively similar to what was found
in [42], namely that the horizon area would also be larger
than in general relativity. However, one has to be careful
interpreting the results obtained in Fig. 1, since RH − RM
does not exceed lp, which is precisely the region where our
approach breaks down, as discussed in the previous section.

Ideally, for sufficiently large β̂ and small mass M, one
could have

RH ≳ 9

8
RM; ð4:6Þ

which implies that the classical Buchdahl limit will not
survive in this quantum realm as anticipated. These con-
siderations indicate that the metric of a Planckian quantum
black hole might be better described by our quantum
corrected star model rather than by a Schwarzschild metric.

V. CONCLUSIONS

In this paper, we have calculated the full set of quantum
gravitational corrections to the metric of a star in stable
equilibrium, as described by the Tolman-Oppenheimer-
Volkoff equation, to second order in curvature. We have
found a remarkable result. While eternal black holes, which
are static vacuum solutions of general relativity, and stars
have the sameoutsidemetric in general relativity, namely the
famous Schwarzschild vacuum metric, quantum gravity
makes a difference between black holes and stars at second
order in curvature. Star solutions receive a quantum gravi-
tational correction at this order, while vacuumblack holes do
not. It raises a deep question, namely what happens to this
correction if wewere to follow the gravitational collapse of a
ball of dust? According to our results, a distant observer
would be able to monitor the collapse of the star by
measuring the quantum gravitational corrections to
Newton’s gravitational potential. If he followed the process,
hewould have an operational procedure to determine that an
eternal black hole has formed.
It is usually argued that astrophysical black holes are

well described by a Kerr metric (as they rotate), however it
is a vacuum solution and there are thus no quantum
gravitational corrections to second order in curvature.
Our calculations thus raise deep questions about the nature
of astrophysical black holes. Are they truly vacuum
solutions?

2 4 6 8 10
M

0.2

0.4

0.6

0.8

1.0

RH RM

FIG. 1. Difference RH − RM forM > 0 and β̂ ¼ −10 in Planck
units.
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Clearly answering these questions is beyond the scope of
this paper. It would require us to follow precisely quantum
gravitational corrections during the dynamical process of a
star collapsing into a black hole.
From a technical point of view, we have obtained an

interesting result showing that the standard textbook metric
for a star [32,33] is too naive when it is assuming that
matter is distributed according to a step function at the
boundary of the star. Quantum gravity forces us to consider
stars with a smooth matter profile at their surfaces.
Our results also have interesting consequences for

quantum black holes. We have argued that the quantum
corrected star metric could be used as an effective metric for
a quantum black holes which, if they exist, are clearly not
vacuum solutions.
In conclusion, quantum gravity corrections have deep

implications for black holes and stars. Even though these
corrections might be too tiny to be observable, they
demonstrate that black holes are even more mysterious
than usually assumed.
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APPENDIX: DERIVATION OF THE
NONLOCAL TERM IN EQ. (2.22)

We will here show how to calculate the expression

ln

�
□

μ2

�
fðt; x⃗Þ; ðA1Þ

for time-independent and spherically symmetric functions
fðt; x⃗Þ ¼ fðrÞ, where r ¼ jx⃗j. In particular, we will con-
sider the following two cases: (a) if ∃ ϵ > 0 such that
fðr0Þ ¼ 0 for jr0 − rj < ϵ, we will find Eq. (A1) can be
computed rather straightforwardly and it yields

ln

�
□

μ2

�
fðrÞ ¼ 1

r

Z
∞

0

�
r0

rþ r0
−

r0

jr − r0j
�
fðr0Þdr0; ðA2Þ

(b) otherwise, if r > 0, fðrÞ ≠ 0 and ∃ ϵ > 0 such that
fðr0Þ is smooth for jr0 − rj ≤ ϵ, Eq. (A1) requires some care
to make sense and yields

ln

�
□

μ2

�
fðrÞ ¼ 1

r

Z
∞

0

r0

rþ r0
fðr0Þdr0

− lim
ϵ→0þ

�
1

r

Z
r−ϵ

0

r0

r − r0
fðr0Þdr0

þ 1

r

Z
∞

rþϵ

r0

r0 − r
fðr0Þdr0

þ 2fðrÞ½γE þ lnðμϵÞ�
�
; ðA3Þ

which contains a Cauchy principal value integral, as was
found in [9].
As a first step, we use time independence to express the

function f in terms of its Fourier transform f̂ and write

ln

�
□

μ2

�
fðx⃗Þ ¼

Z
d3k
ð2πÞ3 ln

�
k2

μ2

�
eik⃗·x⃗f̂ðk⃗Þ; ðA4Þ

where k ¼ jk⃗j. Next, we use the spherical symmetry of f
(and f̂) and assume that x⃗ ¼ ð0; 0; rÞ without loss of
generality, so that

ln

�
□

μ2

�
fðrÞ

¼ 1

ð2πÞ2
Z

∞

0

k2dk
Z þ1

−1
dðcos θÞ ln

�
k2

μ2

�
eikr cosϕf̂ðkÞ

¼ 1

2π2r

Z
∞

0

dkk ln

�
k2

μ2

�
sinðkrÞf̂ðkÞ

¼ 1

π2r

Z
∞

0

dkk ln

�
k
μ

�
sinðkrÞf̂ðkÞ: ðA5Þ

We can now Fourier transform back to coordinate space by
making use of the relation between the Fourier and the
Hankel transforms for spherically symmetric functions in 3
dimensions, namely

k1=2f̂ðkÞ ¼ ð2πÞ3=2
Z

∞

0

r3=2fðrÞJ1=2ðkrÞdr; ðA6Þ

where J1=2ðkrÞ ¼
ffiffiffiffiffi
2
πkr

q
sinðkrÞ. Therefore, we obtain

ln

�
□

μ2

�
fðrÞ ¼ 4

πr

Z
∞

0

dk
Z

∞

0

dr0 ln
�
k
μ

�
sinðkrÞ sinðkr0Þr0fðr0Þ

¼ 1

πr

Z
∞

0

dk
Z

∞

0

dr0 lim
δ→0þ

�
fðr0Þr0 ln

�
k
μ

�
e−δk½eikðr−r0Þ þ e−ikðr−r0Þ − eikðrþr0Þ − e−ikðrþr0Þ�

�

¼ μ

πr

Z
∞

0

dr0 lim
δ→0þ

Z
∞

0

dqfðr0Þr0 lnðqÞe−δμq½eiμqðr−r0Þ þ e−iμqðr−r0Þ − eiμqðrþr0Þ − e−iμqðrþr0Þ�; ðA7Þ
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where we rescaled the momentum variable and swapped the limit with momentum integration in the last line. For
ReðαÞ > 0, we have

Z
∞

0

dq lnðqÞe−αq ¼ −
1

α
½γE þ lnðαÞ�; ðA8Þ

which allows us to get

ln

�
□

μ2

�
fðrÞ ¼ 1

πr

Z
∞

0

dr0fðr0Þr0 lim
δ→0þ

�
γE þ lnðμRþÞ þ iϕþ

δþ iðrþ r0Þ þ γE þ lnðμRþÞ − iϕþ
δ − iðrþ r0Þ

−
γE þ lnðμR−Þ þ iϕ−

δþ iðr − r0Þ −
γE þ lnðμR−Þ − iϕ−

δ − iðr − r0Þ
�
; ðA9Þ

where R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ðr� r0Þ2

p
and ϕ� ¼ arctan ½ðr� r0Þ=δ�. The first two terms are regular and we can take the limit δ → 0

straightforwardly, whereas the last two terms may contain a pole at r0 ¼ r. Here is where the two cases mentioned
above occur:
Case (a): since fðr0Þ ¼ 0 around r, there is no pole in Eq. (A9), which immediately yields the result (A2).
Case (b): for fðrÞ ≠ 0 but bounded and sufficiently smooth, we can rewrite Eq. (A9) as

ln

�
□

μ2

�
fðrÞ ¼ 1

r

Z
∞

0

dr0
r0fðr0Þ
rþ r0

− lim
ϵ→0þ

1

r

�Z
r−ϵ

0

dr0
r0fðr0Þ
jr − r0j þ

Z
∞

rþϵ
dr0

r0fðr0Þ
jr − r0j

þ 1

π

Z
rþϵ

r−ϵ
dr0fðr0Þr0 lim

δ→0þ

�
γE þ lnðμR−Þ þ iϕ−

δþ iðr − r0Þ þ γE þ lnðμR−Þ − iϕ−

δ − iðr − r0Þ
��

¼ 1

r

Z
∞

0

r0

rþ r0
fðr0Þdr0 − 1

r
lim
ϵ→0þ

�Z
r−ϵ

0

r0

r − r0
fðr0Þdr0 þ 1

r

Z
∞

rþϵ

r0

r0 − r
fðr0Þdr0

�
þ L1; ðA10Þ

where it is understood that 0 < δ < ϵ before the limits are taken. The first line in Eq. (A10) already reproduces the first line
in the result (A3), and we need only compute

L1 ≡ −
1

πr
lim
ϵ→0þ

Z
rþϵ

r−ϵ
dr0fðr0Þr0 lim

δ→0þ

�
γE þ lnðμR−Þ þ iϕ−

δþ iðr − r0Þ þ γE þ lnðμR−Þ − iϕ−

δ − iðr − r0Þ
�
: ðA11Þ

By swapping the limit with the integral and defining a contour around the pole at r0 ¼ r, we get

L1 ¼ −
1

πr
lim
ϵ→0þ

�
lim
δ→0þ

Z
2π

π
iϵeitdtðrþ ϵeitÞfðrþ ϵeitÞ

×

�
γE þ ln ðμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ϵ2e2it

p
Þ − i arctanðϵeitδ Þ

δ − iϵeit
þ γE þ ln ðμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ϵ2e2it

p
Þ þ i arctanðϵeitδ Þ

δþ iϵeit

��
: ðA12Þ

We can finally use the fact that f is locally smooth and Taylor expand it as fðrþ ϵeitÞ ¼ fðrÞ þOðϵÞ. Hence,

L1 ¼ −
fðrÞ
π

lim
ϵ→0þ

�
lim
δ→0

Z
2π

π
iϵeitdt

γE þ ln ðμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ϵ2e2it

p
Þ − i arctanðϵeitδ Þ

δ − iϵeit
þOðϵÞ

�

−
fðrÞ
π

lim
ϵ→0þ

�
lim
δ→0

Z
2π

π
iϵeitdt

γE þ ln ðμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ϵ2e2it

p
Þ þ i arctanðϵeitδ Þ

δþ iϵeit
þOðϵÞ

�

¼ −
4fðrÞ
π

lim
ϵ→0þ

�
lim
δ→0þ

arctan

�
ϵ

δ

�
½γE þ ln ðμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ ϵ2

p
Þ� þOðϵÞ

�
¼ −2fðrÞ½γE þ ln ðμϵÞ�; ðA13Þ

which completes the result presented in Eq. (A3).
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