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We study W algebras obtained by quantum Hamiltonian reduction of s/(Mn) associated to the s/(2)
embedding of rectangular type. The algebra can be realized as the asymptotic symmetry of higher spin
gravity with M x M matrix valued fields. In our previous work, we examined the basic properties of the W
algebra and claimed that the algebra can be realized as the symmetry of Grassmannian-like coset even with
finite central charge based on a proposal of holography. In this paper, we extend the analysis in the following
ways. First, we compute the operator product expansions among low spin generators removing the
restriction of n = 2. Second, we investigate the degenerate representations in several ways, and see the
relations to the coset spectrum and the conical defect geometry of the higher spin gravity. For these analyses,
we mainly set M = n = 2. Finally, we extend the previous analysis by introducing A/ = 2 supersymmetry.
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I. INTRODUCTION

Three-dimensional gravity on anti-de Sitter (AdS) space
is an attractive arena to investigate the quantum aspects of
gravity because of its tractability. In particular, there are
infinite dimensional symmetries near the AdS boundary
[1], and the quantum gravity effects should be constrained
by these symmetries. In our previous work [2], we inves-
tigated the rectangular W algebra with su(M) symmetry as
the asymptotic symmetry of higher spin gravity with
M x M matrix valued fields constructed in [3]. The matrix
extension is expected to be useful to see stringy effects from
the viewpoints of higher spin gravity, see, e.g., [4] for
recent arguments. In [5], it was proposed that the matrix
extension of classical higher spin gravity is dual to the coset

su(N + M),

— 1.1

su(V), ® (1), o
with k = kNM (N + M) at a large N limit.' For M = 1, the
proposal reduces to the Gaberdiel-Gopakumar duality [9].
Based on the holography of [5], we claimed that the
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rectangular W algebra can be realized as the symmetry
algebra of (1.1) even without taking a large N limit. In this
paper, we continue the study of the rectangular W algebra
by extending the analysis of operator product expansions
(OPEs) among generators and examining its degenerate
representations. We further examine the N =2 super-
symmetric extensions of rectangular W algebras.

It is known that pure AdS gravity in three dimensions
can be described by sI(2) @ sI(2) Chern-Simons gauge
theory [10,11], and a higher spin gravity can be constructed
by replacing s/(2) by a higher rank gauge algebra, say,
sl(n). In order to realize a matrix extension, we may
consider the gauge algebra with the multiplication of
M x M matrix algebra or gl(M). A closed algebra includ-
ing gl(M) ® sl(n) is given by (see, e.g., [5,12,13])

sIMn)=~sI(M)®1,®1y,Qsl(n)®sl(M)Qsl(n), (1.2)

and the gravitational sector is identified with the principally
embedded s/(2) in 1, ® sl(n). The asymptotic symmetry
is obtained as in [14,15] by assigning the asymptotic AdS
condition, and it is identified as a W algebra given by the
Hamiltonian reduction of s/(Mn) with the corresponding
s1(2) embedding. In particular, the W algebra includes the
Virasoro algebra and su(M) affine algebra as subalgebras.
In [2], we computed the exact expressions of the central
charge ¢ and the level £ of su(M) currents. We further
obtained the OPEs among generators for n = 2 by requir-
ing their associativity. We claimed that the rectangular W
algebra with su(M), symmetry is realized by the coset (1.1)
at 1 = n. Here the ’t Hooft parameter A is defined by
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k k
A_k+N A= k+N+M’ (13)
which can be exchanged by the duality of cosets [2]. We
have checked that the OPEs among generators are repro-
duced from the coset at 4 = 2.

In this paper, we extend the analysis in the following
ways. We first reexamine the OPEs of low spin generators
by working with generic n. In our previous analysis, we
assumed the decoupling of spin 3 currents at n = 2 and
obtained OPEs among generators up to spin 2. Here we
remove the assumption and examine the OPEs between
spin 2 and 3 currents as well. Since the computations
become rather complicated, we set M = 2 for simplicity.
We then analyze the degenerate representations of the
rectangular W algebra in several ways mainly working
with M = n = 2. As a direct way, we study the conditions
for null vectors at the low levels of descendants. We find
several examples of them by assuming a certain form of
null vectors. We further obtain representations from those
of si(Mn) current algebra by applying the Hamiltonian
reduction. We compare the results with the spectrum of the
coset (1.1) and the mass of conical defect geometry in the
Chern-Simons theory obtained in [16], see also [17-19].

We further extend the analysis by considering the N' = 2
supersymmetric rectangular W algebras. It is important to
introduce extended supersymmetry in order to see the
relation to superstring theory [5,12,20-22]. The N =2
W algebra may be realized as the asymptotic symmetry of
N = 2 higher spin supergravity with M x M matrix valued
fields in [3]. We construct the A/ =2 W algebra by the
Hamiltonian reduction of s/(M(n+ 1)|Mn). The N =2
W algebra includes the Virasoro algebra and two su(M)
affine algebras as subalgebras. We compute the central
charge ¢ and the levels ¢, £, of two su(M) currents
without taking a large ¢ limit. We also obtain the OPEs
among low spin generators for simple examples with n = 1
and M = 2, 3, 4. Based on the holography of [5], we claim
that the N' = 2 W algebra is realized as the symmetry of the
coset

su(N+ M), ® so(2NM),
SU(N)jpr @ u(l);

(1.4)

with & = NM(N + M)(N + M + k) even at finite c. From
the match of central charges and the levels of su(M)
currents, we set

£ =k, £,=N. A= ——n, (15
! 2 Py AU )
or
£ =N ly =k ) k (1.6)
pr— s pr— s = = —Nn .
: 2 k+N+M

We check that the OPEs among generators can be repro-
duced from the coset (1.4) for several examples.2

This paper is organized as follows. In the next section,
we start by reviewing the results of [2]. We explain the
derivations of the central charge and the level of su(M)
currents. We then compute the OPEs among generators but
now with generic n # 2 but with M = 2. We compare these
results with those of the dual coset (1.1). In Sec. III, we
examine the degenerate representations from the null vector
conditions and the Hamiltonian reduction of s/(4). We then
compare the results with the spectrum of dual coset (1.1)
and the mass of conical defect geometry of higher spin
gravity. In Sec. IV, we examine the A/ = 2 rectangular W
algebra. We first derive the expressions of central charge
and the levels of two su(M) currents. We then compute the
OPEs among generators of spin up to 2 for small M and
examine degenerate representations. We compare these
results with those of dual coset (1.4). Section V is devoted
to conclusion and discussions. Several technical Appendixes
follow. In Appendix A, we write down the commutation
relations for the bosonic W algebra with M =n = 2. In
Appendix B, the degenerate representations of the bosonic
W algebra are reexamined by making use of associativity of
the OPEs. In Appendix C, we collect several technical
materials used for the analysis of the N' =2 W algebra.
In Appendix D, we propose alternative coset realizations of
the rectangular W algebras and superalgebras.

II. RECTANGULAR W ALGEBRA

As mentioned in the Introduction, a higher spin gravity
can be constructed by the Chern-Simons gauge theory
based on a higher rank algebra g with an embedding of
gravitational s/(2). Without the matrix extension, a holog-
raphy was proposed in [9] using the 3d Prokushkin-Vasiliev
theory of [3]. The gauge algebra of the 3d higher spin
theory is given by &s[A], which can be truncated to sl(n) at
A = n. Similarly, the gauge algebra of higher spin theory
with the matrix extension is given by /s,,[4], which can be
reduced to sl/(Mn) at 1 =n. Decomposing sl(Mn) as
in (1.2), we principally embed the gravitational s/(2) in
Ty ® sl(n). The gauge algebra can be decomposed by the
s1(2) as

sl(Mn) ~sl(M) @ M*g® @ --- @ M*>g™,  (2.1)
where ¢*) denotes the spin s — 1 representation of s1(2).

After the Hamiltonian reduction, only one element in g<”>
(s =2,3,...,n) survives and the space-time spin of the

It is known that the coset (1.4) with M = 2 has the large
N = 4 superconformal symmetry, and a holography with the
coset has been proposed in [12]. In the special case with M = 2,
the symmetry generators of the coset for low spins were explicitly
constructed in [23,24], and the OPEs among generators of the
N =4 W algebra were investigated in [25].
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element becomes s. Thus, the W algebra includes sI(M)
[or su(M)] spin 1 currents’ and M? spin s currents with
s = 2,3, ..., n. In particular, one of the spin 2 currents is the
energy-momentum tensor.

In this section, we explain the basic properties of
rectangular W algebras by reviewing the results of [2].
In the next subsection, we compute the central charge ¢ and
the level £ of the su(M) currents by applying the general
formula, e.g., in [26]. In Sec. II B, we obtain the OPEs
among generators by requiring their associativity. Here we
do not assume the decoupling of spin 3 currents but work
with M = 2 just for simplicity. In Sec. I C, we examine the
relations to the dual coset of (1.1).

A. Central charge and level of the affine symmetry

In [2], we computed the central charge ¢ and the level ¢
of s/(M) current as basic information on the W algebra with
sI(M) symmetry. Here we repeat the analysis mainly for the
preparation of supersymmetric extension. We start with a
Lie superalgebra g and set the level of the affine currents
as 1. We also specify an embedding of s/(2). We may
denote the generators of s/(2) by x, e, f satisfying

xe=e. [nfl==f lefl=x (22)
The Lie superalgebra can be decomposed by the eigenvalue
of the adjoint action ad x as
9= Djelz9;- (2.3)
Denoting S, = [];.(S; with a basis {ua}aes, for g, the
formula for the central charge is [26]

_ 1sdimg

= 12¢(x|x)
1
= (=1)P@(12m2 - 12m, +2) —sdimayp. (24)
aesS,

Here (x|x) is a bilinear form and i represents the dual
Coxeter number. The parity of u, is denoted by p(a). The
Hamiltonian reduction is realized as a Becchi-Rouet-Stora-
Tyutin (BRST) cohomology at the quantum level and the
conformal dimensions of BRST ghosts are (m,, 1 —m,)
with m, =1 —j.

For the present case, we set g = s/(Mn), where the
dimension is M?n? — 1 and the dual Coxeter number is
hY = Mn. With x for the principally embedded sI(2) in
Ty ® sl(n), we find

(x|x) =tr(xx)=trTy, -l—n(n2 —1)=—Mn(n*-1).

*We consider the complex elements of s/ (Mn), and thus there
is no distinction between s/(M) and su(M).

We next count the number of elements belonging to S,
which is found to be M?*(n — j) for j = 1,2,...,n— 1 and
zero otherwise. From the formula (2.4), the total central
charge is obtained as

_t(m’M? - 1) 2 2 2
C—W—IMI’I(" —1)—M n(l—|—(—2—|—n)n )

(2.6)

We compute the level ¢ of s/(M) currents as well. The
currents basically come from the elements in s/(M) ® 1,,,
which leads to the level tn. There are also contributions
from the BRST ghosts. The ghosts carry the trivial
and adjoint representations of sI(M), and there are
23741 (n—j) =n(n—1) sets of ghosts in the adjoint
representation. We can construct s/(M) currents with level
M from one set of ghosts in the adjoint representation.
Therefore, the sum of two types of contributions to the
level is

£=tn+Mnn-1). (2.7)
We have a relation between ¢ and £ as
(2 = 1)n*M
=—  + /M -1 2.8
¢ -+ nM + (2.8)

by expressing ¢ in terms of .

B. OPEs among low spin currents

We can examine the possible OPEs among generators of
algebra by requiring their associativity.* In [2], the OPEs
among generators of the rectangular W algebra were
obtained at n = 2 by assuming the decoupling of spin 3
currents. Here we lift the analysis to generic n.

As seen above, the rectangular W algebra includes su(M)
affine algebra as a subalgebra. We denote the currents as J¢
with @ = 1,2, ..., M? — 1 and require the OPEs

féab : abCJt 0
IO

Z Zz

J4(2)J°(0) ~

(2.9)

with the level . Here we have introduced the generators ¢
of su(M) with the invariant tensors

tr(29) =6, ([t 1)) =ifePe,  w({t, 1" 1) =de.

(2.10)

The algebra also includes higher spin currents W4
(s =2,3,...), where W) and W) are in the trivial

“For the checks of associativity of OPEs, we use a Mathematica
package OPEdefs [27].
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and adjoint representations of su(M). In particular, T =
W) is the energy-momentum tensor satisfying

¢/2 2T(0) T(0)

TT(0) ~ L+ =+ =

N
N

T(z)J(0) ~—5—+ (2.11)
with the central charge c. Here A’(0) means £A(z) at
z = 0. We choose the primary basis for the charged higher
spin currents Q¢ = W% and P* = W) such as to satisfy

“ al i ab )c
00~ EEL o0~
r(@pe0) >0 PO o) L0

(2.12)

The first nontrivial OPE would be among Q° and Q°,
which will be expressed schematically as Q¢ x Q.

1. Composite primary operators

The operator product WOGDA x W24 produces
(composite) operators up to spin s; + s, — 1. For the OPE
of 0% x Qh, we need (composite) operators with spin 1,2,3,
though we can see that W®)° does not appear due to the
bosonic statistic of Q¢. We restrict the form of Q¢ x Q” by
requiring the associativity of Q¢ x Q% x Q¢, but for this we
also need to think about the OPEs of Q¢ and P”. The operator
product Q¢ x P? would generate composite primary oper-
ators of spin up to 4, so we start by classifying them.

We may count the number of primary operators by
decomposing the vacuum character of the rectangular W
algebra by the Virasoro characters, see, e.g., [28]. The
vacuum character of the rectangular W algebra is

:H<1_ M21HH MZ’

n=1 §=2 n=s

(2.13)

while the Virasoro characters of the vacuum representation
and the generic one with conformal weight / are

oo 1 C]h
= = . 2.14
Xo(q) ,1:[21 g xn(q) 1 _q)(o(@ (2.14)
The decomposition is given by
28(a) = 20(a) +Y_dh) u(q).  (2.15)
h=1

where d(h) represents the number of independent (composite)
primaries with conformal weight /4. Expanding in g, we
find

1
d(1) =M* -1 d(Z):E(M4+M2—2),
1
d(3) = E(M(’ +9M* — 16M? + 12),
1
d(4) = — (M® +22M5 + 23M* — 46M* + 24),  (2.16)

24

and so on.

We can construct composite operators primary with
respect to the Virasoro generator along with the funda-
mental currents J¢, W4 with s = 2,3, .... In order to
define the composite operators, we adopt the prescription
of normal ordering as

(AB)(z) = 2% f{ WdiVZA(w)B(z) (2.17)
and
(A AAILA) = (A (A2 (AL A)) ). (2.18)
Moreover, we use the brackets (ay,...,q;) and [ay, ..., a;

for the symmetric and antisymmetric indices with prefactor
1/(1!), respectively. We find the composite operators

2¢

[J@gb)] = (Jlagb))y — =T (2.19)
C
for spin 2 and
3¢
[J(a)]h]c)] —_ (J(a)JbJL)) + [5(abJ¢')// _ 2(TJ<a)5bL)],
c+2
[JaQb] (JaQb) _fachC/7
] +5 6
J[th]/ —_ J[th]/ _ i ab ¢ Jer — TJ¢
] = ooty Lo [C3 ger O e
(2.20)

for spin 3. For general composite operators, we use the
abbreviated notation

(2.21)

where the dots represent terms which make the operators
to be primary with respect to the Virasoro algebra.5 With
the notation, the composite spin 4 primary operators are
[Jlagb e g9,
[0“Q"].

[J(a.]ch],
(Ja W(3>0),

[J(ago)m],
[P’

[Ja Qb/],
(2.22)

The primary condition does not fix the additional terms
uniquely. However, we do not write down our specific choices
here, since they are not so important for our arguments.
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and

1
[J(a]b)]c/] _ Z {(Ja]ch/) + (JbJ”JC')

— (JeJb Iy — (JTUTN Y + -0 (2.23)
We can check that the number of primary operators matches
with d(h) in (2.16) up to h = 4. Notice that the number of
independent components of [J(“J?)J'] is L(L>-1)/3
with L = M? - 1.

2. Associativity of OPE

We expand the operator product Q¢ x Q” in terms of the
fundamental and composite operators with some indices.
The coefficients in front of the operators can be expressed
with the invariant tensors of su(M). Here we restrict
ourselves to the case with M = 2, but it is straightforward
(but tedious) to work with generic M. There is only one
tensor with two indices, that is 5. With three indices, there
are f°¢ and d* introduced in (2.10). For M = 2, we have
d?c = 0, and the other invariant tensors can be written in
terms of 6° and f°°. With four indices, there are

1
df{f‘iﬁ — 5 (5a05bd _ 5ad5bc)’ déa‘gg‘(ii — 5ab50d’
1
dygsr = 3 (89csbd + 5ad5be). (2.24)

Furthermore, we need

dabede — fablegde)

dabede — % (2fabesed — pabeged _ pabdgec),

dabede — i (5% fhde 4 gbe pade | gad gbee 4 shd pace) (2 25)

for those with five indices and

(J2bcdef — ldabcdéef + ...

abedef __ sab sc(d sef
d()SSl =0 5( 4 )’ 6552 _6 4552

(2.26)

for those with six indices. Here the dots above are the terms
which make the expression symmetric under the exchange
of {c,d.e, f}.

With the above preparations, we require the following
forms of the OPEs involving Q¢ and P“. The OPE of
0% x Q" is schematically of the form

Q' x Q" ~ 8¢y /21 +if " cer) + CYh [T
+dihar cacal VTV + difgy g csI TN
+ a1 caCelI QY+ if P i P (2.27)

There are also contributions from descendants, which can
be related to those from the primaries utilizing the Virasoro
symmetry or requiring the associativity of T x Q¢ x Q.
Here and in the following, we use small letters like ¢; for
constants without indices and capital ones like C; for
coefficients with indices. In the current example, we set

ab __ jab ab
Ciea = diss1 ca€31 + diger caC32- (2.28)

Requiring the associativity of J¢ x Q% x Q¢, almost all
coefficients are fixed as functions of ¢ and ¢ up to two
parameters. One of them may be chosen as ¢, which can be
absorbed by changing the overall normalization of Q¢. We
choose the other parameter as ¢;, which is undetermined at
this stage.

The OPE of Q% x P’ is of the form

Q° x PP~ if e J + 8L I TN + if P es 0 + dis gpeal I T + ESL [1°0)
+d5h, ge6lTCTV] 4 8 e WP ifab egPC + EGh  [J€T4TT)]

4Bl I3+ EY)

cd

The coefficients with capital letters as E; are expressed by
the invariant tensors in (2.24), (2.25) and (2.26) as in (2.28).
This OPE is used only to restrict the form of Q¢ x Q% from
the associativity of Q¢ x Q% x Q¢. For this, we do not need
the information of e;, €5, E4, €17, €13, wWhich will be
neglected in the following. Requiring the associativity of
J% x QP x P¢, the other coefficients are determined as
functions of ¢ and £ up to three parameters including
¢y, ¢7. One remaining parameter may be chosen as es,

gD + ES  [T€TDQ) + EE [0
+ Eh JJ0CON] +if e e1s(JWRO) 4 B TP 4 5% e WO 4 ifab e g WHE,

(2.29)

which can be absorbed by changing the overall normali-
zation of P“.

The associativity of Q% x Q” x Q¢ leads to a constraint
equation for these parameters as

e3c; (3% + ¢ —4)(cl + 2¢ = 3¢)
— (£ =2)( +1)(ct +dc+ 662 —T¢ —4). (2.30)

Since ¢; and e5 can be removed by the redefinitions of Q¢
and P¢, we conclude that the OPEs of generators of spin up
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to 2 have only two parameters ¢ and #. The decoupling of
spin 3 currents P can be realized with ¢; = 0, which
leads to

8(£2 — 1)
B Gl P VI
¢ 714 T

(2.31)
as in (2.8) with M = n = 2. In terms of mode expansions,
the commutation relations among generators with
M = n = 2 are summarized in Appendix A.

From the above analysis, we may conjecture that there is
a W algebra with su(M) symmetry parametrized by ¢ and
¢. Based on the relation in (2.8) with M = 2, we may map a
parameter ¢ to A by

2(¢2 = 1)22

2¢ - 1.
£+ 24 +

(2.32)

c=-

The parameters of the W algebra are now 4 and Z, and the
W algebra from s/(2n) is expected to be realized at 1 = n.
Except for £ = £+1,-24, the constraint equation (2.30)
reduces to

esc; (32 + 6 —-4)A=-1)((£+2)A+7)

= (£ =2)(f+1)(A=2)(£(A+2) +44). (2.33)

This is a second order equation with respect to 4. Suppose
that A = /4 is a solution to (2.33), then we can show that

Ll
420

(2.34)

is also a solution. As seen shortly, this is consistent with the
duality relation discussed in [2].

C. Dual coset CFT

In [5], it was proposed that the classical 3d Prokushkin-
Vasiliev theory of [3] with M x M matrix valued fields is
dual to the Grassmannian-like coset (1.1) at a large N limit.
We have checked the agreements of spectrum and low spin
symmetry in the limit. In [2], we conjectured that the
holographic duality works even with finite N and claimed
that the rectangular W algebra with su(M) symmetry can
be realized as the symmetry algebra of the coset (1.1).° The
correspondence happens at A = n, where the 't Hooft
parameter is defined by (1.3). We should also set £ = k,
where ¢ is the level of su(M) current algebra. The central
charge is written as

®An alternative coset description of the same W algebra is
proposed in Appendix D 1 and several confirmations are given. It
is an interesting open problem to examine more direct relations
between the two dual cosets.

(k> = 1)A*M

M—1
i Tk

(2.35)

c=-

irrespective of the choice of the 't Hooft parameter (1.3).
Notice that the expression with 4 = n reduces to (2.8). The
two choices are related to a duality of the coset (1.1) as
discussed in [2]. In particular, the two 't Hooft parameters
can be exchanged by

Ak

/1 —
Tk M

(2.36)

which is consistent with (2.34).

The generators of the rectangular W algebra have been
constructed in terms of the coset (1.1) in [2] up to spin 3.
Here we review the results of [2] in order to prepare for the
supersymmetric extension. We decompose su(N + M) as

su(N+M)=su(N)@® su(M) ®u(1)® (N,M) @ (N,M)
(2.37)

and use the generators 4 = (1%, 1%, (1) /) () Here L
and L represents the fundamental and antifundamental
representations of su(L), respectively. We introduce the
metric ¢*8 = tr(1*¢%) as

tr(1°¢%) = 6%, tr(19t?) = 5,

tr(r M) =1, tr(tPD 1)) = 5P 5 (2.38)
and the invariant tensors as
ifABC = (14, 1B]1€), d*BC = uw({, B}r¢).  (2.39)
We adopt the convention in [2,21] such that
ife@) = M N 50
MN
gy - M=N 8,
VMN(N + M)
if(/ﬁ)(?fj)(z —_ d(/ﬁ)((}j)a — (f}t)(’rpéﬁ7
ifn@a = _qen@ia — _gps (1) (2.40)

for nontrivial expressions. With these notations, the su(M)
currents J4 satisfy

kg'® | if*.J(0)
~ ot .

JA(2)J8(0) ;

(2.41)

The spin 1 current is given by J* from su(N + M), in the
numerator of (1.1). The energy momentum tensor 7 can be
obtained from the standard coset construction [29]. For the
charged spin 2 currents, we found that
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0 =|( JD ](ﬁj)) +( J®J) J(ﬂi))](spﬁ(ta)ﬁ

N 2 IN(N+ M)
_ de b yc = a yu(l)
M + 2k bc(Jij\/ M (Je77)

(2.42)

satisfy the OPEs (2.12). In [20], we have explicitly checked
the match for the OPE of Q% x Q% at n = 2. In fact, we
have already shown that the associativity uniquely fixes the
OPE of Q“ x Q% with two parameters (4,¢) for generic
A#2 but with M =2. For the expressions of spin 3
currents, see Appendix A of [20].

ITII. DEGENERATE REPRESENTATIONS

In this section, we study the degenerate representations
of the rectangular W algebra in various ways. We set n = 2
since we know the OPEs of all generators. We furthermore
restrict ourselves to the M =2 case just for simplicity.
A direct way to obtain degenerate representations is to find
out null states constructed from a set of primaries, which is
the subject of the next subsection. We also study repre-
sentations from the Hamiltonian reduction of s/(4) in
Sec. III B. The results are compared with the spectrum
of the coset theory (1.1) in Sec. III C and the mass of
conical defect geometry in Sec. III D.

A. Null states

We have examined the commutation relations among
generators of the W algebras. The next task may be to study
its representations. With n = 2, the generators of the W
algebras are J?, T, Q¢, and their mode expansions are

FE=Y S TO=Y s 0@ =Y

nez z nez nez z

(3.1)

From the OPEs (2.9), (2.11), and (2.12), the commutation
relations among these modes are obtained as

[Lm’Ln] = (m - n)L)n+n +%(m3 - m)érH»m,Ov
s W) = i Ty + €My 10,
[Lmv Qﬁ] = (m_n) :;H-n’ [JZw QZ] :ifachfn-&-n‘

[Lm’*]fl] = _n‘]?n-&-n’
(3.2)

See Appendix A for [Q%,Q%. We look for degenerate
representations since they might be used to construct the
minimal models of the W algebra. For instance, we will
observe that several representations appear also in the
spectrum of the coset (1.1) in Sec. III C.

For the representations of the W algebra, we start by
defining the vacuum state as

L,|0)=0(m=-1), Q;|0)(n=~-1). J7]0)({20). (3.3)

Notice that the vacuum is in the trivial representation of
su(2) since J§|0) = 0. We further introduce states primary
with respect to the rectangular W algebra by
Lylj)y=00m=1), Qulj),(n=1), Ji|j),(I=1). (3.4)
We set the primary states such as to be simultaneously the
eigenstate of L, and in the spin J representation of J§ as
L0|j>1 = h|j>1v J8|j>1 = _(Da>_ji|i>1v (3-5)
where h is the conformal weight and (D?);" is the

representation matrix for spin J. We use the convention
with j=1,2,...,27 + 1 and

Ji2J+1) =0, JE =T +iJ2. (3.6)

The explicit forms of (D), are

(Dl)jl:\/%[\/j(zﬂrl—j)5j1—1+ 1(2J+1—1)5j_1’],
(Dz)j’—\%[—i\/j(ZJ—i—l—j)éj"l—i—i 1(2J+1—1)5j_1’},
(DY),'= (27 -2j12)3,. (3.7)

V2

In particular, we set (1), = (D?);! with J = 1/2.

An important problem here is how to deal with another
set of zero modes, i.e., Qf. They do not commute with J§ as
in (3.2), which implies that we cannot use simultaneously
the representations of J§ and Qf. Since Qf behave as in the
spin 1 representation of su(2), the action of Qf to |j),
yields new states with spin J — 1, J,J + 1. For simplicity,
here we require that

Qili)s = wo(D);'li), (3.8)
so that the action of Qf does not yield any other
representations. As we will see below, this assumption
works nicely for some restricted cases.

1. Null states at level 1

We would like to find out null states which are both
descendant and satisfying the primary conditions (3.4).
We first consider null states appearing at level 1 with spin
J=0,1/2,1,.... We use the ansatz

74), = (Q% + el + if“peend” TG+ esL 1 JG) ),
(3.9)
If the states are indeed null, then we can consistently set

|x4); = 0. In this case, Q¢ is given by a linear combi-
nation of J¢, and L_,J§.
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We first study the case with J = 0, where the states (3.9)
become simplified as

210 = (Q%, + erJ))[1)o. (3.10)

The nontrivial primary conditions are

Lilx§), =0 Jilxh,=0.  0flx}), =0  (3.11)
with j = 1 and J = 0. The first two conditions are satisfied
with e¢; = 0, and then the third condition leads to 2 = 0. With
h = 0, the descendant state L_;|j), becomes null. Setting
the null states to vanish as |y{), = Q_i|1); =0, the
primary state |1), can be identified with the vacuum
satisfying (3.3).

The first nontrivial example would be given with
J =1/2. The null states |x¢),/, are in the product of
the spin 1 and 1/2 representations, thus we can decompose
them into those in the spin 3/2 and 1/2 representations. For

the spin 3/2 representation, we use

W32z = X3 +ila3)

The conditions L;[y1/2)/» = J{|y1/2)12 = O fix the non-
trivial coefficients in terms of wy, & as

€1 o (3—4h)W0

Le (3-4h)wy 4(£+ 1wy
T T an(e+2)-3

e zm. (3.17)

From Qf|y/5)1/, = 0, we similarly have

.\/cl(4h(f+2)—3)(4h(f+2)(z,”+4)—zf(4f+11))
wo =i
16£(36% + £ —4)(4h 1 3¢)

(3.18)

In this way, we find that null states can be constructed from
a set of primaries when (3.15) or (3.18) is satisfied. If both
conditions are compatible, then two types of null states are
possible from a set of primaries. Indeed, the two conditions
are satisfied for

7-=-2¢

L A4 60 -5
4L+ 4) N

97— (3.19)

at the same time. The primary state with the first conformal

=05[2)10+ (e1 +e2)J5112)10, (3.12)  weight can be realized as a coset state as seen below.
With the experience for J = 1/2, it is not so difficult to
where we have defined increase J.” The states | x9), can be decomposed into those
. in the representations with spin J + 1,J,J — 1. For spin
O = Q) +i03. (3.13)  J 41, we use
We can equally use those obtained by the action of (/)" i)y = |)(%J+]>_I + i|1%1+1>1' (3.20)
with r = 1, 2. The conditions L1 |l//3/2>3/2 :Jtll|l//3/2>3/2 =0
set The conditions (3.11) are satisfied by
__ "™ er___ "
€]+62——f_1. (314) 62+2J K—ZJ’
Moreover, from Qf[y3/5)3/, = 0, we have Wo = il’f ~2 Je(h(£+4) +J(-2/ +£-2))
2J £(36% + ¢ —4)
—1)2he+8h+¢ -3 3.21
wo = iy [ D@REHBREE23) g (3:21)
20(4+37) . L
For spin J, we similarly use
There is no restriction on % at this stage. For the spin 1/2 1
representation, we use W)y =300 = ﬁ(b{%ﬁj +ilxa,),  (3.22)
_ ; 3
lWip2)1/2 = |Z}>1/2 + ’|X%>1/2 =2 (3-16)  and the primary conditions (3.11) lead to
J
o8 _ wo(=h+J*+1J) o (€ + 1)wy
T2 h(E+2)—J+1) ST h(E+2)-J(I+ 1)
NP+ HC+22=h(+22RIV+ D)+ &)+ T+ )PP+ T+ ¢ +2))
wo = +i . (3.23)

2/ (32 + ¢ —4)(h+J(J +1)¢)

"We have checked the expressions below for J = 1,3/2,...,3 but it is not difficult to work with other J.
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For spin J — 1, we set

. 2
Wit sor =) s=ilxas )y +\/—2—J|)(%J>J

1

— (13, _1)s Filx3,21) 1),

J(2J—1) (3-24)

then we find
€l Wo
€y — = - ,
242 £42J+1
(20 +6+2)\/c;2h(£+4)— (2] +2)(27 +¢))
(27+2) 20362+ ¢ - 4)

Wy =

(3.25)

as solutions to the primary conditions (3.11).

In this way, we have three types of null states for generic
J. However, in general, there is no & which satisfies all of
(3.21), (3.23) and (3.25) simultaneously. Therefore, we
have to give up at least one of them. The maximal number
of null state can be obtained if both (3.21) and (3.23) are
satisfied. This condition leads to

J(BI-£+42)

L JBIF=3IC+T+ 1)
Y

J(e+4)—¢

(3.26)

Setting J = 1/2, this reproduces (3.19). Furthermore, we
will see that the state with the first conformal weight can be
realized as a coset state in the spin J representation of su(2).

We may relax the condition for the maximal number of
null states. Instead of (3.21) and (3.23), we may require that
(3.21) and (3.25) are satisfied. Then we find

JU+ D(12J(J + 1) + (£ - 2)¢)

T iAW) - 0) (3-27)
Similarly, the choice of (3.23) and (3.25) leads to
h:(J+1)(3J+f+1)

£+4 ’
h:CP+UBﬂ+3U+1V+SI+ﬂ+Q) (3.28)

JE+4)+2(Z+2)

Currently, we do not have any good interpretations of them.

2. Null states at level 2

We also consider null states at level 2 for simple
examples with J = 0, 1/2. For this, we use the ansatz

lxi)y = Loy + gL Loy + g:0%T5 + 93], T
+ 940 L_JG§ + gsL_J4 TG + g6 Q%1 0%
+ 97Q’11J“_1 + gSngJil + ifabcg9Qci1J€l‘](C))|j>J’
(3.29)

where we have set the state of the form L_,|j), + - - -. The
states become null if the nontrivial primary conditions
Lr|)(?>1 =0, J?|)(?>J =0, Q?')(?)J =0 (3.30)
with r =1, 2 are satisfied. Since the requirement (3.8)
leads to (G + woJ§)|j); = 0, the states

. 1 .
G j)y + - = 5[Gh +wod§, Loo|j)y + -+

5 (3.31)

become null if the states (3.29) satisfy the primary con-
ditions (3.30).
For J = 0, the ansatz becomes simplified as

| Xa)s = (L + 1L Loy + 9602, 0%,

+ 970802, + gL TE) )y (3.32)
The primary conditions (3.30) determine the coefficients
Jd1»> 9s» 97, g 1in terms of h, £. There are three solutions for
the conformal weight /4 as

1=

41 L
44 B

Lt 3¢+ 4).
L 737 +4)

(3.33)

The state with the last conformal weight behaves as O(¢)
for large ¢, and it will be related to a conical defect
geometry of [16] below.

For J=1/2, the primary conditions (3.30) fix the
coefficients ¢; (i=1,2,...,9) in terms of h,wy, 7.
Moreover, h and wy are also determined as

3 3 Va3 (3.34)
Ae+4) 20 0 el -4

B. Hamiltonian reduction of s/(4)

The degenerate representations of the W algebra may
be examined from those of the s/(4) Wess-Zumino-
Novikov-Witten (WZNW) model by applying the
Hamiltonian reduction. As argued in [2], we may study
the Hamiltonian reduction by following the procedure of
[30] (see also [31-33]). Itis convenient to use the description
of the sI(4) WZNW model as [see (4.6) of [30]]

St[¢’gl’g27y777ﬂﬁﬁ]
1 _
= SNEWlgi) + SYE Vgl 4o [ 210809~ by/TRY)
+% / d2ztr <ﬁ9y +BG7—%6‘2"’Bgr'ﬁgz)- (3.35)

Here y,7.B,p are 2x2 matrix valued fields and

b =—i/\/2(t+4). We consider the vertex operators of
the form
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Vais = VI gV (g,).  (3.36)

where /; label the representations of s/(2). The conformal
weight of this operator is

Ca(42)
(4

- bla(a+4). (3.37)
Here C,(4;) is the second Casimir of sI/(2) for the

representation 4;. After the reduction procedure, the action
becomes [see (3.5) of [2]]

Silw. 91. 9]
= SNEVgi] 4+ SYEV[g1]

+ %/ d*z [6(p3§0 + % VIRe + %tr(e‘%‘/’gl"gz)
(3.38)
with
0, =—4b—1/b. (3.39)

The conformal dimension of the vertex operator (3.36) is

Cy(4)  Cy(dy)
h = + —brala+4) —a. A
t+4 t+4 ( ) (3-40)
T'hus the shift of conformal dimension is 64 = —a.

Next we examine the cases with finite dimensional
representations of s/(4). We express the representation
of sl/(4) by a Young diagram A’ with three integers
(47, 45, 25). We also define l} = f:j A, where l} counts
the number of boxes of A’. With the orthogonal basis ¢,
(j =1, 2, 3, 4), the highest weight for the representation is

3

) NES
A :Zlﬁj—TZe/
Jj=1

J=1

(3.41)

with [A’] = 373, I. The second Casimir of si(4) for the

representation A’ is

1< NP S 5N
Cz(A’):EZ(l})ZJ 4' =y i+ '2 ) (3.42)
j=1 j=1

In order to use the vertex operator in (3.36), we need to
rewrite the label in terms of s/(2) @ s(2) @ u(1). We may
express the highest weights for the representations as

A A
A<l) = 3161 —?262,

A(2) = %63 — %64,
(3.43)

_oom
m:§(€1+€2—€3—€4).

The relation to the highest weight for s/(4) is

X =1, N=12y  (3.44)

Using (3.42), the conformal weight for the s/(4) WZNW
model is computed as

L _ G
144
841 (A 4 2) + 81y(Ay +2) + m(m + 16)
N 32(1+4) '

(3.45)

Compared with (3.37), we find a =m/4. Thus, the
conformal weight for the W algebra is obtained as

o 804 +2)+ 8% (dy +2) +m(m+16) _m
B 32(t+4) 4

(3.46)

from (3.40). We would like to claim that it is the conformal
weight of the primary operator belonging to a degenerate
representation of the W algebra.

Let us examine several examples and compare them with
previous results. For this, it might be convenient to use the
level £ of s(2) currents instead of the level 7 of s/(4). The
relation is t = £/2 — 2, see (2.7). We first set

(/11,/12,7’”) = (2.], 0, 4]), (347)
then we find
J(3J—=¢+2)
h=———= 3.48
+4 ( )

This is the first conformal weight in (3.26). Next we set

(A1, Ao, m) = (2J,0,4J + 4), (3.49)
then the conformal weight becomes
HBEJ-¢+1
po U=+ D) (3.50)

/14

This is given by the first equation of (3.33) for J = 0 and
(3.34) for J = 1/2.

We may consider the case with 1 + 4 = 2p/q, where p,
q are coprime with each other. According to [34], the
characters of the highest weight with

A= =r)(t+4) = (1-s),
1<7r;<q

1<s;<2p—1,
(3.51)

transform with each other under the modular transforma-
tion. Thus we may put
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h=1=r)+4) - (1-5),
b= 1=r)(+4)-(1-s5),
m=24-r,=2r,—r})(t+4)

—2(4—s) — 25, —54) (3.52)
into the expression of (3.46). For A, =1, =0 and
m = —4(t + 4), we find

h=-(3¢+4), (3.53)

Bl —

which reproduce the last equation of (3.33). More generi-
cally, we may set

/11:—n1(t+4), 12:—1’12(2‘4—4), m:4(1—n3)(t+4)
(3.54)
with
ny,n,=0,1,2,...,g -1,

ny—(n+m)/2=12,....q. (3.55)
Then we find

Lo, 2 2
h:§(n1 +n35+2n35 —2)

1
+§((l’l1 - 1)n1 + (n2 - 1)1’12 + 2(”13 - 1)2) (356)

These conformal weights are of order O(¢) and the
corresponding states may be mapped to conical defect
solutions of [16] for the sl(4) @ si(4) Chern-Simons
gravity as seen in Sec. III D.

C. Spectrum of the dual coset

We have argued that the rectangular W algebra can be
realized as the symmetry algebra of the coset (1.1) in
Sec. IIC. In this subsection, we compare the results
obtained in the previous subsections to the coset states.
The primary states in the coset (1.1) are labeled by
(Ansim; Ay, m), where A; represents the highest weight
of su(L) and m € Z, is the u(1) charge. The conformal
weight of the state (Ay, s Ay, m) is

_ N+M k N.k «
h=n+ K\ ME— gk

(3.57)

where 7 is an integer related to how the representations for
the denominator are embedded in those for the numerator,
see, e.g., [35]. We express the conformal dimensions of
primaries for su(L)g and u(1), as

Cy(A
hf\’LK: 2(Ar) th:m

2
, —, 3.58
K+L 2K ( )

respectively. Here C,(A; ) is the second Casimir of su(L)
for the representation A;.
As discussed in [5,36], basic states may be

(f;0,N) ® (f;0,—N),  (0;f,—N —M) ® (0;f,N + M),

(3.59)

where the holomorphic and antiholomorphic parts are
combined in the charge conjugated manner. Here we
express the fundamental and antifundamental representa-
tions by f and f, respectively. The conformal weights are
given by

k(M(M +N)—1)=N

h:
2UM(k+M+N)
—2k*M —kMN +k+M+ N
h—— MNTEEAEN  (3.60)
2k*M + 2kMN

Using 4 = k/(k+ N) as in (1.3), we find

M(=kA+ k+ M) — 1
M (k+M)

1/ 4 1
h=-(=-Zm—4A+1).
2(k2 kM++>

These two expressions are exchanged if we use an alter-
native definition of 1. These states were proposed to be dual

to two complex scalars ¢/ (i = 1, 2), which transform as in
the (anti)fundamental representation of su(2) in the (anti)
holomorphic sector. A set of states can be generated by
fusing these basic ones, and they are supposed to be dual to
composite bulk fields.

In order to compare with the previous results, we set
A =72 and M = 2. We can see that the first expression of
(3.61) reduces to (3.19). Generically, we should consider a
state in the spin J representation of su(2). Among those
constructed by fusing the basic states, we consider the
states labeled by

h:

(3.61)

((27,0,...,0);0,2JN), (3.62)

where Ay o = (2/,0,...,0) denotes the 2Jth symmetric
representation of su(N + 2). From formula (3.57) with
(3.58), we can compute the conformal weight of the state as

J(BJ -k +2)

h = 3.63
k+4 (3.63)

This precisely reproduces the first conformal weight in
(3.26) or (3.48).

D. Conical defect geometry

In the above analysis, we have found some states with
conformal weight of order #. The parameter £ becomes
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large when the dual gravity is in the classical regime. As in
[16-19], we would like to interpret the states with con-
formal weight (3.56) in terms of classical geometry of
sl(4) @ sl(4) Chern-Simons gauge theory. Conical defect
geometry was discussed even in the cases with nonprincipal
embedding of s/(2) [16]. We consider classical solutions
expressed as
A=erlogetodz+dp, A=eloaerlodz—dp. (3.64)
Here (z,Z, p) are the bulk coordinates, a, a are s/(4)-valued
constants, and Ly(=x) is a generator of the embedded
s1(2).

Nonsingular solutions were proposed to be characterized
by the trivial condition of the holonomy matrix exp( ¢ dga)
with z = ¢ + it (¢ ~ ¢ + 2x). After the diagonalization,
we may express a as

% 0 0 0 00 0 O
. 0o - % 0 0 . 00 0 O
a=in 0 0 0 0 +in, 0 0 % 0
0 0 00 00 0 - %
% 0 0 O
0 % 0 O
+ ing (3.65)
0 0 - % 0
00 0 - %
Here, the matrices correspond to the generators

P®(1/2+7),2®(1/2—1), and 1 ® >. We require
that the holonomy matrix exp(§ d¢pa) becomes a center of
SU(4), that is Z,4. This leads to the condition n, n, € Z
and n3 + (n; + n,)/2 € Z. Following [16], we assign the
condition such that the matrix a is not degenerate, and this
leads to n3 # 0 and —n + n3 # n, — n3. Using the sym-
metry of SU(4), we can set n; > 0, n, > 0, and moreover
choose n; to satisfy —n; + n3 > n, — ns;. With this choice,
the parameters n; now take

nl,n2:O,1,2,..., l’l3—(7’l]+n2)/2:1,2,.... (366)
This reproduces (3.55) except for the upper bounds, which
are usually not visible from classical geometry analysis.

The dual conformal weight can be computed as

h tr(a?)

(3.67)

" 24ep toa

The central charge ¢ and the normalization constant ep are
(see [2,16])

1
ep=—Mn(n*>-1)=1.

=12k =—-067,
¢ csep 12

(3.68)

Here we considered s/(Mn) with M = n = 2 and used kcg
as the level of the Chern-Simons theory. The level of su(2)
currents is £ = —nkcg = —2kcg. In summary, we have

4
h=—<(n}+n}+2n-2),

5 (3.69)

where n; take values in (3.66). This expression reproduces
(3.56) at the leading order in 1/7.

IV. N =2 RECTANGULAR W ALGEBRA

In previous sections, we have analyzed the rectangular W
algebra, which appears as the asymptotic symmetry of
higher spin gravity with M x M matrix valued fields. In
order to relate higher spin gravity to superstring theory, it is
important to introduce supersymmetry. In [20], a hologra-
phy involving the N = 2 higher spin supergravity of [3]
was proposed without the matrix extension. The classical
asymptotic symmetry of the higher spin supergravity has
been analyzed in [20,37,38]. The gauge algebra of the
higher spin supergravity is given by shs[4], which can be
truncated to sl(n + 1|n) at A = —n, see, e.g., [39] for some
details of shs[]. The gauge algebra for the matrix extension
is denoted as shsy[4] [5,12], which can be reduced to
sI(M(n+ 1)|Mn) at A = —n. The holography with the
extended higher spin supergravity was proposed also in [5].

The Lie superalgebra sI/(M(n + 1)|Mn) can be decom-
posed as

siM(n + 1)[Mn) = sl(M) @ 1,41, ® Ty ® sl(n+ 1|n)
@ sI(M) ® sl(n+ 1|n). (4.1)

The generators of s/(R|S) can be expressed by (R + S) x
(R + S) supermatrices, and T|s denotes

: <1]R 0)@(0 O)
= \o o 0 15/
Three-dimensional N' = 1 supergravity on AdS can be
described by osp(1|2) Chern-Simons gravity [10]. We
use the osp(1]2) principally embedded in 1y, ® sl(n+1|n)

as the supergravity sector. With the action of s/(2) C
osp(1]2), the gauge algebra can be decomposed as

(4.2)

siM(n+1)|Mn)~sl(M) ® sl(M) ®u(l)
®2m (é 9“‘1/2)) S 2M? (69 g‘”)

@ Mgt (4.3)
After the Hamiltonian reduction, the spectrum consists of
two sI(M) currents, one u(1) current, 2M? spin s currents
with s = 2,3,...,n and M? spin n + 1 currents. There are
also 2M? fermionic currents with spin s —1/2 with
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s =2,3,...,n+ 1. One of the spin 2 currents is given by
the energy-momentum tensor.

In the next subsection, we compute the central charge ¢
of the algebra and the levels ¢, £, for the two sets of
su(M) currents by applying the method in Sec. ITA.
In Sec. IV B, we compute the OPEs among generators
by requiring their associativity. We work on the simple case
with n = 1, where the algebra includes only spin 1,3/2,2
generators. In Sec. IVC, we examine the degenerate
representations with level 1 null vectors and primary states
in the spin 1/2 representation of su(2). For this, we apply
the method developed in Appendix B. In Sec. IV D,
we compare the results obtained so far to those of dual
coset (1.4).

A. Central charge and levels
of the affine symmetries

We start by computing the central charge c of the algebra
by applying the formula of (2.4). The superdimension of
sI(M(n + 1)|Mn) is
sdims/(M(n + 1)|Mn)

=M>(n+1>=1+M?n>-1+1-2M?n(n+1)
=M? -1, (4.4)

and the dual Coxeter number is h¥ =M (n+1)—Mn=M.
The norm of x for the s/(2) C osp(1]2) is

(t) = M |2 (04 1) (0 172 = 1) = n(2 = 1)
- %Mn(n +1). (4.5)

There are M?((n + 1 — j) + (n — j)) sets of fermionic ghost
system for j = 1,2,...,n and 2M?(n — [) sets of bosonic
ghostsystemfor j = [+ 1/2withl =0, 1,...,n — 1. Using
formula (2.4), the total central charge is obtained as

t(M? -1
c= M -1) 3tMn(n + 1) — 3M*n?.

M (4.6)

We then compute the levels £, £, for the two su(M)
currents. A set of su(M ) currents comes from s/(M) ® 1,1,
where 1, corresponds to the identity in sl(n+ 1) C
sl(n+ 1|n) C si(M(n + 1)|Mn). Therefore, the ghosts
from si(M(n+ 1)) C sl(M(n+ 1)|Mn) give rise to the
shift of level by Mn(n+ 1). Similarly, the other set
comes from s/(M) ® 1,, and the ghosts from s/(Mn) C
sl(M(n+ 1)|Mn) contribute to the shift of level by
Mn(n —1). There are bosonic ghosts arising from the off-
diagonal blocks of sI/(M(n + 1)|Mn), which transform in
the bifundamental representation of s/(n + 1) @ sl(n) and
in the trivial and adjoint representation of s/(M). A set of
bosonic ghosts in the adjoint representation of s/(M) yields

the shift of level by —M. Thus the shifts of level are
—Mn(n + 1) for both sI/(M). There are also n fermionic
ghost systems of conformal weight (1/2,1/2) in the trivial
and adjoint representations of s/(M), and the contributions to
the levels are Mn. In total, the levels of two sets of sI(M)
currents are

Cy=tn+1)+Mnn+1)—Mn(n+ 1)+ Mn
=t(n+ 1)+ Mn,
£y =—tn+Mnn—1)—Mn(n+1)+ Mn

= —tn— Mn. (4.7)

Since ¢ plays no role in the N'=2 W algebra, we may

remove it using the above expression of ;. The central
charge ¢ and the other level £, can be written as

£1(M? = 1) = Mn(3¢62 +3¢,M + M* - 1)
c = s
£+ M

_n( + M)

f:
2 n—+1

(4.8)
in terms of 7.

B. OPEs among generators

As explained above, the ' = 2 rectangular W algebra is
generated by a u(1) current K, two sets of su(M) currents
J4 K (a=1,....M>—1) as well as bosonic and
fermionic higher spin currents. The u(1) current satisfies

K(2)K(0) ~ =%

=3 (4.9)

where the normalization constant kg will be fixed later. The
OPEs of su(M) currents are

.6 abcjc 0
LA i O
Z <
Z 5017 i tleKC 0
" iR )
Z Z

J4(2)J°(0)

)

K*(z)K"(0)

(4.10)

with levels 7, ¢,. The algebra includes the energy-
momentum tensor satisfying

¢/2 2T(0) T(0
/2, 210) T

TETO) ~ L+ =+ =

(4.11)

with central charge c¢. For a moment, we do not specify the
levels |, ¢, and the central charge c. We denote the
bosonic currents of spin s by w—(s)A (s=1,2,...,n) and
WHeA (s =2,3,...,n+1) with A = (0,a) along with
J¢. Here we set

W—(l),a = K¢, W+(2),0 =T.

w-0 =k, (4.12)
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The fermionic currents of spin s are represented by G*(%)-4

(s =3/2,5/2,...,n+1/2). We use the basis for these
fields primary with respect to the Virasoro algebra; that is,

Wi(s),A 0 W:t(s).A’ 0
T(Z)Wi(s).A(O)NS > ( )+ ( )’

Z Z
J0) JY(0
10~ 170
Z Z
Gj:(s),A 0 Gj:(s),A’ 0
T(2)G=4(0) ~ > Zz()+ Z(>. (4.13)

1. Composite primary operators

We determine the OPEs among generators by requiring
the associativity. We only consider the case with n =1,
where the spin content of the algebrais s = 1,3/2,2. Thus,
the operator products produce (composite) operators only
up to spin 3, and we list all of the possible composite
operators.

We start by counting the number of independent primary
operators. We do this by decomposing the vacuum char-

Ag) = gola) + Y0 di/2) ppla). (415)

Here the Virasoro characters can be found in (2.14), and
d(i/2) counts the number of independent primary operators
with conformal weight i/2. Expanding (4.15) in ¢, we find

d(1)=2M>—1, d(3/2)=2M? d(2)=2M"—-1,
d(5/2)=202M*-M?), d(3)=§(2M6+9M4—11MZ+3)
(4.16)
with n = 1.

We explicitly construct composite operators primary
with respect to the Virasoro algebra. With n =1, the
algebra is generated by spin 1 currents J¢, K¢, K, spin
3/2 currents G = GF3/20, GFa = G+6/2)4_ and spin 2
currents T, Q¢ = W4, We use the abbreviated notation
of composite operators as in (2.21). We can see that there
are no composite primary operators for spin 1 and 3/2
currents. We find

acter of the N/ =2 W algebra in terms of the Virasoro [Jegb)], [K\@KP)], [JK?"],
characters, see [28] for the case without matrix extension. . .
The vacuum character of the N =2 W algebra is (K7, [KK“], [KK] (4.17)
o " for spin 2 currents and
2M q) HH{ 1+qz+1/2)2 }MZH[ 1 l:|M—1’
s=1i=s l+l) i=1 l_ql [JaGi}v [KaGi]’ [KGi]’
(4.14) [J*G=F],  [K*G*P],  [KG*] (4.18)
and the decomposition is for spin 5/2 currents. The composite spin 3 currents are
[Jegbye)], [KeJ® e, [JeKP K, [K@KPK)], [KJ@JP)],
[KK\“K")], [KJK?], [KKJ“], [KKK?], [KKK], [KK™], [KJY],
[Jlagtiy,gek?], (Kl [ge@P),  [KQY),  [KQY,
[G G+], [GiG:F‘a], [G+'aG_‘b], [GiGi‘a], [Gi‘[aGi‘b]]. (4_19)

We can check that the number of independent primary
operators with conformal weight i/2 matches with d(i/2)
in (4.16).

2. Associativity of OPE

In the following, we mainly consider the cases with
M=2734%We expand the operator product ®1) x @(s2)

SWith M = 2, the OPEs among generators were analyzed by
fully making use of the large N' = 4 superconformal symmetry
[25]. With M > 2, there is no such supersymmetry, and the same
method cannot be applied.

|

by (composite) operators up to spin s; + s, — 1, where we
collectively denote the spin s operators by ®(). The
coefficients depend on the su(M) indices and we express
them by making use of invariant tensors in Appendix C 1,
which are simplified for M = 2 as in (2.24), (2.25), (2.26).
We start by examining the OPEs of ®(1) x ®(2) with the
smallest s + s,, then move to the cases with larger s; + s,.
The smallest cases are with s; = s, = 1, but we already
knew these OPEs as in (4.9) and (4.10).

The simplest nontrivial OPEs are for ®() x ®G/2),
Examining the associativity of @) x &) x ®G/2) we
can fix the OPEs uniquely up to the overall normalizations
of currents. For the OPEs involving K, we can set
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K(z)G*(0) ~ + Giz(o) , K(z)GF4(0) ~ £ Gi': ©

(4.20)

by properly redefining K. In particular, the above OPEs fix
the constant kg in (4.9) as seen below. The OPEs between
J? K% and G can be regarded as definitions of G*¢, and
our choice is

JO(2)G(0) ~ + Gi’:m) C KY)GH0) ~ T Gi’:(o) .
(4.21)

Jx Q8 ~ 5% (a K + ap,[KK])

With these definitions, the OPEs among J¢, K¢ and G
are

1 G* i 1 G+
~f 5 Z fpab — Jab ’
> +<2f ¢ F ) Z

J4(2)G*(0) 5

1, G* j 1
k(G0 5 4y o (L L)
z

G:t,a
M 2 '

(4.22)

There is an extra freedom to choose the relative sign in front
of d‘”’c, and we have chosen one of them.

We then examine the OPEs of ®(!) x Q¢ from the
associativity of ®() x®) x Q¢ The OPEs of ®(!) x Q¢
are schematically written as

+if* (a1 ¢ + apnK® + a30° + ax[KJ] + ars[KK€))
+d* (a3 + an K + az30° + a3y [KJ°] + ass[KK))
+ AL T + AL [KCOKD] + A [TK ),

K9 x Qb ~ 8% (b1 K + b15[KK])

+ if (b ¢ + by K + by3 0 + byy[KJ] 4 bos[KK€))
+ d® (b31J¢ + b3 K + b330 + by [KJ] + bss[KKC])
+ B3 [TV + BY, (K K] + BE [T K ),

K x Q% ~k1J9 + koK + k3Q® + ky[KJ®] + ks[KK“] + if "y ke[JPK*]

+de (ke [JPT) + ks [KP K] + ko [J7K€])

up to contributions from descendants. As in the bosonic
case, we use small letters like a;; for constants without
indices and capital ones like A; for constants with indices.
The coefficients expressed by capital ones can be expanded
by invariant tensors as in (2.28).

While restricting the parameters by solving the conditions
from associativity of the OPEs, we may encounter several
discrete choices for a,3, b,3, k3. These values correspond to
the charges of Q¢ with respect to J¢, K“ K. From the
reduction of s/(2M|M ), we can see that Q¢ are charged with
respect to only one of J¢ and K“ and uncharged with respect
to K. From this, we set a,3 # 0 and b3 = k3 = 0. Originally
we have a symmetry under the exchange of J and K¢, but
this choice breaks the symmetry.

Among the parameters used in (4.23), some of them can
be removed by redefining the operators. Using the spin 2
composite primaries in (4.17), we can redefine the spin 2

primary Q“ by

(4.23)

|
0% = 200 + 21 [KJ] + 22 [KJ*) + if .23 [J K]

+d%e(24[JPT)] + 25 [KP KO+ 26 [JPKC]).  (4.24)
Using z1, 2, 24, 25, 26, WE can set the parameters a;y, by,
asy, s, bz, to vanish. Moreover, with z3, we remove one
parameter in Agf’cd. There is still one ambiguity from z,
which corresponds to the overall factor of Q¢. With this
definition of Q“, the OPEs are drastically simplified as

J4(2)0"(0) (2)Q"(0)~0,

: rab c
le ZcQ , K¢ K(Z)QQ(O)NO

(4.25)
The OPEs analyzed above have s; + s, = 3, but there

are other OPEs with the same s, + s,, i.e., @3/ x ®G/2),
Our ansatz for the OPEs may be written as
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G x G~ ~col + ¢|K + 2 [KK]| + c3[J4T] 4 c4[K*K?] + ¢5[J°K“],
G™ x G ~d\J* + dyK® + d3[KJ) + dy[KK®] + d5Q° + if*y.ds[J’ K]
+ d®e(d[JCTO) + dg[KP K] + do[JPK7]),
G X GMi~eJ" + K + e3[KJ) + e4[KK®] + 50 + if%.e6[J° K]
+d*e(e7[J 0T + eg[KP K] + eg[J7K7]),
G x G ~ 5 (fol + f11K + f12[KK])
+if P (fard + f2K 4 f230° + f2u[KJT + f25[KK])
+d(f31J + 32K + f330° + f3[KJT 4 f35[KK])

+ F [T + Feb [KCKD] + Féb [JK9).

Here we have an additional ambiguity related to the overall
factor of G* along with that of Q¢ parametrized by z, in
(4.24). For the corresponding parameters, we set ¢, ds
arbitrary. Solving the constraints from the associativity of
@) x /2 x P(3/2) we express the parameters only in
terms of Co, d5, Kk, fl’ fz, C.

We could obtain further constraints from the associa-
tivity of ®G/2) x ®G/2) x ®B/2), For this, we generically
need the information of ®5/2) x Q¢ as well. However, the
OPE G* x G~ does not involve Q¢ contrary to the other
cases. Therefore, we can examine the associativity of, say,
G~ x G" x G~, and we obtain

34,6,M

- (¢ + &) (M?> = 1) +36,6,M
L +E,+M '

i+l + M

Kk

(4.27)

With these values, the OPE G x G~ is written as

3¢y [2K 2T + K’
G*(2)G(0) ~ 94 20 [—2+ ] (4.28)
77 2kg |z z
with
3 1
T =T—— ((J"+K(J+ K. (4.29
2(f1+f2+M)(( )( ). (4.29)

In order to reduce one more parameter as expected, we need
the decoupling condition of, say, G*(5/2)-4 for n = 1, which
will be incorporated in other OPEs, such as G™ x G~
Similarly, we examine ®©/2) x Q“. From the associa-
tivity for @) x ®(3/2) x Q¢ and ®G/2) x ®G/2) x PB/2),
we express the OPEs of the forms ®G/2) x ®G/2) and
®G/2) x 0% in terms of #; up to the overall factors
parametrized by ¢, ds. In particular, we obtain

£y = —%(fl + M), (4.30)

(4.26)

We have checked that the central charge ¢ in (4.27) and the
above 7, in terms of £ are consistent with the expressions
in (4.8) forn = 1. For M = 2, 3, we have also examined the
OPEs of Q¢ x Q" and checked that they are written only in
terms of £, up to the ambiguities of ¢, ds.

C. Degenerate representations

In the previous subsection, we have obtained the OPEs
among generators at n = 1. With the information, we
examine degenerate representations of the N =2 W
algebra. For simplicity, we set M = 2. In Sec. Il A, we
have examined degenerate representations for the bosonic
case using commutation relations in terms of mode expan-
sions. Instead of working with commutation relations, we
examine representations mainly by making use of OPEs as
in [28,40-42], see also Appendix B.

In order to obtain physical intuition, we start by working
with mode expansions and then move to OPE language.
The mode expansions of generators are

ﬂ@zzbﬁp m@:}jﬁ%

nez nez
K Gf
Ko-Y & ep- ¥ %
nez reZ+1/2
. G L
G = Y —hpe TE=) 5
rez11/2% nez <
(x) =) o (4.31)
neZZZJr

We introduce states |j) with j = 1, 2 primary with respect
to the N' = 2 W algebra. The zero modes of the algebra are
Ly, J§,K§, Kg, Qf. The first four zero modes commute
with each other, and the basis is chosen such that

Lolj) = hlj).
Kilj) = 0.

gl = =(1);']).

K|j) = 4lj)- (4.32)
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We consider primary states in the spin 1/2 representation of
J§ and in the trivial representation of K§. In terms of the
operator (J; corresponding to |j), we require the OPEs

hO

r()0,0)~ "2 &0
J4(2)0;(0) ~ —M
K9(2)0;(0) ~0.  K(2)0;(0) ~ qoé(o) . (433)

There is another set of zero modes Qf. Since they do not
commute with some other sets of zero modes, we cannot
take the basis in a representation of Qf simultaneously.
Even with this fact, we require

617y = wo(19)jli) (4.34)
as in (3.8) for the bosonic case.

In the N =2 W algebra, there are 2M?*(=8) super-
charges, and thus there are eight superpartners of the
primary state |j). In a usual N = 2 superconformal field
theory, it is convenient to consider a subsector by assigning
the chiral primary condition

G*,li) = 0. (4.35)
Our A/ =2 W algebra includes a A = 2 superconformal
algebra as a subalgebra, but it is generated by {7, K, G*}
with the modified energy-momentum tensor 7" defined in
(4.29). We assign the chiral primary condition (4.35) as
in the usual A" = 2 theory. From (j|G;,GT ,|j) = 0, we
have

3

2h———=
2+k

q. (4.36)

There is a shift of conformal weight due to the modification
of energy-momentum tensor. We further observe that
Gfi72|j> = [J§.GL, ulli) =0, (4.37)
where we have used the commutation relations read off
from (4.21). Therefore, the chiral primary condition (4.35)
reduces the number of superpartners by half, and only the
actions of G, P and G:ia/z produce new states. In terms of
OPEs, we introduce corresponding new operators by

G—(z)ojm)N@, - @o,(op%@. (4.38)

The operators (7)j and (7)7 have the conformal dimension
h+ 1/2 and the eigenvalue of K, as ¢ — 1.

As in the bosonic case, we look for null states of the form
0%,|j) + - - -, which means that the action of 0, is written
in terms of the other modes, such as J¢, K%, K_;,L_;.
There could be terms like

G061 l) ={GH),. GTL i), (4.39)
but they can be rewritten in terms of J¢, K¢, K_;,L_;.
From the form of null states along with (4.34), we use the
ansatz as

0° (Z)Oj(o) - (ta)ji {Wo(zzi (0> + wl(Ql-’(O) +;V2(K0i>(0)}
R (J90;)(0) +wy (K*0,)(0)

Z
ws(J°0;)(0) +W6(Kcoi)(0)] _

Z

+ ifahc(tb)ji |:
(4.40)

As argued in [40], the primary conditions for the null
vectors are expected to be examined by the OPE associa-
tivity involving Q¢ x O;. From the associativity of

o) x 04 x O ;» we can fix the coefficients except for w,.

In order to fix w, as well as the conformal weight i, we
shall examine the associativity of Q¢ x Q% x O;. Before
doing so, we need to examine the OPEs involving O ; and
(5‘; since the operator product Q¢ x Q” produces
composite operators involving G=4. We first study the
OPE:s of the forms ®(V) x O, and @) x O by examining
the associativity for ®(1) x &) x (7)]-, ®) x o) x (7)?
and ®(1) x G x O;. We can fix the OPEs as

J(2)0,(0) ~ - OO £ OO0

<

r(e)Bh0) ~ ST IO - (/O
ke(0,00) ~ 2.
ke()0}(0) ~ OGO (8.41)
We next examine the OPEs of
Gt x O, Gt xO%, Grax O, Gtax O, (4.42)
which can be written as linear combinations of

[O7], [KO/], [JeO], [KO]. (4.43)
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We provide our ansatz for these OPEs in Appendix C 2.
The coefficients can be determined from the associativity of
@) x @372 x O; and @) x D2 x 0%, Since G* x G~
does not generate Q¢, we can also utilize the associativity
of G* xG™ x O;.

With the above preparations, we can examine the
associativity of Q% x Q% x ©; with the ansatz (4.40).
From this, w, can be fixed as

_co(2h(Z +2) + (£ - 1)(Z1 +3))

= , 4.44
"o 4d,02(4) +2) (444)
and A should be one of
1-7, 21 +5
, h= - . 4.45
2¢) +4 2o a1 )

These results resemble those of the bosonic case given in
(3.19). We will see below that the first conformal weight
can be realized for a state of the coset (1.4).

D. Dual coset CFT

As argued before, the N'=2 W algebra with su(M)
symmetry can be realized as the asymptotic symmetry of
the N =2 higher spin supergravity of [3] with M x M
matrix valued fields. On the other hand, it was proposed in
[5] that the classical higher spin sugergravity is dual to the
coset (1.4) at a large N limit."® The central charge of the
coset is

M3 +3MN? +3NM?>-M

M2 43MN—1—
c=MT Kt N M

(4.46)

From the holography, we would like to claim that the
N =2 W algebra can be realized as the symmetry algebra
of the coset (1.4) even with finite N. In the following, we
collect strong evidence supporting the claim.

The model has the symmetry of two affine su(M)
algebras. One of them comes from su(M), Csu(N+M),
in the numerator. The other is su(M), constructed from
su(N) invariant combinations of NM complex fermions
from so(2NM),. We first require ; = k and £, = N. Then
the match of the central charge is realized at 1 = —n, where
the 't Hooft parameter is defined as

N

 J———— 4.47
k+N+M (447)

We can check that the map of parameters is consistent with
the expressions of ¢ and 7, in (4.8). Using the symmetry

°As in the bosonic case analyzed in Appendix B, we have used
only a part of conditions coming from associativity of the OPEs.
We believe that every condition from the associativity is satisfied
up to null vectors with (4.44) and (4.45). However, we have not
checked it yet.

"%See Appendix D 2 for an alternative proposal of dual coset.

under the exchange of two su(M) currents, we may require
1 = N and ¢, = k. Then the correspondence happens at
A = —n with

k

A=, 4.48
k+N-+M ( )

where N and k are exchanged. Thus, there are two ways to
realize the N/ = 2 W algebra in terms of the coset (1.4), and
this indicates the existence of duality for the coset (1.4). We
will come back to this point later.

1. Symmetry generators

As in the bosonic case, we explicitly construct the low
spin generators of the AV =2 W algebra in terms of the
coset (1.4). See [23,24] for the case with M = 2. For this,
we adopt the same notation as in the bosonic case.
We decompose su(N + M) in the numerator as in
(2.37). We use the generators 4 = (1%, 1%, 1(1) ¢lD) (7))
with the metric ¢*8 = tr(#4¢8) in (2.38) and the invariant
tensors in (2.39) with (2.40). The su(M) currents J4 and
the complex fermions (y"),y (7)) satisfy (2.41) and

s
=

w2y ) (0) ~ (4.49)
In order to construct the symmetry generators in terms of
coset (1.4), we introduce su(N) @ su(M) @ u(1) currents
from so(2NM), as

J(]X” - (W(/ﬁ) *//((_”) ) (ta)/)fr&ii ’ J]a‘ == (W(fﬁ)w(m) ) (ta)ﬁé/_)/) ’
]}“C(l) = (W(ﬂf)w(ﬁi) )85 (4.50)

In particular, the currents in the denominator of the coset
(1.4) are given by

Je=Je+Je,

~u u u(l
740 = /MN(N +M)J“D + (N+M)J4"V. (4.51)
We start by constructing spin 1 currents in the N' =2 W
algebra. One of them is simply given by J* and another is
K% = J}l- defined in (4.50). The other spin 1 current K is

given by a linear combination of J*(!) and J L;(l) and should

be regular with respect to J“!) in (4.51). We identify
K by

1

K=—(/MN(N + M)J*® — "My,
N+M+k( (N + M) )

(4.52)
where the overall normalization is chosen such as to
reproduce (4.9). For spin 3/2 currents, we can construct
them from products of y(°7) and J?) or those of (%) and
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J¥)_ Taking care of the properties under the su(M) action,
we find

G = (W(/Ji) j(ﬁi>)5 6 GT=( J(/ﬁ)v,(ﬁi))g

P /’f_’éf"
G =—(yP) JPi)( 1) i8ppr GH4=—( J Py (P (1) 16,5
(4.53)

where the overall factors are set to reproduce the OPEs
(4.21) and (4.22). A spin 2 current is given by the energy-
momentum tensor, which can be constructed by the
standard coset construction [29]. For charged spin 2
currents, we require the OPEs (4.25) along with the
condition primary with respect to the Virasoro algebra.
Starting from all possible linear combinations of products
of spin 1 currents in the coset (1.4), we find the expressions
of Q% as

0 — [(J(pi)](ﬁj)) + (J(/_’/)_](ﬂ7))]§pﬁ(ta)ﬁ

N a b yc 2 N(N+M) a yu(l)
M+2kdbC(JJ)+k\/ ),

(4.54)

which are exactly the same as (2.42) for the bosonic case.
This is because we redefined the spin 2 currents Q¢ such
that the OPEs become the same as the bosonic ones. We
have checked that the OPEs among generators reproduce
the previous ones up to null vectors for several explicit
examples.

2. Spectrum

In the previous subsection, we studied the degenerate
representations of the N' = 2 W algebra, and in particular,
we obtained the conformal weights (4.45) of primary states
belonging to degenerate representations. Here we compare
the primary states with those in the coset (1.4). The state
can be labeled by (A 4, @; Ay, m), where A; and m € Z;
denote the highest weight of su(L) and u(1) charge,
respectively. In addition to them, we use w = —1, 0, 1,
2 for the representation of so(2NM),. The conformal
weight of the state (Ay, . @; Ay, m) is

ho=n+ M 2N g e (455)
where hk‘LK and h¥, were defined in (3.58) and n is an
integer related to the embedding of representations.
Moreover, we have introduced 72" = w/4 for v = 0, 2
and h2NM = NM /8 for @ = £1. As in the bosonic case, we
consider the basic states

(f,0;0,N) ® (f,0;0,-N),

(0,0;f,-N — M) ® (0,0;f, N + M), (4.56)

whose conformal weights are

_kAM 24 M -1

2M(k+M)
—Mk+M)+2M(k+M)+1-1
h = (k+ M) +2M(k + M) + (4.57)
2M(k+ M)
in terms of the ’t Hooft parameter 1 in (4.47). With
A= —n=—1 and M = 2, the first expression becomes
1-k
h=——. 4.58
2k +4 ( )

Setting k=7, this reproduces the first expression in (4.45).

3. Decompositions of the symmetry algebra

It is possible to learn some properties of the W algebra by
making use of its coset realization. Here we would like to
achieve this by decomposing the coset algebra.

As mentioned above, the W algebra includes the
N = 2 superconformal algebra with the modified energy-
momentum tensor (4.29), and this fact was utilized for the
analysis of degenerate representations. We can decompose
the symmetry algebra of the coset (1.4) as

su(N+M), ®so(2NM),
SU(N) ey D u(l);
su(N+M), ®so(2NM),
SU(N )iy @ su(M)yy ®u(l);

@ su(M); . (4.59)

The first term in the right-hand side is nothing but the
Grassmannian Kazama-Suzuki model [43,44]. It is con-
structed to have the N = 2 superconformal symmetry, and
the energy-momentum tensor is given in (4.29). Such a
decomposition is often useful in analyzing representations.

In [2], we have explained the duality of the coset (1.1) by
utilizing its decomposition, where the decomposition can
be explained in terms of brane junctions [45-49]. Here we
apply the arguments to the A" = 2 W algebra. For this, we
decompose the coset algebra as

su(N+M), ®so(2NM),
Su(N)m @ u(1)
su(N+M), su(N+1);
su(N+M—1), ®u(l) su(N), @ u(l)
su(N) su(N)yy—1 @ su(N),
uN)y @ sul); OO sulN) s @ ()

so(2NM), & (M —1)u(1)
Msu(N), ’

(4.60)

The last term in the right-hand side consists of free bosons
and fermions, which will be ignored. Each component
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coset except for the last one is a realization of W [4]
obtained as the Hamiltonian reduction of As[4]. The two
cosets

su(L) g @ su(L),
S“(L)K+1

su(K+1),
su(K); @ u(1)

(4.61)

are known to realize the same principal W algebra as its
symmetry [50]. Denoting the algebra by W, g, the decom-
position (4.60) is rewritten as

su(N+ M), & so(2NM),
Su(N) iy @ u(l)
OWyim-14 @ ®Wni @Win @ - - @ Wiy v
(4.62)

up to free bosons and fermions. For M = 1, the decom-
position reduces to the one discussed for the N' = 2 W [1]
in [51-53]. There is the triality relation of [17] for each W
algebra appearing in the decomposition. However, the coset
(1.4) includes extra symmetry generators which connect
two neighboring component cosets, see [47] for more
details. Requiring the existence of the extra symmetry
generators, only Z, symmetry reversing the order of
component cosets survives for M > 1, see [2] for the
bosonic case. This Z, action exchanges N and k, and this
is consistent with the duality of the coset (1.4).

V. CONCLUSION AND DISCUSSIONS

We studied the rectangular W algebra with su(M)
symmetry, which is obtained as quantum Hamiltonian
reduction of sI(Mn). We decompose sl{(Mn) as in (1.2)
and use the s/(2) principally embedded in 1,; ® si(n). The
algebra can be identified with the asymptotic symmetry of
3d higher spin gravity with M x M matrix valued fields.
The matrix extension is expected to be useful to examine
superstring theory from higher spin gravity including
higher Regge trajectories as well. In our previous work
[2], we examined the basic properties of the W algebras,
such as the spin content, the central charge, and the level of
the su(M) currents. Furthermore, we computed the OPEs
among generators with n =2 and claimed that the W
algebra can be realized by the coset (1.1) at 1 = n with 4
defined in (1.3). In this paper, we extended the analysis in
several ways.

We first reviewed the works in [2] but slightly extended
the OPE analysis by working with n # 2 but only among
low spin generators and with M = 2. We found that the
OPEs are uniquely fixed by one parameter, say, the level £
of su(M) currents. We expect that there is a family of W
algebra, which may be denoted as WX ([#, 1]. The algebra
may be obtained as a Hamiltonian reduction of Asy,[4]. It
has two continuous parameters ¢, 1 with M fixed as the
rank of su(M). Our claim here is that the algebra can be

truncated to our rectangular W algebra at A = n just as
hsy[A] can be truncated to sI/(Mn). This claim was justified
forn =2 (and M = 2) only, and it is desired to confirm for
general n. We could truncate WX (¢, 1] when the corre-
sponding coset (1.1) has integer parameters k, N, and the
truncation should be different from the one at 1 = n, see
also [12,24,25]. It is important to understand the nature of
the truncations of W¥[#, ] furthermore.

We then investigated the degenerate representations of
the W algebra but with M = n = 2. We explicitly con-
structed null vectors by examining the condition primary
with respect to the W algebra at low levels. One crucial
assumption is that primary states are eigenstates of Qf
along with L and J§ as in (3.8). We would like to see what
would happen if we relax the assumption. We also obtained
representations by deducing those of s/(4). However we
have not examined their properties from the viewpoints of
the W algebra. In particular, we would like to know what
kind of null vectors are related to the representations
generically. We then compared the results with the spec-
trum of the coset (1.1) and the mass of conical defect
geometry of the higher spin gravity constructed in [16]. In
particular, the conformal weights in (3.56) give the infor-
mation of quantum corrections to the masses of conical
defects, and it is an important problem to reproduce them
from the gravity theory, see [54-56]. It is also desired to
have a more systematic understanding of degenerate
representations including generic M and n.

We also examined the N = 2 rectangular W algebras
with su(M) symmetry obtained as the Hamiltonian reduc-
tion of si(M(n+ 1)|Mn). Here sl(M(n+1)|Mn) is
decomposed as in (4.1), and the osp(1]|2) principally
embedded in 1), ® sl(n+ 1|n) is used. We first studied
the basis properties of the ' = 2 W algebras, such as the
spin content, the central charge, and the levels of two sets of
su(M) currents. We then fixed the OPEs among generators
with a parameter #; for the level of a set of su(M) currents
but with the restriction of n = 1. In the case of M = 2, the
restriction can be removed as in [25] by making use of the
large N = 4 symmetry. We further claimed that the N = 2
W algebra can be realized by the symmetry algebra of the
coset (1.4) with setting (1.5) or (1.6). We studied the
representations with level 1 null vectors and primary states
in the spin 1/2 representation of J§ for M =2. It is
worthwhile extending the analysis as was done in the
bosonic case.

In order to see the relation to superstring theory, it is
useful to extend the current analysis by introducing more
extended supersymmetry as in [21,36,57]. It was proposed
that the coset model (1.4) with a critical level k = N + M is
dual to a version of Prokushkin-Vasiliev theory with more
extended supersymmetry. We may further assign an invari-
ant condition to the matrix degrees of freedom in the higher
spin theory, since a closed string does not have such
degrees. In this case, a multiparticle state in the higher
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spin theory would correspond to a single closed string state.
It was claimed that the restricted version is dual to the
Grassmannian Kazama-Suzuki model [43,44]

Su(N + M)y, ® so(2NM),
S”(N)N+2M @ SM(M)M+2N @ u(l);

at the critical level. In particular, it was found that the
critical level model possesses N' = 3 enhanced supersym-
metry, which enables us to discuss the relation to super-
strings on AdS;, see [21,36] for more details.

In this paper, we examined the rectangular W algebra
with su(M) symmetry, but we can also construct other
rectangular W algebras. There are generalizations of higher
spin supergravity by restricting the extra matrix degrees of
freedom as in [3], see also [7]. The asymptotic symmetries
of these higher spin supergravities were given by rectan-
gular W algebras with so(M) or sp(2M) symmetry, and the
analysis of [2] was applied to these algebras in [58].
Without the matrix extensions, higher spin holographies
were proposed in [59,60] for the bosonic case and in [61]
for the ' = 1 supersymmetric case. In this paper, we have
extended the analysis of [2] in several ways. It is interesting
to apply the current extensions to the W algebras with
so(M) or sp(2M) symmetry as well.
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APPENDIX A: COMMUTATION RELATIONS

We consider the rectangular W algebra with M = n = 2.
The algebra is labeled by the level £ of su(2) currents. The
central charge of the algebra is [see (2.8)]

8(¢2 1)

c= 74 +2¢ - 1.
In terms of mode expansions, generators are L,, Q%, J¢
(a=1,2,3) with n € Z. From the OPEs (2.9), (2.11) and
(2.12), we obtain (3.2). With n = 2, the OPEs of Q¢ x Q%
were obtained in [2] (and reproduced in Sec. IIB for
M = 2). The corresponding commutation relations can be
computed as

(A1)

[ Qb] - 5ab{ 12 (m3 - m)5m+n,0 + % (m - n)Lern}

i (<5 e D 1)+ eutm 0 200m 1) M+ (T |

(m - n) apc apc apc abcae
+ D) ( d4§S‘li + C7d4§Sg (‘](c‘]d))m+n + C8d4zAd(‘][chi])m+n + C9d52Sd (J(C‘]d']e))m+n' (AZ)
The coefficients are given by
261 (f+ 1) (&)
Co =" A 3=
c(+2)-3¢ 2¢
ey (c(ZBC(C+3) +2) —24) - 5¢(34(3¢ +T) — 16) + 80)
N 12¢(3¢% + ¢ —4)(c(¢ +2) = 3¢) ’
2¢i(+1) ci(c=2¢0+1) c
cs = . Ce = , 1 =57 A
> (6 +2) - 30) 720 =1)(c(¢ +2) -3¢) T2 - 2"
—c(f -2 4 276 —16) — 1 - 1)+ 4
CS:CI( c(=2)(¢+4)+¢(27¢ - 16) 6)’ o — c1(f(c—62+1)+4) (A3)

2032+ £ —4)(c(£ +2) = 3¢)

203 + £ —4)(c(£ +2) - 3¢)

and d$45?, d§bd, dibed, debsde are defined in (2.24) and (2.25). We have used

(TJ9), = Y L,Jo ZJ" oL, Jlagby ZJ,, Iy + 3 10,05
p<-2 p>0
(ﬂa]b]/)n:Z( JL“J,, p+Z -—n—1 Jn pJp]:
p<-1 p>0
a c c a agye b c a
(Jlagbye)), = Z TSI g+ > IS, I+ T Tl + N TpgdiTy) (%)
-1,q<-1 p>0,g<-1 p<—-1,4>0 p=0,g>0

for the mode expansions of composite operators.
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APPENDIX B: OPEs AND NULL VECTORS

In Sec. III A, we examined null states by making use
of the commutation relations in terms of the mode
expansions of generators. In this subsection, we develop
an alternative way by applying associativity of the OPEs as
in [28,40-42]. For simplicity, we focus on the case where
null vectors appear at level 1 and further set J = 1/2.

We considered primary states satisfying (3.4) and (3.5).
We denote the corresponding operator as O; and require the
OPEs with T and J¢ as

hO;(0) O;0
z z
):0;(0
J“(Z)OJ(O)N—M. (B1)
We assumed that the primary states satisfy (3.4) and (3.8)
under the action of Q¢%. In terms of OPE, we use the
ansatz as

[J°O}]

+ ifabcwz(lb)jiT- (B2)
Here we have introduced composite primary operators of
conformal weight 4 41 as

[J90,] = (J°0)) +i(t")j"0§-

T (B3)

We fix the parameters by requiring associativity of the
OPEs. We use the function OPEJacobi incorporated in the
Mathematica package OPEdefs [27]. Writing a OPE as

[ABJ,,(w)
(z=—w)"’

A@)Bw) = Y

NS Nimax

(B4)

the function checks whether the conditions

[A[Bc]p]q = <_1)‘A”B‘ [B[Ac]q]p

-1
# (47 Bl B9

>0

are satisfied or not for p,g > 0. Here |A| represents the
parity of A. It was argued in [62] that the associativity of
A x B x C is satisfied when the function generates zero up
to null vectors. In particular, if the generated operators are
proportional to primary operators with nonvanishing two
point functions, then the factors in front of the operators
should be zero.

Requiring the associativity of J¢ x Q” x O;, we obtain
conditions for w; and w,. Solving the conditions, we
rewrite w; and w, as

2w (4h + k —2)
(k—1)(4h(k+2)=3)
(4h = 2)kwy + wo
(k= 1)(4h(k +2) = 3)

wp =

(B6)

Wy =

in terms of 4 and wy. The associativity of Q% x Q” x © i
leads to constraint equations for 4 and w,. The function
OPEJacobi generates several operators, which should be null
in order to satisfy the associativity. We require that
coefficients in front of O,» vanish, and these conditions
lead to the conformal dimension / as in (3.19). In this way,
we reproduce the previous result by using the OPEs
involving the primary operator O;. There are other oper-
ators generated by OPEJacobi. We believe that these extra
operators are null, but we have not checked it yet.

APPENDIX C: TECHNICAL DETAILS
ON THE N =2 W ALGEBRA

In this Appendix, we collect some technical materials
used for computations on the N =2 rectangular W
algebras.

1. Invariant tensors

In order to expand operator products in terms of
(composite) primary operators, we need the invariant
tensors with several indices. Here we list the invariant
tensors used for the OPE analysis of the ' = 2 W algebra
in Sec. IV B. The invariant tensors with two and three
indices are given by (2.10). With four indices, we use

A = 3. dgsh — (i),
dited = w(dor iy,

dabed — sabged

_ abcd __ sa
4581 d o

— 548
4582 = 9(0g)
dgbed = tr(feP)plerd), digsd = (1“1, P)ty).  (CI)

We also use tensors with five indices {a,b,c,d,e}. We
need tensors which are antisymmetric under a <> b and
symmetric under ¢ <> b <> ¢ as

dgzzfg{{e — ifab(c&de)’ dgf\g%e — tr(t[atb] t(cl‘dle)),
abcde c e abede _ g(c jde
dhide = et o)), dibde = o 0dyy). (C2)

We further use tensors which are symmetric under ¢ <> d
and antisymmetric under a <> b, ¢ <> ¢ and d <> e as
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e = 3 (e — fotestey,

dgbede — %{Ztr(t[“tb] et e) — (tr(rleler ey — tr(rlarPllere) 1))},
dgbede — %{Ztr(t[“tb] 1€, —tr(dlebleler D) — tr(rlerPleler 1)},
dabede — %{Ztr(t[“th] ety —tr(dlarbledler) — tr(rlerPle?e(ero))},
dabede — %{Ztr(t[at("tb] 1D1¢) = tr(1,1€11D1¢) = tr(1,1C 11914},
dgbede — %{Ztr(t[at(ctb] 1,10) — (1, 1€ty 1.19) — tr (1, 1€ 1 1414)) },
dabede — %{2tr(t[atetb]t(ctd)) — tr(t, 1111 — te(t,191,1119)) },

de 1 (4 C C e
dgfx;fs 3 {zé[adbf - 5[adbfl - 531

dz]"}. (C3)
2. OPEs involving chiral primaries

In Sec. IV C, we have expanded the operator products in (4.42) as linear combinations of primary operators in (4.43).
Here we write down our ansatz explicitly. We have used the forms

m 0;(0)  my0;(0) + m3(K0O;)(0) My (J*0;)(0) + ms(K*0;)(0)

G*(2)0;(0) ~ sz + ; + (1) . ,
GH(2)%(0) ~ ni(J0;)(0) J;l”tz(l(“(’)j)(o) oy n3(’z)£»(0) n n,O;(0) +;l5(KOi)(O)
Fifay (1)) ng(J<0;)(0) 4; n7(K<0;)(0) (c4)
for the OPEs involving G*. We have set the forms as
GHa(2)D,(0) ~ 01(J“0;)(0) + 02(K*0;)(0)
! z
(), [03(;'(0) n 0,0;(0) +§5(K0i)(0)} if (), 06(J°0;)(0) 42' 07(K<0;)(0) ’
ag . [P10;(0)  p205(0) + p3(KO;)(0)
G (z)0§(0)~5’{ EE . }
Fo(r) [P4(Jcoi)(0) + PS(KCOi)(O)] Life {Pe(fcoj)(o) + P7(KCO;')(0)}
j B c Z
TpsO;(0)  po@.(0) + pio(KO,)(0 P11 (J90.)(0) + pra(KO,) (0
i 0[O0 DO KON U0 + (5200
o 1 [P13(770:)(0) + p1a(KP0:)(0)
+(1); [ . ] (C5)

for the OPEs involving G4,
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APPENDIX D: ALTERNATIVE PROPOSALS
OF DUAL COSET CFTs

In [2], we examined a coset description of rectangular W
algebras with su(M) symmetry. In this Appendix, we
propose an alternative coset description of the algebra by
making use of superalgebra su(N|M). Rectangular W
algebra obtained from the Hamiltonian reduction of
hsy[A] can be described by free bosons or fermions at
the limit A — O or A — 1 as was constructed in [63,64]. The
dual coset should reduce to the same free system at a large
level limit, and this fast was utilized to guess the dual coset
in [5], see also [7]. The coset (1.1) reduces to a free boson
system at the large k limit. However, we may use an
alternative coset which reduces to a free symplectic fermion
system at the large k limit. This is the idea behind the
arguments in this Appendix. Furthermore, we extend the
analysis by introducing the A = 2 supersymmetry.

1. Rectangular W algebras

Here we propose that the rectangular W algebra with
su(M) symmetry can be realized by a coset

su(NIM),
su(N); @ u(1),

with k = MNk(M — N) as an alternative of (1.1). Indeed
the symmetry algebra has M? fields in conformal weights
1,2,...,2n + 1 for the following reason: The large k limit
of the coset reduces to the subalgebra of NM symplectic
fermions that is invariant under su(N) @ u(1). This orbi-
fold has M? fields of conformal weight 1,2, ...,2n + 1 by
Theorem 4.4 of [65]. The type of symmetry algebra of the
coset at generic level is the same as the orbifold limit by the
theory of [66,67].

The problem here is to obtain the map of parameters such
that the central charge ¢ and the level ¢ of su(M) currents
coincide with each other. For the level of su(M), we set
¢ = —k. The central charge of the model is

k((N>=1)+ (M?>—1)+1-2NM) k(N*-1) .
c= - - 1.
k+N-M k+N

(D1)

(D2)

Compared with (2.6) and (2.7), the correspondence hap-
pens at A = n with

k k
k+N’ 4= k+N-M' (D3)
There are two choices, and this implies a duality of the
coset (D1).
We next construct the generators of rectangular W
algebra in terms of the coset (D). The superalgebra
su(N|M) can be decomposed as

su(NIM) = su(N) @ su(M) ® u(1) & (N,M) & (N, M),

(D4)

and the generators are denoted as 14 =
1) ¢71)). Here t* =

and 70 t?) are Grassmann odd. We choose the metric
g8 = str(1*1®) as

(12, ¢4, (),
(1%, 1%, (1)) are Grassmann even

str(19t?) = 6%, str(191”) = =60, str(rDpD) =1,
str(1) 1P1)) = —str(tPD 1)) = 5P 7 (D5)
We also introduce the structure constants as
ifABC = str([4, £B]1€), d*BC = str({14,18}4C), (D6)
where our convention is such that
ife@Nul) = &(@5&/),
V/MN(M —N)
arei) — M =N g5,
MN
l'f(/ﬁ)((?j)(l — d(/ﬁ)(frj)a _ (lu)ffpéﬁ’
if(/ﬁ)(?fj)a = —qWEia — yﬁ(ta)fj (D7)

for nontrivial expressions. The su(N|M) affine algebra
consists of bosonic currents J* = (J¢,J% J*(!)) and fer-
mionic currents J#7, J?) The OPEs among the su(N|M)
currents are now written as

kgP® ifRCIR(0
s7(2g0(0) ~ R | M I0)
Z Z
b sii (p1) (i) 7P
_ . korPs"  d J5(0
J(/)t) (Z)J(/)l) (0) ~ < P ( ) i
Z Z

} ifPwn, gl
JP(Z)J(/)I) (0) ~ f (a7) i

N

(D8)

We construct the generators of rectangular W algebra up
to spin 2 using the su(N|M) currents. The su(M)_,
currents are given by J“ The energy-momentum tensor
can be obtained by the standard coset construction [29]. We
find that

(Ja]u(l))

(D9)
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satisfies the required OPEs with J¢ and T as in (2.12). We
have checked that the OPEs of Q¢ x Q" are reproduced for
several examples.

2. N =2 rectangular W algebras

We would like to consider a similar realization of the
N =2 W algebra from a coset

su(N|M), & SP(ZNM)-l/z
S”(N)k—M 5] ”(l)f(

(D10)

withk=NM (M —N)(k—M +N). The factor sp(2NM)_;
can be described by NM pairs of symplectic bosons. The
central charge of this model is

k((N*>=1) +(M?>—=1)+1-2NM)

c= -NM
k+N-M
k—M)(N* -1
_k=mN -1 (D11)
k—M+N
The symmetry algebra includes su(M)_, C su(N|M), and
su(M)_y from the symplectic bosons. Requiring £ = —k
and 7, = —N, we find the match of central charge at
A = —n with
N
A=——. D12
k+N-M (D12)
With the alternative possibility as 7 = —N and ¢, = —k,
the correspondence is realized at A = —n with
k
A=—. D13
k+N-M (D13)

Here we have used the expressions (4.7) and (4.6).
We then construct the symmetry generators of the N = 2
W algebra from the coset (D10). We express the factor

sp(2NM)_, , by symplectic bosons (¢\”), (?!)) satisfying

o P
o () (0) ~ ——.

(D14)

With the symplectic bosons, su(N) @ su(M) & u(1) cur-
rents can be constructed as

Ii==(@ g ) (1) 585 T§= (@) (1) 6.
J.t;(l) = (@M pP5 5.:. (D15)

PP

The currents in the denominator of (D10) are then given by

Je = Je+ g8,

Ju u u(1
70 = /MN(M = N)J*O) + (N - )4, (D16)
There are two sets of su(M) currents and one u(1)
current in the A = 2 W algebra. One of the sets of su(M)
currents is J¢ and the other is K = J¢ in (D15). The u(1)

current is

1

K=——"7-—
M—-N-—-k

(VMN(M = N)J“0 — kg4V). (D17)

We have
G = ((p(/ﬁ) J @) ) 5,p

G = () () 13,

8, Gh= (J(p7>(p</_)i))5/)ﬁ57i:

GHa=—(JW i) (1) 16,5
(D18)

for spin 3/2 currents. The normalizations are chosen so as
to satisfy (4.20), (4.21) and (4.22). A spin 2 current is the
energy-momentum tensor from the coset construction [29].
We find the charged spin 2 currents

0% = [(J(/ﬁ)J(ﬁi)) — (J(ﬁﬁ](p?))}(sp/_)(ta)ﬁ

N prey 2 [N(M=N) )
— a Cy a Ju D]

satisfy the required OPEs with spin 1 currents (4.25) as well
as the primary condition with respect to the Virasoro
algebra. The expression is the same as the bosonic one
in (D9) due to our convention of Q“. We have checked that
the OPEs among generators are reproduced up to null
vectors for several explicit examples.
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