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We study W algebras obtained by quantum Hamiltonian reduction of slðMnÞ associated to the slð2Þ
embedding of rectangular type. The algebra can be realized as the asymptotic symmetry of higher spin
gravity withM ×M matrix valued fields. In our previous work, we examined the basic properties of theW
algebra and claimed that the algebra can be realized as the symmetry of Grassmannian-like coset even with
finite central charge based on a proposal of holography. In this paper, we extend the analysis in the following
ways. First, we compute the operator product expansions among low spin generators removing the
restriction of n ¼ 2. Second, we investigate the degenerate representations in several ways, and see the
relations to the coset spectrum and the conical defect geometry of the higher spin gravity. For these analyses,
we mainly setM ¼ n ¼ 2. Finally, we extend the previous analysis by introducingN ¼ 2 supersymmetry.
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I. INTRODUCTION

Three-dimensional gravity on anti-de Sitter (AdS) space
is an attractive arena to investigate the quantum aspects of
gravity because of its tractability. In particular, there are
infinite dimensional symmetries near the AdS boundary
[1], and the quantum gravity effects should be constrained
by these symmetries. In our previous work [2], we inves-
tigated the rectangular W algebra with suðMÞ symmetry as
the asymptotic symmetry of higher spin gravity with
M ×M matrix valued fields constructed in [3]. The matrix
extension is expected to be useful to see stringy effects from
the viewpoints of higher spin gravity, see, e.g., [4] for
recent arguments. In [5], it was proposed that the matrix
extension of classical higher spin gravity is dual to the coset

suðN þMÞk
suðNÞk ⊕ uð1Þκ

ð1:1Þ

with κ ¼ kNMðN þMÞ at a large N limit.1 ForM ¼ 1, the
proposal reduces to the Gaberdiel-Gopakumar duality [9].
Based on the holography of [5], we claimed that the

rectangular W algebra can be realized as the symmetry
algebra of (1.1) even without taking a large N limit. In this
paper, we continue the study of the rectangular W algebra
by extending the analysis of operator product expansions
(OPEs) among generators and examining its degenerate
representations. We further examine the N ¼ 2 super-
symmetric extensions of rectangular W algebras.
It is known that pure AdS gravity in three dimensions

can be described by slð2Þ ⊕ slð2Þ Chern-Simons gauge
theory [10,11], and a higher spin gravity can be constructed
by replacing slð2Þ by a higher rank gauge algebra, say,
slðnÞ. In order to realize a matrix extension, we may
consider the gauge algebra with the multiplication of
M ×M matrix algebra or glðMÞ. A closed algebra includ-
ing glðMÞ ⊗ slðnÞ is given by (see, e.g., [5,12,13])

slðMnÞ≃slðMÞ⊗1n⊕1M⊗slðnÞ⊕slðMÞ⊗slðnÞ; ð1:2Þ

and the gravitational sector is identified with the principally
embedded slð2Þ in 1M ⊗ slðnÞ. The asymptotic symmetry
is obtained as in [14,15] by assigning the asymptotic AdS
condition, and it is identified as a W algebra given by the
Hamiltonian reduction of slðMnÞ with the corresponding
slð2Þ embedding. In particular, the W algebra includes the
Virasoro algebra and suðMÞ affine algebra as subalgebras.
In [2], we computed the exact expressions of the central
charge c and the level l of suðMÞ currents. We further
obtained the OPEs among generators for n ¼ 2 by requir-
ing their associativity. We claimed that the rectangular W
algebra with suðMÞk symmetry is realized by the coset (1.1)
at λ ¼ n. Here the ’t Hooft parameter λ is defined by
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λ ¼ k
kþ N

or λ ¼ −
k

kþ N þM
; ð1:3Þ

which can be exchanged by the duality of cosets [2]. We
have checked that the OPEs among generators are repro-
duced from the coset at λ ¼ 2.
In this paper, we extend the analysis in the following

ways. We first reexamine the OPEs of low spin generators
by working with generic n. In our previous analysis, we
assumed the decoupling of spin 3 currents at n ¼ 2 and
obtained OPEs among generators up to spin 2. Here we
remove the assumption and examine the OPEs between
spin 2 and 3 currents as well. Since the computations
become rather complicated, we set M ¼ 2 for simplicity.
We then analyze the degenerate representations of the
rectangular W algebra in several ways mainly working
with M ¼ n ¼ 2. As a direct way, we study the conditions
for null vectors at the low levels of descendants. We find
several examples of them by assuming a certain form of
null vectors. We further obtain representations from those
of slðMnÞ current algebra by applying the Hamiltonian
reduction. We compare the results with the spectrum of the
coset (1.1) and the mass of conical defect geometry in the
Chern-Simons theory obtained in [16], see also [17–19].
We further extend the analysis by considering theN ¼ 2

supersymmetric rectangular W algebras. It is important to
introduce extended supersymmetry in order to see the
relation to superstring theory [5,12,20–22]. The N ¼ 2
W algebra may be realized as the asymptotic symmetry of
N ¼ 2 higher spin supergravity withM ×M matrix valued
fields in [3]. We construct the N ¼ 2 W algebra by the
Hamiltonian reduction of slðMðnþ 1ÞjMnÞ. The N ¼ 2
W algebra includes the Virasoro algebra and two suðMÞ
affine algebras as subalgebras. We compute the central
charge c and the levels l1, l2 of two suðMÞ currents
without taking a large c limit. We also obtain the OPEs
among low spin generators for simple examples with n ¼ 1
andM ¼ 2, 3, 4. Based on the holography of [5], we claim
that theN ¼ 2W algebra is realized as the symmetry of the
coset

suðN þMÞk ⊕ soð2NMÞ1
suðNÞkþM ⊕ uð1Þκ̂

ð1:4Þ

with κ̂ ¼ NMðN þMÞðN þM þ kÞ even at finite c. From
the match of central charges and the levels of suðMÞ
currents, we set

l1 ¼ k; l2 ¼ N; λ≡ N
kþ N þM

¼ −n; ð1:5Þ

or

l1 ¼ N; l2 ¼ k; λ≡ k
kþ N þM

¼ −n: ð1:6Þ

We check that the OPEs among generators can be repro-
duced from the coset (1.4) for several examples.2

This paper is organized as follows. In the next section,
we start by reviewing the results of [2]. We explain the
derivations of the central charge and the level of suðMÞ
currents. We then compute the OPEs among generators but
now with generic n ≠ 2 but withM ¼ 2. We compare these
results with those of the dual coset (1.1). In Sec. III, we
examine the degenerate representations from the null vector
conditions and the Hamiltonian reduction of slð4Þ. We then
compare the results with the spectrum of dual coset (1.1)
and the mass of conical defect geometry of higher spin
gravity. In Sec. IV, we examine the N ¼ 2 rectangular W
algebra. We first derive the expressions of central charge
and the levels of two suðMÞ currents. We then compute the
OPEs among generators of spin up to 2 for small M and
examine degenerate representations. We compare these
results with those of dual coset (1.4). Section V is devoted
to conclusion and discussions. Several technical Appendixes
follow. In Appendix A, we write down the commutation
relations for the bosonic W algebra with M ¼ n ¼ 2. In
Appendix B, the degenerate representations of the bosonic
W algebra are reexamined by making use of associativity of
the OPEs. In Appendix C, we collect several technical
materials used for the analysis of the N ¼ 2 W algebra.
In Appendix D, we propose alternative coset realizations of
the rectangular W algebras and superalgebras.

II. RECTANGULAR W ALGEBRA

As mentioned in the Introduction, a higher spin gravity
can be constructed by the Chern-Simons gauge theory
based on a higher rank algebra g with an embedding of
gravitational slð2Þ. Without the matrix extension, a holog-
raphy was proposed in [9] using the 3d Prokushkin-Vasiliev
theory of [3]. The gauge algebra of the 3d higher spin
theory is given by hs½λ�, which can be truncated to slðnÞ at
λ ¼ n. Similarly, the gauge algebra of higher spin theory
with the matrix extension is given by hsM½λ�, which can be
reduced to slðMnÞ at λ ¼ n. Decomposing slðMnÞ as
in (1.2), we principally embed the gravitational slð2Þ in
1M ⊗ slðnÞ. The gauge algebra can be decomposed by the
slð2Þ as

slðMnÞ ≃ slðMÞ ⊕ M2gð2Þ ⊕ � � � ⊕ M2gðnÞ; ð2:1Þ

where gðsÞ denotes the spin s − 1 representation of slð2Þ.
After the Hamiltonian reduction, only one element in gðsÞ
ðs ¼ 2; 3;…; nÞ survives and the space-time spin of the

2It is known that the coset (1.4) with M ¼ 2 has the large
N ¼ 4 superconformal symmetry, and a holography with the
coset has been proposed in [12]. In the special case with M ¼ 2,
the symmetry generators of the coset for low spins were explicitly
constructed in [23,24], and the OPEs among generators of the
N ¼ 4 W algebra were investigated in [25].
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element becomes s. Thus, the W algebra includes slðMÞ
[or suðMÞ] spin 1 currents3 and M2 spin s currents with
s ¼ 2; 3;…; n. In particular, one of the spin 2 currents is the
energy-momentum tensor.
In this section, we explain the basic properties of

rectangular W algebras by reviewing the results of [2].
In the next subsection, we compute the central charge c and
the level l of the suðMÞ currents by applying the general
formula, e.g., in [26]. In Sec. II B, we obtain the OPEs
among generators by requiring their associativity. Here we
do not assume the decoupling of spin 3 currents but work
withM ¼ 2 just for simplicity. In Sec. II C, we examine the
relations to the dual coset of (1.1).

A. Central charge and level of the affine symmetry

In [2], we computed the central charge c and the level l
of slðMÞ current as basic information on theW algebra with
slðMÞ symmetry. Here we repeat the analysis mainly for the
preparation of supersymmetric extension. We start with a
Lie superalgebra g and set the level of the affine currents
as t. We also specify an embedding of slð2Þ. We may
denote the generators of slð2Þ by x, e, f satisfying

½x; e� ¼ e; ½x; f � ¼ −f; ½e; f � ¼ x: ð2:2Þ

The Lie superalgebra can be decomposed by the eigenvalue
of the adjoint action ad x as

g ¼ ⊕j∈1
2
Zgj: ð2:3Þ

Denoting Sþ ¼ Q
j>0 Sj with a basis fuαgα∈Sj for gj, the

formula for the central charge is [26]

c¼ tsdimg
tþh∨ −12tðxjxÞ

−
X
α∈Sþ

ð−1ÞpðαÞð12m2
α−12mαþ2Þ−1

2
sdimg1=2: ð2:4Þ

Here ðxjxÞ is a bilinear form and h∨ represents the dual
Coxeter number. The parity of uα is denoted by pðαÞ. The
Hamiltonian reduction is realized as a Becchi-Rouet-Stora-
Tyutin (BRST) cohomology at the quantum level and the
conformal dimensions of BRST ghosts are ðmα; 1 −mαÞ
with mα ¼ 1 − j.
For the present case, we set g ¼ slðMnÞ, where the

dimension is M2n2 − 1 and the dual Coxeter number is
h∨ ¼ Mn. With x for the principally embedded slð2Þ in
1M ⊗ slðnÞ, we find

ðxjxÞ¼ trðxxÞ¼ tr1M ·
1

12
nðn2−1Þ¼ 1

12
Mnðn2−1Þ: ð2:5Þ

We next count the number of elements belonging to Sj,
which is found to be M2ðn − jÞ for j ¼ 1; 2;…; n − 1 and
zero otherwise. From the formula (2.4), the total central
charge is obtained as

c ¼ tðn2M2 − 1Þ
tþ nM

− tMnðn2 − 1Þ −M2nð1þ ð−2þ nÞn2Þ:
ð2:6Þ

We compute the level l of slðMÞ currents as well. The
currents basically come from the elements in slðMÞ ⊗ 1n,
which leads to the level tn. There are also contributions
from the BRST ghosts. The ghosts carry the trivial
and adjoint representations of slðMÞ, and there are
2
P

n−1
j¼1ðn − jÞ ¼ nðn − 1Þ sets of ghosts in the adjoint

representation. We can construct slðMÞ currents with level
M from one set of ghosts in the adjoint representation.
Therefore, the sum of two types of contributions to the
level is

l ¼ tnþMnðn − 1Þ: ð2:7Þ

We have a relation between c and l as

c ¼ −
ðl2 − 1Þn2M
lþ nM

þ lM − 1 ð2:8Þ

by expressing t in terms of l.

B. OPEs among low spin currents

We can examine the possible OPEs among generators of
algebra by requiring their associativity.4 In [2], the OPEs
among generators of the rectangular W algebra were
obtained at n ¼ 2 by assuming the decoupling of spin 3
currents. Here we lift the analysis to generic n.
As seen above, the rectangularW algebra includes suðMÞ

affine algebra as a subalgebra. We denote the currents as Ja

with a ¼ 1; 2;…;M2 − 1 and require the OPEs

JaðzÞJbð0Þ ∼ lδab

z2
þ ifabcJcð0Þ

z
ð2:9Þ

with the level l. Here we have introduced the generators ta

of suðMÞ with the invariant tensors

trðtatbÞ¼δab; trð½ta;tb�tcÞ¼ ifabc; trðfta;tbgtcÞ¼dabc:

ð2:10Þ

The algebra also includes higher spin currents WðsÞA

ðs ¼ 2; 3;…Þ, where WðsÞ0 and WðsÞa are in the trivial

3We consider the complex elements of slðMnÞ, and thus there
is no distinction between slðMÞ and suðMÞ.

4For the checks of associativity of OPEs, we use aMathematica
package OPEdefs [27].
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and adjoint representations of suðMÞ. In particular, T ≡
Wð2Þ0 is the energy-momentum tensor satisfying

TðzÞTð0Þ ∼ c=2
z4

þ 2Tð0Þ
z2

þ T 0ð0Þ
z

;

TðzÞJað0Þ ∼ Jað0Þ
z2

þ Ja0ð0Þ
z

ð2:11Þ

with the central charge c. Here A0ð0Þ means d
dz AðzÞ at

z ¼ 0. We choose the primary basis for the charged higher
spin currentsQa ≡Wð2Þa and Pa ≡Wð3Þa such as to satisfy

TðzÞQað0Þ∼2Qað0Þ
z2

þQa0ð0Þ
z

; JaðzÞQbð0Þ∼ifabcQcð0Þ
z

;

TðzÞPað0Þ∼3Pað0Þ
z2

þPa0ð0Þ
z

; JaðzÞPbð0Þ∼ ifabcPcð0Þ
z

:

ð2:12Þ

The first nontrivial OPE would be among Qa and Qb,
which will be expressed schematically as Qa ×Qb.

1. Composite primary operators

The operator product Wðs1ÞA1 ×Wðs2ÞA2 produces
(composite) operators up to spin s1 þ s2 − 1. For the OPE
ofQa ×Qb, we need (composite) operators with spin 1,2,3,
though we can see that Wð3Þ0 does not appear due to the
bosonic statistic of Qa. We restrict the form of Qa ×Qb by
requiring the associativity ofQa ×Qb ×Qc, but for this we
also need to think about theOPEs ofQa andPb. The operator
product Qa × Pb would generate composite primary oper-
ators of spin up to 4, so we start by classifying them.
We may count the number of primary operators by

decomposing the vacuum character of the rectangular W
algebra by the Virasoro characters, see, e.g., [28]. The
vacuum character of the rectangular W algebra is

χM∞ðqÞ ¼
Y∞
n¼1

1

ð1 − qnÞM2−1

Y∞
s¼2

Y∞
n¼s

1

ð1 − qnÞM2 ; ð2:13Þ

while the Virasoro characters of the vacuum representation
and the generic one with conformal weight h are

χ0ðqÞ ¼
Y∞
n¼2

1

1 − qn
; χhðqÞ ¼

qh

1 − q
χ0ðqÞ: ð2:14Þ

The decomposition is given by

χM∞ðqÞ ¼ χ0ðqÞ þ
X∞
h¼1

dðhÞ χhðqÞ; ð2:15Þ

wheredðhÞ represents the number of independent (composite)
primaries with conformal weight h. Expanding in q, we
find

dð1Þ ¼ M2 − 1; dð2Þ ¼ 1

2
ðM4 þM2 − 2Þ;

dð3Þ ¼ 1

6
ðM6 þ 9M4 − 16M2 þ 12Þ;

dð4Þ ¼ 1

24
ðM8 þ 22M6 þ 23M4 − 46M2 þ 24Þ; ð2:16Þ

and so on.
We can construct composite operators primary with

respect to the Virasoro generator along with the funda-
mental currents Ja, WðsÞA with s ¼ 2; 3;…. In order to
define the composite operators, we adopt the prescription
of normal ordering as

ðABÞðzÞ ¼ 1

2πi

I
dw

w − z
AðwÞBðzÞ ð2:17Þ

and

ðA1 � � �Al−2Al−1AlÞ ¼ ðA1 � � � ðAl−2ðAl−1AlÞÞ � � �Þ: ð2:18Þ

Moreover, we use the brackets ða1;…; alÞ and ½a1;…; al�
for the symmetric and antisymmetric indices with prefactor
1=ðl!Þ, respectively. We find the composite operators

½JðaJbÞ� ¼ ðJðaJbÞÞ − 2l
c
δabT ð2:19Þ

for spin 2 and

½JðaÞJbJcÞ� ¼ ðJðaÞJbJcÞÞ þ 3l
cþ 2

½δðabJcÞ00 − 2ðTJðaÞδbcÞ�;

½JaQb� ¼ ðJaQbÞ − i
4
fabcQc0;

½J½aJb�0� ¼ ðJ½aJb�0Þ − i
3
fabc

�
cþ 5

cþ 2
Jc00 −

6

cþ 2
ðTJcÞ

�
ð2:20Þ

for spin 3. For general composite operators, we use the
abbreviated notation

½A1 � � �Al� ¼ ðA1 � � �AlÞ þ � � � ; ð2:21Þ

where the dots represent terms which make the operators
to be primary with respect to the Virasoro algebra.5 With
the notation, the composite spin 4 primary operators are

½JðaJbJcJdÞ�; ½JðaJbÞQc�; ½JðaJbÞ00�; ½JaQb0�;
½QðaQbÞ�; ðJaWð3Þ0Þ; ½JaPb� ð2:22Þ

5The primary condition does not fix the additional terms
uniquely. However, we do not write down our specific choices
here, since they are not so important for our arguments.
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and

½JðaJbÞJc0� ¼ 1

4
fðJaJbJc0Þ þ ðJbJaJc0Þ

− ðJcJbJa0Þ − ðJcJaJb0Þg þ � � � : ð2:23Þ
We can check that the number of primary operators matches
with dðhÞ in (2.16) up to h ¼ 4. Notice that the number of
independent components of ½JðaJbÞJc0� is LðL2 − 1Þ=3
with L ¼ M2 − 1.

2. Associativity of OPE

We expand the operator product Qa ×Qb in terms of the
fundamental and composite operators with some indices.
The coefficients in front of the operators can be expressed
with the invariant tensors of suðMÞ. Here we restrict
ourselves to the case with M ¼ 2, but it is straightforward
(but tedious) to work with generic M. There is only one
tensor with two indices, that is δab. With three indices, there
are fabc and dabc introduced in (2.10). ForM ¼ 2, we have
dabc ¼ 0, and the other invariant tensors can be written in
terms of δab and fabc. With four indices, there are

dabcd4AA1 ¼
1

2
ðδacδbd − δadδbcÞ; dabcd4SS1 ¼ δabδcd;

d4SS2 ¼
1

2
ðδacδbd þ δadδbcÞ: ð2:24Þ

Furthermore, we need

dabcde5AS1 ¼ ifabðcδdeÞ;

dabcde5AH1 ¼
i
4
ð2fabeδcd−fabcδed−fabdδecÞ;

dabcde5SH ¼ i
4
ðδacfbdeþδbcfadeþδadfbceþδbdfaceÞ ð2:25Þ

for those with five indices and

dabcdef6SS1 ¼ δabδcðdδefÞ; dabcdef6SS2 ¼ 1

6
dabcd4SS2δ

efþ�� � ð2:26Þ

for those with six indices. Here the dots above are the terms
which make the expression symmetric under the exchange
of fc; d; e; fg.
With the above preparations, we require the following

forms of the OPEs involving Qa and Pa. The OPE of
Qa ×Qb is schematically of the form

Qa ×Qb ∼ δabc1=2 · 1þ ifabcc2Jc þ Cab
3;cd½JðcJdÞ�

þ dab4AA1;cdc4½J½cJd�0� þ dab5AS1;cdec5½JðcJdJeÞ�
þ dab4AA1;cdc6½JcQd� þ ifabcc7Pc: ð2:27Þ

There are also contributions from descendants, which can
be related to those from the primaries utilizing the Virasoro
symmetry or requiring the associativity of T ×Qa ×Qb.
Here and in the following, we use small letters like ci for
constants without indices and capital ones like Ci for
coefficients with indices. In the current example, we set

Cab
3;cd ¼ dab4SS1;cdc31 þ dab4SS2;cdc32: ð2:28Þ

Requiring the associativity of Ja ×Qb ×Qc, almost all
coefficients are fixed as functions of c and l up to two
parameters. One of themmay be chosen as c1, which can be
absorbed by changing the overall normalization of Qa. We
choose the other parameter as c7, which is undetermined at
this stage.
The OPE of Qa × Pb is of the form

Qa × Pb ∼ ifabce1Jc þ Eab
2;cd½JðcJdÞ� þ ifabce3Qc þ dab5AS;cdee4½JðcJdJeÞ� þ Eab

5;cd½JcQd�
þ dab4AA;cde6½J½cJd�0� þ δabe7Wð3Þ0 þ ifabce8Pc þ Eab

9;cdef ½JðcJdJeJfÞ�
þ Eab

10;cde½JðcJdÞJe0� þ Eab
11;cd½JðcJdÞ00� þ Eab

12;cde½JðcJdÞQe� þ Eab
13;cd½JcQd0�

þ Eab
14;cd½QðcQdÞ� þ ifabce15ðJcWð3Þ0Þ þ Eab

16;cd½JcPd� þ δabe17Wð4Þ0 þ ifabce18Wð4Þc: ð2:29Þ

The coefficients with capital letters as Ei are expressed by
the invariant tensors in (2.24), (2.25) and (2.26) as in (2.28).
This OPE is used only to restrict the form of Qa ×Qb from
the associativity ofQa ×Qb ×Qc. For this, we do not need
the information of e7, e15, E16, e17, e18, which will be
neglected in the following. Requiring the associativity of
Ja ×Qb × Pc, the other coefficients are determined as
functions of c and l up to three parameters including
c1, c7. One remaining parameter may be chosen as e3,

which can be absorbed by changing the overall normali-
zation of Pa.
The associativity of Qa ×Qb ×Qc leads to a constraint

equation for these parameters as

e3c7lð3l2 þ l − 4Þðclþ 2c − 3lÞ
¼ c1ðl − 2Þðlþ 1Þðclþ 4cþ 6l2 − 7l − 4Þ: ð2:30Þ

Since c1 and e3 can be removed by the redefinitions of Qa

and Pa, we conclude that the OPEs of generators of spin up
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to 2 have only two parameters c and l. The decoupling of
spin 3 currents Pa can be realized with c7 ¼ 0, which
leads to

c ¼ −
8ðl2 − 1Þ
lþ 4

þ 2l − 1 ð2:31Þ

as in (2.8) with M ¼ n ¼ 2. In terms of mode expansions,
the commutation relations among generators with
M ¼ n ¼ 2 are summarized in Appendix A.
From the above analysis, we may conjecture that there is

a W algebra with suðMÞ symmetry parametrized by c and
l. Based on the relation in (2.8) withM ¼ 2, we may map a
parameter c to λ by

c ¼ −
2ðl2 − 1Þλ2
lþ 2λ

þ 2l − 1: ð2:32Þ

The parameters of the W algebra are now λ and l, and the
W algebra from slð2nÞ is expected to be realized at λ ¼ n.
Except for l ¼ �1;−2λ, the constraint equation (2.30)
reduces to

e3c7lð3l2 þ l − 4Þðλ − 1Þððlþ 2Þλþ lÞ
¼ c1ðl − 2Þðlþ 1Þðλ − 2Þðlðλþ 2Þ þ 4λÞ: ð2:33Þ

This is a second order equation with respect to λ. Suppose
that λ ¼ λ0 is a solution to (2.33), then we can show that

λ ¼ −
lλ0

lþ 2λ0
ð2:34Þ

is also a solution. As seen shortly, this is consistent with the
duality relation discussed in [2].

C. Dual coset CFT

In [5], it was proposed that the classical 3d Prokushkin-
Vasiliev theory of [3] with M ×M matrix valued fields is
dual to the Grassmannian-like coset (1.1) at a large N limit.
We have checked the agreements of spectrum and low spin
symmetry in the limit. In [2], we conjectured that the
holographic duality works even with finite N and claimed
that the rectangular W algebra with suðMÞ symmetry can
be realized as the symmetry algebra of the coset (1.1).6 The
correspondence happens at λ ¼ n, where the ’t Hooft
parameter is defined by (1.3). We should also set l ¼ k,
where l is the level of suðMÞ current algebra. The central
charge is written as

c ¼ −
ðk2 − 1Þλ2M
kþ λM

þ kM − 1 ð2:35Þ

irrespective of the choice of the ’t Hooft parameter (1.3).
Notice that the expression with λ ¼ n reduces to (2.8). The
two choices are related to a duality of the coset (1.1) as
discussed in [2]. In particular, the two ’t Hooft parameters
can be exchanged by

λ ↔ −
λk

kþ λM
; ð2:36Þ

which is consistent with (2.34).
The generators of the rectangular W algebra have been

constructed in terms of the coset (1.1) in [2] up to spin 3.
Here we review the results of [2] in order to prepare for the
supersymmetric extension. We decompose suðN þMÞ as

suðNþMÞ ¼ suðNÞ⊕ suðMÞ⊕ uð1Þ⊕ ðN;M̄Þ⊕ ðN̄;MÞ
ð2:37Þ

and use the generators tA ¼ ðtα; ta; tuð1Þ; tðρ{̄Þ; tðρ̄iÞÞ. Here L
and L̄ represents the fundamental and antifundamental
representations of suðLÞ, respectively. We introduce the
metric gAB ¼ trðtAtBÞ as

trðtαtβÞ ¼ δαβ; trðtatbÞ ¼ δab;

trðtuð1Þtuð1ÞÞ ¼ 1; trðtðρ{̄Þtðρ̄iÞÞ ¼ δρρ̄δi{̄ ð2:38Þ

and the invariant tensors as

ifABC ¼ trð½tA; tB�tCÞ; dABC ¼ trðftA; tBgtcÞ: ð2:39Þ

We adopt the convention in [2,21] such that

ifðρ{̄Þðσ̄jÞuð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ N
MN

r
δ{̄jδσ̄ρ;

dðρ{̄Þðσ̄jÞuð1Þ ¼ M − Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNðN þMÞp δ{̄jδσ̄ρ;

ifðρ{̄Þðσ̄jÞα ¼ dðρ{̄Þðσ̄jÞα ¼ ðtαÞσ̄ρδj{̄;
ifðρ{̄Þðσ̄jÞa ¼ −dðρ{̄Þðσ̄jÞa ¼ −δρσ̄ðtaÞ{̄j ð2:40Þ

for nontrivial expressions. With these notations, the suðMÞ
currents JA satisfy

JAðzÞJBð0Þ ∼ kgAB

z2
þ ifabcJCð0Þ

z
: ð2:41Þ

The spin 1 current is given by Ja from suðN þMÞk in the
numerator of (1.1). The energy momentum tensor T can be
obtained from the standard coset construction [29]. For the
charged spin 2 currents, we found that

6An alternative coset description of the same W algebra is
proposed in Appendix D 1 and several confirmations are given. It
is an interesting open problem to examine more direct relations
between the two dual cosets.
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Qa ¼ ½ðJðρ{̄ÞJðρ̄jÞÞ þ ðJðρ̄jÞJðρ{̄ÞÞ�δρρ̄ðtaÞj{̄

−
N

M þ 2k
dabcðJbJcÞ þ

2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þMÞ

M

r
ðJaJuð1ÞÞ

ð2:42Þ

satisfy the OPEs (2.12). In [20], we have explicitly checked
the match for the OPE of Qa ×Qb at n ¼ 2. In fact, we
have already shown that the associativity uniquely fixes the
OPE of Qa ×Qb with two parameters ðλ;lÞ for generic
λ ≠ 2 but with M ¼ 2. For the expressions of spin 3
currents, see Appendix A of [20].

III. DEGENERATE REPRESENTATIONS

In this section, we study the degenerate representations
of the rectangularW algebra in various ways. We set n ¼ 2
since we know the OPEs of all generators. We furthermore
restrict ourselves to the M ¼ 2 case just for simplicity.
A direct way to obtain degenerate representations is to find
out null states constructed from a set of primaries, which is
the subject of the next subsection. We also study repre-
sentations from the Hamiltonian reduction of slð4Þ in
Sec. III B. The results are compared with the spectrum
of the coset theory (1.1) in Sec. III C and the mass of
conical defect geometry in Sec. III D.

A. Null states

We have examined the commutation relations among
generators of theW algebras. The next task may be to study
its representations. With n ¼ 2, the generators of the W
algebras are Ja, T, Qa, and their mode expansions are

JaðzÞ¼
X
n∈Z

Jan
znþ1

; TðzÞ¼
X
n∈Z

Ln

znþ2
; QaðzÞ¼

X
n∈Z

Qa
n

znþ2
:

ð3:1Þ

From the OPEs (2.9), (2.11), and (2.12), the commutation
relations among these modes are obtained as

½Lm;Ln� ¼ ðm−nÞLmþnþ
c
12

ðm3−mÞδnþm;0;

½Jam;Jbn� ¼ ifabcJcmþnþlmδmþn;0; ½Lm;Jan� ¼−nJamþn;

½Lm;Qa
n� ¼ ðm−nÞQa

mþn; ½Jam;Qb
n� ¼ ifabcQc

mþn: ð3:2Þ

See Appendix A for ½Qa
m;Qb

n�. We look for degenerate
representations since they might be used to construct the
minimal models of the W algebra. For instance, we will
observe that several representations appear also in the
spectrum of the coset (1.1) in Sec. III C.
For the representations of the W algebra, we start by

defining the vacuum state as

Lmj0i¼0ðm≥−1Þ; Qa
nj0iðn≥−1Þ; Jal j0iðl≥0Þ: ð3:3Þ

Notice that the vacuum is in the trivial representation of
suð2Þ since Ja0j0i ¼ 0. We further introduce states primary
with respect to the rectangular W algebra by

LmjjiJ¼0ðm≥1Þ; Qa
njjiJðn≥1Þ; Jal jjiJðl≥1Þ: ð3:4Þ

We set the primary states such as to be simultaneously the
eigenstate of L0 and in the spin J representation of Ja0 as

L0jjiJ ¼ hjjiJ; Ja0jjiJ ¼ −ðDaÞjijiiJ; ð3:5Þ

where h is the conformal weight and ðDaÞji is the
representation matrix for spin J. We use the convention
with j ¼ 1; 2;…; 2J þ 1 and

Jþ0 j2J þ 1i ¼ 0; J�n ¼ J1n � iJ2n: ð3:6Þ

The explicit forms of ðDaÞjl are

ðD1Þjl¼
1ffiffiffi
2

p
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jð2Jþ1−jÞ
p

δj
l−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2Jþ1−lÞ

p
δj−1

l
i
;

ðD2Þjl¼
1ffiffiffi
2

p
h
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð2Jþ1−jÞ

p
δj

l−1þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2Jþ1−lÞ

p
δj−1

l
i
;

ðD3Þjl¼
1ffiffiffi
2

p ð2J−2jþ2Þδjl: ð3:7Þ

In particular, we set ðtaÞjl ¼ ðDaÞjl with J ¼ 1=2.
An important problem here is how to deal with another

set of zero modes, i.e.,Qa
0 . They do not commute with Ja0 as

in (3.2), which implies that we cannot use simultaneously
the representations of Ja0 andQ

a
0 . SinceQ

a
0 behave as in the

spin 1 representation of suð2Þ, the action of Qa
0 to jjiJ

yields new states with spin J − 1; J; J þ 1. For simplicity,
here we require that

Qa
0jjiJ ¼ w0ðDaÞjijiiJ ð3:8Þ

so that the action of Qa
0 does not yield any other

representations. As we will see below, this assumption
works nicely for some restricted cases.

1. Null states at level 1

We would like to find out null states which are both
descendant and satisfying the primary conditions (3.4).
We first consider null states appearing at level 1 with spin
J ¼ 0; 1=2; 1;…. We use the ansatz

j χaj iJ ¼ ðQa
−1 þ e1Ja−1 þ ifabce2Jb−1J

c
0 þ e3L−1Ja0ÞjjiJ:

ð3:9Þ

If the states are indeed null, then we can consistently set
j χaj iJ ¼ 0. In this case, Qa

−1 is given by a linear combi-
nation of Ja−1 and L−1Ja0 .
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We first study the case with J ¼ 0, where the states (3.9)
become simplified as

j χa1i0 ¼ ðQa
−1 þ e1Ja−1Þj1i0: ð3:10Þ

The nontrivial primary conditions are

L1j χaj iJ ¼ 0; Ja1j χbj iJ ¼ 0; Qa
1j χbj iJ ¼ 0 ð3:11Þ

with j ¼ 1 and J ¼ 0. The first two conditions are satisfied
withe1 ¼ 0, and then the third condition leads toh ¼ 0.With
h ¼ 0, the descendant state L−1jji0 becomes null. Setting
the null states to vanish as j χa1i0 ¼ Q−1j1i0 ¼ 0, the
primary state j1i0 can be identified with the vacuum
satisfying (3.3).
The first nontrivial example would be given with

J ¼ 1=2. The null states j χaj i1=2 are in the product of
the spin 1 and 1=2 representations, thus we can decompose
them into those in the spin 3=2 and 1=2 representations. For
the spin 3=2 representation, we use

jψ3=2i3=2 ¼ j χ12i1=2 þ ij χ22i1=2
¼ Qþ

−1j2i1=2 þ ðe1 þ e2ÞJþ−1j2i1=2; ð3:12Þ

where we have defined

Q�
n ¼ Q1

n � iQ2
n: ð3:13Þ

We can equally use those obtained by the action of ðJ−0 Þr
with r ¼ 1, 2. The conditions L1jψ3=2i3=2¼Ja1jψ3=2i3=2¼0

set

e1 þ e2 ¼ −
w0

l − 1
: ð3:14Þ

Moreover, from Qa
1jψ3=2i3=2 ¼ 0, we have

w0 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðl − 1Þð2hlþ 8hþ l − 3Þ

2lð4þ 3lÞ

s
: ð3:15Þ

There is no restriction on h at this stage. For the spin 1=2
representation, we use

jψ1=2i1=2 ¼ j χ11i1=2 þ ij χ21i1=2 − j χ32i1=2: ð3:16Þ

The conditions L1jψ1=2i1=2 ¼ Ja1jψ1=2i1=2 ¼ 0 fix the non-
trivial coefficients in terms of w0, h as

e2−
e1
2
¼ ð3−4hÞw0

4hðlþ2Þ−3
; e3¼

4ðlþ1Þw0

4hðlþ2Þ−3
: ð3:17Þ

From Qa
1jψ1=2i1=2 ¼ 0, we similarly have

w0¼�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð4hðlþ2Þ−3Þð4hðlþ2Þðlþ4Þ−lð4lþ11ÞÞ

16lð3l2þl−4Þð4hþ3lÞ

s
:

ð3:18Þ

In this way, we find that null states can be constructed from
a set of primaries when (3.15) or (3.18) is satisfied. If both
conditions are compatible, then two types of null states are
possible from a set of primaries. Indeed, the two conditions
are satisfied for

h ¼ 7 − 2l
4ðlþ 4Þ ; h ¼ −4l2 þ 6l − 5

4ðl − 4Þ ð3:19Þ

at the same time. The primary state with the first conformal
weight can be realized as a coset state as seen below.
With the experience for J ¼ 1=2, it is not so difficult to

increase J.7 The states j χaj iJ can be decomposed into those
in the representations with spin J þ 1; J; J − 1. For spin
J þ 1, we use

jψJþ1iJþ1 ¼ j χ12Jþ1iJ þ ij χ22Jþ1iJ: ð3:20Þ

The conditions (3.11) are satisfied by

e2 þ
e1
2J

¼ −
w0

l − 2J
;

w0 ¼ �i
l − 2J
2J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðhðlþ 4Þ þ Jð−2J þ l − 2ÞÞ

lð3l2 þ l − 4Þ

s
:

ð3:21Þ

For spin J, we similarly use

jψJiJ ¼ j χ32Jþ1iJ −
1ffiffiffiffiffi
2J

p ðj χ12JiJ þ ij χ22JiJÞ; ð3:22Þ

and the primary conditions (3.11) lead to

e2 −
e1
2
¼ w0ð−hþ J2 þ JÞ

hðlþ 2Þ − JðJ þ 1Þ ; e3 ¼
ðlþ 1Þw0

hðlþ 2Þ − JðJ þ 1Þ ;

w0 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðh2ðlþ 4Þðlþ 2Þ2 − hðlþ 2Þ2ð2JðJ þ 1Þ þ lÞ þ JðJ þ 1ÞlðJ2 þ J þ lþ 2ÞÞ

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð3l2 þ l − 4Þðhþ JðJ þ 1ÞlÞ

p : ð3:23Þ

7We have checked the expressions below for J ¼ 1; 3=2;…; 3 but it is not difficult to work with other J.
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For spin J − 1, we set

jψJ−1iJ−1¼ jχ12Jþ1iJ− ijχ22Jþ1iJþ
2ffiffiffiffiffi
2J

p jχ32JiJ

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jð2J−1Þp ðjχ12J−1iJþ ijχ22J−1iJÞ; ð3:24Þ

then we find

e2−
e1

2Jþ2
¼−

w0

lþ2Jþ1
;

w0¼�i
ð2Jþlþ2Þ
ð2Jþ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ð2hðlþ4Þ− ð2Jþ2Þð2JþlÞÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lð3l2þl−4Þ

p
ð3:25Þ

as solutions to the primary conditions (3.11).
In this way, we have three types of null states for generic

J. However, in general, there is no h which satisfies all of
(3.21), (3.23) and (3.25) simultaneously. Therefore, we
have to give up at least one of them. The maximal number
of null state can be obtained if both (3.21) and (3.23) are
satisfied. This condition leads to

h¼ Jð3J−lþ2Þ
lþ4

; h¼ Jð3J2−3JlþJþl2Þ
Jðlþ4Þ−l

: ð3:26Þ

Setting J ¼ 1=2, this reproduces (3.19). Furthermore, we
will see that the state with the first conformal weight can be
realized as a coset state in the spin J representation of suð2Þ.
We may relax the condition for the maximal number of

null states. Instead of (3.21) and (3.23), we may require that
(3.21) and (3.25) are satisfied. Then we find

h ¼ JðJ þ 1Þð12JðJ þ 1Þ þ ðl − 2ÞlÞ
ðlþ 4Þð4JðJ þ 1Þ − lÞ : ð3:27Þ

Similarly, the choice of (3.23) and (3.25) leads to

h ¼ ðJ þ 1Þð3J þ lþ 1Þ
lþ 4

;

h ¼ ðJ þ 1Þð3J2 þ 3ðJ þ 1Þlþ 5J þ l2 þ 2Þ
Jðlþ 4Þ þ 2ðlþ 2Þ : ð3:28Þ

Currently, we do not have any good interpretations of them.

2. Null states at level 2

We also consider null states at level 2 for simple
examples with J ¼ 0; 1=2. For this, we use the ansatz

j χjiJ ¼ ðL−2 þ g1L−1L−1 þ g2Qa
−2J

a
0 þ g3Ja−2J

a
0

þ g4Qa
−1L−1Ja0 þ g5L−1Ja−1J

a
0 þ g6Qa

−1Q
a
−1

þ g7Qa
−1J

a
−1 þ g8Ja−1J

a
−1 þ ifabcg9Qa

−1J
b
−1J

c
0ÞjjiJ;
ð3:29Þ

where we have set the state of the form L−2jjiJ þ � � �. The
states become null if the nontrivial primary conditions

Lrj χaj iJ ¼ 0; Jar j χbj iJ ¼ 0; Qa
r j χbj iJ ¼ 0 ð3:30Þ

with r ¼ 1, 2 are satisfied. Since the requirement (3.8)
leads to ðGa

0 þ w0Ja0ÞjjiJ ¼ 0, the states

Ga
−2jjiJ þ � � � ¼ 1

2
½Ga

0 þ w0Ja0; L−2�jjiJ þ � � � ð3:31Þ

become null if the states (3.29) satisfy the primary con-
ditions (3.30).
For J ¼ 0, the ansatz becomes simplified as

j χaiJ ¼ ðL−2 þ g1L−1L−1 þ g6Qa
−1Q

a
−1

þ g7Qa
−1J

a
−1 þ g8Ja−1J

a
−1ÞjjiJ: ð3:32Þ

The primary conditions (3.30) determine the coefficients
g1, g6, g7, g8 in terms of h;l. There are three solutions for
the conformal weight h as

h ¼ 1 − l
lþ 4

; h ¼ lþ 1

lþ 4
; h ¼ 1

4
ð3lþ 4Þ: ð3:33Þ

The state with the last conformal weight behaves as OðlÞ
for large l, and it will be related to a conical defect
geometry of [16] below.
For J ¼ 1=2, the primary conditions (3.30) fix the

coefficients gi ði ¼ 1; 2;…; 9Þ in terms of h; w0;l.
Moreover, h and w0 are also determined as

h¼ 39

4ðlþ 4Þ−
3

2
; w0 ¼−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1ðl− 3Þ2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð3l2þl− 4Þ

p : ð3:34Þ

B. Hamiltonian reduction of slð4Þ
The degenerate representations of the W algebra may

be examined from those of the slð4Þ Wess-Zumino-
Novikov-Witten (WZNW) model by applying the
Hamiltonian reduction. As argued in [2], we may study
the Hamiltonian reduction by following the procedure of
[30] (see also [31–33]). It is convenient to use the description
of the slð4Þ WZNW model as [see (4.6) of [30]]

St½ϕ;g1;g2;γ; γ̄;β; β̄�

¼ SWZNW
tþ2 ½g1�þSWZNW

tþ2 ½g2�þ
1

2π

Z
d2z½∂ϕ∂̄ϕ−b

ffiffiffi
g

p
Rϕ�

þ 1

2π

Z
d2ztr

�
β∂̄γþ β̄∂γ̄−1

t
e−2ϕβ̄g−11 βg2

�
: ð3:35Þ

Here γ; γ̄; β; β̄ are 2 × 2 matrix valued fields and
b ¼ −i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðtþ 4Þp

. We consider the vertex operators of
the form
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Vα;λ1;λ2 ¼ e2αbϕVslð2Þ
λ1

ðg1ÞVslð2Þ
λ2

ðg2Þ; ð3:36Þ

where λi label the representations of slð2Þ. The conformal
weight of this operator is

h ¼ C2ðλ1Þ
tþ 4

þ C2ðλ2Þ
tþ 4

− b2αðαþ 4Þ: ð3:37Þ

Here C2ðλiÞ is the second Casimir of slð2Þ for the
representation λi. After the reduction procedure, the action
becomes [see (3.5) of [2]]

St½φ; g1; g2�
¼ SWZNW

tþ2 ½g1� þ SWZNW
tþ2 ½g1�

þ 1

2π

Z
d2z

�
∂φ∂̄φþQφ

4

ffiffiffi
g

p
Rφþ 1

t
trðe−2bφg−11 g2Þ

�
ð3:38Þ

with

Qφ ¼ −4b − 1=b: ð3:39Þ

The conformal dimension of the vertex operator (3.36) is

h ¼ C2ðλ1Þ
tþ 4

þ C2ðλ2Þ
tþ 4

− b2αðαþ 4Þ − α: ð3:40Þ

Thus the shift of conformal dimension is δh ¼ −α.
Next we examine the cases with finite dimensional

representations of slð4Þ. We express the representation
of slð4Þ by a Young diagram Λ0 with three integers
ðλ01; λ02; λ03Þ. We also define l0j ¼

P
3
s¼j λ

0
s, where l0j counts

the number of boxes of Λ0. With the orthogonal basis ϵj
(j ¼ 1, 2, 3, 4), the highest weight for the representation is

Λ0 ¼
X3
j¼1

l0jϵj −
jΛ0j
4

X4
j¼1

ϵj ð3:41Þ

with jΛ0j ¼ P
3
j¼1 l

0
j. The second Casimir of slð4Þ for the

representation Λ0 is

C2ðΛ0Þ ¼ 1

2

X3
j¼1

ðl0jÞ2 −
jΛ0j2
4

−
X4
j¼1

jl0j þ
5jΛ0j
2

: ð3:42Þ

In order to use the vertex operator in (3.36), we need to
rewrite the label in terms of slð2Þ ⊕ slð2Þ ⊕ uð1Þ. We may
express the highest weights for the representations as

Λð1Þ ¼ λ1
2
ϵ1 −

λ2
2
ϵ2; Λð2Þ ¼ λ2

2
ϵ3 −

λ2
2
ϵ4;

m̄ ¼ m
8
ðϵ1 þ ϵ2 − ϵ3 − ϵ4Þ: ð3:43Þ

The relation to the highest weight for slð4Þ is

λ01 ¼ λ1; λ02 ¼ −
λ1
2
−
λ2
2
þm

4
; λ03 ¼ λ2: ð3:44Þ

Using (3.42), the conformal weight for the slð4Þ WZNW
model is computed as

h ¼ C2ðΛ0Þ
tþ 4

¼ 8λ1ðλ1 þ 2Þ þ 8λ2ðλ2 þ 2Þ þmðmþ 16Þ
32ðtþ 4Þ : ð3:45Þ

Compared with (3.37), we find α ¼ m=4. Thus, the
conformal weight for the W algebra is obtained as

h¼ 8λ1ðλ1þ 2Þþ 8λ2ðλ2þ 2Þþmðmþ 16Þ
32ðtþ 4Þ −

m
4

ð3:46Þ

from (3.40). We would like to claim that it is the conformal
weight of the primary operator belonging to a degenerate
representation of the W algebra.
Let us examine several examples and compare them with

previous results. For this, it might be convenient to use the
level l of slð2Þ currents instead of the level t of slð4Þ. The
relation is t ¼ l=2 − 2, see (2.7). We first set

ðλ1; λ2; mÞ ¼ ð2J; 0; 4JÞ; ð3:47Þ

then we find

h ¼ Jð3J − lþ 2Þ
lþ 4

: ð3:48Þ

This is the first conformal weight in (3.26). Next we set

ðλ1; λ2; mÞ ¼ ð2J; 0; 4J þ 4Þ; ð3:49Þ

then the conformal weight becomes

h ¼ ðJ þ 1Þð3J − lþ 1Þ
lþ 4

: ð3:50Þ

This is given by the first equation of (3.33) for J ¼ 0 and
(3.34) for J ¼ 1=2.
We may consider the case with tþ 4 ¼ 2p=q, where p,

q are coprime with each other. According to [34], the
characters of the highest weight with

λ0i ¼ ð1 − r0iÞðtþ 4Þ − ð1 − s0iÞ; 1 ≤ s0i ≤ 2p − 1;

1 ≤ r0i ≤ q ð3:51Þ

transform with each other under the modular transforma-
tion. Thus we may put
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λ1 ¼ ð1 − r01Þðtþ 4Þ − ð1 − s01Þ;
λ2 ¼ ð1 − r03Þðtþ 4Þ − ð1 − s03Þ;
m ¼ 2ð4 − r01 − 2r02 − r03Þðtþ 4Þ

− 2ð4 − s01 − 2s02 − s03Þ ð3:52Þ

into the expression of (3.46). For λ1 ¼ λ2 ¼ 0 and
m ¼ −4ðtþ 4Þ, we find

h ¼ 1

4
ð3lþ 4Þ; ð3:53Þ

which reproduce the last equation of (3.33). More generi-
cally, we may set

λ1¼−n1ðtþ4Þ; λ2¼−n2ðtþ4Þ; m¼4ð1−n3Þðtþ4Þ
ð3:54Þ

with

n1; n2 ¼ 0; 1; 2;…; q − 1;

n3 − ðn1 þ n2Þ=2 ¼ 1; 2;…; q: ð3:55Þ

Then we find

h ¼ l
8
ðn21 þ n22 þ 2n23 − 2Þ

þ 1

2
ððn1 − 1Þn1 þ ðn2 − 1Þn2 þ 2ðn3 − 1Þ2Þ: ð3:56Þ

These conformal weights are of order OðlÞ and the
corresponding states may be mapped to conical defect
solutions of [16] for the slð4Þ ⊕ slð4Þ Chern-Simons
gravity as seen in Sec. III D.

C. Spectrum of the dual coset

We have argued that the rectangular W algebra can be
realized as the symmetry algebra of the coset (1.1) in
Sec. II C. In this subsection, we compare the results
obtained in the previous subsections to the coset states.
The primary states in the coset (1.1) are labeled by
ðΛNþM;ΛN;mÞ, where ΛL represents the highest weight
of suðLÞ and m ∈ Zκ is the uð1Þ charge. The conformal
weight of the state ðΛNþM;ΛN;mÞ is

h ¼ nþ hNþM;k
ΛNþM

− hN;k
ΛN

− hκm; ð3:57Þ

where n is an integer related to how the representations for
the denominator are embedded in those for the numerator,
see, e.g., [35]. We express the conformal dimensions of
primaries for suðLÞK and uð1Þκ as

hL;KΛL
¼ C2ðΛLÞ

K þ L
; hκm ¼ m2

2κ
; ð3:58Þ

respectively. Here C2ðΛLÞ is the second Casimir of suðLÞ
for the representation ΛL.
As discussed in [5,36], basic states may be

ðf; 0;NÞ⊗ ðf̄; 0;−NÞ; ð0; f;−N −MÞ⊗ ð0; f̄;N þMÞ;
ð3:59Þ

where the holomorphic and antiholomorphic parts are
combined in the charge conjugated manner. Here we
express the fundamental and antifundamental representa-
tions by f and f̄, respectively. The conformal weights are
given by

h ¼ kðMðM þ NÞ − 1Þ − N
2kMðkþM þ NÞ ;

h ¼ −
−2k2M − kMN þ kþM þ N

2k2M þ 2kMN
: ð3:60Þ

Using λ ¼ k=ðkþ NÞ as in (1.3), we find

h ¼ Mð−kλþ kþ λMÞ − 1

2Mðkþ λMÞ ;

h ¼ 1

2

�
−

λ

k2
−

1

kM
þ λþ 1

�
: ð3:61Þ

These two expressions are exchanged if we use an alter-
native definition of λ. These states were proposed to be dual
to two complex scalars ϕj|̄

i (i ¼ 1, 2), which transform as in
the (anti)fundamental representation of suð2Þ in the (anti)
holomorphic sector. A set of states can be generated by
fusing these basic ones, and they are supposed to be dual to
composite bulk fields.
In order to compare with the previous results, we set

λ ¼ 2 and M ¼ 2. We can see that the first expression of
(3.61) reduces to (3.19). Generically, we should consider a
state in the spin J representation of suð2Þ. Among those
constructed by fusing the basic states, we consider the
states labeled by

ðð2J; 0;…; 0Þ; 0; 2JNÞ; ð3:62Þ

where ΛNþ2 ¼ ð2J; 0;…; 0Þ denotes the 2Jth symmetric
representation of suðN þ 2Þ. From formula (3.57) with
(3.58), we can compute the conformal weight of the state as

h ¼ Jð3J − kþ 2Þ
kþ 4

: ð3:63Þ

This precisely reproduces the first conformal weight in
(3.26) or (3.48).

D. Conical defect geometry

In the above analysis, we have found some states with
conformal weight of order l. The parameter l becomes
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large when the dual gravity is in the classical regime. As in
[16–19], we would like to interpret the states with con-
formal weight (3.56) in terms of classical geometry of
slð4Þ ⊕ slð4Þ Chern-Simons gauge theory. Conical defect
geometry was discussed even in the cases with nonprincipal
embedding of slð2Þ [16]. We consider classical solutions
expressed as

A¼ e−ρL0aeρL0dzþdρ; Ā¼ eρL0 āe−ρL0dz̄−dρ: ð3:64Þ

Here ðz; z̄; ρÞ are the bulk coordinates, a, ā are slð4Þ-valued
constants, and L0ð≡xÞ is a generator of the embedded
slð2Þ.
Nonsingular solutions were proposed to be characterized

by the trivial condition of the holonomy matrix expðH dϕaÞ
with z ¼ ϕþ it ðϕ ∼ ϕþ 2πÞ. After the diagonalization,
we may express a as

a ¼ in1

0
BBB@

1
2

0 0 0

0 − 1
2

0 0

0 0 0 0

0 0 0 0

1
CCCAþ in2

0
BBB@

0 0 0 0

0 0 0 0

0 0 1
2

0

0 0 0 − 1
2

1
CCCA

þ in3

0
BBB@

1
2

0 0 0

0 1
2

0 0

0 0 − 1
2

0

0 0 0 − 1
2

1
CCCA: ð3:65Þ

Here, the matrices correspond to the generators
t3 ⊗ ð1=2þ t3Þ, t3 ⊗ ð1=2 − t3Þ, and 1 ⊗ t3. We require
that the holonomy matrix expðH dϕaÞ becomes a center of
SUð4Þ, that is Z4. This leads to the condition n1, n2 ∈ Z
and n3 þ ðn1 þ n2Þ=2 ∈ Z. Following [16], we assign the
condition such that the matrix a is not degenerate, and this
leads to n3 ≠ 0 and −n1 þ n3 ≠ n2 − n3. Using the sym-
metry of SUð4Þ, we can set n1 ≥ 0, n2 ≥ 0, and moreover
choose ni to satisfy −n1 þ n3 > n2 − n3. With this choice,
the parameters ni now take

n1;n2¼ 0;1;2;…; n3− ðn1þn2Þ=2¼ 1;2;…: ð3:66Þ

This reproduces (3.55) except for the upper bounds, which
are usually not visible from classical geometry analysis.
The dual conformal weight can be computed as

h ¼ c
24ϵP

trða2Þ þ c
24

: ð3:67Þ

The central charge c and the normalization constant ϵP are
(see [2,16])

c¼ 12kCSϵP ¼−6l; ϵP ¼
1

12
Mnðn2−1Þ¼ 1: ð3:68Þ

Here we considered slðMnÞ with M ¼ n ¼ 2 and used kCS
as the level of the Chern-Simons theory. The level of suð2Þ
currents is l ¼ −nkCS ¼ −2kCS. In summary, we have

h ¼ l
8
ðn21 þ n22 þ 2n23 − 2Þ; ð3:69Þ

where ni take values in (3.66). This expression reproduces
(3.56) at the leading order in 1=l.

IV. N = 2 RECTANGULAR W ALGEBRA

In previous sections, we have analyzed the rectangularW
algebra, which appears as the asymptotic symmetry of
higher spin gravity with M ×M matrix valued fields. In
order to relate higher spin gravity to superstring theory, it is
important to introduce supersymmetry. In [20], a hologra-
phy involving the N ¼ 2 higher spin supergravity of [3]
was proposed without the matrix extension. The classical
asymptotic symmetry of the higher spin supergravity has
been analyzed in [20,37,38]. The gauge algebra of the
higher spin supergravity is given by shs½λ�, which can be
truncated to slðnþ 1jnÞ at λ ¼ −n, see, e.g., [39] for some
details of shs½λ�. The gauge algebra for the matrix extension
is denoted as shsM½λ� [5,12], which can be reduced to
slðMðnþ 1ÞjMnÞ at λ ¼ −n. The holography with the
extended higher spin supergravity was proposed also in [5].
The Lie superalgebra slðMðnþ 1ÞjMnÞ can be decom-

posed as

slðMðnþ 1ÞjMnÞ ≃ slðMÞ ⊗ 1nþ1jn ⊕ 1M ⊗ slðnþ 1jnÞ
⊕ slðMÞ ⊗ slðnþ 1jnÞ: ð4:1Þ

The generators of slðRjSÞ can be expressed by ðRþ SÞ ×
ðRþ SÞ supermatrices, and 1RjS denotes

1RjS ¼
�
1R 0

0 0

�
⊕

�
0 0

0 1S

�
: ð4:2Þ

Three-dimensional N ¼ 1 supergravity on AdS can be
described by ospð1j2Þ Chern-Simons gravity [10]. We
use the ospð1j2Þ principally embedded in 1M⊗slðnþ1jnÞ
as the supergravity sector. With the action of slð2Þ ⊂
ospð1j2Þ, the gauge algebra can be decomposed as

slðMðnþ1ÞjMnÞ≃ slðMÞ⊕ slðMÞ⊕ uð1Þ

⊕ 2M2

�
⨁
nþ1

s¼2

gðs−1=2Þ
�
⊕ 2M2

�
⨁
n

s¼2

gðsÞ
�

⊕M2gðnþ1Þ: ð4:3Þ

After the Hamiltonian reduction, the spectrum consists of
two slðMÞ currents, one uð1Þ current, 2M2 spin s currents
with s ¼ 2; 3;…; n and M2 spin nþ 1 currents. There are
also 2M2 fermionic currents with spin s − 1=2 with
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s ¼ 2; 3;…; nþ 1. One of the spin 2 currents is given by
the energy-momentum tensor.
In the next subsection, we compute the central charge c

of the algebra and the levels l1, l2 for the two sets of
suðMÞ currents by applying the method in Sec. II A.
In Sec. IV B, we compute the OPEs among generators
by requiring their associativity. We work on the simple case
with n ¼ 1, where the algebra includes only spin 1; 3=2; 2
generators. In Sec. IV C, we examine the degenerate
representations with level 1 null vectors and primary states
in the spin 1=2 representation of suð2Þ. For this, we apply
the method developed in Appendix B. In Sec. IV D,
we compare the results obtained so far to those of dual
coset (1.4).

A. Central charge and levels
of the affine symmetries

We start by computing the central charge c of the algebra
by applying the formula of (2.4). The superdimension of
slðMðnþ 1ÞjMnÞ is

sdimslðMðnþ 1ÞjMnÞ
¼ M2ðnþ 1Þ2 − 1þM2n2 − 1þ 1 − 2M2nðnþ 1Þ
¼ M2 − 1; ð4:4Þ

and the dual Coxeter number is h∨¼Mðnþ1Þ−Mn¼M.
The norm of x for the slð2Þ ⊂ ospð1j2Þ is

ðxjxÞ ¼ M ·

�
1

12
ðnþ 1Þððnþ 1Þ2 − 1Þ − 1

12
nðn2 − 1Þ

�

¼ 1

4
Mnðnþ 1Þ: ð4:5Þ

There areM2ððnþ 1 − jÞ þ ðn − jÞÞ sets of fermionic ghost
system for j ¼ 1; 2;…; n and 2M2ðn − lÞ sets of bosonic
ghost system for j ¼ lþ 1=2with l ¼ 0; 1;…; n − 1. Using
formula (2.4), the total central charge is obtained as

c ¼ tðM2 − 1Þ
tþM

− 3tMnðnþ 1Þ − 3M2n2: ð4:6Þ

We then compute the levels l1, l2 for the two suðMÞ
currents.A set of suðMÞ currents comes from slðMÞ ⊗ 1nþ1,
where 1nþ1 corresponds to the identity in slðnþ 1Þ ⊂
slðnþ 1jnÞ ⊂ slðMðnþ 1ÞjMnÞ. Therefore, the ghosts
from slðMðnþ 1ÞÞ ⊂ slðMðnþ 1ÞjMnÞ give rise to the
shift of level by Mnðnþ 1Þ. Similarly, the other set
comes from slðMÞ ⊗ 1n, and the ghosts from slðMnÞ ⊂
slðMðnþ 1ÞjMnÞ contribute to the shift of level by
Mnðn − 1Þ. There are bosonic ghosts arising from the off-
diagonal blocks of slðMðnþ 1ÞjMnÞ, which transform in
the bifundamental representation of slðnþ 1Þ ⊕ slðnÞ and
in the trivial and adjoint representation of slðMÞ. A set of
bosonic ghosts in the adjoint representation of slðMÞ yields

the shift of level by −M. Thus the shifts of level are
−Mnðnþ 1Þ for both slðMÞ. There are also n fermionic
ghost systems of conformal weight ð1=2; 1=2Þ in the trivial
and adjoint representations of slðMÞ, and the contributions to
the levels are Mn. In total, the levels of two sets of slðMÞ
currents are

l1 ¼ tðnþ 1Þ þMnðnþ 1Þ −Mnðnþ 1Þ þMn

¼ tðnþ 1Þ þMn;

l2 ¼ −tnþMnðn − 1Þ −Mnðnþ 1Þ þMn

¼ −tn −Mn: ð4:7Þ

Since t plays no role in the N ¼ 2 W algebra, we may
remove it using the above expression of l1. The central
charge c and the other level l2 can be written as

c ¼ l1ðM2 − 1Þ −Mnð3l2
1 þ 3l1M þM2 − 1Þ

l1 þM
;

l2 ¼ −
nðl1 þMÞ

nþ 1
ð4:8Þ

in terms of l1.

B. OPEs among generators

As explained above, theN ¼ 2 rectangularW algebra is
generated by a uð1Þ current K, two sets of suðMÞ currents
Ja, Ka ða ¼ 1;…;M2 − 1Þ as well as bosonic and
fermionic higher spin currents. The uð1Þ current satisfies

KðzÞKð0Þ ∼ κK
3z2

; ð4:9Þ

where the normalization constant κK will be fixed later. The
OPEs of suðMÞ currents are

JaðzÞJbð0Þ ∼ l1δ
ab

z2
þ ifabcJcð0Þ

z
;

KaðzÞKbð0Þ ∼ l2δ
ab

z2
þ ifabcKcð0Þ

z
ð4:10Þ

with levels l1, l2. The algebra includes the energy-
momentum tensor satisfying

TðzÞTð0Þ ∼ c=2
z4

þ 2Tð0Þ
z2

þ T 0ð0Þ
z

ð4:11Þ

with central charge c. For a moment, we do not specify the
levels l1, l2 and the central charge c. We denote the
bosonic currents of spin s by W−ðsÞ;A ðs ¼ 1; 2;…; nÞ and
WþðsÞ;A ðs ¼ 2; 3;…; nþ 1Þ with A ¼ ð0; aÞ along with
Ja. Here we set

W−ð1Þ;0 ≡K; W−ð1Þ;a ≡Ka; Wþð2Þ;0 ≡ T: ð4:12Þ
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The fermionic currents of spin s are represented by G�ðsÞ;A
ðs ¼ 3=2; 5=2;…; nþ 1=2Þ. We use the basis for these
fields primary with respect to the Virasoro algebra; that is,

TðzÞW�ðsÞ;Að0Þ ∼ sW�ðsÞ;Að0Þ
z2

þW�ðsÞ;A0 ð0Þ
z

;

TðzÞJað0Þ ∼ Jað0Þ
z2

þ Ja0ð0Þ
z

;

TðzÞG�ðsÞ;Að0Þ ∼ sG�ðsÞ;Að0Þ
z2

þ G�ðsÞ;A0 ð0Þ
z

: ð4:13Þ

1. Composite primary operators

We determine the OPEs among generators by requiring
the associativity. We only consider the case with n ¼ 1,
where the spin content of the algebra is s ¼ 1; 3=2; 2. Thus,
the operator products produce (composite) operators only
up to spin 3, and we list all of the possible composite
operators.
We start by counting the number of independent primary

operators. We do this by decomposing the vacuum char-
acter of the N ¼ 2 W algebra in terms of the Virasoro
characters, see [28] for the case without matrix extension.
The vacuum character of the N ¼ 2 W algebra is

χN¼2;M
∞ ðqÞ¼

Yn
s¼1

Y∞
i¼s

� ð1þqiþ1=2Þ2
ð1−qiÞð1−qiþ1Þ

�M2Y∞
i¼1

�
1

1−qi

�
M2−1

;

ð4:14Þ

and the decomposition is

χN¼2;M
∞ ðqÞ ¼ χ0ðqÞ þ

X∞
i¼2

dði=2Þ χi=2ðqÞ: ð4:15Þ

Here the Virasoro characters can be found in (2.14), and
dði=2Þ counts the number of independent primary operators
with conformal weight i=2. Expanding (4.15) in q, we find

dð1Þ¼2M2−1; dð3=2Þ¼2M2; dð2Þ¼2M4−1;

dð5=2Þ¼2ð2M4−M2Þ; dð3Þ¼2

3
ð2M6þ9M4−11M2þ3Þ

ð4:16Þ
with n ¼ 1.
We explicitly construct composite operators primary

with respect to the Virasoro algebra. With n ¼ 1, the
algebra is generated by spin 1 currents Ja, Ka, K, spin
3=2 currents G� ≡G�ð3=2Þ;0, G�;a ≡G�ð3=2Þ;a, and spin 2
currents T;Qa ≡Wþð2Þ;a. We use the abbreviated notation
of composite operators as in (2.21). We can see that there
are no composite primary operators for spin 1 and 3=2
currents. We find

½JðaJbÞ�; ½KðaKbÞ�; ½JaKb�;
½KJa�; ½KKa�; ½KK� ð4:17Þ

for spin 2 currents and

½JaG��; ½KaG��; ½KG��;
½JaG�;b�; ½KaG�;b�; ½KG�;a� ð4:18Þ

for spin 5=2 currents. The composite spin 3 currents are

½JðaJbJcÞ�; ½KaJðbJcÞ�; ½JaKðbKcÞ�; ½KðaKbKcÞ�; ½KJðaJbÞ�;
½KKðaKbÞ�; ½KJaKb�; ½KKJa�; ½KKKa�; ½KKK�; ½KKa0�; ½KJa0�;
½J½aJb�0�; ½JaKb0�; ½K½aKb�0�; ½JaQb�; ½KaQb�; ½KQa�;
½G−Gþ�; ½G�G∓;a�; ½Gþ;aG−;b�; ½G�G�;a�; ½G�;½aG�;b��: ð4:19Þ

We can check that the number of independent primary
operators with conformal weight i=2 matches with dði=2Þ
in (4.16).

2. Associativity of OPE

In the following, we mainly consider the cases with
M ¼ 2, 3, 4.8 We expand the operator productΦðs1Þ ×Φðs2Þ

by (composite) operators up to spin s1 þ s2 − 1, where we
collectively denote the spin s operators by ΦðsÞ. The
coefficients depend on the suðMÞ indices and we express
them by making use of invariant tensors in Appendix C 1,
which are simplified for M ¼ 2 as in (2.24), (2.25), (2.26).
We start by examining the OPEs of Φðs1Þ ×Φðs2Þ with the
smallest s1 þ s2, then move to the cases with larger s1 þ s2.
The smallest cases are with s1 ¼ s2 ¼ 1, but we already
knew these OPEs as in (4.9) and (4.10).
The simplest nontrivial OPEs are for Φð1Þ ×Φð3=2Þ.

Examining the associativity of Φð1Þ ×Φð1Þ ×Φð3=2Þ, we
can fix the OPEs uniquely up to the overall normalizations
of currents. For the OPEs involving K, we can set

8With M ¼ 2, the OPEs among generators were analyzed by
fully making use of the large N ¼ 4 superconformal symmetry
[25]. With M > 2, there is no such supersymmetry, and the same
method cannot be applied.
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KðzÞG�ð0Þ ∼�G�ð0Þ
z

; KðzÞG�;að0Þ ∼�G�;að0Þ
z

ð4:20Þ

by properly redefining K. In particular, the above OPEs fix
the constant κK in (4.9) as seen below. The OPEs between
Ja, Ka and G� can be regarded as definitions of G�;a, and
our choice is

JaðzÞG�ð0Þ ∼�G�;að0Þ
z

; KaðzÞG�ð0Þ ∼∓G�;að0Þ
z

:

ð4:21Þ

With these definitions, the OPEs among Ja, Ka and G�;a

are

JaðzÞG�;að0Þ ∼� 1

M
δab

G�

z
þ
�
i
2
fabc ∓ 1

2
dabc

�
G�;a

z
;

KaðzÞG�;að0Þ∼ ∓ 1

M
δab

G�

z
þ
�
i
2
fabc �

1

2
dabc

�
G�;a

z
:

ð4:22Þ

There is an extra freedom to choose the relative sign in front
of dabc, and we have chosen one of them.
We then examine the OPEs of Φð1Þ ×Qa from the

associativity of Φð1Þ×Φð1Þ×Qa. The OPEs of Φð1Þ ×Qa

are schematically written as

Ja ×Qb ∼ δabða11K þ a12½KK�Þ
þ ifabcða21Jc þ a22Kc þ a23Qc þ a24½KJc� þ a25½KKc�Þ
þ dabcða31Jc þ a32Kc þ a33Qc þ a34½KJc� þ a35½KKc�Þ
þ Aab

4;cd½JðcJdÞ� þ Aab
5;cd½KðcKdÞ� þ Aab

6;cd½JcKd�;
Ka ×Qb ∼ δabðb11K þ b12½KK�Þ

þ ifabcðb21Jc þ b22Kc þ b23Qc þ b24½KJc� þ b25½KKc�Þ
þ dabcðb31Jc þ b32Kc þ b33Qc þ b34½KJc� þ b35½KKc�Þ
þ Bab

4;cd½JðcJdÞ� þ Bab
5;cd½KðcKdÞ� þ Bab

6;cd½JcKd�;
K ×Qa ∼ k1Ja þ k2Ka þ k3Qa þ k4½KJa� þ k5½KKa� þ ifabck6½JbKc�

þ dabcðk7½JðbJcÞ� þ k8½KðbKcÞ� þ k9½JbKc�Þ ð4:23Þ

up to contributions from descendants. As in the bosonic
case, we use small letters like aij for constants without
indices and capital ones like Ai for constants with indices.
The coefficients expressed by capital ones can be expanded
by invariant tensors as in (2.28).
While restricting the parameters by solving the conditions

from associativity of the OPEs, we may encounter several
discrete choices for a23, b23, k3. These values correspond to
the charges of Qa with respect to Ja, Ka, K. From the
reduction of slð2MjMÞ, we can see thatQa are charged with
respect to only one of Ja andKa and uncharged with respect
toK. From this, we set a23 ≠ 0 and b23 ¼ k3 ¼ 0. Originally
we have a symmetry under the exchange of Ja and Ka, but
this choice breaks the symmetry.
Among the parameters used in (4.23), some of them can

be removed by redefining the operators. Using the spin 2
composite primaries in (4.17), we can redefine the spin 2
primary Qa by

Qa → z0Qaþ z1½KJa�þ z2½KJa�þ ifabcz3½JbKc�
þdabcðz4½JðbJcÞ�þ z5½KðbKcÞ�þ z6½JbKc�Þ: ð4:24Þ

Using z1, z2, z4, z5, z6, we can set the parameters a11, b11,
a31, a32, b32 to vanish. Moreover, with z3, we remove one
parameter in Aab

6;cd. There is still one ambiguity from z0,
which corresponds to the overall factor of Qa. With this
definition of Qa, the OPEs are drastically simplified as

JaðzÞQbð0Þ∼ifabcQc

z
; KaðzÞQbð0Þ∼0; KðzÞQað0Þ∼0:

ð4:25Þ

The OPEs analyzed above have s1 þ s2 ¼ 3, but there
are other OPEs with the same s1 þ s2, i.e., Φð3=2Þ ×Φð3=2Þ.
Our ansatz for the OPEs may be written as
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Gþ × G− ∼ c0I þ c1K þ c2½KK� þ c3½JaJa� þ c4½KaKa� þ c5½JaKa�;
Gþ × G−;a ∼ d1Ja þ d2Ka þ d3½KJa� þ d4½KKa� þ d5Qa þ ifabcd6½JbKc�

þ dabcðd7½JðbJcÞ� þ d8½KðbKcÞ� þ d9½JbKc�Þ;
G− ×Gþ;a ∼ e1Ja þ e2Ka þ e3½KJa� þ e4½KKa� þ e5Qa þ ifabce6½JbKc�

þ dabcðe7½JðbJcÞ� þ e8½KðbKcÞ� þ e9½JbKc�Þ;
Gþ;a × G−;b ∼ δabðf0I þ f11K þ f12½KK�Þ

þ ifabcðf21Jc þ f22Kc þ f23Qc þ f24½KJc� þ f25½KKc�Þ
þ dabcðf31Jc þ f32Kc þ f33Qc þ f34½KJc� þ f35½KKc�Þ
þ Fab

4;cd½JðcJdÞ� þ Fab
5;cd½KðcKdÞ� þ Fab

6;cd½JcKd�: ð4:26Þ

Here we have an additional ambiguity related to the overall
factor of G� along with that of Qa parametrized by z0 in
(4.24). For the corresponding parameters, we set c0, d5
arbitrary. Solving the constraints from the associativity of
Φð1Þ ×Φð3=2Þ ×Φð3=2Þ, we express the parameters only in
terms of c0, d5, κK , l1, l2, c.
We could obtain further constraints from the associa-

tivity of Φð3=2Þ ×Φð3=2Þ ×Φð3=2Þ. For this, we generically
need the information of Φð3=2Þ ×Qa as well. However, the
OPE Gþ ×G− does not involve Qa contrary to the other
cases. Therefore, we can examine the associativity of, say,
G− ×Gþ ×G−, and we obtain

κK ¼ 3l1l2M
l1 þ l2 þM

; c¼ ðl1 þ l2ÞðM2 − 1Þ þ 3l1l2M
l1 þ l2 þM

:

ð4:27Þ

With these values, the OPE Gþ ×G− is written as

GþðzÞG−ð0Þ ∼ c0
z3

þ 3c0
2κK

�
2K
z2

þ 2T̃ þ K0

z

�
ð4:28Þ

with

T̃ ¼ T −
1

2ðl1 þ l2 þMÞ ððJ
a þ KaÞðJa þ KaÞÞ: ð4:29Þ

In order to reduce one more parameter as expected, we need
the decoupling condition of, say,G�ð5=2Þ;a for n ¼ 1, which
will be incorporated in other OPEs, such as Gþ ×G−;a

Similarly, we examine Φð3=2Þ ×Qa. From the associa-
tivity for Φð1Þ ×Φð3=2Þ ×Qa and Φð3=2Þ ×Φð3=2Þ ×Φð3=2Þ,
we express the OPEs of the forms Φð3=2Þ ×Φð3=2Þ and
Φð3=2Þ ×Qa in terms of l1 up to the overall factors
parametrized by c0, d5. In particular, we obtain

l2 ¼ −
1

2
ðl1 þMÞ: ð4:30Þ

We have checked that the central charge c in (4.27) and the
above l2 in terms of l1 are consistent with the expressions
in (4.8) for n ¼ 1. ForM ¼ 2, 3, we have also examined the
OPEs of Qa ×Qb and checked that they are written only in
terms of l1 up to the ambiguities of c0, d5.

C. Degenerate representations

In the previous subsection, we have obtained the OPEs
among generators at n ¼ 1. With the information, we
examine degenerate representations of the N ¼ 2 W
algebra. For simplicity, we set M ¼ 2. In Sec. III A, we
have examined degenerate representations for the bosonic
case using commutation relations in terms of mode expan-
sions. Instead of working with commutation relations, we
examine representations mainly by making use of OPEs as
in [28,40–42], see also Appendix B.
In order to obtain physical intuition, we start by working

with mode expansions and then move to OPE language.
The mode expansions of generators are

JaðzÞ ¼
X
n∈Z

Jan
znþ1

; KaðzÞ ¼
X
n∈Z

Ka
n

znþ1
;

KðzÞ ¼
X
n∈Z

Kn

znþ1
; G�ðzÞ ¼

X
r∈Zþ1=2

G�
r

zrþ3=2 ;

G�;aðzÞ ¼
X

r∈Zþ1=2

G�;a
r

zrþ3=2 ; TðzÞ ¼
X
n∈Z

Ln

znþ2
;

QaðzÞ ¼
X
n∈Z

Qa
n

zzþ2
: ð4:31Þ

We introduce states jji with j ¼ 1, 2 primary with respect
to theN ¼ 2W algebra. The zero modes of the algebra are
L0, Ja0; K

a
0; K0; Qa

0 . The first four zero modes commute
with each other, and the basis is chosen such that

L0jji ¼ hjji; Ja0jji ¼ −ðtaÞjijii;
Ka

0jji ¼ 0; Kjji ¼ qjji: ð4:32Þ
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We consider primary states in the spin 1=2 representation of
Ja0 and in the trivial representation of Ka

0 . In terms of the
operator Oj corresponding to jji, we require the OPEs

TðzÞOjð0Þ ∼
hOjð0Þ

z2
þOj

0ð0Þ
z

;

JaðzÞOjð0Þ ∼ −
ðtaÞjiOið0Þ

z
;

KaðzÞOjð0Þ ∼ 0; KðzÞOjð0Þ ∼
qOjð0Þ

z
: ð4:33Þ

There is another set of zero modes Qa
0 . Since they do not

commute with some other sets of zero modes, we cannot
take the basis in a representation of Qa

0 simultaneously.
Even with this fact, we require

Qa
0jji ¼ w0ðtaÞijjii ð4:34Þ

as in (3.8) for the bosonic case.
In the N ¼ 2 W algebra, there are 2M2ð¼8Þ super-

charges, and thus there are eight superpartners of the
primary state jji. In a usual N ¼ 2 superconformal field
theory, it is convenient to consider a subsector by assigning
the chiral primary condition

Gþ
−1=2jji ¼ 0: ð4:35Þ

Our N ¼ 2 W algebra includes a N ¼ 2 superconformal
algebra as a subalgebra, but it is generated by fT̃; K;G�g
with the modified energy-momentum tensor T̃ defined in
(4.29). We assign the chiral primary condition (4.35) as
in the usual N ¼ 2 theory. From hjjG−

1=2G
þ
−1=2jji ¼ 0, we

have

2h −
3

2þ k
¼ q: ð4:36Þ

There is a shift of conformal weight due to the modification
of energy-momentum tensor. We further observe that

Gþ;a
−1=2jji ¼ ½Ja0; Gþ

−1=2�jji ¼ 0; ð4:37Þ

where we have used the commutation relations read off
from (4.21). Therefore, the chiral primary condition (4.35)
reduces the number of superpartners by half, and only the
actions of G−

−1=2 and G−;a
−1=2 produce new states. In terms of

OPEs, we introduce corresponding new operators by

G−ðzÞOjð0Þ∼
Õjð0Þ
z

; G−;aðzÞOjð0Þ∼
Õa

j ð0Þ
z

: ð4:38Þ

The operators Õj and Õa
j have the conformal dimension

hþ 1=2 and the eigenvalue of K0 as q − 1.

As in the bosonic case, we look for null states of the form
Qa

−1jji þ � � �, which means that the action ofQa
−1 is written

in terms of the other modes, such as Ja−1; K
a
−1; K−1; L−1.

There could be terms like

Gþ;a
−1=2G

−;b
−1=2jji ¼ fGþ;a

−1=2; G
−;b
−1=2gjji; ð4:39Þ

but they can be rewritten in terms of Ja−1; K
a
−1; K−1; L−1.

From the form of null states along with (4.34), we use the
ansatz as

QaðzÞOjð0Þ∼ ðtaÞji
�
w0Oið0Þ

z2
þw1Oi

0ð0Þþw2ðKOiÞð0Þ
z

�

þw3ðJaOjÞð0Þþw4ðKaOjÞð0Þ
z

þ ifabcðtbÞji
�
w5ðJcOiÞð0Þþw6ðKcOiÞð0Þ

z

�
:

ð4:40Þ

As argued in [40], the primary conditions for the null
vectors are expected to be examined by the OPE associa-
tivity involving Qa ×Oj. From the associativity of
Φð1Þ ×Qa ×Oj, we can fix the coefficients except for w0.
In order to fix w0 as well as the conformal weight h, we

shall examine the associativity of Qa ×Qb ×Oj. Before
doing so, we need to examine the OPEs involving Õj and
Õa

j , since the operator product Qa ×Qb produces
composite operators involving G�;A. We first study the
OPEs of the forms Φð1Þ × Õj and Φð1Þ × Õa

j by examining
the associativity for Φð1Þ ×Φð1Þ × Õj, Φð1Þ ×Φð1Þ × Õa

j ,
and Φð1Þ ×G−;a ×Oj. We can fix the OPEs as

JaðzÞÕjð0Þ ∼ −
ðtaÞjiÕið0Þ þ Õa

j ð0Þ
z

;

JaðzÞÕb
j ð0Þ ∼

− 1
4
δabÕjð0Þ þ i

2
fabcÕ

c
j − ðtaÞjiÕb

i

z
;

KaðzÞÕjð0Þ ∼
Õa

j ð0Þ
z

;

KaðzÞÕb
j ð0Þ ∼

1
4
δabÕjð0Þ þ i

2
fabcÕ

c
jð0Þ

z
: ð4:41Þ

We next examine the OPEs of

Gþ × Õj; Gþ × Õa;j; Gþ;a × Õj; Gþ;a × Õb;j; ð4:42Þ

which can be written as linear combinations of

½Oj�; ½KOj�; ½JaOj�; ½KaOj�: ð4:43Þ
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We provide our ansatz for these OPEs in Appendix C 2.
The coefficients can be determined from the associativity of
Φð1Þ ×Φð3=2Þ × Õj and Φð1Þ×Φð3=2Þ×Õa

j . Since Gþ ×G−

does not generate Qa, we can also utilize the associativity
of Gþ ×G− ×Oj.
With the above preparations, we can examine the

associativity of Qa ×Qb ×Oj with the ansatz (4.40).
From this, w0 can be fixed as9

w0 ¼ −
c0ð2hðl1 þ 2Þ þ ðl1 − 1Þðl1 þ 3ÞÞ

4d7l2
1ðl1 þ 2Þ ; ð4:44Þ

and h should be one of

h ¼ 1 − l1

2l1 þ 4
; h ¼ l1 þ 5

2l1 þ 4
− l1: ð4:45Þ

These results resemble those of the bosonic case given in
(3.19). We will see below that the first conformal weight
can be realized for a state of the coset (1.4).

D. Dual coset CFT

As argued before, the N ¼ 2 W algebra with suðMÞ
symmetry can be realized as the asymptotic symmetry of
the N ¼ 2 higher spin supergravity of [3] with M ×M
matrix valued fields. On the other hand, it was proposed in
[5] that the classical higher spin sugergravity is dual to the
coset (1.4) at a large N limit.10 The central charge of the
coset is

c¼M2þ3MN−1−
M3þ3MN2þ3NM2−M

kþNþM
: ð4:46Þ

From the holography, we would like to claim that the
N ¼ 2 W algebra can be realized as the symmetry algebra
of the coset (1.4) even with finite N. In the following, we
collect strong evidence supporting the claim.
The model has the symmetry of two affine suðMÞ

algebras. One of them comes from suðMÞk⊂suðNþMÞk
in the numerator. The other is suðMÞN constructed from
suðNÞ invariant combinations of NM complex fermions
from soð2NMÞ1. We first require l1 ¼ k and l2 ¼ N. Then
the match of the central charge is realized at λ ¼ −n, where
the ’t Hooft parameter is defined as

λ ¼ N
kþ N þM

: ð4:47Þ

We can check that the map of parameters is consistent with
the expressions of c and l2 in (4.8). Using the symmetry

under the exchange of two suðMÞ currents, we may require
l1 ¼ N and l2 ¼ k. Then the correspondence happens at
λ ¼ −n with

λ ¼ k
kþ N þM

; ð4:48Þ

where N and k are exchanged. Thus, there are two ways to
realize theN ¼ 2W algebra in terms of the coset (1.4), and
this indicates the existence of duality for the coset (1.4). We
will come back to this point later.

1. Symmetry generators

As in the bosonic case, we explicitly construct the low
spin generators of the N ¼ 2 W algebra in terms of the
coset (1.4). See [23,24] for the case with M ¼ 2. For this,
we adopt the same notation as in the bosonic case.
We decompose suðN þMÞ in the numerator as in
(2.37). We use the generators tA ¼ ðtα; ta; tuð1Þ; tðρ{̄Þ; tðρ̄iÞÞ
with the metric gAB ¼ trðtAtBÞ in (2.38) and the invariant
tensors in (2.39) with (2.40). The suðMÞ currents JA and
the complex fermions ðψ ðρ{̄Þ;ψ ðρ̄iÞÞ satisfy (2.41) and

ψ ðρ{̄ÞðzÞψ ðρ̄iÞð0Þ ∼ δρ̄ρδi{̄

z
: ð4:49Þ

In order to construct the symmetry generators in terms of
coset (1.4), we introduce suðNÞ ⊕ suðMÞ ⊕ uð1Þ currents
from soð2NMÞ1 as

Jαf ¼ ðψ ðρ{̄Þψ ðσ̄iÞÞðtαÞρσ̄δ{̄i; Jaf ¼−ðψ ðρ{̄Þψ ðρ̄jÞÞðtaÞj{̄δρ̄ρ;
Juð1Þf ¼ ðψ ðρ{̄Þψ ðρ̄iÞÞδρρ̄δ{̄i: ð4:50Þ

In particular, the currents in the denominator of the coset
(1.4) are given by

J̃α ¼ JαþJαf;

J̃uð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNðNþMÞ

p
Juð1Þ þðNþMÞJuð1Þf : ð4:51Þ

We start by constructing spin 1 currents in the N ¼ 2W
algebra. One of them is simply given by Ja and another is
Ka ¼ Jaf defined in (4.50). The other spin 1 current K is

given by a linear combination of Juð1Þ and Juð1Þf and should

be regular with respect to J̃uð1Þ in (4.51). We identify
K by

K ¼ 1

N þM þ k
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNðN þMÞ

p
Juð1Þ − kJuð1Þf Þ; ð4:52Þ

where the overall normalization is chosen such as to
reproduce (4.9). For spin 3=2 currents, we can construct
them from products of ψ ðσ|̄Þ and Jðρ̄iÞ or those of ψ ðσ̄jÞ and

9As in the bosonic case analyzed in Appendix B, we have used
only a part of conditions coming from associativity of the OPEs.
We believe that every condition from the associativity is satisfied
up to null vectors with (4.44) and (4.45). However, we have not
checked it yet.

10See Appendix D 2 for an alternative proposal of dual coset.
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Jðρ{̄Þ. Taking care of the properties under the suðMÞ action,
we find

G−¼ðψ ðρ{̄ÞJðρ̄iÞÞδρρ̄δ{̄i; Gþ¼ðJðρ{̄Þψ ðρ̄iÞÞδρρ̄δ{̄i;
G−;a¼−ðψ ðρ{̄ÞJðρ̄jÞÞðtaÞj{̄δρρ̄; Gþ;a¼−ðJðρ{̄Þψ ðρ̄jÞÞðtaÞj{̄δρρ̄;

ð4:53Þ

where the overall factors are set to reproduce the OPEs
(4.21) and (4.22). A spin 2 current is given by the energy-
momentum tensor, which can be constructed by the
standard coset construction [29]. For charged spin 2
currents, we require the OPEs (4.25) along with the
condition primary with respect to the Virasoro algebra.
Starting from all possible linear combinations of products
of spin 1 currents in the coset (1.4), we find the expressions
of Qa as

Qa ¼ ½ðJðρ{̄ÞJðρ̄jÞÞ þ ðJðρ̄jÞJðρ{̄ÞÞ�δρρ̄ðtaÞj{̄

−
N

M þ 2k
dabcðJbJcÞ þ

2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þMÞ

M

r
ðJaJuð1ÞÞ;

ð4:54Þ

which are exactly the same as (2.42) for the bosonic case.
This is because we redefined the spin 2 currents Qa such
that the OPEs become the same as the bosonic ones. We
have checked that the OPEs among generators reproduce
the previous ones up to null vectors for several explicit
examples.

2. Spectrum

In the previous subsection, we studied the degenerate
representations of the N ¼ 2 W algebra, and in particular,
we obtained the conformal weights (4.45) of primary states
belonging to degenerate representations. Here we compare
the primary states with those in the coset (1.4). The state
can be labeled by ðΛNþM;ω;ΛN;mÞ, whereΛL andm ∈ Zκ̂

denote the highest weight of suðLÞ and uð1Þ charge,
respectively. In addition to them, we use ω ¼ −1, 0, 1,
2 for the representation of soð2NMÞ1. The conformal
weight of the state ðΛNþM;ω;ΛN;mÞ is

h ¼ nþ hNþM;k
ΛNþM

þ h2NM
ω − hN;kþM

ΛN
− hκ̂m; ð4:55Þ

where hL;KΛL
and hκ̂m were defined in (3.58) and n is an

integer related to the embedding of representations.
Moreover, we have introduced h2NM

ω ¼ ω=4 for ω ¼ 0, 2
and h2NM

ω ¼ NM=8 for ω ¼ �1. As in the bosonic case, we
consider the basic states

ðf; 0; 0; NÞ ⊗ ðf̄; 0; 0;−NÞ;
ð0; 0; f;−N −MÞ ⊗ ð0; 0; f̄; N þMÞ; ð4:56Þ

whose conformal weights are

h ¼ kλM þ λþM2 − 1

2MðkþMÞ ;

h ¼ −λMðkþMÞ þ 2MðkþMÞ þ λ − 1

2MðkþMÞ ð4:57Þ

in terms of the ’t Hooft parameter λ in (4.47). With
λ ¼ −n ¼ −1 and M ¼ 2, the first expression becomes

h ¼ 1 − k
2kþ 4

: ð4:58Þ

Setting k¼l1, this reproduces the first expression in (4.45).

3. Decompositions of the symmetry algebra

It is possible to learn some properties of theW algebra by
making use of its coset realization. Here we would like to
achieve this by decomposing the coset algebra.
As mentioned above, the W algebra includes the

N ¼ 2 superconformal algebra with the modified energy-
momentum tensor (4.29), and this fact was utilized for the
analysis of degenerate representations. We can decompose
the symmetry algebra of the coset (1.4) as

suðNþMÞk ⊕ soð2NMÞ1
suðNÞkþM ⊕ uð1Þκ̂

⊃
suðNþMÞk ⊕ soð2NMÞ1

suðNÞkþM ⊕ suðMÞkþN ⊕ uð1Þκ̂
⊕ suðMÞkþM: ð4:59Þ

The first term in the right-hand side is nothing but the
Grassmannian Kazama-Suzuki model [43,44]. It is con-
structed to have the N ¼ 2 superconformal symmetry, and
the energy-momentum tensor is given in (4.29). Such a
decomposition is often useful in analyzing representations.
In [2], we have explained the duality of the coset (1.1) by

utilizing its decomposition, where the decomposition can
be explained in terms of brane junctions [45–49]. Here we
apply the arguments to the N ¼ 2 W algebra. For this, we
decompose the coset algebra as

suðNþMÞk ⊕ soð2NMÞ1
suðNÞkþM ⊕ uð1Þ

⊃
suðNþMÞk

suðNþM− 1Þk ⊕ uð1Þ⊕ � � �⊕ suðNþ 1Þk
suðNÞk ⊕ uð1Þ

⊕
suðNÞk

suðNÞkþ1 ⊕ suðNÞ1
⊕ � � �⊕ suðNÞkþM−1 ⊕ suðNÞ1

suðNÞkþM ⊕ uð1Þ

⊕
soð2NMÞ1 ⊕ ðM− 1Þuð1Þ

MsuðNÞ1
: ð4:60Þ

The last term in the right-hand side consists of free bosons
and fermions, which will be ignored. Each component
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coset except for the last one is a realization of W∞½λ�
obtained as the Hamiltonian reduction of hs½λ�. The two
cosets

suðLÞK ⊕ suðLÞ1
suðLÞKþ1

;
suðK þ 1ÞL

suðKÞL ⊕ uð1Þ ð4:61Þ

are known to realize the same principal W algebra as its
symmetry [50]. Denoting the algebra by WL;K, the decom-
position (4.60) is rewritten as

suðN þMÞk ⊕ soð2NMÞ1
suðNÞkþM ⊕ uð1Þ

⊃WNþM−1;k ⊕ � � �⊕WN;k ⊕Wk;N ⊕ � � � ⊕WkþM−1;N

ð4:62Þ

up to free bosons and fermions. For M ¼ 1, the decom-
position reduces to the one discussed for the N ¼ 2W∞½λ�
in [51–53]. There is the triality relation of [17] for each W
algebra appearing in the decomposition. However, the coset
(1.4) includes extra symmetry generators which connect
two neighboring component cosets, see [47] for more
details. Requiring the existence of the extra symmetry
generators, only Z2 symmetry reversing the order of
component cosets survives for M > 1, see [2] for the
bosonic case. This Z2 action exchanges N and k, and this
is consistent with the duality of the coset (1.4).

V. CONCLUSION AND DISCUSSIONS

We studied the rectangular W algebra with suðMÞ
symmetry, which is obtained as quantum Hamiltonian
reduction of slðMnÞ. We decompose slðMnÞ as in (1.2)
and use the slð2Þ principally embedded in 1M ⊗ slðnÞ. The
algebra can be identified with the asymptotic symmetry of
3d higher spin gravity with M ×M matrix valued fields.
The matrix extension is expected to be useful to examine
superstring theory from higher spin gravity including
higher Regge trajectories as well. In our previous work
[2], we examined the basic properties of the W algebras,
such as the spin content, the central charge, and the level of
the suðMÞ currents. Furthermore, we computed the OPEs
among generators with n ¼ 2 and claimed that the W
algebra can be realized by the coset (1.1) at λ ¼ n with λ
defined in (1.3). In this paper, we extended the analysis in
several ways.
We first reviewed the works in [2] but slightly extended

the OPE analysis by working with n ≠ 2 but only among
low spin generators and with M ¼ 2. We found that the
OPEs are uniquely fixed by one parameter, say, the level l
of suðMÞ currents. We expect that there is a family of W
algebra, which may be denoted as WM

∞½l; λ�. The algebra
may be obtained as a Hamiltonian reduction of hsM½λ�. It
has two continuous parameters l; λ with M fixed as the
rank of suðMÞ. Our claim here is that the algebra can be

truncated to our rectangular W algebra at λ ¼ n just as
hsM½λ� can be truncated to slðMnÞ. This claim was justified
for n ¼ 2 (andM ¼ 2) only, and it is desired to confirm for
general n. We could truncate WM

∞½l; λ� when the corre-
sponding coset (1.1) has integer parameters k, N, and the
truncation should be different from the one at λ ¼ n, see
also [12,24,25]. It is important to understand the nature of
the truncations of WM

∞½l; λ� furthermore.
We then investigated the degenerate representations of

the W algebra but with M ¼ n ¼ 2. We explicitly con-
structed null vectors by examining the condition primary
with respect to the W algebra at low levels. One crucial
assumption is that primary states are eigenstates of Qa

0

along with L0 and Ja0 as in (3.8). We would like to see what
would happen if we relax the assumption. We also obtained
representations by deducing those of slð4Þ. However we
have not examined their properties from the viewpoints of
the W algebra. In particular, we would like to know what
kind of null vectors are related to the representations
generically. We then compared the results with the spec-
trum of the coset (1.1) and the mass of conical defect
geometry of the higher spin gravity constructed in [16]. In
particular, the conformal weights in (3.56) give the infor-
mation of quantum corrections to the masses of conical
defects, and it is an important problem to reproduce them
from the gravity theory, see [54–56]. It is also desired to
have a more systematic understanding of degenerate
representations including generic M and n.
We also examined the N ¼ 2 rectangular W algebras

with suðMÞ symmetry obtained as the Hamiltonian reduc-
tion of slðMðnþ 1ÞjMnÞ. Here slðMðnþ 1ÞjMnÞ is
decomposed as in (4.1), and the ospð1j2Þ principally
embedded in 1M ⊗ slðnþ 1jnÞ is used. We first studied
the basis properties of the N ¼ 2 W algebras, such as the
spin content, the central charge, and the levels of two sets of
suðMÞ currents. We then fixed the OPEs among generators
with a parameter l1 for the level of a set of suðMÞ currents
but with the restriction of n ¼ 1. In the case of M ¼ 2, the
restriction can be removed as in [25] by making use of the
largeN ¼ 4 symmetry. We further claimed that theN ¼ 2
W algebra can be realized by the symmetry algebra of the
coset (1.4) with setting (1.5) or (1.6). We studied the
representations with level 1 null vectors and primary states
in the spin 1=2 representation of Ja0 for M ¼ 2. It is
worthwhile extending the analysis as was done in the
bosonic case.
In order to see the relation to superstring theory, it is

useful to extend the current analysis by introducing more
extended supersymmetry as in [21,36,57]. It was proposed
that the coset model (1.4) with a critical level k ¼ N þM is
dual to a version of Prokushkin-Vasiliev theory with more
extended supersymmetry. We may further assign an invari-
ant condition to the matrix degrees of freedom in the higher
spin theory, since a closed string does not have such
degrees. In this case, a multiparticle state in the higher
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spin theory would correspond to a single closed string state.
It was claimed that the restricted version is dual to the
Grassmannian Kazama-Suzuki model [43,44]

suðN þMÞNþM ⊕ soð2NMÞ1
suðNÞNþ2M ⊕ suðMÞMþ2N ⊕ uð1Þκ̂

ð5:1Þ

at the critical level. In particular, it was found that the
critical level model possesses N ¼ 3 enhanced supersym-
metry, which enables us to discuss the relation to super-
strings on AdS3, see [21,36] for more details.
In this paper, we examined the rectangular W algebra

with suðMÞ symmetry, but we can also construct other
rectangularW algebras. There are generalizations of higher
spin supergravity by restricting the extra matrix degrees of
freedom as in [3], see also [7]. The asymptotic symmetries
of these higher spin supergravities were given by rectan-
gularW algebras with soðMÞ or spð2MÞ symmetry, and the
analysis of [2] was applied to these algebras in [58].
Without the matrix extensions, higher spin holographies
were proposed in [59,60] for the bosonic case and in [61]
for the N ¼ 1 supersymmetric case. In this paper, we have
extended the analysis of [2] in several ways. It is interesting
to apply the current extensions to the W algebras with
soðMÞ or spð2MÞ symmetry as well.

ACKNOWLEDGMENTS

We are grateful to Wei Li, Cheng Peng and Takahiro
Uetoko for useful discussions. Y. H. thanks the organizers
of ESI Programme and Workshop “Higher spins and
holography” at the Erwin Schrödinger Institute in
Vienna, where a part of this work was done. The work
of T. C. is supported by NSERC Grant No. RES0019997.
The work of Y. H. is supported by JSPS KAKENHI Grants
No. 16H02182 and No. 19H01896.

APPENDIX A: COMMUTATION RELATIONS

We consider the rectangularW algebra withM ¼ n ¼ 2.
The algebra is labeled by the level l of suð2Þ currents. The
central charge of the algebra is [see (2.8)]

c ¼ −
8ðl2 − 1Þ
lþ 4

þ 2l − 1: ðA1Þ

In terms of mode expansions, generators are Ln, Qa
n, Jan

(a ¼ 1, 2, 3) with n ∈ Z. From the OPEs (2.9), (2.11) and
(2.12), we obtain (3.2). With n ¼ 2, the OPEs of Qa ×Qb

were obtained in [2] (and reproduced in Sec. II B for
M ¼ 2). The corresponding commutation relations can be
computed as

½Qa
m;Qb

n� ¼ δab
�
c1
12

ðm3 −mÞδmþn;0 þ
c2
2
ðm − nÞLmþn

�

þ ifabc

��
−
c3
2
ðmþ 1Þðnþ 1Þ þ c4ðmþ nþ 2Þðmþ nþ 1Þ

�
Jcmþn þ c5ðTJcÞmþn

�

þ ðm − nÞ
2

ðc6dabcd4SS1 þ c7dabcd4SS2ÞðJðcJdÞÞmþn þ c8dabcd4AA ðJ½cJ0d�Þmþn þ c9dabcde5AS ðJðcJdJeÞÞmþn: ðA2Þ
The coefficients are given by

c2 ¼
2c1ðlþ 1Þ

cðlþ 2Þ − 3l
; c3 ¼

c1
2l

;

c4 ¼
c1ðcðlð3lðlþ 3Þ þ 2Þ − 24Þ − 5lð3lð3lþ 7Þ − 16Þ þ 80Þ

12lð3l2 þ l − 4Þðcðlþ 2Þ − 3lÞ ;

c5 ¼
2c1ðlþ 1Þ

lðcðlþ 2Þ − 3lÞ ; c6 ¼
c1ðc − 2lþ 1Þ

2ðl − 1Þðcðlþ 2Þ − 3lÞ ; c7 ¼
c1

2l − 2l2
;

c8 ¼
c1ð−cðl − 2Þðlþ 4Þ þ lð27l − 16Þ − 16Þ

2lð3l2 þ l − 4Þðcðlþ 2Þ − 3lÞ ; c9 ¼
c1ðlðc − 6lþ 1Þ þ 4Þ

2lð3l2 þ l − 4Þðcðlþ 2Þ − 3lÞ ðA3Þ

and dabcd4AA ; dabcd4SS1; d
abcd
4SS2; d

abcde
5AS are defined in (2.24) and (2.25). We have used

ðTJaÞn ¼
X
p≤−2

LpJan−p þ
X
p≥−1

Jan−pLp; ðJðaJbÞÞn ¼
X
p≤−1

Jðap J
bÞ
n−p þ

X
p≥0

Jðbn−pJ
aÞ
p ;

ðJ½aJb�0Þn ¼
X
p≤−1

ðp − n − 1ÞJ½ap Jb�n−p þ
X
p≥0

ðp − n − 1ÞJ½bn−pJa�p ;

ðJðaJbJcÞÞn ¼
X

p≤−1;q≤−1
Jðap JbqJ

cÞ
n−p−q þ

X
p≥0;q≤−1

Jðbq Jcn−p−qJ
aÞ
p þ

X
p≤−1;q≥0

Jðap Jcn−p−qJ
bÞ
q þ

X
p≥0;q≥0

Jðcn−p−qJbqJ
aÞ
p ðA4Þ

for the mode expansions of composite operators.
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APPENDIX B: OPEs AND NULL VECTORS

In Sec. III A, we examined null states by making use
of the commutation relations in terms of the mode
expansions of generators. In this subsection, we develop
an alternative way by applying associativity of the OPEs as
in [28,40–42]. For simplicity, we focus on the case where
null vectors appear at level 1 and further set J ¼ 1=2.
We considered primary states satisfying (3.4) and (3.5).

We denote the corresponding operator asOj and require the
OPEs with T and Ja as

TðzÞOjð0Þ ∼
hOjð0Þ

z2
þO0

jð0Þ
z

;

JaðzÞOjð0Þ ∼ −
ðtaÞijOið0Þ

z
: ðB1Þ

We assumed that the primary states satisfy (3.4) and (3.8)
under the action of Qa

n. In terms of OPE, we use the
ansatz as

QaðzÞOjð0Þ ∼ w0ðtaÞji
�
Oi

z2
þO0

i

hz

�
þ w1

½JaOj�
z

þ ifabcw2ðtbÞji
½JcOi�

z
: ðB2Þ

Here we have introduced composite primary operators of
conformal weight hþ 1 as

½JaOj� ¼ ðJaOjÞ þ
1

2h
ðtaÞjiO0

i: ðB3Þ

We fix the parameters by requiring associativity of the
OPEs. We use the function OPEJacobi incorporated in the
Mathematica package OPEdefs [27]. Writing a OPE as

AðzÞBðwÞ ¼
X

n≤nmax

½AB�nðwÞ
ðz − wÞn ; ðB4Þ

the function checks whether the conditions

½A½BC�p�q ¼ ð−1ÞjAjjBj½B½AC�q�p
þ
X
l>0

�
q − 1

l − 1

�
½½AB�lC�pþq−l ðB5Þ

are satisfied or not for p; q > 0. Here jAj represents the
parity of A. It was argued in [62] that the associativity of
A × B × C is satisfied when the function generates zero up
to null vectors. In particular, if the generated operators are
proportional to primary operators with nonvanishing two
point functions, then the factors in front of the operators
should be zero.

Requiring the associativity of Ja ×Qb ×Oj, we obtain
conditions for w1 and w2. Solving the conditions, we
rewrite w1 and w2 as

w1 ¼
2w0ð4hþ k − 2Þ

ðk − 1Þð4hðkþ 2Þ − 3Þ ;

w2 ¼
ð4h − 2Þkw0 þ w0

ðk − 1Þð4hðkþ 2Þ − 3Þ ðB6Þ

in terms of h and w0. The associativity of Qa ×Qb ×Oj

leads to constraint equations for h and w0. The function
OPEJacobi generates several operators, which should be null
in order to satisfy the associativity. We require that
coefficients in front of Oj vanish, and these conditions
lead to the conformal dimension h as in (3.19). In this way,
we reproduce the previous result by using the OPEs
involving the primary operator Oj. There are other oper-
ators generated by OPEJacobi. We believe that these extra
operators are null, but we have not checked it yet.

APPENDIX C: TECHNICAL DETAILS
ON THE N = 2 W ALGEBRA

In this Appendix, we collect some technical materials
used for computations on the N ¼2 rectangular W
algebras.

1. Invariant tensors

In order to expand operator products in terms of
(composite) primary operators, we need the invariant
tensors with several indices. Here we list the invariant
tensors used for the OPE analysis of the N ¼ 2 W algebra
in Sec. IV B. The invariant tensors with two and three
indices are given by (2.10). With four indices, we use

dabcd4AA1 ¼ δa½bδ
c
d�; dabcd4AA2 ¼ trðt½atb�t½ctd�Þ;

dabcd4AA3 ¼ trðt½at½ctb�td�Þ;
dabcd4SS1 ¼ δabδcd; dabcd4SS2 ¼ δaðcδ

b
dÞ;

dabcd4SS3 ¼ trðtðatbÞtðctdÞÞ; dabcd4SS4 ¼ trðtðatðctbÞtdÞÞ: ðC1Þ

We also use tensors with five indices fa; b; c; d; eg. We
need tensors which are antisymmetric under a ↔ b and
symmetric under c ↔ b ↔ c as

dabcde5AS1 ¼ ifabðcδdeÞ; dabcde5AS2 ¼ trðt½atb�tðctdteÞÞ;
dabcde5AS3 ¼ trðt½atðctb�tdteÞÞ; dabcde5AS4 ¼ δðc½ad

deÞ
b� : ðC2Þ

We further use tensors which are symmetric under c ↔ d
and antisymmetric under a ↔ b, c ↔ e and d ↔ e as
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dabcde5AH1 ¼ i
2
ffabeδcd − fabðcδdÞeg;

dabcde5AH2 ¼ 1

4
f2trðt½atb�tðctdÞteÞ − ðtrðt½atb�tðetdÞtcÞ − trðt½atb�tðcteÞtdÞÞg;

dabcde5AH3 ¼ 1

4
f2trðt½atb�tðctetdÞÞ − trðt½atb�tðetctdÞÞ − trðt½atb�tðctdteÞÞg;

dabcde5AH4 ¼ 1

4
f2trðt½atb�tetðctdÞÞ − trðt½atb�tctðetdÞÞ − trðt½atb�tdtðcteÞÞg;

dabcde5AH5 ¼ 1

4
f2trðt½atðctb�tdÞteÞ − trðt½atðetb�tdÞtcÞ − trðt½atðctb�teÞtdÞg;

dabcde5AH6 ¼ 1

4
f2trðt½atðctb�tetdÞÞ − trðt½atðetb�tctdÞÞ − trðt½atðctb�tdteÞÞg;

dabcde5AH7 ¼ 1

4
f2trðt½atetb�tðctdÞÞ − trðt½atctb�tðetdÞÞ − trðt½atdtb�tðcteÞÞg;

dabcde5AH8 ¼ 1

4
f2δe½adcdb� − δc½ad

ed
b� − δd½ad

ce
b� g: ðC3Þ

2. OPEs involving chiral primaries

In Sec. IV C, we have expanded the operator products in (4.42) as linear combinations of primary operators in (4.43).
Here we write down our ansatz explicitly. We have used the forms

GþðzÞÕjð0Þ ∼
m1Ojð0Þ

z2
þm2O0

jð0Þ þm3ðKOjÞð0Þ
z

þ ðtaÞji
m4ðJaOiÞð0Þ þm5ðKaOiÞð0Þ

z
;

GþðzÞÕa
j ð0Þ ∼

n1ðJaOjÞð0Þ þ n2ðKaOjÞð0Þ
z

þ ðtaÞji
�
n3Oið0Þ

z2
þ n4O0

ið0Þ þ n5ðKOiÞð0Þ
z

�

þ ifabcðtbÞji
n6ðJcOiÞð0Þ þ n7ðKcOiÞð0Þ

z
ðC4Þ

for the OPEs involving Gþ. We have set the forms as

Gþ;aðzÞÕjð0Þ ∼
o1ðJaOjÞð0Þ þ o2ðKaOjÞð0Þ

z

þ ðtaÞji
�
o3Oið0Þ

z2
þ o4O0

ið0Þ þ o5ðKOiÞð0Þ
z

�
þ ifabcðtbÞji

o6ðJcOiÞð0Þ þ o7ðKcOiÞð0Þ
z

;

Gþ;aðzÞÕb
j ð0Þ ∼ δab

�
p1Ojð0Þ

z2
þ p2O0

jð0Þ þ p3ðKOjÞð0Þ
z

�

þ δabðtcÞji
�
p4ðJcOiÞð0Þ þ p5ðKcOiÞð0Þ

z

�
þ ifabc

�
p6ðJcOjÞð0Þ þ p7ðKcOjÞð0Þ

z

�

þ ifabcðtcÞji
�
p8Oið0Þ

z2
þ p9O0

ið0Þ þ p10ðKOiÞð0Þ
z

�
þ ðtbÞji

�
p11ðJaOiÞð0Þ þ p12ðKaOiÞð0Þ

z

�

þ ðtaÞji
�
p13ðJbOiÞð0Þ þ p14ðKbOiÞð0Þ

z

�
ðC5Þ

for the OPEs involving Gþ;a.
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APPENDIX D: ALTERNATIVE PROPOSALS
OF DUAL COSET CFTs

In [2], we examined a coset description of rectangularW
algebras with suðMÞ symmetry. In this Appendix, we
propose an alternative coset description of the algebra by
making use of superalgebra suðNjMÞ. Rectangular W
algebra obtained from the Hamiltonian reduction of
hsM½λ� can be described by free bosons or fermions at
the limit λ → 0 or λ → 1 as was constructed in [63,64]. The
dual coset should reduce to the same free system at a large
level limit, and this fast was utilized to guess the dual coset
in [5], see also [7]. The coset (1.1) reduces to a free boson
system at the large k limit. However, we may use an
alternative coset which reduces to a free symplectic fermion
system at the large k limit. This is the idea behind the
arguments in this Appendix. Furthermore, we extend the
analysis by introducing the N ¼ 2 supersymmetry.

1. Rectangular W algebras

Here we propose that the rectangular W algebra with
suðMÞ symmetry can be realized by a coset

suðNjMÞk
suðNÞk ⊕ uð1Þκ

ðD1Þ

with κ ¼ MNkðM − NÞ as an alternative of (1.1). Indeed
the symmetry algebra has M2 fields in conformal weights
1; 2;…; 2nþ 1 for the following reason: The large k limit
of the coset reduces to the subalgebra of NM symplectic
fermions that is invariant under suðNÞ ⊕ uð1Þ. This orbi-
fold has M2 fields of conformal weight 1; 2;…; 2nþ 1 by
Theorem 4.4 of [65]. The type of symmetry algebra of the
coset at generic level is the same as the orbifold limit by the
theory of [66,67].
The problem here is to obtain the map of parameters such

that the central charge c and the level l of suðMÞ currents
coincide with each other. For the level of suðMÞ, we set
l ¼ −k. The central charge of the model is

c ¼ kððN2 − 1Þ þ ðM2 − 1Þ þ 1− 2NMÞ
kþN −M

−
kðN2 − 1Þ
kþN

− 1:

ðD2Þ

Compared with (2.6) and (2.7), the correspondence hap-
pens at λ ¼ n with

λ ¼ k
kþ N

; λ ¼ −
k

kþ N −M
: ðD3Þ

There are two choices, and this implies a duality of the
coset (D1).
We next construct the generators of rectangular W

algebra in terms of the coset (D1). The superalgebra
suðNjMÞ can be decomposed as

suðNjMÞ ¼ suðNÞ ⊕ suðMÞ ⊕ uð1Þ ⊕ ðN; M̄Þ⊕ ðN̄;MÞ;
ðD4Þ

and the generators are denoted as tA ¼ ðtα; ta; tuð1Þ;
tðρ{̄Þ; tðρ̄iÞÞ. Here tP ¼ ðtα; ta; tuð1ÞÞ are Grassmann even
and tðρ{̄Þ; tðρ̄iÞ are Grassmann odd. We choose the metric
gAB ¼ strðtAtBÞ as

strðtαtβÞ¼ δαβ; strðtatbÞ¼−δab; strðtuð1Þtuð1ÞÞ ¼ 1;

strðtðρ{̄Þtðρ̄iÞÞ ¼−strðtðρ̄iÞtðρ{̄ÞÞ ¼ δρρ̄δ{̄i: ðD5Þ

We also introduce the structure constants as

ifABC ¼ strð½tA; tB�tCÞ; dABC ¼ strðftA; tBgtCÞ; ðD6Þ

where our convention is such that

ifðρ{̄Þðσ̄jÞuð1Þ ¼ M þ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNðM − NÞp δ{̄jδσ̄ρ;

dðρ{̄Þðσ̄jÞuð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M − N
MN

r
δ{̄jδσ̄ρ;

ifðρ{̄Þðσ̄jÞα ¼ dðρ{̄Þðσ̄jÞα ¼ ðtαÞσ̄ρδj{̄;
ifðρ{̄Þðσ̄jÞa ¼ −dðρ{̄Þðσ̄jÞa ¼ δρσ̄ðtaÞ{̄j ðD7Þ

for nontrivial expressions. The suðNjMÞ affine algebra
consists of bosonic currents JP ¼ ðJa; Jα; Juð1ÞÞ and fer-
mionic currents Jðρ{̄Þ; Jðρ̄;iÞ. The OPEs among the suðNjMÞ
currents are now written as

JPðzÞJQð0Þ ∼ kgPQ

z2
þ ifPQR JRð0Þ

z
;

Jðρ{̄ÞðzÞJðρ̄iÞð0Þ ∼ kδρρ̄δ{̄i

z2
þ dðρ{̄Þðρ̄iÞP JPð0Þ

z
;

JPðzÞJðρ{̄Þð0Þ ∼ ifPðρ{̄Þðσ|̄ÞJðσ|̄Þ

z
;

JPðzÞJðρ̄iÞð0Þ ∼
ifPðρ̄iÞðσ̄jÞ J

ðσ̄jÞ

z
: ðD8Þ

We construct the generators of rectangular W algebra up
to spin 2 using the suðNjMÞ currents. The suðMÞ−k
currents are given by Ja. The energy-momentum tensor
can be obtained by the standard coset construction [29]. We
find that

Qa ¼ ½ðJðρ{̄ÞJðρ̄iÞÞ− ðJðρ̄iÞJðρ{̄ÞÞ�δρρ̄ðtaÞi{̄

−
N

M−2k
dabcðJbJcÞ−

2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðM−NÞ

M

r
ðJaJuð1ÞÞ ðD9Þ
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satisfies the required OPEs with Ja and T as in (2.12). We
have checked that the OPEs of Qa ×Qb are reproduced for
several examples.

2. N = 2 rectangular W algebras

We would like to consider a similar realization of the
N ¼ 2 W algebra from a coset

suðNjMÞk ⊕ spð2NMÞ−1=2
suðNÞk−M ⊕ uð1Þκ̂

ðD10Þ

with κ̂¼NMðM−NÞðk−MþNÞ. The factor spð2NMÞ−1=2
can be described by NM pairs of symplectic bosons. The
central charge of this model is

c ¼ kððN2 − 1Þ þ ðM2 − 1Þ þ 1 − 2NMÞ
kþ N −M

− NM

−
ðk −MÞðN2 − 1Þ

k −M þ N
− 1: ðD11Þ

The symmetry algebra includes suðMÞ−k ⊂ suðNjMÞk and
suðMÞ−N from the symplectic bosons. Requiring l1 ¼ −k
and l2 ¼ −N, we find the match of central charge at
λ ¼ −n with

λ ¼ N
kþ N −M

: ðD12Þ

With the alternative possibility as l1 ¼ −N and l2 ¼ −k,
the correspondence is realized at λ ¼ −n with

λ ¼ k
kþ N −M

: ðD13Þ

Here we have used the expressions (4.7) and (4.6).
We then construct the symmetry generators of theN ¼ 2

W algebra from the coset (D10). We express the factor
spð2NMÞ−1=2 by symplectic bosons ðφðρ{̄Þ;φðρ̄iÞÞ satisfying

φðρ{̄ÞðzÞφðρ̄iÞð0Þ ∼ δρρ̄δ{̄i

z
: ðD14Þ

With the symplectic bosons, suðNÞ ⊕ suðMÞ ⊕ uð1Þ cur-
rents can be constructed as

Jαf ¼ −ðφðρ{̄Þφðσ̄iÞÞðtαÞρσ̄δ{̄i; Jaf ¼ ðφðρ{̄Þφðρ̄jÞÞðtaÞj{̄δρρ̄;
Juð1Þf ¼ ðφðρ{̄Þφðρ̄iÞÞδρρ̄δ{̄i: ðD15Þ

The currents in the denominator of (D10) are then given by

J̃α ¼ Jα þ Jαf;

J̃uð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNðM − NÞ

p
Juð1Þ þ ðN −MÞJuð1Þf : ðD16Þ

There are two sets of suðMÞ currents and one uð1Þ
current in the N ¼ 2 W algebra. One of the sets of suðMÞ
currents is Ja and the other is Ka ¼ Jaf in (D15). The uð1Þ
current is

K ¼ 1

M − N − k
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MNðM − NÞ

p
Juð1Þ − kJuð1Þf Þ: ðD17Þ

We have

G−¼ðφðρ{̄ÞJðρ̄iÞÞδρρ̄δ{̄i; Gþ¼ðJðρ{̄Þφðρ̄iÞÞδρρ̄δ{̄i;
G−;a¼−ðφðρ{̄ÞJðρ̄jÞÞðtaÞj{̄δρρ̄; Gþ;a¼−ðJðρ{̄Þφðρ̄jÞÞðtaÞj{̄δρρ̄

ðD18Þ

for spin 3=2 currents. The normalizations are chosen so as
to satisfy (4.20), (4.21) and (4.22). A spin 2 current is the
energy-momentum tensor from the coset construction [29].
We find the charged spin 2 currents

Qa ¼ ½ðJðρ{̄ÞJðρ̄iÞÞ− ðJðρ̄iÞJðρ{̄ÞÞ�δρρ̄ðtaÞi{̄

−
N

M−2k
dabcðJbJcÞ−

2

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðM−NÞ

M

r
ðJaJuð1ÞÞ ðD19Þ

satisfy the required OPEs with spin 1 currents (4.25) as well
as the primary condition with respect to the Virasoro
algebra. The expression is the same as the bosonic one
in (D9) due to our convention of Qa. We have checked that
the OPEs among generators are reproduced up to null
vectors for several explicit examples.
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